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Abstract

In this work, we investigate the effect of linguistic complexity on cognitive load
in a dual-task scenario, namely simultaneous driving and language use. To
this end, we designed and implemented a psycholinguistic experiment where
participants use a driving simulator while listening to spoken utterances and
answering comprehension questions. On-line physiological measures of cog-
nitive load, including the recently established Index of Cognitive Activity, as
well as measures of performance in both tasks, have been collected. The result-
ing rich corpus of aligned fine-grained data streams can be used to test a vast
array of different hypotheses about the relationship between performance, dif-
ficulty and cognitive load in dual tasks, at various levels of temporal resolution
and linguistic structure. In this Master’s thesis, we present the theoretical mo-
tivation and background, the methodological and technical aspects of the ex-
periment, the resulting corpus and some first interesting results from the data
analysis.
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CHAPTER 1

Introduction

1.1 Language in a dual-task context

A driver is listening to instructions from a navigation system while also talking
with a passenger. An airline pilot is communicating with an air traffic con-
troller. A worker is listening to radio. A hairdresser is talking with a customer.
A commuter in a car is listening to a broadcast weather and traffic report. A
technician is getting instructions from a supervisor. A taxi driver is receiving
messages from a call center.

The cases above are just a few examples of a phenomenon which is ubiqui-
tous in everyday life: dual-task scenarios, with language use as the secondary
task. In such situations, people speak or listen to speech while engaging in a
primary task where attention is critical to task performance, or in some cases to
safety, thus making language use a potentially performance-degrading factor
or a safety risk.

One particularly common primary task, where language is often used, is
driving a vehicle. It is a cognitively demanding task, where constant attention
and situation awareness, including fast processing of visual stimuli, is criti-
cal. It has been previously shown that engaging in secondary tasks involving
language decreases driving performance and activity in driving-related areas
of the brain (Just et al., 2008). One might argue that total abstinence from
using language while performing safety-critical tasks would be a solution to
the problem of language-caused distracted driving. For instance, several juris-
dictions have banned the use of a hand-held mobile phone while driving, as
a result of a number of studies a strong link between mobile phone use and
increased car crashes in many countries (McCartt et al., 2006). According to
a literature review study examining a vast range of secondary tasks (Young
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et al., 2007), there is evidence that virtually all non-driving tasks, including
language-related ones, have a detrimental effect to driving performance and
safety, although there are large differences in the magnitude of these effects
across different tasks.

However, abstaining from all kinds of linguistic interaction while engag-
ing in such a ubiquitous and time-consuming activity is arguably unrealistic.
Furthermore, there are cases where accomplishing a linguistic task is helpful
or even critical to primary task success, such as in the case of following nav-
igation instructions or listening to weather reports. Even when the language
task is not immediately related to the driving task, it can still have negligible
or even positive effects on performance: for instance, listening to radio has
been shown by some studies not to have a significant effect on primary task
performance (Strayer and Johnston, 2001); under certain conditions, engaging
in a secondary linguistic task can even have beneficial effects on driving perfor-
mance (Atchley and Chan, 2011), for example by preventing under-stimulation
and loss of vigilance, while conversation with a situation-aware passenger can
direct the driver’s attention to important objects or events on the road, thus
reducing risks (Drews et al., 2004). Even in cases where the above mitigating
circumstances do not hold, people still have important reasons to carry out
language-related tasks efficiently, while keeping safety risks at a minimum.

It is indeed possible in many cases to achieve a balance between tasks, main-
taining an acceptable level of engagement in the language task while still mini-
mizing risks. For example, Crundall et al. (2005) show that in an experiment in-
volving real driving, both drivers and passengers regulated their speech when
faced with perceived difficult driving situations. Regulating speech might not
be the only strategy to achieve the optimal balance; in a driving simulation ex-
periment, Yannis et al. (2011) showed that drivers, when engaging in “simple”
(as opposed to “complex”) conversation, did not exhibit reduced reaction times
or increased accident risk, which is hypothesized to be attributable to drivers
compensating the conversation-caused distraction by reducing their speed.

1.2 In-vehicle spoken dialogue systems

An increasingly important category of secondary language tasks in which peo-
ple tend to engage while driving is the use of automatic spoken language in-
terfaces. Typical examples range from voice-controlled navigation systems to
more general-purpose applications such as on-demand weather or traffic re-
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ports, to hands-free voice dialing or radio tuning, e-mail access systems, or
automatic ticket/restaurant booking. It has been suggested that such voice-
controlled interfaces might represent a better alternative to their manually con-
trolled counterparts with respect to driving safety (Young et al., 2007). How-
ever, there is still evidence that using such a spoken interface remains a cog-
nitively demanding task which interferes to some extent with driving perfor-
mance (Lee et al., 2001).

The design of speech interfaces with minimal impact on driving safety is still
an open engineering question (Hua and Ng, 2010). A possible direction to go
in order to build such interfaces would be to learn from the strategies followed
by their human counterparts, i.e. human situation-aware passengers. As we
saw in the section 1.1, there is evidence that human speakers tend to modify
the language they use depending on the real-time demands of the driving task.
Building a dialogue system which would be able to use a similar self-regulation
strategy would require at least two important components: a) a measure of
difficulty of the driving task and b) the ability to modify the language used by
the dialogue system in order to minimize the impact on the driver, depending
on the detected difficulty of the driving task. A useful notion in the attempt
to answer both of these questions is cognitive load, which can be thought of
as a quantification of the demands imposed by mental tasks on the cognitive
capacities of a person at a particular point in time. Although it is an abstract
notion, several physiological measures have been proposed as metrics of cogni-
tive load, such as pupillometric measures (measuring pupil dilations using eye
trackers), including the recently introduced Index of Cognitive Activity (ICA,
Marshall (2002)), and skin conductance level (SCL). We will elaborate on the
notion of cognitive load and its existing metrics in Chapter 2.

In particular, it would be very useful for spoken dialogue system designers,
if there were a way of knowing whether there are particular features of the
language used which are more “difficult” to process, i.e. cause more cognitive
load, or cause more interference with the driving task, depending on the driv-
ing difficulty. This would enable systems to use a continuous range of strate-
gies, from using less and less demanding language, to pausing the dialogue
altogether, depending on the amount of driving-induced cognitive load.
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1.3 A role for linguistic complexity

In this attempt towards quantifying the cognitive load induced by language
in dual tasks, another useful notion is the one of linguistic complexity, i.e. the
amount of processing difficulty of language. In psycholinguistic research there
has been extensive evidence that language comprehension and production does
cause different amounts of difficulty on the language user, depending on the
features of the language used, like prosody (Engelhardt et al., 2010) and struc-
ture (Demberg and Keller, 2008). As we will elaborate in Chapter 2, measures
of linguistic complexity on various level of analysis (e.g. prosodic, syntactic,
semantic) have been shown to correlate with measures used for measuring both
generic and language-specific cognitive load. However, until now this relation-
ship has primarily been assessed either in language-only experiments, or in
dual-task scenarios where language comprehension is the primary task, while
the secondary task is immediately related to language, e.g. “visual world”
experiments (Tanenhaus et al., 1995). It is less clear what happens in dual-task
situations where language is secondary and unrelated to the primary task. In
particular, we would like to answer the following questions, among others:

• Does linguistic complexity still correlate with measures of cognitive load
in a dual-task situation?

• Are changes in linguistic complexity capable of shifting attention away
from the primary task or to cause measurable deterioration in primary
task performance?

• Are these effects also measurable on a finer-grained temporal scale, such
as during individual sentences, phrases or even words?

• Could we ultimately use this information in order to build dialogue sys-
tems which lower the complexity of their utterances on-line, according to
the current difficulty or the driving task?

1.4 A novel dual-task experiment

The goal of this thesis project is to allow the investigation of the above for-
mulated research questions. To achieve this, we designed and implemented
a new dual-task experiment, manipulating both language and task difficulty
and collecting fine-grained measurements of task performance, task difficulty
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and cognitive load. In our experiment, participants complete a driving simula-
tion task, while simultaneously listening to spoken utterances and answering
comprehension questions. The driving simulation task allows for different dif-
ficulty settings, while the linguistic stimuli are designed to allow comparison
between linguistic syntactic structures which are known to cause different lev-
els of processing difficulty in language-only settings. In addition, pupil size
data are collected using an eye tracker, for calculating the Index of Cognitive
Activity (ICA) and other pupillary measures of cognitive load, as well as skin
conductance levels; these measures, to the best of our knowledge, have not
been previously tried in detecting cognitive load caused by linguistic complex-
ity. Moreover, exact timestamps of onset and duration are recorded for each
of the words spoken, which makes it possible to pinpoint spikes in cognitive
load caused by specific words or linguistic structures on a very fine-grained
temporal scale. The outcome of these experiments is a rich annotated corpus of
fine-grained measurements of task difficulty, task performance and cognitive
load. This corpus allows for testing a large number of different hypotheses
related to the interaction between driving, language and cognitive load in dual
task scenarios across various temporal resolutions, as the initial results from
our preliminary analyses already indicate, and may eventually contribute to
the design of safer and more efficient spoken language interfaces.

1.5 Structure of the thesis

The rest of this document is structured as follows: we will provide some back-
ground on the notion of cognitive load, the measures used in this work and the
particular issues related with language-induced cognitive load in Chapter 2; we
will also present some of the dual-task literature related to our work in Chapter
3. The detailed presentation of our experimental setup and its technical aspects
will follow in Chapter 4, while the resulting corpus and some initial results of
the data analysis will be presented in Chapter 5. We will conclude and propose
some future research directions in Chapter 6.
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CHAPTER 2

Background

2.1 Cognitive load

In cognitive science and psychology, there has been a long-standing consensus,
starting from the work of Miller (1956), that people have limited and measur-
able cognitive capacities for addressing mental tasks. The notion of cognitive
load was introduced in an effort to quantify the strain induced by a mental task
on these limited resources de Jong (2010).

A related finding is that performing one mental task interferes with the abil-
ity to perform other tasks (Wickens, 2002); this is especially important for multi-
tasking situations, which are prevalent in real life. Dual-task scenarios such as
simultaneous driving and participating in conversation, are often reproduced
in experimental settings in order to investigate this kind of interference. There
are many theories regarding the extent to which mental tasks interfere with
each other and the exact nature of this interference, depending on the tasks in
question.

One approach to answering the question of task interference and cognitive
load is Multiple-resource theory (MRT (Wickens, 2008)). MRT hypothesizes
four main dimensions of mental resources:

1. stages of processing (distinguishing between perceptual-cognitive vs ac-
tion selection and execution resources)

2. codes of processing (distinguishing between spatial and verbal resources)

3. modalities of perception (distinguishing between auditory and visual pro-
cessing, only for perceptual tasks)

4. visual channels (distinguishing between focal and ambient vision, only
between visual tasks)
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The main prediction of this theory, with respect to cognitive load, is that it
expects increased interference when time-shared tasks have high demand for
the same type of resources along some of these dimensions, resulting in mental
overload and performance deterioration. On the other hand, two tasks which
demand different types of resources along each of these dimension will exhibit
“difficulty insensitivity” to a certain extent, i.e. an increase in difficulty of one
task will not degrade the performance in the other. Performance will deterio-
rate when demand for one or both of these tasks along a particular dimension
reaches an “overload” threshold. In the case of driving and linguistic com-
prehension, both tasks compete for perceptual resources along the stages of
processing dimension, while they generally different resources along the other
3 dimensions. It would thus be expected that performance deterioration will
result in cases of increased demand for the shared perceptual resources (e.g.
particularly complex or surprising perceptual stimuli), while the deterioration
will be even larger in case the linguistic task involves visual processing (e.g.
reading the screen of an electronic device) or if understanding the content of
the language involves elaborate spatial reasoning.

Cognitive load, like other notions in cognitive sciences, is an elusive con-
cept which takes the shape of the measures used in an attempt to quantify
it (Klingner, 2010). Various such measures of cognitive load have been pro-
posed in the literature. One strong candidate is the P300 component of the
event-related potential (ERP), measured via electroencephalography (EEG), whose
amplitude has been shown to be sensitive to increased cognitive effort (Cas-
tro and Diaz, 2001). In particular, the P3b subcomponent of P300 has been
shown to increase when improbable task-related stimuli occur, while the P3a
(“novelty P3”) increases with improbable non-task-related stimuli which cause
involuntary attention shifts (Squires et al., 1975; Grillon et al., 1990). Therefore,
under the assumption that the occurrence of less probable task-related stimuli
is related to increased task difficulty, such as the sudden crossing of a child
while driving, P300 can be used in practice as an indicator of higher task-related
cognitive load.

To avoid the complications and costs of using EEG, less obtrusive psycho-
physiological proxies have also been proposed, which have been shown to vary
with the occurrence of rare stimuli. In this study, we will focus on two of them:
skin conductance level (SCL) and the pupillometric Index of Cognitive Activity
(ICA) which measures the component of pupil dilation related to mental effort.
We describe these measures in 2.1.1 and 2.1.2 respectively.
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There are also other methods of quantifying cognitive load, apart from phys-
iological proxies. Brunken et al. (2003) proposes a classification scheme for such
methods along two dimensions: direct vs indirect and subjective vs objective.
According to this scheme, subjective methods include self-reported mental ef-
fort (indirect) and self-reported stress or task difficulty (direct), while objective
measures include physiological measures (indirect), brain imaging techniques
(direct) and task performance (direct). In this work, we use physiological and
task performance measures, which we will describe in more detail in chapters
4 and 5.

2.1.1 Skin Conductance Level

The sympathetic skin conductance level (SCL), also known as electrodermal
activity (EDA (Dawson et al., 2000)) is a measure of the electrical conductance
on the skin due to increased moisture level. Changes in moisture level are
due to activity of the sweat glands, which are controlled by the sympathetic
nervous system. Skin conductance amplitude usually changes with respect
to its “neutral” (tonic) level in response to unexpected, significant or aversive
stimuli. This change typically starts 1-2 seconds after the presented stimulus,
with the peak level of skin conductance occurring a further 1-3 seconds after
initiation, followed by a long period of returning to the normal amplitude (2-10
seconds for a 50% recovery to previous level). Such a spike in skin conductance
level is also known as phasic skin conductance response or simply SCR. It has
been shown, for instance, that SCRs are related to the preparation for action
in reaction to critical vs non-criminal stimuli, in the “Concealed Information
Test” used in criminal investigations (Matsuda et al., 2009).

SCL has also been used as a measure of cognitive load (Shi et al., 2007).
In a dual task experiment with simulated driving and a secondary cognitive
task, Mehler et al. (2009) found that skin conductance levels peaked in cases of
mental overload caused by incrementally increasing secondary task difficulty,
which was followed by a deterioration in the performance of the primary task.
Son and Park (2011) found skin conductance levels, along with steering wheel
reversals as a measure of task performance, to be good input features for an
artificial neural network built to predict task difficulty, in comparison to other
candidate features.

Skin conductance is a relatively unobtrusive measure, which is part of the
reason why it is a widespread psychophysiological measure of cognitive and
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emotional load. A typical modern skin conductance sensor consists of two
electrodes strapped on a person’s fingers; the setup usually takes less than a
minute. Its disadvantages include the rather slow response to critical stimuli
and slow recovery rate, as well as the large differences in responses among par-
ticipants and the occurrence of spontaneous spikes in skin conductance levels,
known as “nonspecific SCRs” (NS-SCRs).

2.1.2 Pupillometry and the Index of Cognitive Activity

The second psychophysiological measure of cognitive load used in this study
is pupillometry, i.e. the measuring of the size of the pupil. Pupillometry is
a widely used measure of measure of cognitive load (Just et al., 2003; Engel-
hardt et al., 2010; Palinko et al., 2010). It has been shown that pupil dilation
correlates with a pattern in the amplitude of P3 reflecting the locus coeruleus-
noradrenergic system (LC-NE), which in turn is related to stress and atten-
tion (Laeng et al., 2010). In particular, pupil diameter has been shown to corre-
late with the firing of an LC neuron in monkeys.

Changes in pupil size induced by cognitive load typically amount to a dif-
ference of 20% relative to the typical pupil size. However, light conditions
also affect pupil sizes, with brightness-induced changes being much larger than
cognitively induced ones (up to 120% of typical pupil size) (Laeng et al., 2010).
This creates a confounding effect when trying to measure pupil changes due
to cognitive load in simulation environments, where objects differ in bright-
ness between them. Palinko and Kun (2011) tried to address this problem
in a static visual world scenario with eye tracking by developing a predictor
of the brightness-induced changes in pupil size and subtracting it from the
measured size, to obtain the cognitive load-induced pupil signal. However,
their approach needs accurate eye-gaze information and brightness values for
the areas of the screen where the participant is currently looking, which are
quite difficult to obtain in a simulation setting, and unrealistic in the case of
real driving experiments.

In response to the need for a pupillometric measure which would isolate
the component of pupil dilations related to cognitive load, Marshall (2002) de-
veloped the Index of Cognitive Activity (ICA). This is a patented measure which
applies fast Fourier transform to filter out slow, large light-induced changes and
identify the occurrence of short, abrupt changes in pupil size which are caused
by cognitive load. Its reported uses include measuring cognitive load in driving
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simulation tasks (Schwalm et al., 2008), distinguishing between different cogni-
tive states in problem solving, simulated driving and visual search (Marshall,
2007) and distinguish between different levels of surgical skill (Richstone et al.,
2010). ICA measurements have been shown to be relatively stable across several
commonly used eye tracker models and using different sample rates ranging
from 60 to 300 Hz1 (Bartels and Marshall, 2012). To the best of our knowledge,
ours is the first study to investigate the potential of the ICA as a measure of
linguistically-induced cognitive load in a dual-task scenario.

2.2 Linguistic complexity and cognitive load

A central problem in both computational and experimental psycholinguistics
is the quantification of the processing difficulty of language at various levels of
linguistic structure. Several such measures of linguistic complexity have been
introduced, with the goal of accounting for the differences in human language
processing difficulty. In this section, we will present two measures stemming
from distinct views on human language processing: on the one hand, prob-
abilistic, information theoretical approaches; on the other hand, approaches
based on computational modeling of memory and other resource availability
constraints.

One measure of linguistic complexity which comes from the class of infor-
mation theoretical views on linguistic processing is surprisal (Hale, 2001). From
the perspective of incremental processing, surprisal is defined as the amount
of information contributed by each word in an utterance, which in turn is the
negative log-probability of a word w given its history h: S(w) = − log p(w|h).
Different definitions of this history can be used, yielding different variations of
surprisal (e.g. preceding n-grams, syntactic constituents, part-of-speech tags or
even semantic arguments). The nature of this measure is such that it requires
NLP methods to accurately estimate probabilities from large corpora, in order
to approximate the linguistic knowledge (and subsequent expectations) of hu-
man speakers. (Roark et al., 2009) demonstrate a method to calculate lexical
and syntactic surprisal using a broad-coverage probabilistic PCFG parser.

On the other hand, one theory that belongs to the class of memory-modeling
approaches is Dependency Locality Theory (Gibson, 2000). This theory is based
on a dependency approach to grammar and utilizes the notions of storage cost
and integration cost to model processing difficulty. Storage cost refers to the

1We used 250 Hz in our study.
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cost of memorizing multiple open-ended dependencies and increases with the
number of such dependencies. Integration cost refers to the cost of incorporat-
ing new dependencies into existing structures and increases with the number
of discourse referents between the two nodes of the dependency relation. In-
tuitively, DLT predicts that long-distance dependencies will usually be harder
to process due to the large number of open dependencies and intervening dis-
course referents. More recently, (Demberg and Keller, 2009) have introduced
Prediction Theory, which aims at unifying DLT with syntactic surprisal, by
making use of a psycholinguistically-motivated version of tree-adjoining gram-
mar (PLTAG).

When it comes to evaluating the psycholinguistic plausibility of such theo-
ries, various experimental methods have been proposed. Many of these meth-
ods are based on the measurement of reading times. The underlying hypothesis
of using reading times as a correlate for processing difficulty is the ’eye-mind-
link’ which suggests that people fixate for longer at words where they are
experiencing processing difficulty. (Tanenhaus et al., 2000). Self-paced reading
is a common, low-cost method of measuring reading times: participants read
each word of the sentence one at a time and hit a button when ready to move
forward; the interval between button hits is considered as the reading time.
However, this method is problematic as the participants usually cannot revisit
previously appeared words. To remedy this problem, eye tracking is usually
preferred; for example, Demberg and Keller (2008) show how reading times
extracted from eye tracking data, using information such as fixation durations
on text areas and total reading times, can be used to test the validity of theories
of sentence processing such as surprisal theory and DLT. The problem with
these methods is that they are specific to written texts and cannot be applied to
spoken language comprehension. However, eye tracking in the broader sense
still remains relevant in this case: “visual worlds” scenarios, for instance, where
fixations on various visual objects are measured while the participant listens to
spoken utterances, are commonly used to test theories of lexical access (Tanen-
haus et al., 2000).

Closer to our work, pupillometry has been shown to be predictive of cogni-
tive load, including load induced by linguistic comprehension. Just and Car-
penter (1993) showed that pupil dilation (relative change to the mean) is a
reliable indicator of increased sentence processing difficulty. Engelhardt et al.
(2010) showed that pupil dilations reflected changes in linguistic difficulty re-
sulting by manipulation of prosody and visual context. Standard pupillometry
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is however necessarily limited to simple visual tasks; as we explained in 2.1.2,
relying on raw pupil sizes while engaging in tasks with varying luminosity,
such as in a simulated driving context, is problematic due to the confounding
effect of changes in pupil sizes induced by brightness differences. We thus
use the ICA measure as a predictor of cognitive load, which to the best of our
knowledge has not been previously explored as such in exploring the difference
in cognitive load induced by different linguistic structures.

At this point, we have to note that although we do not use numerical mea-
sures of linguistic complexity in the analysis section (5.2) of this thesis, such
measures can be readily applied to our corpus in order to obtain fine-grained
complexity metrics, since we have recorded exact onsets and durations for each
word heard during the linguistic task.
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CHAPTER 3

Related Work

3.1 Cognitive load and task performance in dual tasks

There has been extensive research about the effect of language-related secondary
tasks while driving, using a large variety of measures and experimental method-
ologies. In this chapter, we present some of these studies which are more
relevant to our work.

Auditory language comprehension alone, without engaging in full dialogue,
has been shown to decrease driving performance. Just et al. (2008) carried
out a simulated driving experiment, with the secondary task being listening
to utterances and judging whether they were true or false. A significant de-
crease in driving performance was found in the language condition; interest-
ingly, the authors also used functional magnetic resonance imaging (fMRI) to
find a decrease in brain activation related to spatial processing in the language
comprehension condition, which indicates that auditory linguistic processing
diverts brain resources from the driving task.

In another study, Palinko et al. (2010) conducted dual-task experiments,
with participants simultaneously engaging in simulated driving and in two
interleaved spoken dialogue-based games with a human passenger. They used
pupil dilation metrics, namely mean pupil diameter change (MPDC) and mean
pupil diameter change rate (MPDCR) as physiological measures of cognitive
load. MPDC is the difference of pupil size from the mean over a certain time
frame, while MPDCR is the average slope of the pupil size over the time frame.
They found that driving performance was significantly different between the
different language conditions. Their results also seem to indicate that pupillary
measures are more sensitive to rapid changes of task difficulty within short
time spans than driving performance measures, such as lane position variance
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or steering wheel angle.
However, there is evidence that there are significant differences in the ways

in which different types of linguistic tasks affect driving performance. Lee et al.
(2001) modified the “complexity” of a speech-based email system by manipu-
lating the number of available options in the application, finding an increased
cognitive load for driving while using the complex system vs the easy system,
as well as using any version of the system compared to the driving-only con-
dition. Yannis et al. (2011) also presented a driving simulation scenario, with
a “simple” and “complex” dialogue condition; the conditions differed in the
thematic content of the language task in each case (i.e. casual conversation as
opposed to answering complex general-knowledge questions and mathemati-
cal puzzles); they found that participants exhibited significantly worse driving
performance in the complex condition but not in the simple, when compared
to the driving-only baseline.

3.2 Manipulating language task difficulty for reduc-

ing cognitive load

There is evidence that self-regulating speech in case of increased driving diffi-
culty is a strategy employed by human speakers. Crundall et al. (2005), in real
car experiments with simultaneous dialogue, demonstrated that in-vehicle di-
alogue with situation-aware passengers is significantly suppressed when com-
pared to conversation with remote or blindfolded passengers. In defining the
notion of “suppressed dialogue” they examined specific dialogue features, i.e.
number of utterances, mean number of words per utterance and number of
questions asked. There is also evidence that self-regulating strategies are in-
deed effective in minimizing the detrimental effects of dialogue in driving per-
formance. Drews et al. (2004) carried out experiments with participants using
a high-fidelity simulator and conversing with remote (via a hands-free device)
vs in-vehicle passengers. Their results showed that when conversing with in-
vehicle passengers, both drivers and passengers were able to regulate the dia-
logue when the driving situation demanded it, by lowering their speech rate;
driving performance was also significantly better for in-vehicle vs remote di-
alogue. This work, in combination with Crundall et al. (2005), provides addi-
tional motivation for spoken interface designers to incorporate self-regulating
mechanisms in their systems.
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An interesting example of dialogue management according to detected cog-
nitive load is the one presented by Villing (2009). She proposes a dialogue
management system which uses different dialogue management strategies in
case of detection of increased cognitive load, depending on whether this load is
driving-induced or dialogue-induced. The increase in cognitive load is inferred
indirectly through dysfluencies in the driver’s speech, while a vehicle-state
analyser is detecting situations which are known to be difficult for drivers; if
such situations occur, the load is assumed to be driving-induced, otherwise it is
assumed to have been caused by the dialogue. The different language strategies
tested are to pause the dialogue until cognitive load is decreased, when the
load is driving-induced, and to reformulate the utterance when it is dialogue-
induced. The most important difference with our experimental approach is that
she adopts a binary (high-low) scale to measure cognitive load, while our setup
allows for much finer-grained psychophysiological measurements.

In dual task settings such as the above, the complexity of the language
task itself is usually modeled in a very coarse-grained fashion, if at all. Drews
et al. (2004) define a slightly more linguistically-oriented notion of “linguistic
complexity” as the number of syllables per second; this is different to the type
of structural linguistic complexity discussed in our work, as it is essentially a
way to measure speech rate and does not concern syntactic or semantic fea-
tures of the language used. Furthermore, a common feature of all the research
works presented above is that, with the exception of Villing (2009), the effect
of different language conditions is only examined at a coarse-grained level,
for instance across different linguistic tasks. The novelty of our work is that
the high temporal resolution of our measurements, in combination with the
fact that we record the exact words spoken and their onsets, allows for higher
precision in determining which features of the language are responsible for
the high cognitive load. These features of our experimental corpus also allow
for the application numerical linguistic complexity measures and determining
their relationship with cognitive load and task performance across different
complexity levels.
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CHAPTER 4

Dual-task experiment

As described in the previous sections, our experiments involve language use in
a dual-task setting. In particular, the participants have to complete a driving
simulation task, while simultaneously accomplishing a speech comprehension
task in German. Our final version of the corpus contains data from 24 par-
ticipants, all native speakers of German. In the rest of this chapter, we will
start by describing in detail the driving simulation task ( 4.1) and the language
task ( 4.2); we will then continue with presenting the experimental script in 4.3,
followed by a description of the technical aspects of the experiment, including
description of the hardware and software components used, the laboratory
layout and technical challenges in 4.4. In the last section (4.5) we provide
information about the participants of the experiment.

4.1 Driving simulation task

A software-based steering simulation task on a desktop computer is used as a
substitute for actual driving. The software is provided by DFKI 1; in Figure 4.1
we provide a screenshot of the simulation environment.

The participant sees on a desktop computer screen a countryside road. The
current position of the simulated vehicle is represented by a blue cylinder (steer-
ing object), which is allowed to move on a horizontal axis and which the partic-
ipants control using a gaming steering wheel. A second, yellow cylinder (target
object) is also moving on the same horizontal axis. At each given point in time,
a random number generator “decides” if and for how long the target object will
stay still, or randomly generates a new target position for the cylinder, towards
which it starts moving at a pre-defined constant speed. The position of the

1http://www.dfki.de/
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Figure 4.1: A screenshot of the modified OpenDS simulator used in the
Experiments

steering object is determined proportionally to the angle of the driver’s steering
(although it cannot move further than the edges of the road). At the same time,
the road and surroundings are moving at a constant speed, thus simulating the
sensation of a vehicle moving forward. Except for the presence of the two mov-
ing cylinders, the background is very similar to a standard driving simulator;
we have removed all potential distractions (signs, landmarks, speedometers) to
minimize any confounding effects. For the duration of each recording session,
the exact positions of the “vehicle bar” and the “target bar” are recorded at a
sampling rate of about 26Hz and saved on a database.

The driver’s goal in this task is to use the cover the target object with the
steering one as much and as long as possible. As a result, our main measure
of performance in this task is the steering deviation, i.e. the distance between
the steering and target objects. We manipulate the difficulty of the driving
task by changing the value of two variables: the speed at which the road and
surroundings are moving and the maximum horizontal speed of the target
object. We thus have two experimental conditions for the driving task: Driving-
easy (De) and Driving-difficult (Dd). The two conditions induced significantly
different levels of steering deviation on the participants on average, as we will
show in 5.2.

4.2 Speech comprehension task

The spoken comprehension task consists in listening to a sentence containing
a relative clause, followed by two thematically related ‘filler’ sentences and
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a comprehension question. The question is always polar (yes-no) and can be
either directly related to the content of the relative clause (50% of the stimuli)
or to the filler sentences. All sentences and questions are in German and are
synthesized prior to the experiment using the MARY text-to-speech synthesis
system (Schröder et al., 2008) developed by DFKI. The participants answer the
question with ja (“yes”) or nein (“no”). Their answer is recorded for later use in
the data analysis.

All of our items, fillers and questions are in German. The items we are using
are based on the ones created by Bader and Meng (1999). The filler sentences
and questions were created by our research group, with the aim of providing a
short, but coherent and narrative for each item, which would be as engaging as
possible to the participant. These consist of 40 sentences containing a relative
clause, each of which exists in two versions: one with an object relative clause
(ORC), with high syntactic complexity, and one with subject relative clause
(SRC), with lower syntactic complexity. The only difference between the object
and subject relative clause is the number of the auxiliary verb form, which is
singular (“hat”-have3.SG) vs plural (“haben”-have3.PL). The items are specifically
designed to be grammatical and meaningful in both cases. For approximately
half the stimuli, the comprehension question is in passive voice. An example of
a stimuli pair, followed by the fillers and question, is the following:

Die Lehrerin, die einige Eltern wegen einer solchen Kleinigkeit
angerufen [haben / hat], hat nun eine Elternversammlung einberufen.
Diese Elternversammlung wurde schlecht geplant. Deshalb war die
Teilnahme gering. Wurde die Lehrerin wegen einer solchen Kleinigkeit
angerufen?

(The teacherFEM [who called some parents / whom some parents
called] because of such a trivial issue, has now called a parents’ meeting.
This meeting was badly planned. Therefore participation was low. Was the
teacherFEM called because of such a trivial issue?)

As mentioned above, we synthesized all our stimuli using the MARY TTS
system provided by DFKI. We manually checked all synthesized sound files
for naturalness and corrected the synthesis in case of mispronunciations or
erroneous intonation, either by providing the correct phonetic transcriptions to
the TTS system or by giving specific prosody guidelines. One issue when com-
paring between different conditions in spoken stimuli is that different words
have different spoken durations; in our case, the wordform “hat” has usually
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a shorter duration than “haben” when spoken. This might create problems
when comparing physiological measures between the the conditions. We thus
manipulated the duration of the pause marking the phrase boundary which
immediately follows the auxiliary, to make sure that the critical regions in both
the ORC and the SRC condition (defined as the time between the onset of the
auxiliary to the onset of the next word) have exactly the same durations. This is
important to allow for comparison of our task performance and cognitive load
measures between the critical regions of different stimuli.

There were several reasons behind the choice to use synthesized speech, as
opposed to pre-recorded natural speech. First of all, we wanted to be able to
manipulate features of the produced speech, such as the duration of the critical
regions, which would be impossible to do with a human speaker. Secondly,
human speakers could potentially alter prosodic features of their speech de-
pending on the amount of information carried by a word2; by using synthesized
speech, we ensure that prosodic features of the utterances are almost identi-
cal, apart from the critical region. A further reason is that spoken interfaces
rely more on synthesized speech than on pre-recorded utterances, especially as
long as dialogue systems are moving towards a level of sophistication which
allows automatic generation of arbitrary utterances. Since our ultimate goal is
to eventually be able to improve such spoken interfaces, it is natural that we are
primary interested in phenomena which can be detected in synthesized speech.

In order to assign the stimuli to the participants and determine the presenta-
tion order, we adopted the following scheme. The 80 total items are randomly
split into two lists, A and B, under the constraint that each of those contains
exactly 40 ORC and 40 SRC-type stimuli. This is to ensure that each participant
will hear exactly one version of item. To ensure that each stimulus will be heard
an equal number of times in the Driving-easy and Driving-difficult conditions,
we further split A and B into two sublists, Ae, Ad and Be, Bd respectively, of 20
items each, such that each of those sublists has 10 SRC and 10 ORC. Therefore,
half the participants are presented with 20 stimuli from Ae for Driving-easy and
20 from Ad for Driving-difficult; similarly the other half are assigned 20 stimuli
from Be and 20 stimuli from Bd. The stimuli lists are randomized for each
participants to minimize order effects. We ran experiments with 24 participants,
thus obtaining 6 participants for each combination of item, clause type and
driving difficulty condition.

2For instance, there is evidence that in conversational speech, words with a higher syntactic
surprisal tend to have a longer duration (Demberg et al., 2012)
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4.3 Experimental script

We will now describe in detail the experimental procedure followed during
the experiments. At the beginning of the experiment, the participants fill in a
consent form and read the instructions. After that, the experimenter attaches
the skin conductance sensors to the middle and index fingers of the right hand
of the participant, then places the eye tracker on the participant’s head and
performs the calibration. The installation and calibration of the measurement
equipment takes 3-6 minutes on average, which is considerably less than for
other methods of measuring cognitive load (e.g. EEG); this is a major advantage
for an extensive experiment such as ours. The calibration is followed by a short
training phase of around 3 minutes, which includes 1.5 minutes of driving on
the easy setting without language, followed by 3 training items and items being
played which are of similar construction but unrelated to our actual stimuli.
Participants are given the option to continue training with the simulator after
answering the final training question; in practice none of the participants made
use of this option.

After training the main experiment starts. There are 4 recording phases,
each of which lasts about 6 minutes. Each phase is composed of a driving-only
phase of 2 minutes, followed by a driving + language phase of approximately
4 minutes, during which 10 of the items are played, each followed by the re-
spective comprehension question. The participant speaks the answer, which is
recorded by the experimenter using a response pad. In the first and the third
phase, the driving difficulty is set to “easy”, while in the second and fourth
phase it is set to “difficult”. Between the phases, participants are asked whether
they want to take a short break. Most participants made use of this option once
or twice during the experiments, while a few participants made no breaks at all.
In case of a break, the eye tracker and skin conductance sensors are removed,
while refreshments and snacks are also available. The equipment is then re-
installed and re-calibrated. Even in case the participants do not choose the
break option, the experimenter waits approximately 1 minute before moving
on to the next phase, but without removing the measurement devices.

The full experimental script, with estimated durations for each phase, can
be seen in figure 4.2.
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Participant consent form, written instructions (2 min)

Eye tracker & SCL Setup, Calibration (3-5 min)

Training phase: De (1.5 min)

Training phase: De+L (1.5 min)

Recording Phase 1 (6 min)

1.1 Easy driving (2 min)

1.2 Easy driving with language (4 min)

Break, re-calibration (1-5 min)

Recording Phase 2 (6 min)

2.1. Difficult driving (2 min)

2.2 Difficult driving with language (4 min)

Break, re-calibration (1-5 min)

Recording Phase 3 (6 min)

3.1 Easy driving (2 min)

3.2 Easy driving with language (4 min)

Break, re-calibration (1-5 min)

Recording Phase 4 (6 min)

4.1 Difficult driving (2 min)

4.2 Difficult driving with language (4 min)

Questionnaire about participant information, payment (3 min)

Total Duration: approx. 45-55 min

Figure 4.2: Experimental script with approximate durations for each step.
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4.4 Technical setup

4.4.1 Main hardware and software components

We will now describe the main hardware and software components of our
experiments.

Hardware components

Host PC A Dell desktop computer, running MS-DOS, on which the EyeLink
software is installed, which controls the EyeLink II eye tracker and collects
eye samples.

Display PC A Dell desktop computer, running Microsoft Windows XP, on which
the Experiment Builder software. It is connected to the Host PC via par-
allel port for communicating with the EyeLink software and guiding the
sample recording and the calibration of the eye tracker.

“Simulation” PC A Dell desktop computer, running Microsoft Windows XP,
connected to the Display PC via the parallel port. It is running the OpenDS
simulator (see below), together with in-house developed software for col-
lecting samples from the skin conductance sensors via Bluetooth and for
sending parallel port signals to the Display PC for synchronization pur-
poses.

EyeLink II eye tracker A head-mounted eye tracker produced by SR Research,
with pupil size measuring capability and a maximum sampling rate of
500 Hz. We chose binocular sampling at 250 Hz, because of data format
compatibility issues with the Eyeworks Analyze software we use for the
ICA cognitive load measure (see below).

NeXus Skin Conductance Sensor A skin conductance sensor produced by Mind
Media B.V., composed of two electrodes which are attached to the fingers
of the participant. The sensor is connected to the NeXus 10 physiological
recording system, which is sending the collected samples to the Simulator
computer via Bluetooth.

Driving Force GT A gaming steering wheel produced by Logitech.

Creative SoundBlaster Audigy 2 sound card An external sound card allowing
20 ms playback latency.
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Dell Speakers 2 desktop loudspeakers with a subwoofer.

Samsung SyncMaster 245B monitor A 24-inch desktop monitor with input switch
ability.

Cedrus RB-834 response pad A specialized response pad for coding partici-
pant answers.

Software components

OpenDS simulator A driving simulator provided by DFKI, modified for our
purposes (see section 4.1). It records the position of the steering and target
objects at the maximum possible frame rate of the graphics card (around
25 fps) and saves the recorded samples on a MySQL database on the same
machine.

EyeLink software A software platform provided by SR Research for control-
ling the EyeLink II eye tracker.

Experiment Builder A visual experiment design tool developed by SR Research.
It allows detailed control of the experiment flow, by exchanging signals
with the EyeLink software on the Display PC, performing the calibration
of the eye tracker and controlling the playback of the sound files. Signals
and actions are triggered by events, which can either be

EyeWorks Analyze A software package provided by EyeTracking, Inc. which
contains a module for calculating the patented Index of Cognitive Activity
measure, using eye tracking samples as input.

MARY TTS An open-source text-to-speech synthesis system provided by DFKI,
which we used to synthesize our stimuli and record word onsets in the
sound files.

Apart from the above mentioned off-the-shelf software, we also developed
our own source code for:

• reading the skin conductance samples from the Bluetooth receiver

• synchronizing the simulation by sending synchronization signals through
the parallel port

• sending queries to the MARY TTS server process in order to synthesize
our stimuli in batch and get the exact word onsets and durations
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Figure 4.3: Hardware layout of our laboratory, including data streams during
the experiments. Orange color = data collection device, Gray color = desktop
computers, Blue color = output devices)

• aligning and post-processing the collected data from all different sources

• creating different versions of the data files depending on the desired gran-
ularity, aggregation method (e.g. mean), normalization method for phys-
iological measures etc.

In the following section we describe the exact layout of these hardware and
software components in the laboratory and how they interact during the exper-
iment.
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4.4.2 Hardware layout

In figure 4.3, we schematically illustrate the hardware layout and connections
between the various components which are necessary to run our experiment.
The participant gets input from the monitors (simulation video) and the speak-
ers (linguistic stimuli), which are connected to the Simulation and Display PC
respectively. The participant answers each question orally, and the experi-
menter codes the answers by pressing the respective button on the response pad
which is connected to the Host PC. The skin conductance sensors are attached
on the fingers of the participants and send recorded samples to the Simulation
PC, while the eye tracker is attached to the head of the participant and sends
data to the Host PC. The Simulation PC sends a signal via the parallel port
to the Display PC at the start of each simulation phase, which allows for syn-
chronization of the timestamps in both systems (also see 4.4.3). At the end of
the experiment, the EyeLink data file, containing all eye samples and events
recorded by the Host PC, is transferred to the Display PC.

4.4.3 Technical challenges

The implementation of the experiments described above presents important
technical challenges, as one might expect from the sheer number of components
and interactions between them. As is apparent in the configuration schema
presented above, the experimental data is processed and stored in two different
computers: data coming from the eye tracker and the response pad is processed
in the Display PC, while data coming from the steering wheel and the SCL
sensor is processed by the Simulation PC. Using two separate machines was
necessary, given the high computational requirements of both the driving sim-
ulator and the Experiment Builder software. This creates the need for continu-
ous synchronization of the timestamps of the two machines, in order to allow
for accurate alignment of the collected data. Since high temporal precision is
important, synchronization of the two data streams using more modern data
ports (e.g. USB) was not appropriate due to the large transmission overhead,
while other technical limitations precluded the usage of Network Time Protocol
(NTP). For that reason, we opted for TTL (transistor-transistor logic) signaling
via the parallel port, which is a much faster solution. A process on the Simula-
tion PC sends a TTL signal to the Experimenter PC, while recording the exact
system time which the signal was sent. The Experimenter PC then uses the TTL
signal as a reference point in time for all the data which it records. The process
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is repeated at the start of each data collection phase to ensure precision.
Another problem is the head-mounted eye tracker losing track of the pupil

due to excessive head movement of participants. Although the EyeLink II eye
tracker allows for head movements up to 30◦ relative to the monitor, the fact
that the participants have to use the steering wheel makes head movements
more likely than in conventional eye tracking experiments. We addressed this
problem by keeping each recording phase short (6 minutes) and re-calibrating
the eye tracker in case there was substantial head movement between them.

Despite taking these measures, we still had to discard data from 6 exper-
iments, for which there was substantial data loss for various reasons, such
as when the participants wore too thick glasses, which caused high amount
of light reflection on the glass and loss of the outline of the pupil. Problems
with pupil detection also occurred in cases where participants wore cosmetic
products (e.g. eyeliner) and at the same time exhibited a tendency to squint
their eyes. Data loss also resulted in some cases from experimenter errors (e.g.
an erroneous setting of the eye tracker or of the SCL device). In each of those
cases, we recruited additional participants and repeated the experiments with
the same stimuli lists.

4.5 Participants

The final corpus contains data from 24 participants, all of them native speakers
of German, aged 20-34 years old. 10 of the participants were female and 14
were men. Participants were recruited via university mailing lists, printed
advertisements on campus bulletin boards and through personal acquaintance.
None of the participants had any knowledge of the exact research goal of the
experiment, had any experience with the particular driving simulator or had
heard any of the linguistic stimuli before. The majority of the participants
were students or employees at Saarland University. All participants were com-
pensated with the amount of 8 euros for their participation. As previously
described in 4.4.3, data from 6 of the initial experiments had to be discarded
and repeated with newly recruited participants, thus bringing the total number
of people who participated in the experiment to 30.
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CHAPTER 5

Results

5.1 Corpus description

The resulting corpus contains data from 24 experiments, with the total duration
of the recorded samples summing up to about 12 hours. Table 5.1 describes in
detail the variables contained in the corpus, along with their original source.
A further categorization of the variables can be made into candidate measures
of task difficulty (e.g. target acceleration for driving, relative clause type and
voice of question for language), task performance (e.g. steering deviation for
driving, answer accuracy for language) and physiological proxies for cognitive
load. Anonymized participant information (e.g. age, gender) is also recorded.
It is worth noting at this point that the list is by no means exhaustive as to what
measures of task difficulty or performance can be used in future analyses of the
data. For example, since we have the exact words played at each specific point
in time, we can apply existing measures of linguistic complexity, e.g. syntactic
surprisal or integration costs, as measures of difficulty of the language task.
Similarly, we could calculate other measures of driving task performance (e.g.
number of steering wheel reversals per time unit), since we have the exact
positions of the steering and target object of the database for each recording
sample. It is also possible to calculate other measures of cognitive load (e.g.
mean pupil diameter change or blink rate (Palinko et al., 2010)), based on the
raw eye tracker data. All of these additional measures can be extracted using
the already existing corpus.

One issue when analyzing these data is the different sampling rates of the
various data sources. To address that, we developed source code to first expand
all data sources to the maximum sample rate (250 Hz) by repeating values
when appropriate, then aggregate each of these measures over arbitrary pe-
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Source Variable Type Sample rate

Participant
Information

ID Categorical 1 per experiment
Age Integer 1 per experiment
Gender {f, m} 1 per experiment
Occupation Categorical 1 per experiment
Videogame
experience

{none, little, high} 1 per experiment

Driving Licence {yes, no} 1 per experiment
Languages spoken List 1 per experiment

Driving
task

Steering Deviation Real, non-negative ~26 Hz
Target Velocity Real, non-negative ~26 Hz
Target Acceleration Real ~26 Hz
Difficulty Setting {easy, difficult} 1 per experiment &

recording phase

Linguistic
task

Relative Clause Type {subject, object} 1 per linguistic item
Question Type {related, unrelated} 1 per linguistic item
Question Voice {passive, active} 1 per linguistic item
Correct answer {yes, no} 1 per linguistic item
Participant answer {yes, no} 1 per linguistic item

& participant
Current word String 250 Hz
Current sound file String 250 Hz

Physiological
measures

SCL Real 16 Hz
Pupil Area (both
eyes)

Real, Non-negative 250 Hz

ICA event (both eyes) {yes, no} 250 Hz
Scaled ICA (both
eyes)

Real, [0,1) 1 per aggregation
unit

Time Absolute time in ms Integer 250 Hz
Time in ms since start
of recording phase

Integer 250 Hz

Table 5.1: Variables contained in the corpus
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riods of time, depending on the type of analysis which is desired. In the initial
analysis results presented in 5.2, we use aggregation over 1000 ms intervals
for most types of regression analysis, except for the analysis within the critical
region where we use aggregated values over 200 ms intervals. The method
of calculation of the aggregated values depends on the type of each variable:
for numerical values, we use the mean value of all samples within the time
interval, while for categorical or binary value types (except ICA) we use the
majority value.

In the particular case of the ICA measure, a different aggregation method is
used: we created a scaled version of the variable, which is calculated for each
time interval using the formula:

ICAscaled = tanh(
N
E
) (5.1)

where N is the number of detected ICA events within the time interval (i.e.
the number of “yes” values of the ICA Event variable) and E is a constant
integer representing the “typical” number of ICA events, for the part of the
time interval for which there are available samples, i.e. excluding blinks or
otherwise missing samples. We set the value of this constant to 30 ICA events
for a fully sampled second1; the E, for an arbitrary interval where there are S
recorded samples, can thus be calculated as

E =
30× S

SampleRate
(5.2)

For instance, for a 30 available samples at a 250 Hz sample rate, the number
of expected ICA events is 30×30

250 = 3.6. The ratio of detected to expected ICA
events is transformed to a [0, 1) range via the hyperbolic tangent function.

5.1.1 Normalization of skin conductance levels

Tonic (“neutral”) skin conductance values are known to vary across different
people, or even across different psychological states of the same person (Daw-
son et al., 2000). It is therefore impossible to directly compare SCL measure-
ments across participants, much less to average values between different ex-
periments. In addition to that, our experience with pilot experiments indicated
that neutral SCL values also varied depending on how tight the electrodes were

1This is also the value used by the EyeWorks ICA module
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attached to the fingers of the participants. Since between phases the electrodes
were usually removed and then re-attached, but remained attached for the
whole duration of each phase, we assumed this factor to be constant for the
duration each phase. We therefore normalized SCL values by subtracting the
mean value of each phase (for a particular participant) and divided by three
standard deviations. More sophisticated analyses which will take into account
the specific behavior of the SCL measure, such as identifying skin conductance
responses instead of relying on raw conductance levels, are also possible, since
the raw SCL samples are also contained in the final corpus.

5.2 Data analysis

We will now present the results of some initial data analyses on our corpus. For
running the analyses and producing the graphs shown below, we used the R
mathematical suite. In particular, for the implementation of the regression mod-
els we used the lme4 package for Linear Mixed Effect models (LME (Pinheiro
and Bates, 2000)). LME models are a class of generalized regression models
which allow for the inclusion of random as well as fixed effects. In our case,
we used random effects in order to account for individual differences between
participants.

In the rest of this section, we use the following star notation to indicate
significance levels (i.e. probabilities of Type-I errors) obtained through t-test,
unless indicated otherwise: *** = p<0.001, ** = p<0.01, * = p<0.05, no stars = no
significance.

5.2.1 Correlation between physiological cognitive load measures

The first question we tried to answer was whether our main measures of cog-
nitive load, namely ICA and skin conductance levels, correlate with each other.
For this purpose, we built one mixed effects model for each eye’s ICA measure,
with the normalized SCL as the fixed effect, a random intercept per participant
ID, to account for the individual differences in the ICA values between partic-
ipants, as well as a random slope per participant ID, to account for the case
where different participants exhibit different degrees of dependence between
the two measures. The coefficients of the model are shown in table 5.2 (left eye
ICA and SCL) and 5.3 (right eye ICA and SCL). We found a significant positive
effect of SCL on the ICA measure for both eyes. The correlation between SCL
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Predictor Coef t-value Sig
INTERCEPT 0.781992 78.80 ***
SCL_N -0.01862 4.52 ***

Table 5.2: Mixed effects model for left ICA with normalized SCL as a predictor;
a random intercept and random slope was introduced for participants

Predictor Coef t-value Sig
INTERCEPT 0.799327 77.39 ***
SCR_N 0.016087 3.19 **

Table 5.3: LME model for right ICA with normalized SCL as a predictor and
random intercept for participants

and ICA is also visualized in Figure 5.1, where we plot the measures against
each other. The time interval for the aggregation in this analysis was 1000 ms.

One should be cautious about using raw (or even normalized) SCL val-
ues as a measure of cognitive load per se; as we described in section 2.1.1,
the skin conductance response (SCR) to critical stimuli or mental overload is
characterized by phasic activity, which appears as a peak in SCL occurring 2-6
seconds after perception of the stimulus, followed by a slow recovery towards
the tonic level. The amplitude of peaks varies across participants, while the
occurrence of non-significant SCRs is also an issue. Analysis of normalized
skin conductance levels averaged across participants can only provide a very
rough measure of the combined effect of frequency and amplitude of stimuli-
related or non-significant SCRs across participants. That said, the regression
analysis presented here is a useful sanity check for our measures, even if more
sophisticated analyses, taking into account the nature of the SCL measure, are
necessary for drawing any further conclusions about its potential to predict
language-induced or driving-induced cognitive load in this particular context.

5.2.2 Driving performance and language

The next hypothesis we tested was whether our task performance measure
in the driving task, i.e. the steering deviation, is sensitive not only to the
driving task difficulty, but also to the presence of language. In figure 5.2 we
have plotted the mean deviation for each of the difficulty settings (easy and
difficult driving), with and without the secondary linguistic task. This figure
illustrates an obvious difference between steering deviation in the easy and
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Figure 5.1: The ICA measure plotted against normalized SCL values for the
same timestamps. Blue line = left eye ICA, Red line = right eye ICA.

Predictor Coef t-value Sig
INTERCEPT 0.353917 32.50 ***
PLAYING=YES 0.032568 3.79 ***

Table 5.4: LME model for steering deviation, on the subset of the data with
easy driving setting, with the presence of language as a predictor; a random
intercept and random slope was introduced for participants

difficult driving condition. However, there are also smaller differences between
the presence and absence of language. To test whether these differences are
significant, we split the data between the easy and difficult settings and we built
two LME models, one for each subset, with steering deviation as the response
variable and the presence of language as the predictor; again, we introduced
random intercept and random slope per participant to account for individual
differences. We found out that there was indeed a significant positive effect of
the presence of language on the steering deviation, which means that the driv-
ing performance worsens in the driving with language condition as opposed
to simple driving, under both difficulty setting. The results of the regression
analysis are presented in tables 5.4 and 5.5.
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Figure 5.2: Mean steering deviation per difficulty setting, with and without
language

Predictor Coef t-value Sig
INTERCEPT 0.65903 35.20 ***
PLAYING=YES 0.05823 3.20 **

Table 5.5: LME model for steering deviation, on the subset of the data with
difficult driving setting, with the presence of language as a predictor; a random
intercept and random slope was introduced for participants
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5.2.3 Cognitive load and language task difficulty

One of the main novelties of our work is that we have used linguistic stimuli
which differ in a critical region and are otherwise identical; since we have the
exact word onsets, this allows us to isolate fine-grained changes in cognitive
load which are related to a particular syntactic phenomenon. In particular, the
critical region in each of our stimuli is defined as the duration between the
onset of the auxiliary verb of the relative clause (hat/haben) and the onset of the
next word. The form of the auxiliary differentiates between a subject relative
clause and an object relative clause, the latter being shown to generally induce
more processing difficulty in single-task psycholinguistic experiments (Bader
and Meng, 1999).

Given this fact, we decided to look in more detail into cognitive load mea-
surements within the critical region. In particular, we created a 200 ms mean-
aggregated version of our corpus (see 5.1 for an explanation of the aggregated
process) and isolated the subset of the data which fell within the duration of
the critical region, which by definition includes the spoken word and the im-
mediately following short pause (which marks the phrase boundary). The
duration of this critical region is 650 ms in both conditions, which we imposed
by manipulating the duration of the phrase boundary pause. On this subset of
the data, we built two LME models (one for each eye) with the ICA measure as
the response variable and the relative clause type as the fixed effect, while also
introducing a random effect per participant.

The results of this analysis are shown in Table 5.6 for the left eye and in Table
5.7 for the right eye. We can see that there is a negative effect for the subject
relative clause type in both cases, although only the result for the right eye is
significant. The interpretation of the coefficient is that subject relative clauses
tend to occur with smaller values of ICA than object relative clauses. This result
is a first piece of evidence that the ICA measure might be sensitive to differences
in linguistic complexity on a very fine-grained temporal scale. The fact that for
the left eye the effect is less strong and does not reach significance, but is still
in the same direction as for the right eye, may potentially mean that running
the experiment with more participants could be useful in reducing noise and
drawing more stable conclusions.
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Predictor Coef t-value Sig
INTERCEPT 0.76137 45.42 ***
RC-TYPE (SUBJ) -0.01862 -1.44

Table 5.6: LME model for left ICA, with RC type as a fixed effect and random
intercept per subject and random slope for RC type.

Predictor Coef t-value Sig
INTERCEPT 0.78016 49.04 ***
RC-TYPE (SUBJ) -0.02651 -2.46 *

Table 5.7: LME model for right ICA, with RC type as a fixed effect and random
intercept per subject and random slope for RC type.

5.2.4 Performance in the language task

One last link that we wanted to investigate was the one between performance
in the linguistic task (i.e. answer accuracy) and the difficulty of driving and
language tasks. Again, we built a LME model with the answer accuracy as the
response factor and driving task difficulty, relative clause type and the voice
(passive vs active) of the question as fixed effects, with a random intercept per
participant and random slope for each of the effects. The resulting coefficients
are presented in Table 5.8. Interestingly enough, no significant effect of the
driving difficulty or the relative clause type was found; however, a significant
negative effect on answer accuracy was found for passive voice, which means
that there are significantly more wrong answers to passive voice questions than
for active voice ones. The results indicate that linguistic comprehension, at
least in this particular task, is robust enough to remain unaffected by driving
difficulty and that grammatical voice is a more serious burden to language
comprehension than relative clause type.

To shed more light on the ways in which grammatical voice affects answer
accuracy, we plot in Figure 5.3 the frequency of types of errors made by par-

Predictor Coef t-value Sig
INTERCEPT 1.83726 67.12 ***
DRIVINGDIFFICULTY (EASY) -0.02521 -1.05
RC-TYPE (OBJ) 0.03554 0.98
VOICE (PASSIVE) -0.17278 -8.15 ***

Table 5.8: LME model for answer accuracy explained by relative clause type
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Figure 5.3: Plot showing the type of answer errors made by participants,
depending on the relative clause type (left) and the grammatical voice of the
question (right)

ticipants depending on the voice and the relative clause type. A first general
remark is that participants generally made more errors of type no→yes than
yes→no. As expected from the regression analysis, there are no big differences
between error types in the subject or object relative clause condition. However,
when we look at the error types by voice, it becomes apparent that the effect
of voice almost exclusively influences questions which have a “no” correct an-
swer. We hypothesize that this might be due to people relying more on lexical
information when they failed to resolve the passive grammatical structure, thus
answering “yes” whenever they hear overlapping lexical items in the question
and the relative clause, resulting in more no→yes errors than yes→no.
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CHAPTER 6

Conclusions

The goal of this work was to construct an experimental corpus which would
allow the investigation of the interaction between fine-grained linguistic com-
plexity, cognitive load and task difficulty in a dual-task context. In this thesis,
we presented a novel dual-task experiment involving driving and language
comprehension, and the resulting corpus which was specifically developed to
address this goal.

We began this thesis by introducing the reader to the challenges presented
by dual tasks involving language, with a particular focus on driving while
using spoken dialogue interfaces and the associated effects on performance and
driving safety. We proceeded by explaining how knowledge about language
complexity would allow the design of better spoken language interfaces, which
could balance linguistic task efficiency with driving safety and performance.
With this motivation in mind, we provided background on two notions which
are central to addressing our final research goals: cognitive load and linguistic
complexity. We also presented two physiological measures of cognitive load
used in this work, the pupillometric Index of Cognitive Activity (ICA) and the
skin conductance level (SCL). We then placed our research in the context of
recent dual task literature, which revealed crucial novel aspects of our work,
among which our focus on structurally-defined linguistic complexity and their
potential impact on cognitive load on a various range of temporal resolutions,
down to the level of single words.

After providing sufficient motivation and theoretical background, we pre-
sented our new dual-task experiment, in which participants used a driving
simulator while listening to synthesized utterances and answering polar com-
prehension questions. The utterances were designed in pairs to allow con-
trasting analysis between linguistic phenomena which are known in psycholin-
guistic research for causing different amounts of human processing difficulty.
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The difficulty of both driving and language was manipulated, to allow the
investigation of the interaction between different levels of difficulty of both
tasks. We provided detailed information for both tasks, followed by a thorough
presentation of the experimental script, the numerous hardware and software
components used and the technical challenges associated with the experiment.

We then proceeded by presenting the resulting corpus, which contains on-
line measurements of physiological data, i.e. pupil sizes and skin conductance
levels, exact word onsets, measures of task difficulty and performance, for both
language and driving. We also presented pre-processing and normalization
steps, including the extraction of the scaled ICA measure.

Finally, we presented some initial results from an exploratory analysis of
the data. We found a correlation between our two main measures of cognitive
load on a large scale, as well as a significant effect of language on driving
performance. Most importantly, though, we found a significant effect of a
particular structural linguistic phenomenon on the ICA measure of the right
eye, within a critical region of around 650 ms where the phenomenon occurred.
This result may simultaneously constitute the first piece of evidence linking
ICA to structural linguistic complexity at any scale and also the first result
showing a fine-grained effect of a linguistic phenomenon on cognitive load in a
dual task.

In sum, the results of the initial analysis add evidence to the potential of
using our corpus for testing a multitude of hypotheses related to language and
cognitive load. A few of these potential future uses of our corpus, as well
as ideas for related future research directions are presented in the following
section.

6.1 Future Work

As we already discussed in the previous section, and indicated in various points
of this document, there are several ways in which the full potential of our
experimental corpus can be exploited. A first step would be to try different
combinations of predictors and response variables other than the ones we have
already started showing in this thesis and test different hypotheses.

Further post-processing steps, such as more sophisticated normalization
and noise elimination steps, might be necessary to obtain more reliable mea-
sures of cognitive load. It may be necessary to examine delayed effects of task
difficulty on our physiological measures; this is especially the case with respect
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to SCL, where we have to take into account the particularities of the measure
as reported in the literature in order to hope for more accurate cognitive load
measurements. Our pupillometric measures of cognitive load do not have to
be limited to the ICA; other metrics such as mean pupil diameter change rate
(MPDCR) and blink rate can also be extracted from the raw eye tracker data
which are part of the corpus.

A further immediate step, especially if we take into account the linguistic
focus of our project, is to apply quantified measures of linguistic complexity,
such as syntactic surprisal or integration costs, on the language used in our
data. Since we have exact word onsets and durations, this would give us
quantified, fine-grained measure of linguistic complexity which we could test
as additional predictors of cognitive load. More sophisticated measures of
difficulty can also be extracted for the driving task, such as steering wheel
reversals or variance of steering intensity; this is possible since we record the
exact position of the steering and target objects at a high sampling rate. We
could finally examine the behavior of our measures with respect to individual
participants, as well as the effect of various participant data, such as age, gender
or videogame experience.

All of the research work mentioned above can be extracted from the readily
available corpus. However, it may eventually be necessary to run the experi-
ment with more participants, in order to either reproduce our results or obtain
more statistical power and reduce noise effects. The detailed experimental
script and our extensive related documentation will allow for faithful reproduc-
tion of the initial experimental conditions. It is also necessary to compare our
findings with single task experiments with language only; such experiments
are already underway by our research group.

Finally, once we have stable and reproducible results regarding the relation-
ship between linguistic complexity, cognitive load and driving performance,
we could design similar experiments for more realistic scenarios, namely using
full-fledged dialogue systems, high-fidelity driving simulators or eventually
real driving. Testing our research findings in such environments would bring
us even closer to reaching our ultimate long-term goal: to use linguistic com-
plexity to design better and safer automotive spoken interfaces.
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