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Abstract
is thesis contributes to the SMILE project, aiming for video understanding. We focus on the
final stage of the project where information extracted from a video should be transformed into
a natural language description. Working with a corpus of human-made video descriptions, we
examine it to find paerns in the descriptions. We develop a machine-learning procedure for find-
ing statistical dependencies between linguistic features of the descriptions. Evaluating its results
when run on a small sample of data, we conclude that it can be successfully extended to larger
datasets. e method is generally applicable for finding dependencies in data, and extends meth-
ods for association rule mining for the option to specify distributions of features. We show future
directions which, if followed, will lead to extracting a specification of common sentence paerns
of video descriptions. is would allow for generating naturally sounding descriptions from the
video understanding soware.
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Chapter 1

Baground

1.1 Motivation

Meaning of words is one of the central issues of linguistics. Semanticists have long
been occupied with the question what structure can describe meaning accurately. While the most
successful approaches nowadays extract meaning from text corpora and capture it as vectors in
an arithmetic vector space, we feel it does not reflect the actual nature of meaning very well. If
you are asked to imagine an airplane, you usually recall a visual scene which is dominated by
an airplane, rather than activating an appropriate vector of its characteristics including maybe
its animacy or size. In reality, computational semantics does not even call components of such
vectors by their name (animacy or size); they are just the first component, the second component,
etc. Hence, even if one of the components corresponds to, say, animacy, this fact stays hidden to
the semantic representation.

e present research contributes to a project called SMILE (Script Mining as Internet-
based Learning). e SMILE project combines the areas of natural language semantics and com-
puter vision. We aim for bridging the gap from visual to textual information by characterizing their
relation. For that, we plan to use an intermediate representation which would describe meaning
with regards to visual properties. We focus on videos as opposed to still images, and semantics of
scripts.

Scripts are prototypical sequences of events that occur in everyday life. For example, we
all know the script of cuing bread. It involves the actions of geing a loaf of bread, knife, and
a cuing board, then cuing one or more slices off the bread, and finally puing all the things
back to their place. More complex scripts include those for visiting a restaurant (note that there
are different scripts for this, depending on the kind of the restaurant) or going to the cinema. It is
important that scripts are prototypical sequences of events – that means that most people know
scripts, they form a part of our collective knowledge. erefore, they represent information which
is usually implicit in human communication.

e goal of the SMILE project is to employ scripts as an additional cue to understand
videos. e first step of the project was to gather a database of scripts. We have since been
building a soware system that identifies objects and actions in a video, exploiting the database of
scripts. Although computer vision is already advanced in this task (or similar ones), we expect it
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2 Chapter 1: Background

to benefit much from matching its output against the script database.
Once an interpretation for the input video is constructed based on the combined know-

ledge of computer vision and scripts, we would like to express the information in natural language.
is is what we have investigated in the present Masters project – what natural language descrip-
tions for videos should be like. In the description generation, pure information about contents of a
video have to be classified into important / not so important information, and the most important
chunks of information need to be transformed into words and sentences. e system needs to
know at runtime how to do this – how to identify important information, and how to transform it
into words. In this Masters project, we aim at extracting this knowledge from video descriptions
that were created by humans.

Our work builds on three areas of research: a) analysing visual information; b) analyzing
textual information; and c) learning the most probable association between elements of the two.
Analysing visual information is a field too large, and a bit off-topic for this thesis, for us to review
it here. Instead, we refer the reader to the comprehensive review of Aggarwal and Ryoo (2011).
We review the other two areas in the following sections.

1.2 Analysis of Text

On the side of text analysis, we are mainly concerned by scripts and their unsupervised
extraction from bodies of text. e notion of script was introduced by Schank and Abelson (1977).
is work builds on previous experience of its two authors, bringing together artificial intelligence
and social psychology to make one of the fundamental contributions to a newly formed discipline,
coined cognitive science. e authors try to put a part of inherently human way of thinking into
exact terms, and finally implement part of the theory they develop as a computer program. e
specific knowledge they inspect is that of usual sequences of related events (scripts), and how
people develop understanding of these.

Schank and Abelson had to specify scripts they wanted to work with, manually. Al-
though they offer ways to specify only more generic entities and derive individual scripts from
them, there has been need to extract script knowledge from bodies of text without supervision, for
retrieving them in large enough amounts for low cost and adaptability to the input. Chambers and
Jurafsky (2009) present an unsupervised approach to script extraction. eir approach is based on
finding oen occurring sequences of verbs (narrative chains) and related sequences of their actants
which denote the same entity across the sequence (coreference chains). Authors show that learning
the narrative chains jointly with semantic frames of their verbs is advantageous compared to per-
forming the two tasks separately. is comparison is made using the cloze task, which requires
gaps in a text to be filled in. Authors also report on top 20 extracted narrative schemata with
respect to their confidence score: they achieved around 70 % accuracy of suggested frame fillers.

Following two papers are part of the SMILE project. ey are both concerned with
extracting script information from crowdsourced knowledge. e first one, Regneri, Koller and
Pinkal (2010), describes how underlying data were obtained, and how they were clustered into a
single temporal graph for each scenario. e data collection was performed using Amazon Mech-
anical Turk.1 Its workers were given a scenario, and they were asked to provide a prototypical se-
quence of events that constitutes the scenario. Having gathered data in the form of event sequence

1http://www.mturk.com

http://www.mturk.com


Chapter 1: Background 3

descriptions (ESDs), Regneri, Koller and Pinkal clustered the elementary events across different
ESDs for the same scenario by their similarity, using amultiple sequence alignment algorithm. e
clustering then gave rise to a temporal graph, when temporal links implied by the original ESDs
were projected into the clustered structure.

In a newer work, Regneri, Koller, Ruppenhofer and Pinkal (2011), the authors build on
the earlier results by clustering also the participants of the events across ESDs. ey combine
structural cues and semantic similarity in an ILP (integer linear programming) framework to ob-
tain the clustering of participants that satisfies maximum number of constraints. eir algorithm
achieves F-score from 74 % to 89 %, depending on the evaluation metric.

Note that the two last mentioned papers demonstrate automatic crystallization of script
knowledge from examples in natural language, but rely on high-quality examples to be specified
on the input. e gap from an unconstrained body of text to a script is only bypassed by using
Amazon Mechanical Turk. at implies that extracting more scripts is not for free; however, for a
restricted domain, such as in our project, this approach yields the required results.

1.3 Mapping Visual Data to Text

e problem of matching visual data to text, either in the task of image/video annotation
or text illustration, depends on advanced methods of both computer vision and text processing.
erefore, this task could be tackled only recently. Still, the results are only partial, relative to the
whole way from video to adequate text description or from text to relevant videos or images. Suc-
cessful recent approaches rely heavily on meta-information aached or related to pictures rather
than actually naming the depicted objects. We first review two different approaches dealing with
still images and then one approach which processes video.

e first work, Feng and Lapata (2010), models the relation of visual elements (visiterms)
to words as direct. e authors use statistical methods to approximate this relation fromBBCNews
Data corpus, which consists of newspaper articles with an aached figure (or more) and its caption.
ey annotate images with visiterms using the SIFT algorithm (Lowe, 1999). So they actually take
key elements extracted by SIFT to be the visiterms. For the text, they assume it is generated by a
two-level procedure: first, a topic is randomly chosen, and then the article is generated given the
topic (the procedure is known as LDA, Latent Dirichlet Allocation). en they take topic to be a
hidden variable and learn the relation of articles (treated as bags of words) to topics, and also of
images (treated as bags of visiterms) to those topics. ey arrive at 20 % F1 score within top 10
suggested keywords, but are from the assumptions limited to extracting only sets of keywords as
opposed to a fluent description. at indicates that a more sophisticated approach to modeling
meaning is needed.

One such approach is represented by Farhadi et al. (2010). Here, the authors explicitly
define the meaning (the hidden variable) to be a triple ⟨object, action, scene⟩. ey exploit these
triples for generating simple sentences in the form object does action at scene. Again, they learn
statistically the two relations, one of text and meaning and another one of meaning and image. In
their case, though, for the structured nature of meaning, relations are learned for each of object,
action, scene, and between them. ey define tree F1-measure: given a taxonomy, each predicted
entity and corresponding gold standard entity are compared as nodes in the taxonomy. ey are
identified with the path in the taxonomy tree from their node to the root, path being a set of edges,
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and F1 score is computed between the two paths. In this measure and with a corpus of 1000 images
they created, they achieve about 40 %–50 % F1 scores for each of objects, actions and scenes. is
work is encouraging as it shows a way to building sentential descriptions with a good accuracy.
It remains a question for us how well it could be applied to the domain of video.

In a problem conceptually similar to ours, Gupta, Srinivasan, Shi and Davis (2009) auto-
matically extract what they call storylines and what in fact corresponds to the notion of script
as defined by Schank and Abelson, 1977. e authors take a corpus of recordings of 39 baseball
matches and learn to distinguish different actions in the game as well as possible sequences in
which they can occur. Because there is no universal linear sequence of actions that can happen
in baseball, they capture the structure (storyline) using an AND-OR graph. ey use several com-
puter vision techniques to extract features from videos and define several so constraints to cal-
ibrate the complex relation of video segmentation, actions appearance models and the storyline.
e best model is then constructed iteratively using an algorithm similar to the EM-algorithm.
ey achieve impressive results for their problem, with both precision and recall of action recog-
nition around 80 %–90 % and the storyline being very much like what a human would construct.
Although they contributed in the same direction as we plan to, their research context is differ-
ent. Whereas they base their visual model on recognizing medium scale movements (of players
running across the field), we aim for analyzing human motion in more detail, in terms of joints
and bones. We also focus more on the linguistic side of the problem, not only generating more
natural texts, but even being guided by pre-extracted script information. Still, we can draw much
inspiration from this work.

Finally, we review the recent work of Rohrbach, Regneri et al., 2012, which is also part of
the SMILE project. It explores visual recognition of composite events, an area that has rarely been
tackled. is work already joins the forces of computer vision and script information. To allow for
these two paradigms to support one another, the computer vision step does not recognise whole
events, but rather event aributes – elementary events and their participants. Aributes may be
more reliably recognised; however, they generate a vast space of hypotheses for interpretation of
the video. e space needs to be bound to feasible dimensions, and this is achieved by restricting
the hypotheses by the means of scripts. e advantage of breaking the recognition problem into
recognition of single aributes is two-fold: not only do they serve as an interface to information
coming from the scripts, but they can also be compared and reinforce or reduce the confidence of
each of them being recognised correctly. e authors consider two types of links between extracted
aributes: contextual (an aribute occurring in subsequent frames), and co-occurrence (different
aributes occurring at the same time). e reported results are decent, considering difficulty of
the task, and this work shows that combining computer vision with computational linguistics is
possible, and advantageous.

1.4 Other Related Work

We have identified various approaches to problems related to one we want to solve.
Besides them, there is also a body of work with results relevant to us, but aimed at different prob-
lems. In the related field of soware engineering, there has been research in specifications mining,
c.f. (Shoham, Yahav, Fink & Pistoia, 2008). at work seems analogical to unsupervised learning
of scripts from text on a given topic. Where they speak about code snippets, we would look at
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sentences and paragraphs, and their resulting state automaton graphs seem promising as repres-
entation for our scripts, too. However, the transfer from the exact domain of programming lan-
guages to natural languages is far from straightforward and it is to be seen whether such formal
approaches can be useful for the linguistic domain.

1.5 Plan for eesis

e rest of this thesis is structured as follows. In Chapter 2, we give a more complete
overview of the SMILE project in Section 2.1, and introduce the important concept of alignment
in Section 2.2. Chapter 3 describes the corpora that served as the source of linguistic data for our
experiment. We also document how the corpora were preprocessed to facilitate subsequent learn-
ing of word aligners. Chapter 4 describes the central piece of the present research, i.e. extracting
statistical dependencies between features of video descriptions. We describe how the theoretical
problem specification is translated into a problem of statistical learning in Section 4.2. We then
discuss possible approaches to the problem and present our method in Section 4.3. In Section 4.4,
we address the issue of evaluating results of the system to present and discuss the results in Sec-
tion 4.5. Section 4.6 provides discussion of the present approach, and suggestions for future work
in regard of the core dependency classification problem. Finally, Chapter 5 outlines directions for
future work on the project and describes what has already been carried out.



Chapter 2

Overview

In the Masters project documented by this thesis, we worked towards improving auto-
mated video analysis and understanding. Video understanding is a very intriguing, and challen-
ging task, which brings together computer vision, artificial intelligence, and computational lin-
guistics. Albeit each of the approaches has its own merits, uniting them to solve the task of video
understanding is even more aractive.

Imagine we were to automatically analyse a video by applying only methods of visual
object recognition. Visual recognition can be reasonably accurate when matching parts of the
video input against a fixed dictionary of objects. Using visual context provided by the scene im-
proves the accuracy, and using the change in the visual context as the video proceeds helps further
refine the recognition results. We believe that humans use yet more information when recognizing
visual percepts. To model this additional information for computer video recognition, we experi-
ment with scripts – prototypical sequences of events from everyday life. Events hypothesized to
be captured by a footage are matched against a set of scripts; the sequences of events that have
a closely matching script to them are preferred as the interpretation over other candidate event
sequences.

From the perspective of computational linguistics, we touched on the motivation for
combining forces with computer vision in Section 1.1. Basically, having visual grounding for con-
cepts whose denoting expressions we know provides us with a lot of information about the mean-
ing of the expressions. In fact, computer vision supplements linguistic analyses with information
that would never be available otherwise, and that is crucial in human understanding of things. is
is analogical to the situation described in the previous paragraph, where computer vision benefits
from information obtained using methods of computational linguistics.

e goal of the project goes beyond understanding videos. We aim for generating natural
language descriptions of the recognized events. While the descriptions could be produced using
sentence templates, filling them with single phrases according to what object was recognized in
the video, we want to deliver a more flexible, and thus more natural result. We work towards char-
acterising what human descriptions of videos tend to look like, so that they can be approximated
by a computer video recognition system.

In this chapter, we will first describe the SMILE project, as the context of our work, in
more detail. We will then introduce some important notions regarding alignment, which will be
applied later in Sections 3.2.5, and 5.1.

6



Chapter 2: Overview 7

..

..put on cuing board.

slice

.

cover with spread

.

make into sandwich

.

eat

.

Script

..

Footage

.
Objects,
basic events
leg, step, step, knife…

.

Discover complex events
enter the kitchen, prepare sandwich…

.

Natural
language
description.

Visual
processing.....

{

.

NLG

.

our task

Figure 2.1: Schema of the umbrella project.

2.1 High-level Plan of e Overaring Project

e present research is meant to contribute to a project which we briefly introduce in
this section. e project is called SMILE (Script Mining as Internet-based Learning) and it is con-
ducted jointly by researchers in computer vision and computational linguistics ateUniversity of
Saarland. e goal of the project is to implement soware that would be able to understand videos
from the domain of food preparation. Such soware could find practical use, e.g. writing down re-
cipes based on a footage capturing a cook performing them, but more importantly, it would show
a possible way for other applications of video understanding. (See Aggarwal and Ryoo (2011) for
a review.)

In the following paragraphs, we provide a high-level overview of the soware that the
projects aims to develop. Figure 2.1 illustrates the basic organisation of the soware components.
ere will be two information inputs to the soware, script information and a footage. e script
information is a static input, meaning it serves as a permanent resource for the soware; whereas
the footage is the input that gets its corresponding piece of output assigned.

First, the footage needs to be processed using computer vision, which identifies elements
shown in the video, on a rather low level of description. We assume that the output of computer
vision consist of elementary recognised objects and events.

Here comes the principalmotivation for this interdisciplinary project – to take the output
further towards more abstract description, which would be understandable to humans. Instead of
a sequence of elementary objects and events, such as leg, (one) step, (a second) step, knife etc., we
thus want to recognise, for instance, the action of entering the kitchen and taking the knife. In order
to be able to recognise such more complex events, script information is required.

Scripts (Schank & Abelson, 1977) by definition describe usual sequences of events that
constitute everyday (complex) events, such as visit in a restaurant. Hence, they provide exactly
the missing link from the computer vision output to high-level descriptions. In fact, as Rohrbach,
Regneri et al. (2012) have shown, this link can be exploited even before processing the output
of computer vision. It can aid the object recognition step to select feasible candidates for the
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Figure 2.2: An example of the assumed form of computer vision output.

recognised objects or events.
Finally, once the complex events are recognised, they need to be output in an appropriate

form. Becausewe aim atmaking the extracted information available for a human end user, it would
be ideal to output the information in the form of a fluent natural language text.

2.1.1 Video And Script Input

For there to be a real hope for success of the project, the input domain needed to be
restricted. e core investigators decided the domain should be food preparation in the kitchen.
is choice is well suited to both computer vision processing (it is restricted enough) as well as
the application of scripts (food preparation involves a rich variety of scripts).

e script information needed on input to the systemwas obtained as described in Regn-
eri, Koller and Pinkal (2010) and Regneri, Koller, Ruppenhofer and Pinkal (2011). e necessary
video input data have been gathered in an artificial kitchen built for that purpose, as described in
Rohrbach, Amin, Andriluka and Schiele (2012).

2.1.2 Nature of Information during e Process

Let us now discuss briefly the nature of information transferred between components of
the soware system. Figure 2.2 illustrates the outcomes of object and event recognition. Of course,
there will be more information extracted from the video, such as position of each recognised ob-
ject; however, we want to emphasize that there are elementary objects (cuing board, knife) and
elementary events (step, cut) that occupy a certain span of video frames each. Moreover, there are
events or objects recognised wrongly (calf instead of loaf of bread), which there will presumably
be many more in reality. We assume the object recognition will keep track of individual instances
of objects, so that its output will imply that, for instance, the person whomakes a step is the same
as the one who cuts [the bread] with the knife. However, this assumption is not necessary, as this
information can be partly recovered using the scripts.

An example of a script, in a simplified version of Schank andAbelson’s notation, is shown
in Figure 2.3. e script consists of two parts: the script header, and its body.1 e header defines
the name of the script and roles figuring in it. e script body, to be read from top to boom,
then defines interactions of the roles that constitute the script. ese interactions are expressed

1e body of the script, according to Schank and Abelson, should be a conceptual dependency (CD) graph of events
and states. Due to the restricted domain and for the sake of simplicity, here we assume the same template for the CD
structure of all scripts, where the events always lead to a state that enables the subsequent event.
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Name: Preparing bread
Roles: cook c

(bread b, knife k, cuing board p, spread s)

c PTRANS b TO p c GRASP k
c EXPEL k TO b
c PTRANS k TO s
c PTRANS s TO b

c INGEST b

Figure 2.3: An example script.

in terms of a very restricted grammar. (Although Schank and Abelson perfected this restricted
grammar, we might use a different one in the SMILE project, according to needs of the computer
vision component.) In the first line of the body of the example script, we write the two actions
besides each other to show that their order is irrelevant. Both of them need to be completed,
though, before the action below them can be commenced.

In a procedure central to the SMILE project, the output of computer vision gets combined
with the script information to give rise to structured information describing the video. For now,
it suffices to assume that the procedure selects scripts that apply to the footage, and instantiates
them (or, unifies the roles in the scripts with the objects recognised in the video). A fraction of the
set of unification equalities could look like this:

c = A k = B

calf ∼ bread p = D

b = C s = none

Here, A–D refer to objects in the video recognition output (as shown in Figure 2.2), bold leers
refer to roles of the script (Figure 2.3), and words typeset in monospace font (calf and bread) are
predicates.

e above example of unification would assign the recognised objects (and their respect-
ive actions) to the roles in the script as expected. Furthermore, it fixes the misrecognition of the
bread loaf as a calf, using restrictions implied by the script. Because there figured no spread s in
the hypothetical video, that role does not get instantiated, and all its related actions in the script
have to be ignored.

Once a procedure like the above described unification takes place, the video is under-
stood and the soware has captured it as raw structured information. An example of widely used
formalism for capturing structured information is shown in Figure 2.4. It is an aribute-value
matrix (or AVM for short) – on the le are names of aributes and their values are on the right.
Each value on itself can be structured, which is captured again using an (embedded) AVM. Small
squared numbers co-index information that refer to the same object. e figure shows two AVMs
– we assume there to be many AVMs at this point of processing, describing different states that
occurred in the video.

e final step of processing is generating natural language text from the raw information.
e irrelevant information has to be pruned, and the rest organised into sentences. Following is
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

 cut

 1

[
 man
 6 feet

]



[
 bread
 1 foot

]
 2

[
 knife

]


frame 85

…



 slice
 1



[
 bread
 half

]
 2


frame 92

Figure 2.4: An example of the assumed input format for NLG.

an example final output of the system:

Example 1.
A man came to the kitchen.
He took a loaf of bread from the cupboard.
He cut two slices off the bread.
He put the bread back and le the kitchen.

2.1.3 Challenges

By carefully studying the above example output (Example 1), we will now find implica-
tions that the desired output has for inner workings of the system.

e first aspect we should note is the lexical choice. For instance, in saying

A man came to the kitchen.

the speaker had to select from a range of options, including man, chef, man six feet tall, Barack
Obama etc. In this case, the choice was rather simple. Other cases may be not so clear. Lexical
choice is a job of the NLG step, and we will be examining properties of different expressions that
can alternate in the same position of video descriptions.

e issue of lexical choice is tightly connected to the issue of complex events identific-
ation. However, recognising complex events is a maer of understanding, rather than one of
linguistic knowledge. It falls under the step of combining scripts with the output of video recog-
nition. And it is an important step to do, since the resulting output for the same video as the one
described in Example 1 would otherwise look like this:

Example 2.
A man is walking.
He stops.
He is in the kitchen.
(…)
He cuts a slice off the bread.
He cuts a slice off the bread.
(…)
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One last issue we mention here is tracking discourse referents. e reader could have
noted that in the example output, the same person is referred to first as a man, and later only as
he. All other objects also need to be tracked, so that they can be introduced with the indefinite
article (a loaf ) and later referred to with the definite article (the bread). is apparently simple
behaviour requires rigorous handling of the discourse structure throughout the system, ideally
starting with computer vision, and ending with NLG.

e topic for my Masters project fits into the whole project in the NLG stage. Because
NLG is a complex problem, subject to intensive research, the Masters project aims to prepare the
grounds for implementing a NLG system in the special context of this video describing applica-
tion. Concretely, our goal is to characterise paerns of video descriptions created by humans. Such
characterisation can then aid the NLG component in its effort to generate sentences that sound
naturally.

We will now turn aention to the notion of alignment. is is an important device for
our analysis of parallel corpora from which we learn to characterise the video descriptions. Only
when parallel descriptions (descriptions of the same clip) are word-aligned, can we compare their
structure word by word, or, in our case, phrase by phrase.

2.2 Alignment

Alignment is the task of establishing a correspondence relation between linguistic units
of parallel texts. A number of different texts are said to be parallel iff they convey the same mean-
ing. Two linguistic units are considered to correspond iff they express the same or similar inform-
ation in the parallel texts they belong to. Although the task of alignment is well specified for any
number of parallel texts greater than or equal to two, we will only apply it to the basic case of
two parallel texts, hence we need not discuss the general case any further. Even though we hap-
pen to work with resources that give us multiple parallel texts, we will treat them piecewise, as a
number of bitexts (i.e. pairs of parallel texts). For instance, a text available in 10 parallel versions
will be broken into

(
10
2

)
= 45 bitexts. Also, while alignment can be performed with parallel texts

in different languages as well as with texts in the same language, we will only need the laer for
our experiments, namely aligning English to English. Even if we employ tools used for SMT (stat-
istical machine translation), we still apply them to the English-to-English “translation” problem.
is does no harm, rather the opposite, because monolingual translation is simply much easier a
problem than full cross-lingual translation.

e above definition of alignment is generic as to what one takes to be the linguistic unit.
Because we speak about correspondence with respect to the conveyed information, the smallest
alignable unit is the morpheme, i.e. the smallest linguistic unit that bears some meaning. Usually,
however, the task is specified with larger units, most oen with words or sentences.

Knowing word alignments of a parallel text is very useful for SMT. ey instantiate
the hypothetic relation of cross-lingual word correspondence which is traditionally captured by
multilingual dictionaries, allowing for the SMT system to induce such a translation dictionary for
itself. As opposed to traditional dictionaries though, the word translation dictionaries used in SMT
have a confidence assigned to each entry, approximately describing the frequency with which the
source word corresponds to the target word.

In the present work, we employ alignment in Section 3.2.5, and Section 5.1. e former
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is an extensive experiment with aligning sentences using code developed from scratch. We refine
the aligment of parallel corpora as part of their processing. In Section 5.1, we document how
word aligner was trained from parallel corpora introduced in Chapter 3. Word alignment is a
prerequisite for extending the key experiment (Chapter 4) to larger data.

e task of word alignment typically assumes that the given bitext is already sentence-
aligned. is way, the selection of target words that can be aligned with any given source word is
restricted enough, thus algorithms usually used for word aligning are still computationally feasible
while delivering good results. If a bitext is to be word-aligned when it is not yet sentence-aligned,
an alignment algorithm is first run on the sentence level beforeword alignment is tackled. Sincewe
are going to apply both sentence alignment and word alignment in the present work, we describe
the two problems in more detail, including references to standard approaches and terminology in
forthcoming sections.

2.2.1 e Other Dimension of Alignment

Before we delve into word vs. sentence alignment, we should look at another important
issue regarding the linguistic unit used for alignment. While the distinction of morpheme vs. word
vs. sentence is measured along the linear dimension of the text, we can also consider another
dimension, from surface linguistic forms through to a deep representation of their meaning. e
laer dimension is traditionally thought of as depicted in Figure 2.5, the Vauquois triangle. e
le vertex of the triangle represents the source text, the right vertex represents the target text. By
following the edges to the top vertex, one gets to a deeper representation of the texts. At the top
vertex, the texts are represented by their pure meaning. Because the texts are assumed to have the
same meaning, the source and target edges meet there.

is metaphor was originally meant to represent the problem of translation, while we
employ it for the problem of alignment. In translation, one searches to find a way in the Vauquois
triangle from a given source sentence to the corresponding target sentence. In alignment, on the
other hand, we start from both a source and a target sentence to meet in the middle. Not the target
sentence, but the correspondence relation is expected on the output.

ere are different paths through the triangle that can be taken to find the alignment.
e solution can take the shallow way, along the base of the triangle, thus directly establishing
pairwise correspondences of the surface forms. As the other extreme, it could go deep on both
sides (which means “high” in terms of the triangle) until it reaches the top vertex, where the
correspondence is trivial. e alignment, as a correspondence of surface units of the two texts,
can then be established by following the path back from the top vertex back down to the two
surface versions.

Unfortunately, reaching the top vertex from either side seems practically impossible, and
the progress upwards gets harder and less reliable as one is geing further from the surface. On
the other hand, the extreme of following the surface is much more popular. In SMT nowadays,
systems of this kind actually perform one of the best. For SMT, using deeper representations
implies performing an according amount of analysis on the source side, and generation on the
target side. For alignment, only analysis on both sides is needed. Luckily, first few steps of analysis
are nearly deterministic, perhaps untilWSD (word sense disambiguation). Hence, performing such
a basic analysis helps shorten the distance for the horizontal step with introducing only lile noise
by analysis errors.
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Figure 2.5: Vauquois triangle for the task of alignment. e central step in alignment is the hori-
zontal step, the very aligning of linguistic units at a certain level of abstraction. is
machine learning task can be performed directly with the surface forms (le); or, it can
be applied to more abstract representations (right). In the laer case, the horizontal
step is shorter, meaning that the correspondence relation at this level of abstraction is
more regular. Note that aligning on the surface level here does not mean the text needs
not be analyzed at all; we assume it to be already tokenized.

2.2.2 Monotone Alignments

Regarding the horizontal step in the alignment, the problem can be re-articulated in pre-
cise mathematical terms. e source and the target text are sequences of linguistic units (e.g. words
or sentences), call them S and T , respectively, where S = (s1, s2 . . . sm) and T = (t1, t2 . . . tn).
e task is then to determine the correct relation of {si : 1 ≤ i ≤ m} =: S′ and {tj : 1 ≤ j ≤
n} =: T ′, i.e. output the correct A ⊆ S′ × T ′. Having defined what alignment is, we can provide
a definition of monotone alignment.

Definition 1 (monotone alignment). Let us have texts S and T and an alignment A ⊆ S′ × T ′,
with S′ and T ′ as defined above. We say that A is monotone iff:

1. ere exist a suitable equivalence σ on S′ factorizing S′ into continuous chunks, i.e.:

∀i, k : [si]σ = [sk]σ → (∀j : i < j < k → [sj ]σ = [si]σ) ,

and an equivalence τ on T ′ with the same property.

2. e factorizations S′/σ, T ′/τ are both compatible with A:

∀i1, i2 ∈ S′, j ∈ T ′ : [si1 ]σ = [si2 ]σ → (⟨i1, j⟩ ∈ A↔ ⟨i2, j⟩ ∈ A)

∀i ∈ S′, j1, j2 ∈ T ′ : [tj1 ]τ = [tj2 ]τ → (⟨i, j1⟩ ∈ A↔ ⟨i, j2⟩ ∈ A) .

3. e relation induced by A on S′/σ × T ′/τ is a monotonically increasing partial function:

∀a1, a2 ∈ A : (a1 = (si1 , tj1) ∧ a2 = (si2 , tj2))→ ([si1 ]σ = [si2 ]σ ∨ (i1 < i2 → j1 < j2)) .
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For the monolingual English parallel data we will work with, we observed that most
sentence alignments were monotone. is is because all the texts express the same sequence of
ideas and are very short, so there is lile reason, and lile room for sentence reordering. However,
with alignment of smaller units including words, non-monotone alignments are oen required,
because information within a sentence can be moved around more freely. Clearly, the restricted
problem of finding monotone alignments is easier than the more general problem of finding any
kind of an alignment. However, making the monotonicity assumption is not always adequate.

2.2.3 Sentence Alignment

We start with sentence alignment, since it is conceptionally a simpler task than word
alignment, and also because it is more important for understanding some of the following chapters.

Length-based Sentence Alignment

A classic approach to sentence alignment is Gale and Church (1991). ey apply their
algorithm to sentence aligning parallel texts in English, French, and German, establishing the
sentence correspondence merely by measuring the sentence length. ey hypothesize that corres-
ponding sentences are likely to be of the same length, with the difference in lengths (multiplied by
certain language-dependent coefficients) being normally distributed. ey derive a statistic based
on the length difference, δ, and show that its distribution is indeed close to the normal distribution
in their data. Gale and Church then go on to implement an algorithm for finding a good sentence
alignment with respect to the δ statistic.

With the longer texts they have (Swiss economic reports, and Canadian Hansards), they
actually run the same algorithm twice – first to align whole paragraphs, and only then to align
sentences within the paragraphs. Even so, the number of paragraphs in a text or the number
of sentences within a paragraph would be prohibitively large if one allowed for arbitrary many-
to-many alignments. erefore, the authors restrict the possible building blocks for alignment
(termed beads in Brown, Lai and Mercer (1991)) to at most 2 consecutive sentences on either side.

Having discussed the high-level anatomy of the algorithm and the δ statistic, providing
a crude measure of sentence similarity, we can look at the algorithm itself. It is an application of
dynamic programming. Given two texts, a table is allocated with one column for each sentence
boundary in the first text, and one row for each sentence boundary in the other text. It is then
filled in using existing previous values in the table (up to 2 cells back in either dimension) plus the
δ statistic of aligning the sentences spanning from the previous table cell to the current one. e
best alignment can then be read off from the table starting from its last cell.

We should note that the δ statistic was based on the length of sentences in characters, not
in tokens (words). e authors compare the two options and conclude that measuring in characters
yields much beer results. ey suggest the reason to be that each sentence has more characters
than words, and with higher numbers, the standard deviation is relatively smaller. When we use
length-based sentence alignment in our experiments, we will compare the two options for meas-
uring the length to see whether they will yield similarly different results also for our preprocessed
data.
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Sentence Alignment based on Lexical Overlap

e meager needs of the length-based approach are its main strength. ey mean the
algorithm is applicable to virtually any pair of languages. Gale and Church, 1991 also show it
has very good results, reporting as high as 94.2% and 97.3% accuracy for sentence alignment of
English and French, and English and German, respectively. However, these minimal assumptions
also imply the main limitation of the approach. It represents each sentence by a single number;
rather than aempting to capture the information conveyed by a sentence, it merely approximates
the amount of information. e approximation by length in characters builds on the assumption
that information is evenly distributed over characters of sentences in the given language, which is
generally true. However, in the cases where Gale and Church’s program gives the wrong answer, it
is probably because there is a lack of cues about the information contained in the given sentences,
not because of suboptimal processing of the cues it looks at. To make possible beer results than
those achievable by length-based approaches, there were developed another class of approaches –
those representing sentences by their lexical content.

e basic idea used in the approaches based on lexical information is measuring sentence
similarity by their lexical overlap, usually taking the sentence length into account, too. Lexical-
based algorithms then use the lexical (and length) similarity information for individual units of
those to optimize the total similarity for all the aligned units.

A good example of a lexical-based alignment algorithm is introduced by Melamed, 1999.
e paper also provides a more elaborate overview of different approaches to alignment than we
need here; the curious reader is referred there. Melamed introduces a number of useful concepts
regarding alignment, and we will briefly review them in the following section for we will need
them later in Section 3.2.5.

2.2.4 Formal Notions regarding Alignment

Although the definitions in this section introduce terms originally defined in Melamed
(1999), we oen use the same terms with a slightly different meaning. Still we think it beer to
use the same terms, since in essence, they denote the same things.

Any particular problem of alignment is always specified with respect to a bitext space,
so we start by defining this one. For an example of a bitext space, see Figure 2.6.

Definition 2 (bitext space). For a given bitext consisting of texts S and T , the bitext space B(S, T )
is a rectangle of all pairs of indices to characters or tokens of the two parallel texts. Whether it is
characters or tokens that are indexed for a particular bitext space, can be distinguished by saying
in what units length is measured.

Definition 3 (point of correspondence (PC)). Point of correspondence ⟨i, j⟩ within a bitext B(S, T )
is a pair of indices either of elements of S and T , respectively, or of boundaries between elements
of S and T , respectively. Boundaries of a sequence (x1 . . . xn) are indexed from 0 through to n.

e last definition deserves some elaboration. As defined earlier in this section, we un-
derstand a text to be a sequence of linguistic units. In the general specification of alignment of S
and T , we consider any relation between the sets of S and T to be a valid candidate for alignment.
In that case, the PCs based on indices of elements form the minimal sufficient set for selecting any
alignment from. However, we may restrict the alignment to the kind oen seen with sentence



16 Chapter 2: Overview

..

ma
in d

iag
ona

l

.

candidate PCs

.

certain PC
(origin)

.

certain PC
(terminus)

.
sent 1

.
sent 2

.
sent 3

.
sent 4

.
sent 5

.

character/token position in line 1

.

se
nt

1

.

se
nt

2

.

se
nt

3

.

ch
ar
ac
te
r/
to
ke
n
po
si
ti
on

in
lin

e
2

.

1

.

2

.

3

.

4

.

5

Figure 2.6: An example of a bitext space. On the x-axis is the first text, the other is on the y-
axis. Both the axes can be measured in characters or in tokens. e bitext space then
consists of all the pairs of character (resp. token) index pairs, and is represented by the
rectangle.

In this example, the linguistic unit for alignment is a sentence and PCs are pairs
of boundary indices. e first PC is termed origin, the last one terminus, and the line
connecting them main diagonal. e main diagonal is important, because PCs closer
to it are empirically more likely to belong to the true alignment, especially so in the
monolingual case. e origin and the terminus are certain PCs for they must be in any
valid alignment. e candidate PCs numbered from 1 to 5 denote the sequence of PCs
in the order they are considered by Algorithm 2 (Section 3.2.5, page 35).
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alignment, namely monotone alignment. In this case, many of the general alignments are not per-
missible anymore. In fact, exactly all permissible alignments can be captured as a set of boundary
index pairs ordered into a non-decreasing sequence, and then boundary indexing is desirable.

We have defined the space of solutions, the bitext space2, and its elements, points of
correspondence. Now we need to state what the right solutions look like and how to evaluate
any suggested solution. While we could be exact and define all the necessary concepts precisely,
the definitions would take a few pages without being crucial for the present work. Instead, we
give a cursory overview of these concepts and refer the reader to Koehn (2007, pp. 113–119), and
Melamed (1999) for more details.

According to the definitions above, any alignment is a set of PCs. e PCs constituting
the true alignment are called true points of correspondence (TPC), and the true alignment itself
is called the true bitext map (TBM). If PCs are taken to be based on indexing of elements, we can
evaluate the accuracy, precision, or recall of any given candidate alignment against a gold standard
alignment by comparing them as sets of PCs. A small adjustment is appropriate, though – since
any valid alignment contains both the origin and the terminus, these should not count neither
towards none of the scores. e evaluation is somewhat more complicated if PCs are based on
indexing of element boundaries. In that case, the alignments must be interpreted as aligning the
chunks of text between consecutive PCs, rather than PCs themselves. If there is just one gold
standard alignment, evaluation scores can be computed as usual, only with the beads between PCs
rather than PCs themselves. e most complicated case is evaluation with PCs based on boundary
indexing and with multiple gold standard alignments. is case is detailed in Figure 2.7.

Example 3. is example illustrates how an alignment would be evaluated for the complex case of
boundary indexing and multiple gold standard alignments (TBMs). All the alignments are shown
in Figure 2.7.

In this hypothetic case, we view the two notions of precision and recall in a different
context. When evaluating precision, we consider the beads induced by the alignments and compare
sets thereof. (Beads are the objects represented by the hatched rectangles for the TBMs.) e beads
induced by the candidate alignment are origin–A, A–B, B–C , C–D, D–E, and E–terminus.
ree of these five beads are compatible with a TBM (B–C , D–E, and E–terminus), hence the
precision is 3/5 = 60 %. We understand a bead to be compatible with a TBM iff aer removing
zero or more PCs from the TBM, it contains the bead. Note that we do not require the beads to be
compatible with the same TBM – the beads B–C and D–E come from different TBMs.

For recall, we view the problem as a classification of PCs – whether they should be
selected or not. We then compare the set of selected PCs barring the origin and terminus (i.e.
{A,B,C,D,E} in this case; call them inner PCs) to the minimal set of inner true PCs covering
maximum number of the selected PCs. e maximum number of the selected PCs that can be
covered by some of the TBMs in our case is 4, for all of B, C , D, and E belong to some of the
TBMs, whileA does not. ere is one minimal set of TBMs covering all ofB, C ,D andE, namely
both the TBMs. at implies the minimal set of inner TPCs, which has the size 8, in turn implying
that the recall is 4/8 = 50 %.

e accuracy of the alignment must be evaluated differently to the precision. It is easy

2In some cases, not all subsets of the bitext space are considered to be valid solutions. For instance, for aligning
monotonically while prohibiting to align anything to an empty fragment, each solution has to contain the origin, the
terminus, and must be strictly monotone (as a function).
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A woman is whisking a mixture of flour and sugar .

A
w

o
m

a
n

is
m

ix
in

g
fl

ou
r

an
d

su
g
a
r

.

A

B

C

D

E

Figure 2.7: Evaluation in case of multiple gold standard alignments (or, TBMs). We align words
in this example, since it is hard if not impossible to find a similar example for sen-
tence alignment. e assumption of a monotone alignment remains, though, as the
PCs reside at pairs of indices of boundaries, not the units themselves. e two TBMs
are represented by the rectangles with two types of hatching. e candidate alignment
comprises PCs A, B, C , D and E, plus the obligatory origin and terminus.

to achieve 100% precision (with the trivial alignment {origin, terminus}). Unlike precision though,
accuracy is not complemented by another metric; it should reflect non-perfect alignments by as-
signing them a lower score. erefore, accuracy would be computed by comparing the set of
exactly recovered beads (BR) to the set of beads of the minimal number of TBMs covering all of
BR. In our example, the beads B–C and D–E are the only ones recovered exactly (E–terminus
should have been split). e minimal number of TBMs covering them are again both the TBMs,
comprising 10 beads in total. erefore, the accuracy is 20 %.

2.2.5 Word Alignment

As noted above in the general introduction to alignment, the problem of word alignment
is an essential one in SMT. In contrast to sentence alignment, there are no shortcuts for solving
this problem like comparing the length of words (whereas aligning sentences by comparing lengths
of sentences gave good results, viz Section 2.2.3). Usually, the only input is a parallel sentence-
aligned corpus. e traditional word alignment algorithms, which are still used widely nowadays,
are based on plain counting co-occurrences of words from one side (language) of the corpus with
words from the other side.

In our view, word alignment is a harder task than sentence alignment, for the following
reasons:

1. Sentence alignment can be restricted to monotone alignments in some cases (including our
monolingual alignments) and still yield quite accurate results. In many other cases, it is close
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to monotone. Word alignment typically abounds in complex reorderings.

2. Sentences can be analyzed into single tokens, allowing for lexical-based alignment methods
(Section 2.2.3). Although one can employ a similar heuristic for word alignment, namely
prefer aligning words to the same or similar words, even in a multilingual seing (cf. the
approach of Melamed (1999)), that cannot work as a universal strategy.

Because the word alignment algorithms rely on co-occurrence counting and they solve a harder
problem than sentence alignment, wewant to emphasize again that it is important to split a parallel
corpus into chunks as small as possible before passing it on to word alignment.

IBM models

To our knowledge, the need for word alignment was first formulated by Brown, Cocke et
al., 1988.is is pioneering work in SMT, proposing a generative approach to translation, detailing
its central part, namely extracting a probabilistic dictionary. ey proposed a model of translation
including word translation probabilities and word fertility, making only preliminary experiments
with word reordering (all these terms are explained below). Couple of years later, they organized
the ideas into one framework, and thus laid the basics for contemporary SMT. is framework,
presented in Brown, Pietra, Pietra and Mercer (1993), consists of five models, now called “IBM
models”.

IBM models model how a sentence from the source language gets translated word by
word into a sentence in the target language. ey range from very simple to complex and poten-
tially very accurate ones. With increasing complexity of the model, it captures more sophisticated
translation phenomena, but also training and applying the model becomes increasingly complex.
e reason why there are five models, and typically most of them get used in any SMT problem,
is that each simpler model can be used to initialize parameters for the more complex one, making
use of the more complex models feasible.

IBM Model 1 is the starting point. It only includes word translation probabilities, i.e.
probabilities in the form p(e|f) where e is a target language (English) word, and f is a source
language (French) word. It asserts that each target word is aligned to (was translated from) exactly
one source word or the imaginary NULL word. Each sentence pair is assumed to be governed
by a word alignment satisfying this assumption, however the alignment is hidden to us. If we
knew the alignment, it could be used to maximize the word translation probabilities; and if we
knew the word translation probabilities, we could estimate the probability distribution over word
alignments. is is an instance of a problem with a hidden variable that is best solved using the
EM (estimation-maximization) algorithm (Dempster, Laird & Rubin, 1977).

IBM Model 1 is trained using the EM algorithm, under the assumption that alignment of
each target word is uniformly distributed over all options (i.e. all the source words and the NULL
word). IBM Model 2 is also trained using the EM algorithm, but makes the alignment of each
word conditioned on positions of both the source and target word, and on the lengths of both the
sentences.

IBMModel 3 substantially changes the generative story from the previous models. Most
importantly, it includes the notion ofword fertility. Given a source and target sentence, each source
word is assumed to have some fertility, which is a natural number (including 0). e fertility value
determines how many target words are aligned to the source word. To keep the possibility for
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target words to have no corresponding words in the source sentence, the next generative step is
insertion of NULL words. e lexical translation, p(e|f), turning all the source words into target
language words, is followed by the final step, word reordering or distortion. Because this model
cannot be factored into probabilities for individual target words (but rather it needs to always be
evaluatedwith a complete alignment during training), EM algorithm is not applicable in its original
form. Instead of performing full maximization in the M-step, the parameters are maximized only
based on a sample of the most likely alignments.

While IBM Model 3 employed a simple absolute reordering model (the same as IBM
Model 2), the next model gets more realistic in this aspect. e position of a target word in the sen-
tence in reality tends to be influenced much more by the position of, say, the word translated from
the preceding source word, than by its absolute position. At the same time, it depends on what
kind of a word it is and what kind was the preceding source word (whether a noun, an adjective,
etc.). is is needed for instance to capture the phenomenon of different order of a noun and its
aributes in English and in French, as in International Phonetic Alphabet vs. Alphabet phonétique
international. Similarly to the previous model, IBMModel 4 needs to only sample likely alignments
for training.

Finally, IBM Model 5 fixes deficiencies present in models 3 and 4, where the probability
of all possible target sentences does not add to 1. is model is the most complex one. However, it
is oen not used, in favour of IBM Model 4, which is already good enough for practical purposes.

To conclude our discussion of the IBM models, we should say their main goal was trans-
lation, word alignments being a byproduct. Nowadays, though, they are mainly used just for
finding word alignments, notably so in phrase-based SMT. e curious reader can find a textbook
exposition of IBM models in Koehn (2007, pp. 81–113).

Berkeley jointly trained models

In this section, we briefly introduce a word alignment tool we actually used in our ex-
periments. It is presented in Liang, Taskar and Klein (2006), the motivation for it relying largely
on symmetricity of the alignment. Symmetricity here refers to the way the alignment was ob-
tained, not to a property of the alignment itself. e aentive reader will have noticed that the
IBM models are inherently asymmetric – they are directed from one language to the other one.
Furthermore, they are restricted to consider only one-to-many alignments, hence the set of per-
mied alignments for one direction is different from the set of permied alignments for the other
direction. Assuming the true alignment can be a combination of alignments obtained for the two
directions, it is typically computed exactly that way – IBM models are trained in both directions,
asked to each predict an alignment for the given sentence pair, and these two alignments are some-
how combined. e combination can range from intersection of the two to their union; typically,
it is something in the middle, obtained using heuristics.

Because the IBMmodels are iterated on alignments other than those output as final, their
training is missing on the potential of symmetrising. ey use wrong alignments for the whole
training, and find out only when symmetrised on a single piece of test data. en it is too late to
change the model. is line of thought was behind the development of the Berkeley aligner. It has
two major characteristics:

1. It accounts for symmetrisation between training iterations.
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2. It is simpler than the more complex IBM models.

e Berkeley aligner employs a cascade of increasingly complex models, similarly to the
IBM models. By default, it trains the following models: IBM Model 1, IBM Model 2, HMM model
(Vogel, Ney & Tillmann, 1996). e last one has not been mentioned before; its distinguishing
property is the relative reordering model – it includes the probability of a target word position
conditioned on the position of the translate of the previous source word. Importantly, models for
both directions are trained simultaneously. Aer completing the M-step of the EM algorithm3 for
both the directions, their results are put together and effectively symmetrised in the E-step. e
authors showed that this procedure outperforms even the most sophisticated IBMmodels (namely,
IBM Model 4).

3In fact, it is not an EM algorithm anymore. It performs conceptually the same steps (estimation followed by max-
imization), but the estimation is only approximated. It is not even guaranteed to improve the objective function, hence
the algorithm is not guaranteed to converge. Nevertheless, it works well in practice.
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Resources

In this section, we provide an overview of and characterize data resources that were used
in this research project. We introduce the following corpora:

1. Microso Research Video Description Corpus (MSR VDC) provides us with human-made
video descriptions. is is the corpus of sentences we ultimately aim to characterize. It is
also used in learning to word-align.

2. Multiple Translation Arabic (MTA) and Multiple Translation Chinese (MTC) corpora are
parallel monolingual corpora that we use to learn to word-align.

3. Gazeeers and other proper name lists were used in truecasing of MTA and MTC.

3.1 Microso Resear Video Description Corpus (MSR VDC)

Microso Research Video Description Corpus (hereaer, MSR VDC), served as the prin-
cipal data resource for our investigations. Its authors give some of its characteristics and document
how it was obtained in Chen and Dolan, 2011. Here, we will describe properties of the corpus rel-
evant to our research and document how we preprocessed it.

3.1.1 Characteristics

MSR VDC features over 122K one-sentence descriptions of short video clips, wrien by
human workers at Amazon Mechanical Turk.1 e descriptions are based on 2,089 different video
clips, which implies that each clip received a decently high number of descriptions. Hence this
corpus is a very good resource of parallel sentences, and we take advantage of it when creating
training data for word alignment.

MSR VDC is also an ideal corpus for the purpose of our present experiment. Firstly, it
consists of one-sentence video descriptions, and secondly, a large portion of the video clips come
from the domain of food preparation. We thus work with sentences, many of which could be the
ideal output of the target soware system.

1http://www.mturk.com
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1. A man is driving a car.

2. A man is doing a magic trick with cards.

3. A man is playing a guitar.

4. A woman is peeling a potato.

5. “A man kicks a soccer ball into a goal, and a soccer ball knocks down a camera and tripod,
barely missing the man who jumps out from behind it.”

Table 3.1: Sample sentences from MSR VDC.

We list a few example sentences from the corpus in Table 3.1. ese illustrate not only
the constitution of the corpus itself, but also what kind of videos are described in the corpus.
e first sentence is description of one of the shortest videos present in the corpus (2 seconds),
whereas the second one shows a description of the longest video (49 seconds). Following is the
most frequent sentence in the corpus (used 176 times), compared to 36 occurrences of the most
frequent sentence from the domain of kitchen (number 4). Note that large portion of the corpus
describes videos either about a performing musician (such as the third one in Table 3.1), or about
work in the kitchen. e last sentence shown in Table 3.1 is one of the longest sentences present
in the corpus.

Before starting to use it, we split the corpus into three parts – training, test known, and
test unknown. ey purpose is the following:

train is is the portion that we use for our experiments. It is meant for training any later
machine learners when someone builds on the present work.

test – known is is the portion of the corpus meant for testing machine learners on data that
are familiar to them. Clips with corresponding descriptions in the “test – known” have
majority of their descriptions included in the “train” portion of the corpus, and none in the
“test – unknown” portion. “Test – known” is also meant to be taken into account in training
machine learners, even though not as regular training data. For example, we use it for word
aligning in that we construct the global vocabulary from both the “train” and “test – known”
parts.

test – unknown is portion is reserved for future purposes, especially for evaluating any trained
systems on data that may be new to them, and still from the target domain. We do not use
these descriptions nor any parallel descriptions for the same clips in any way, and suggest
anyone who does a research related to the present work to not use it for training either.

We split the corpus into the three portions following these simple rules:

1. Sentences number 42,363 and later form the “test – unknown” part.

2. For the rest of the corpus, we proceed clip by clip. For the first, third, fih etc. clip, we put
the last 3 of its descriptions into the “test – known” portion, and the rest to “train”. For the
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second, fourth etc. clip, we put only the 2 last clips to the “test – known” portion, the rest to
“train”.

is results in the three parts of the corpus having the following number of descriptions: In the “%

# sents % of MSR VDC

train 37,400 83.9%
test – known 4,960 11.1%
test – unknown 2,224 5.0%

Table 3.2: e split of MSR VDC sentences into “train”, “test – known”, and “test – unknown”.

of MSR VDC” column, we compare the number of corresponding descriptions to the total number
of descriptions in the used part of MSR VDC only.

3.1.2 Filtering Descriptions byality

Since authors of the descriptionswere asked towrite them in the language of their choice,
30% of the descriptions are in other languages than English. However, we only looked at the
English descriptions. Furthermore, Chen and Dolan manually evaluated some of the responses
gathered from the workers and marked those that had a high quality. Let us call such (English
only) descriptions clean. e other descriptions are marked as unverified. However, during pro-
cessing of the corpus, we collected unverified descriptions from workers who also produced clean
descriptions. Let us call such descriptions unverified, author mixed. We discovered that there is
virtually no noticeable difference in quality of these descriptions and the clean ones, hence we
added them to the set of clean descriptions and used both.

Despite the fact that the clean descriptions were deemed to be correct English by Chen
and Dolan, and the unverified ones with author mixed were produced by someone whose later
descriptions were deemed clean, we checked the set of sentences we would process manually and
cleaned them ourselves. We identified 7 sentences that were not English and other 2 defect sen-
tences (which explains the difference between 33,855 + 10,742 and 44,590 in Table 3.3; all the 9 sen-
tences were clean, i.e. marked as English and clean in the corpus). We further ran a spellchecker
(Hunspell v1.3.2) on the corpus and corrected typos it identified, and occasionally corrected other
errors, randomly discovered.

part of the corpus number of items

video clips 2,089
all descriptions 122,665
descriptions marked English 85,550
of which clean descriptions 33,855
of which unverified descriptions, author mixed 10,740

descriptions used for experiments 44,584

Table 3.3: Overview of Microso Research Video Description Corpus (MSR VDC)
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3.1.3 Corpus Preprocessing

We analysed the corpus to abstract from the surface to more general level of linguistic
description, in order to facilitate word alignment, as motivated in Section 2.2.1. We applied Stan-
ford CoreNLP and NLTK to obtain lemmatised and stemmed versions of the original sentence,
with substituted coreferring expressions, and annotated with syntactic parses. e procedure was
parallel to the processing of the corpora described in the following section, so we refer the reader
to the text on 27 and in Section 3.2.4 for a detailed description.

3.2 Multiple Translation Arabic Corpus (MTA) And Multiple Transla-
tion Chinese Corpus (MTC)

Multiple Translation Arabic Corpus (MTA) and Multiple Translation Chinese Corpus
(MTC) are corpora of English paraphrases. MTA and MTC comprise independent English transla-
tions of Arabic and Chinese short newswire articles, respectively. Although the corpora authors
identify for each (English) article in the corpus which Arabic or Chinese article it originated from,
we ignore all aspects of the original texts. We only look at the multiple English translations, very
much like in the case of MSR VDC where video clips were the source (that we ignored), and their
descriptions were the multiple translations into English (which we used as a parallel corpus).

We describe the corpora together in one section for several reasons:

• ey were created by the same procedure.

• In the result, they are of a similar nature.

• We preprocessed them together in the same way.

• We used them for the same purpose.

For what purpose we used the corpora was outlined in the preceding paragraph. For the other
three points, we will touch on them in sequence.

MTA and MTC consist of translations created by several translators and machine trans-
lation (MT) systems. Because the quality of themachine translations is much lower than that of the
translations produced by humans, we restrict ourselves to using only the human produced transla-
tions. MTA was published in two parts (Walker et al., 2003; Ma, 2005), MTC in four (Huang, Graff
& Doddington, 2002; Huang, Graff, Walker et al., 2003; Ma, 2004, 2006). All parts have the same
format but they were generally created by different translation teams and MT systems. Regarding
the format, the corpus is composed of a number of files, one file for each translated version of an
original text. All versions of the same text have the same number of lines, and the corresponding
lines always come from the same segment of the source text, i.e. they are asserted to convey the
same meaning. When referring to these corpora, we will use the term line for the lines as just
described.

Tables 3.4 and 3.5 provide basic figures about MTA and MTC, respectively.2 “Number
of regular sentences” states the number of sentences other than headlines and special endings

2e field “total” in Tables 3.4 and 3.5 in the row “number of translators” is parenthesized, because some teams or
MT systems that participated in creating different parts were actually the same or similar.
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part 1 part 2 total

number of translators
human 10 4 (14)
MT 3 3 (6)

number of texts
source texts 141 100 241
human translations 1,410 400 1,810

number of lines used 10,430 2,652 13,082
number of sentences used 13,747 3,192 16,939
regular sentences 11,645 2,850 14,495

number of line pairs 46,935 3,978 50,913
number of sentence pairs 47,999 4,034 52,033

Table 3.4: Overview of Multiple-Translation Arabic (MTA) Corpus

part 1 part 2 part 3 part 4 total

number of translators
human 11 4 4 4 (23)
MT 6 6 0 11 (23)

number of texts
source texts 105 100 100 100 405
human translations 1,155 400 400 400 2,355

number of lines used 10,923 3,512 3,740 3,676 21,851
number of sentences used 13,578 4,584 4,935 4,819 27,916
regular sentences 13,035 4,248 4,606 4,339 26,228

number of line pairs 54,615 5,268 5,610 5,514 71,007
number of sentence pairs 58,743 5,667 6,202 5,993 76,605

Table 3.5: Overview of Multiple-Translation Chinese (MTC) Corpus

(explained later; cf. Table 3.8). “Number of line pairs” refers to lines that correspond to each other
in meaning, as implied by the corpus, and “number of sentence pairs” refers to pairs of regular
sentences that correspond to each other in meaning, as implied by our best performing sentence
aligner. Table 3.6 specifies the grand totals for MTA and MTC.

To underline the different nature of sentences from MTA and MTC in contrast to de-
scriptions from MSR VDC, we provide Table 3.7. e table shows the lengths of sentences, short
for MSR VDC and much longer for MTA and MTC; and the variability of the vocabulary, small for
VDC and larger for MTA and MTC.

e aim of preprocessing MTA and MTC was to abstract somewhat from the surface
forms of tokens to make subsequent alignment easier. e rationale is discussed at more length in
Section 2.2.1. e following paragraphs detail all the preprocessing steps we have done.

We obtained the corpora fromTrevor Cohn, who kindly provided them in a pre-tokenized
form. But since the tokenisation in Cohn’s copy of the corporawas imperfect in places, we tweaked
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# of texts # of lines # of sentences # of sentence pairs
source translations

MTA 241 1,810 13,082 16,939 52,033
MTC 405 2,355 21,851 27,916 76,605

sum 646 4,165 34,933 44,855 128,638

Table 3.6: Total numbers for MTA and MTC. We only consider human-produced translations in
this table.

tokens tok/sent types

MSR VDC 388,204 8.71 4,687
MTA+MTC 1,072,386 23.91 20,070

Table 3.7: Size of MSR VDC vs. MTA and MTC in words.

the tokenisation first. Figure 3.1 (A) shows an example sentence3 from this corpus. We chose this
sentence such that it contains several tokenisation errors typically encountered in the data, al-
though they are generally not as frequent as here.

e next step was truecasing.4 Aer that, we segmented lines, which oen comprise two
or three sentences, into individual sentences. Aer these steps, we obtained sentences like those
in Figure 3.1 (B) and (C)5 (the numbers on the le indicate the sentences into which the original
line was split).

en, we processed the sentences in their original context using Stanford CoreNLP for
POS-tagging (Toutanova & Manning, 2000; Toutanova, Klein, Manning & Singer, 2003), lemmat-
isation, named entity recognition (NER) (Finkel, Grenager & Manning, 2005), parsing (Klein &
Manning, 2002), and coreference resolution (Raghunathan et al., 2010; H. Lee et al., 2011). For this,
we used a patched 2012-03-09 release of the soware. Most of the information obtained by the
CoreNLP analyses were actually used for sentence and word aligning, including lemmata, parses,
and resolved coreference chains. POS tags and NER were exploited by subsequent CoreNLP com-
ponents.

We made one more step beyond lemmatisation, namely stemming of the lemmata using
the NLTK (Bird, Klein & Loper, 2009) implementation of the Porter stemming algorithm (Porter,
1997).

Finally, for every two corresponding lines, we sentence-aligned them. For the lines
shown in Figure 3.1 (B) and (C), they got aligned in the following way. e first sentence of (B)
(0 New York Times -) was matched against a paern for special sentence starts, hence it was not
aligned with other regular sentences. It is probably a mistake that the same words in the laer line
are considered a regular sentence, even though they are formally really wrien so. In any case,

3line 7 of the MTA file part1.ahd/artb_535.tok
4Here, by the term truecasing, we mean lowercasing leers in the word-initial position if the word is not a proper

name.
5is is another version (by another translator) of the same original Arabic fragment, from the file

part1.ahg/artb_535.tok of MTA.
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(A)
New York Times - A British government document published yesterday reported that in the days
preceding the September 11 terrorist aack on the United States* , Osama Bin Laden indicated
that hewas " about to carry out amassive aack against America"._______Actually says "United
Nations " in the original

(B)
0 New York Times -
1 A British government document published yesterday reported that in the days preceding the

September 11 terrorist aack on the United States * , Osama Bin Laden indicated that
he was " about to carry out a massive aack against America " .

2 _______ actually says " United Nations " in the original .

(C)
1 New York Times .
2 a document published by the British Government yesterday evening ( ursday ) reveals that

in the days before the aacks of September 11 , Osama Bin Laden made it clear that he
intends to launch a major aack against the United States .

Figure 3.1: An example of lines from MTA/MTC in different phases of preprocessing.

the two last sentences of (B) vs. the two sentences of (C) form the bitext for sentence alignment.
In all our sentence alignment algorithms, they get aligned correctly as a single 2-2 bead.

As the result, we created a corpus of pairs of corresponding fragments (one or more sen-
tences) annotated with stems and parse trees. anks to the original corpora providing many par-
allel versions of the texts, we got a decent number of pairwise sentence correspondences (128,638
pairs, created from 44,855 sentences).

3.2.1 Tokenisation Tweaking

e corpus, as provided by Trevor Cohn, was reasonably well tokenized. For instance,
the negation particle n’t, as in won’t, was split off from the auxiliary verb, and punctuation was
separated into individual tokens, distinguishing between the sentence-final fullstops (separated)
and fullstops used with abbreviations (kept together with the abbreviation; e.g. Ltd. or U.S.). How-
ever, the punctuation was from time to time le aached to the preceding, or even the following
word (cf. Figure 3.1 (A)).

We iteratively searched the corpus for tokenisation errors and developed a script based
on regular expression substitution, to fix those errors. Apart from fixing obvious errors, we hy-
pothesized additional token divisions that might lead to extracting interesting lexical correspond-
ences in later stages. An example is spliing numeric values on thousand delimiters, so that e.g.
US$400,000 is split into US $ 400 ,000.

3.2.2 Truecasing

is stepwas the next natural thing to do on theway up the Vauquois triangle, in theway
of stripping idiosyncratic irregularities. We especially aimed to resolve whether the initial capital



Chapter 3: Resources 29

..
# of capitalized / # of all

.

fr
eq
ue
nc
y

.

0.0

.

0.2

.

0.4

.

0.6

.

0.8

.

1.0

.

0

.

10
00

.

30
00

.

50
00

Figure 3.2: Histogram of the ratio of capitalized to all words in a sentence

leer in a sentence belongs to a proper name or another word, lowercasing it in the laer case.
Besides that, the corpora contained in part headlines, i.e. sentences with each open-class word
capitalized. Cf. Figure 3.2 – it shows that ratio of the number of capitalized words to the number
of all words is centred around the mode (approx. 0.2), corresponding to common sentences with
the first capitalized leer and a few proper names; however, a much smaller but still non-zero
probability mass is far from the mode, centered about approx. 0.75, corresponding to headlines.
at illustrates that headlines constitute a non-negligible part of the corpus. For that reason, we
set a threshold on the ratio (although the histogram would suggest the two cases border at the
ratio of 0.5, we set the threshold to 0.6 to select headlines with higher precision), and for sentences
with the ratio exceeding the threshold, every word was checked for lowercasing. For sentences
with the ratio below the threshold, only the initial word and words following a punctuation mark
were considered.

To decide whether a word is (part o) a proper name, we used dictionaries of proper
names. Each candidate word for lowercasing is lowercased, unless it is listed in one of the diction-
aries. e dictionaries we used are described in Section 3.3. Since actual proper names appearing
in MTA andMTCwere oen not listed in the static dictionaries, for each text, we additionally built
a list of phrases assumed to be proper names and used it as another dictionary for versions of the
text.6

6By versions of one text, we mean different translations of one original Arabic/Chinese text.
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e truecasing script, whose pseudocode is provided as Algorithm 1, was run in two
iterations. In the first iteration (lines 5–9), only the static dictionaries were used to lowercase
candidates . In the second iteration (lines 10–12), both the static dictionaries and the customized
one (built in the first iteration) were merged and used to lowercase the text.

e words to be considered for truecasing were selected differently for headlines and
other lines. If a line consisted of more than 60% capitalized words (this ratio having been discussed
above), and if it had at least 4 words, it was considered a headline. For headlines, all words were
considered for lowercasing, while for other lines, it was only words that could have been wrien
with an uppercase initial because of a preceding punctuation. By comparing samples from the
corpora, we found that words can get capitalized aer most punctuation marks, apart from a few
exceptions (“,” (comma), “’” (apostrophe), “/” (slash), and “\” (backslash)).

Having identified the words that might need lowercasing (on lines 15–18), we checked
in sequence whether they belong to a capitalized phrase within the line, that is listed among the
known proper name phrases (line 20). If they did not belong to such a phrase, they got lowercased.

e getPropPhrases function scans a text for maximally long sequences of words that
follow the format of a capitalized phrase. In English orthography, it is possible to identify capital-
ized phrases from having each open-class word and the first word capitalized. at is the definition
we used for recognizing them in this function.

We do not consider truecasing a critical step of preprocessing, so we were content when
the script normalized most of the capitalized words, not making silly mistakes, even though it was
far from perfect.

3.2.3 Sentence Tokenisation

We split lines into sentences using a straightforward Perl script, based on regular ex-
pressions. ere was only one non-standard issue we had to deal with. With corpora based on
newswire articles, many lines are introduced by a so-called dateline – a header specifying details
where the news report comes from andwhen it came into being. e following is a typical example
of a sentence starting with a dateline:

Example 4. AL Ghardagah ( Egypt ) 5 - 5 ( AFP ) - a ship displaying the Maltese flag caused dam-
ages , initially estimated at four million dollars , to the coral reefs in the Red Sea , according to a
confirmation by the Egyptian police on Tuesday .

Because each sentence was subsequently fed into the Stanford parser, which is trained
to parse single sentences, it was desirable to split off datelines, to avoid confusing the parser. In
spite of the datelines varying wildly in their form (cf. Table 3.8), they are very restricted as to the
content. Due to that, we were able to enumerate a few types of content typical for headlines (the
place, the date, the agency, and the reporter), characterize them by regular expressions (except
for the place) and frame these component regular expressions into one expression. As result, we
could recognize datelines in the corpora with high accuracy. Table 3.8 also shows two examples
of other special sentence-like segments, which are not datelines, but rather appear at the end of
lines. Since these were correctly split off already by the general part of the sentence segmenting
script, we handled them specially only later in the alignment refining phase.
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Algorithm 1: Truecasing of MTA, MTC
Input: tokenized corpus files: TokFiles; proper name lists: PropLists; list of

exceptions: Exceptions
Output: truecased corpus files

// Read the proper name lists.
1 PropNames←

∪
PropLists \ Exceptions

// Organize the input files by discourse and version.
2 Catalogue← doCatalogue( TokFiles)
3 forea Discourse in Catalogue do

// Extract the special dictionary for this discourse.
4 DiscPropNames← ∅
5 forea Version in Catalogue [ Discourse ] do
6 OnceTruecased← truecase( Version, PropNames)
7 PropPhrases← getPropPhrases( OnceTruecased)
8 DiscPropNames← DiscPropNames ∪ PropPhrases
9 DiscPropNames← DiscPropNames \ Exceptions

// Truecase using both the general list and the special one.
10 forea Version in Catalogue [ Discourse ] do
11 SecondTruecased← truecase( Version, PropNames ∪ DiscPropNames )
12 output SecondTruecased into the right file

13 function truecase( Text, PropPhrases)
14 forea Line in Text do

// If the line is a headline,
15 if length( Text) ≥ 4 && # of capitalized words > 0.6 · # of words then
16 PhraseStarts← Line // Consider all words for lowercasing.
17 else // if the line is not a headline,
18 PhraseStarts← {Word : Word is first or follows specific punctuation

&& lowercaseable( Word)}
19 forea Word in PhraseStarts do
20 if Word is not in a Phrase in Line, s.t. Phrase ∈ PropPhrases then
21 substitute Word in Line by lowercase( Word)

22 return Text

23 function getPropPhrases( Text)
24 return set of maximal capitalized phrases in Text

25 function lowercaseable( Word)
26 return Word has exactly one capital leer or digit

&& Word starts in a capital leer
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( AFP , Beijing , Jan. 21st )
( AFP report of June 27 from San Francisco )
( Durbi )
( Xinhua , Shenzhen , Jan 25 , Li Nanling , Li Xiangzhi report )
( news flash )
( reporter : Zhou Ruipeng ) --
( summary of news reports from Hong Kong ) -
// Washington Post // : -
Abu Dhabi , April 13 , ( Xinhua ) -- ( Xin Weidong reports )
Abu Dhabi October 6 / Xinhua /
Al Ayn-Emirates 11 - 2 AFP -
Algeria , 17 / 02 ( AFP )
April 2
- end of the story -
/ to be continued /

Table 3.8: An example of special segments in MTA and MTC that were treated like separate sen-
tences. e last two examples are found at the end of lines, the other at the start.

3.2.4 Coreference Resolution

Wedecided to include coreference resolution into our preprocessing pipeline, as it seemed
relatively simple and reliable to perform for the short texts ofMTA andMTC.With this assumption
– that it does not err much – it can be very useful for later stages of alignment (both sentence and
word alignment). e reason is that the semantics of the referent is almost opaque in the lexical
terms of pronouns – their meaning is expressed by their antecedent, not by the pronoun itself.
When we later try to learn which lexical items correspond in meaning, pronouns would present
only noise. erefore, we substitute pronouns, and pronouns only, with their non-pronoun ante-
cedents. Because the antecedents are typically not single words but larger syntactic constructions,
we extract the whole construction and put that in place of the pronoun. Note that coreference
resolution follows syntactic parsing, so we deal with parse trees when substituting coreferents.
At the same time, we want to keep the parse trees consistent with the surface structure, as the
parse trees are later used as an additional source of information for word aligning. is somewhat
complicates the problem in some cases, when the antecedent does not form one syntactic phrase.
In those cases, we effectively substitute the whole parse forest of the antecedent in the place of
the pronoun.

Another issue we dealt with was topological ordering of the graph of coreference links
– in some cases (28 instances in 21 files – 5 ‰ of all files), expressions were analysed as referring
to a phrase that directly includes them.7 We disregarded such coreferences suggested by Stanford
CoreNLP. For a graph without cycles, the topological ordering was then necessary to prevent

7 For instance, the following sentence contains two examples of the simple circular coreference: t’ching Kaishiang ,
who refused to disclose the identity of the two men , said that he and his colleagues in the hospital have been working for
the past few years on technology to rebuild sexual organs . e pronouns he and his are resolved as coreferring with the
whole phrase he and his colleagues in the hospital.
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0 New York Times -
1 A British government document published yesterday reported that in the days preceding the

September 11 terrorist aack on the United States * , Osama Bin Laden indicated that
he was " about to carry out a massive aack against America " .

2 _______ actually says " United Nations " in the original .

(ROOT
(S
(NP
…
(VP
(VBD reported|VBD|report)
(SBAR
(IN that|IN|that)
(S
(PP
…
(, ,|,|,)
(NP
(NNP Osama|NNP|Osama)
(NNP Bin|NNP|Bin)
(NNP Laden|NNP|Laden))
(VP
(VBD indicated|VBD|indic)
(SBAR
(IN that|IN|that)
(S

(S
(NP
(PRP
(NP
(NNP President|NNP|Presid)
(NNP Bush|NNP|Bush))))

(VP
…

(. .|.|.))
(S
(NP
(NN _______|NN|_______))
(ADVP
(RB actually|RB|actual))
(VP
(VBZ says|VBZ|say)
(NP
(`` ``|``|``)
(NP
…

(. .|.|.)))

Figure 3.3: An example of an analysed sentence just before sentence alignment. Parts of the tree
are elided and the last line of the le column is repeated for beer readability.

substituting in a phrase that still contains an unresolved pronoun.

Figure 3.3 shows an example sentence (the same one as in Figure 3.1 (B)) just before
refining the sentence alignment, which is the next step aer coreference resolution. e sentence
is stored as a PTB-style8 parse tree, with the terminal symbols expanded to include POS-tags and
stems. You can note in Figure 3.3 that the pronoun he (following Osama Bin Laden indicated that)
got (incorrectly) substituted by the syntactic substructure for President Bush. Also note that the
first sentence from Figure 3.1 (B) (numbered 0) is missing here – that is due to it matching a paern
for datelines.

8PTB stands for Penn Treebank.
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3.2.5 Alignment Refining

Most lines in MTA and MTC, barring the previously mentioned special segments, con-
sisted of just one sentence. One line in several conveyed an amount of information for which
most the translators used two sentences; and only occasionally were there lines comprising three
sentences or more. Hence, we aimed to find a rather simple algorithm for sentence alignment,
tailored to this unusually restricted problem. We implemented two sentence alignment algorithms
– a length-based one, and one based on the lexical overlap. We describe them in the next two sec-
tions, and evaluate them aerwards. For both of them, we assume a monotone alignment of the
sentences, and eschew aligning to an empty segment. In accordance with earlier observations
from Section 2.2.4, we let PCs (points of correspondence) reside at indices of sentence boundaries,
rather than indices of sentences themselves.

Length-based Alignment

Following the ideas of Gale and Church (1991), introduced in Section 2.2.3, we implemen-
ted a sentence alignment algorithm based on comparison of the sentence length (). Similarly to
Gale and Church’s approach, we give preference to aligning fragments which have similar lengths.
Our program can be parameterized to measure sentence length in characters or tokens, and we
evaluate both versions. In both cases, letm denote the length of the first text (one along the hori-
zontal axis in bitext space pictures), and n the length of the other text, for our exposition in this
section.

Algorithm 2 shows the pseudocode of the algorithm, and we will explain it in words in
this paragraph. Given a bitext, the algorithm considers in each recursive call candidate PCs closest
to the main diagonal. It starts with the PC closest to the origin (line 3) and always continues
towards the main diagonal (as exemplified by the sequence of numbered PCs in Figure 2.6 on
page 16; handled by lines 15–16 in the pseudocode) until it hits the end of the bitext in either
dimension. For each candidate PC considered, it evaluates a statistic describing how close it is to
the main diagonal. It then selects the candidate PC with the highest statistic (call it pivot; line 10
or 18), provided the value is not less than a threshold (“MIN_COSINE_STATS”, empirically set
to 0.93). Aer that, it recursively analyses the two bitext subspaces, from the origin to the pivot
(line 24), and from pivot to the terminus (line 27), provided they still contain some candidate PCs.
e resulting alignment is then composed of all the PCs that were selected for the pivot at some
time during the run of the algorithm, plus the implied origin and terminus.

e primary purpose of the statistic for evaluating closeness of candidate PCs to the
main diagonal is not the distance from the main diagonal per se, but rather the balance of lengths
of aligned fragments. By selecting any PC, we split the bitext into two beads – and the lengths of
the fragments aligned within each of the beads are the lengths we need to be as similar as possible.
is is the quantity we try to capture with the statistic.

For this reason, we need something less obvious than Euclidean distance (of the PC from
the main diagonal). e cosine statistic, applied widely in computational semantics, is a beer
choice. However, we opt for a measure slightly more sophisticated than that, with regards to the
following argument.

is argument is based on Figure 3.4, showing the bitext space normalized to the [0, 1]×
[0, 1] square, with O being the origin, T the terminus, and P1, P2, and P3 different candidate PCs.
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Algorithm 2: Length-based sentence aligning

Function lenAlign
Input: array of lengths of fragments of text 1: LensX; dio for text 2: LensY
Output: alignment as a set of PCs

1 Almnt← [ Point( 0, 0 ) ] // Start with the origin.
2 Candidates← [ ] // sequence of candidate PCs
3 CandX← 1; CandY← 1 // coordinates of the current PC
4 NFragsX← length( LensX); NFragsY← length( LensY)
5 TotLenX← sum( LensX); TotLenY← sum( LensY)

// Compute CosStats for the PCs around the main diagonal.
6 while CandX < NFragsX && CandY < NFragsY do
7 RatioX← LensX[ CandX ]/TotLenX
8 RatioY← LensY[ CandY ]/TotLenY
9 if RatioX = RatioY then // perfect candidate
10 BCandX← CandX; BCandY← CandY
11 break

12 CosineStats← CosStats( RatioX,RatioY )
13 if CosineStats > MIN_COSINE_STATS then
14 Candidates.append( Candidate( CandX, CandY, CosineStats ) )

// Find the next candidate: which direction to the main diag?
15 if RatioX > RatioY then CandY← CandY + 1
16 else CandX← CandX + 1

// If any eligible candidates were found,
17 if BCandX not defined && Candidates not empty then

// choose the best one (pivot) according to their CosStats.
18 BCand← best of Candidates wrt CosineStats
19 BCandX← BCand.CandX; BCandY← BCand.CandY
20 if BCandX is defined then // If any good candidates were found,
21 if BCandX = 1 || BCandY = 1 then // If the first bead is atomic,
22 Almnt.append( Point( 1, 1 ) ) // Add the pivot PC.
23 else // if the first bead is not atomic, recur.
24 Subalmnt← lenAlign( LensX [ 0:BCandX ], LensY [ 0:BCandY ] )
25 Almnt.extend( Subalmnt)

// Similarly for the second bead – if not atomic, recur.
26 if BCandX < TotLenX− 1 && BCandY < TotLenY− 1 then
27 Subalmnt← lenAlign( LensX [ BCandX :TotLenX ],

LensY [ BCandY :TotLenY ] )
28 Almnt.extend( Subalmnt)

29 Almnt.append( Point( TotLenX, TotLenY ) ) // Conclude with terminus.
30 return Almnt



36 Chapter 3: Resources
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Figure 3.4: Cosine similarity as a measure of closeness to the main diagonal. e point P1 is far
from the main diagonal, and it has the cosine statistic 0.64. e point P2 is closer to
the diagonal, so it has a beer cosine statistic – 0.95. e point P3 is the closest, but
induces an unbalanced bead, and hence is dispreferred. Its cosine statistic is 0.83. (All
the decimal numbers are rounded.)

If we compare distances of the PCs from the diagonal by the angle POT , P1 is the furthest, P2

is closer, and P3 is the closest. (e same holds true for Euclidean distance.) However, the beads
induced byP3 are unbalanced – although the first one (betweenO andP3) is very good, the lengths
of the two fragments forming the other bead (between P3 and T ) are very different. Ideally, both
the beads should be balanced. For that reason, P2 should get a beer score than P3. We achieve
that in a principled manner by taking also the PTO angle into account, and combining the cosine
statistic for both the angles.

e formula for the measure we use is the following:

CosStat(x, y) = cos
(
(x, y)T , (1, 1)T

)
· cos

(
(x− 1, y − 1)T , (−1,−1)T

)
=

x+ y

|(x, y)T | · |(1, 1)T |
· (1− x) + (1− y)

|(1− x, 1− y)T | · |(1, 1)T |

=
(x+ y) · ((1− x) + (1− y))√
(x2 + y2) · ((1− x)2 + (1− y)2)

· 1
2
. (3.1)

(Note that we measure the cosine only aer normalizing the length of the texts to keep the notion
of angle equal for both of them; so the arguments to CosStat are the ratios x = i/m and y = j/n.)

For the ideal candidate PC, CosStat is equal to 1, and the value always lies in the interval
[0, 1]. e surface of the measure in the bitext space normalized to a unit square is shown in
Figure 3.5 using its contours at several levels. It reaches the value of one exactly on the main
diagonal. e figure justifies the claim that the statistic indeed captures closeness to the main
diagonal as well as balancedness of the induced beads.

Alignment based on Lexical Overlap

e algorithm described in this section was the original algorithm we planned to use
for sentence alignment, whereas the length-based algorithm described previously, we developed
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Figure 3.5: Map of the cosine statistic within the normalized bitext space. e figure shows con-
tours of the function surface; the closer the contour is to the main diagonal, the higher
the value of the statistic.

as a baseline. We were initially motivated to use this lexical-based algorithm for reasons listed as
general advantages of lexical-based approaches in Section 2.2.3. e predominant motivation is
that the aligner takes into account words themselves, not only their count, respectively their total
length. Whether our expectations were right, is detailed further in Section 30.

We framed our suggested method as a dynamic programming algorithm. Because, as
noted earlier, our alignment problem is unusually restricted, we could afford to li restrictions on
the length of beads. is resulted in an algorithm with complexityO(k2 · l2) for each pair of lines,
where k and l are the numbers of sentences in the two lines, respectively.9

e program iterates over all candidate PCs. For each PC ⟨i, j⟩, all previous candidate PCs ⟨i′, j′⟩
are considered, i.e. all such that i′ < i ∧ j′ < j. (e inequality is sharp since we do not allow
alignment to empty fragments.) For each of them, the score for aligning the fragment text_1[ i′ : i ]
with text_2[ j′ : j ] is added to the best score of the PC ⟨i′, j′⟩ to form a potential best score for the
PC ⟨i, j⟩. By the notation Text[ a : b ], we understand the sequence of sentences of Text between
the end of the a-th and the end of the b-th sentence. e highest of the potential best scores is
saved with the PC ⟨i, j⟩ as the best score, together with the coordinates ⟨i′, j′⟩ of the preceding
PC that lead to the best score. Aer computing the best score for the last of the candidate PCs, the
terminus, the pointers to the best preceding PCs give us the optimal alignment with respect to the
scoring function.

9For this complexity estimate, we treat each computation of the Jaccard index for two sets as a constant-time
operation.
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Figure 3.6: Penalty for high length ratio.

e scoring function we used compares sets of stems of the two fragments using the
Jaccard index:

J(A,B) =
|A ∩B|
|A ∪B|

. (Jaccard index)

We represent each fragment by the set of stems for tokens it comprises, disregarding stopwords.
Besides computing the lexical overlap as just described, the scoring function also takes

into account the lengths of the two fragments (in tokens), and it does so in three ways:

1. if the length ratio exceeds a threshold (set to 2 aer observing the data), the function returns
a very small value (e.g. 10−20);

2. if both the fragments are short (at most 10 words), they are favoured to be aligned onto each
other and the function returns a higher value than the Jaccard index J (namely, 1 − 0.5 ·
(1− J));

3. in other cases, the length ratio of the two fragments is penalized by multiplying the Jaccard
index by a penalty coefficient.

e penalty coefficient is a function of the ratio of fragment lengths. In spite of the usual assump-
tion about penalties, the penalty is the higher, the smaller is the value of the function (ploed in
Figure 3.6).

Evaluation

We evaluate the different alignment algorithms over a sample of 500 bitexts from MTA,
which were manually aligned. We made the initial observation that our (lexical-based) alignment
algorithm correctly resolved 10 out of 10 bitexts of the size 2 × 2 (i.e. two sentences on each
side). We concluded that these alignment problems were, although not trivial (each has two valid
solutions), still too easy. us we composed the gold standard sample only of bitexts larger than
2× 2.

For the annotations, we followed a simple rule: if the same information, however unim-
portant, is expressed within the sentence S1 in the first text, and in the sentence S2 in the other
text, S1 and S2must end upwithin the same bead. Where the rule is applicable, it decides whether
to split sentences between multiple beads, or whether to keep them grouped within a single bead.
e first option, spliing the bead, would leave the subsequent processing10 with smaller bitexts,

10In the experiments we have completed, subsequent processing consists solely of word alignment.
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2× 3
  

gold standard

. . . . . . . . .

. 10 1 0 6 0 0 6 0 0
re
so
lv
ed

as
. 2 309 1 3 307 0 3 307 0

. 5 1 34 8 4 35 8 4 35

complete 59% 99% 97% 35% 99% 100% 35% 99% 100%
beads 59% 99% 97% 35% 99% 100% 35% 99% 100%

TOTAL
complete 97% (353/363) 96% (348/363) 96% (348/363)

beads 98% (696/709) 97% (690/709) 97% (690/709)

Table 3.9: Accuracies of sentence alignment algorithms for bitexts of size 2× 3.

which would boost its efficiency. However, it would break some correspondences, and those could
not be recovered anymore. We decided to follow the rule, because that means preferring (poten-
tial) correctness over speed. e rule had an indirect effect on the assessment of the algorithms
too.
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2× 4
  

gold standard

. . . . . . . . .

. 23 0 0 23 0 0 23 0 0

re
so
lv
ed

as

. 0 12 1 0 12 1 0 12 1

. 0 0 4 0 0 4 0 0 4

complete 100% 100% 80% 100% 100% 80% 100% 100% 80%
beads 100% 100% 80% 100% 100% 80% 100% 100% 80%

TOTAL
complete 98% (39/40) 98% (39/40) 98% (39/40)

beads 98% (78/80) 98% (78/80) 98% (78/80)

3× 4
  

gold standard

. . . . . . . . . . . .

. 11 0 0 0 10 2 0 0 11 2 0 0

. 0 3 0 0 0 1 0 0 0 1 0 0

re
so
lv
ed

as

. 0 0 2 0 0 0 2 0 0 0 2 0

. 0 0 0 2 1 0 0 2 0 0 0 2

complete 100% 100% 100% 100% 91% 33% 100% 100% 100% 33% 100% 100%
beads 100% 100% 100% 100% 91% 33% 100% 100% 100% 33% 100% 100%

TOTAL
complete 100% (18/18) 83% (15/18) 89% (16/18)

beads 100% (51/51) 86% (44/51) 92% (47/51)

Table 3.10: Accuracies of sentence alignment algorithms for bitexts of sizes 2× 4 and 3× 4.
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3× 3
  

gold standard

. . . . . . . . . . . . . . .

. 2 0 0 0 0 2 0 0 0 0 2 2 0 0 2

. 0 64 0 0 4 0 64 1 1 6 0 59 1 1 4

re
so
lv
ed

as

. 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. 0 0 0 0 7 0 0 0 0 4 0 0 0 0 4

. 0 0 0 0 0 0 0 0 0 1 0 3 0 0 1

complete 100% 100% 100% 0% 64% 100% 100% 0% 0% 37% 100% 92% 0% 0% 37%
beads 100% 100% 100% 0% 64% 100% 100% 50% 0% 37% 100% 92% 50% 0% 37%

TOTAL
complete 94% (74/79) 89% (70/79) 82% (65/79)

beads 96% (212/221) 93% (205/221) 86% (190/221)

Table 3.11: Accuracies of sentence alignment algorithms for bitexts of size 3× 3.
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e results of the evaluation are shown in Tables 3.9, 3.10, and 3.11 for different sizes of
the bitext. In each table, there are three columns corresponding to the three compared algorithms,
and three horizontal parts providing different detail of the evaluation results. e three algorithms
are coded  (lexical-based),  (length-based, measuring length in tokens), and  (length-
based, measuring length in characters, excluding spaces).

e first horizontal section presents confusion matrices for the alignment as a classific-
ation task. Columns correspond to different gold standard annotations, and rows correspond to
the classification results from the algorithm. Each row or column is labeled by a diagram of the
alignment where each bead is shaded (similarly to Figure 2.7 on page 18).

e second horizontal section summarizes the data from the confusion matrices. For
each gold standard alignment, it shows the accuracy of the algorithm. e row labeled “complete”
refers to the accuracy of the alignment as a classification problem, neglecting the inner structure
of alignments (i.e. an alignment exactly the same as the gold standard one counts as a hit, whereas
any other counts as a fail). e row labeled “beads” refers to the accuracy of the task as finding the
beads (the term accuracy was introduced in Example 3, page 17; i.e. each correctly recovered bead
counts as a hit, and these are compared to the sum of beads of the gold standard alignments). e
accuracy of complete alignments captures the overall performance of the algorithms; the accuracy
of induced beads is perhaps more important, as it is the beads that are used in subsequent tasks
and which need to be correct.

Finally, the third horizontal section of the tables summarizes the accuracy for each al-
gorithm regardless of the gold standard classification. Again, the accuracy is evaluated separately
for alignments as a whole, and for individual beads.

As the evaluation showed, all the three algorithms perform very well on these data. For
most bitext sizes, their accuracy exceeds 95%, except for the 3 × 3 bitexts, where it is somewhat
lower. Where the algorithms err, is oen the bitexts with larger beads. For instance, the second
alignment in the 3 × 4 bitexts (Table 3.10) or the third to fih alignments in the 3 × 3 bitexts
(Table 3.11) contain such beads. For the alignment of a 3× 3 bitext consisting of a single bead (the
fourth one in Table 3.11), none of the algorithms got it correct. In all such cases, the lexical-based
algorithm handled the problem no worse than the length-based one. is is, the lexical algorithm
recognizes correspondence links between words in different sentences, which allows it to group
them under the same bead. In contrast, the length-based algorithm does not consider any cross-
sentence links, in fact, it considers no correspondence links whatsoever, so it chooses to split beads
more oen. e tendency of the length-based algorithm to split more demonstrates itself clearly
in the 3×3 type of alignments – the bitexts whose gold standard alignment contains a larger bead

(the third to the fih in Table 3.11) are more oen resolved as three one-to-one beads
(
.

)
by the

length-based algorithms. An example of a few bitexts where the lexical algorithm outperforms the
length-based one is provided in Figure 3.7.

To get a beer idea whether the problem is too easy for it to be worth implementing any
alignment algorithm at all, we additionally evaluated a simple baseline. e maximum frequency
alignment baseline selects for each bitext size the alignment it had most oen in the gold standard
data. e accuracy of the baseline, shown in Table 3.12, is 88% in the best case (beads accuracy),
and

57% in the worst case (both beads’ and complete alignment accuracy). e evaluation
gives us confidence that a proper algorithm was indeed necessary.
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a) Example sentences:

ahc
1 the volume of commercial exchange between the two countries witnessed a 72 % increase

in the first seven months of this year compared to the same period of last year to
reach 55 million dollars despite its regression since 1996 .

2 it is hoped that in the next years , the volume will reach the level it was at five years ago .
3 it reached 200 million dollars in 1996 .

ahf

1 trade between the two countries boosted throughout the first seven month of current
year to reach 72 % , compared with same period last year .

2 bilateral trade reached the amount of 55 million dollars , and though it had witnessed
severe decline since 1996 , it is hoped to reach in the coming years its average
five years earlier .

3 in 1996 bilateral trade reached 200 million dollars .

ahk

1 trading relations between the two countries witnessed a rise of 72 % during the first seven
months of the current year compared to the same period the year before .

2 they totaled 55 million dollars in spite of the fact that they had been receding since 1996 .
3 it is hoped that during the next few years they would aain their level of 5 years ago

when they had reached 200 million dollars in 1996 .

b) Sample alignments:

ahc× ahf
  

gold standard

. . .

. 1 0 0

. 0 1 1

ahf× ahk
  

gold standard

. . .

. 1 0 0

. 0 1 1

ahc× ahk
  

gold standard

. . .

. 1 1 1
.

Figure 3.7: Example of difference in alignment, as produced by the lexical-based, and the length-
based algorithms. e example builds on three versions of the same line (line 4 from
the files part1.ah?/artb_522.tok of MTA), translated by the translators ahc, ahf,
and ahk.
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2× 3 2× 4 3× 3 3× 4

. 17

. 311

. 35

. 23

. 12

. 5

. 2

. 64

. 1

. 1

. 11

. 11

. 3

. 2

. 2

complete 86% (311/363) 57% (23/40) 81% (64/79) 61% (11/18)
beads 88% (622/709) 57% (46/80) 87% (192/221) 65% (33/51)

Table 3.12: Accuracies of sentence alignment for the maximum frequency alignment baseline.

   

complete 96.8% (484/500) 94.4% (472/500) 93.6% (468/500) 81.8% (409/500)
beads 97.7% (1037/1061) 95.9% (1017/1061) 94.7% (1005/1061) 84.2% (893/1061)

Table 3.13: Summary evaluation of sentence alignment algorithms.

Table 3.13 summarizes the accuracy scores for all the three algorithms and the most
frequent alignment baseline (). e results confirm our expectation that the lexical-based al-
gorithm would perform the best. However, the difference in performance of  and  is
not what we expected. We would expect measuring in characters to lead to beer alignments than
measuring in tokens, according to the results reported in Gale and Church (1991). We hypothesize
that we got the opposite result not only because we implemented a different alignment algorithm,
but probably more importantly due to the characteristics of our alignment task. Our corpus differs
from the Gale and Church’s one in two important aspects:

1. e problems are very small, making it possible even for crude approaches to solve them
accurately.

2. e language on both sides of the bitexts is the same. It is governed by the same grammar
and tends to express same situations by similar syntactic constructions, comprising similar
number of words.

e second aspect seems to be so salient in our task that it even overshadows the similarity in
number of characters, judging by the evaluation of  vs. . We hypothesize that different
translators, authors of the parallel texts, were forced by the grammar to use similar syntactic
constructions to express the same meaning, while they had more freedom in lexical choice. at
would cause the number of words in corresponding sentences to be more stable than the number
of characters they comprise. However, with this size of test data and such small difference in
performance, we even cannot rule out that the observed difference between  and  be
purely random.



Chapter 3: Resources 45

3.2.6 Summary

We have described the way we preprocessed the Multiple Translation Arabic and Mul-
tiple Translation Chinese corpora. e preprocessing comprised fairly standard tasks. For token-
isation tweaking, truecasing, and sentence tokenisation, we devised custom scripts adapted to the
specific nature of these corpora. We further applied Stanford CoreNLP tools to obtain deeper lin-
guistic analyses, especially coreference resolution. Aer substituting pronominal coreferents with
their antecedents, we refined the sentence alignment in the corpus using a lexical-based alignment
algorithm. As a result, from original total of 35K lines contained in the two corpora, we obtained
128K pairs of sentences to use for training word alignment or paraphrase extraction.

3.3 Gazetteers And Other Proper Names Lists

is section lists resources we used as lists of proper names (or common names, which is
the case of the lists of conjunctions and prepositions.) for truecasing of MTA and MTC (described
in Section 3.2.2). We manually edited the resources to eliminate as many nouns homographic with
common nouns as possible.

URL extracted lists

http://www.rong-chang.com/namesdict/dictionary.htm countries, first names, last names,
U.S. presidents, U.S. states

http://www.pronouncenames.com/all_names/alpha/A person names
http://www.muslimnames.info/ Arabic person names
http://en.wikipedia.org/wiki/Title person titles
http://earth-info.nga.mil/gns/html/namefiles.htm geographical names
http://geonames.usgs.gov/domestic/download_data.htm towns in the U.S.
http://geography.about.com/library/weekly/aa030900a.
htm

names of nations

http://www.english-grammar-revolution.com/
list-of-conjunctions.html

conjunctions

http://en.wikipedia.org/wiki/List_of_English_prepositions prepositions

Table 3.14: List of proper name lists used for truecasing of MTA and MTC.

http://www.rong-chang.com/namesdict/dictionary.htm
http://www.pronouncenames.com/all_names/alpha/A
http://www.muslimnames.info/
http://en.wikipedia.org/wiki/Title
http://earth-info.nga.mil/gns/html/namefiles.htm
http://geonames.usgs.gov/domestic/download_data.htm
http://geography.about.com/library/weekly/aa030900a.htm
http://geography.about.com/library/weekly/aa030900a.htm
http://www.english-grammar-revolution.com/list-of-conjunctions.html
http://www.english-grammar-revolution.com/list-of-conjunctions.html
http://en.wikipedia.org/wiki/List_of_English_prepositions


Chapter 4

Discovering Relations between Sentence
Constituents

e reader will recall that in the present work, we aim to measure relevant properties
of human-produced descriptions of video content. is chapter is devoted to the first phase of a
two-stage approach to the challenge. In this phase, we hand-annotate a small sample of data from
MSR VDC (Microso Research Video Description Corpus; see Section 3.1) and investigate into the
subsequent automatic processing of themanually extracted features. e goal for the second phase
is automating the annotation (feature extraction), and this is the subject for the next chapter.

4.1 Motivational Example

As noted in Section 2.1, we want to be able to provide other project components with
information on how different aspects of a video are important for its description. at is, we
want to help guide the video description generation process to produce natural descriptions with
a balanced content of different sentence constituents. ere is certainly no single answer, not even
for a concrete clip; there are rather a handful of approaches to distribute content over a sentence.
For example, one video clip1 has following, entirely different descriptions in MSR VDC:

Example 5.

1. A man is watching two bear cubs digging.

2. e baby bears dug in the dirt for insects.

3. Bears.

e above sample from the corpus, although tiny, embraces several linguistic phenom-
ena that differ from description to description. e probably most striking one is the amount of
detail provided in each description. e first sentence provides a high-level overview of the scene
participants and actions, the second one expands on where and why the bears dug, whereas the
last one barely mentions the main protagonists of the scene.

1with ID uB9zRlV47qA in the corpus

46
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Another phenomenon evident in the above example is the shi of focus. While the first
sentence is saying what the man is doing (he is watching bears), the second sentence ignores him
and focuses directly on the bears. So does the third description, obviously. It is very typical for
MSR VDC descriptions that their main actor is a person, as in the first sentence, oen described
using words like a man, the lady or someone. In this particular footage, the man is rather marginal.
us we can aribute his geing into the focus to some prior expectation of a human in the clip.

e last outstanding property that we will mention is the verb form. While the first
sentence describes the clip as if it is happening currently, using the present continuous tense, the
second one described it only statically with the simple past tense. And the last example? No
need for a verb whatever. – e varying verb form has a large impact on how the whole sentence
sounds, and interacts with other properties of the sentence.

ese three properties: the level of detail, the focus, and the verb form; will guide us in
our search for a way to characterize the paern of a sentence.

4.2 Feature Extraction

Since our goal is learning the relations between elements in a sentence by computer, we
need to project each sentence into an exactly defined space of features to be able to handle it. is
section discusses what features we used for sentence representation. e feature choice is critical
for further analyses of the corpus, since any paerns we might find will be expressed solely in
terms of these features. Unless otherwise noted, we will use dependency syntax in this section.

4.2.1 Anatomy of Feature Vectors

As verbs are central to a sentence, they are also central to our feature vectors. We parti-
tion each sentence into parts, each corresponding to a syntactic subtree rooted in a full verb node.
In the experiment described in this chapter, we constructed feature vectors by simply concatenat-
ing component feature vectors for individual verbs of the sentence. anks to the sample of data
for the experiment being fixed, the entire feature vectors could have a fixed length too – which is
a prerequisite for statistical machine learning.

Let us now describe how the entire feature vector was constructed from the individual
verb feature vectors. (Verb feature vectors will be described later.) We first need to introduce a
notation for distinguishing verbs in a sentence. Firstly, we will denote main verbs in the sentence
simply by their order in which they come. us the first main verb will be called “verb 1”, the
second main verb “verb 2”, and so on. Secondly, subordinated verbs will have their name prefixed
with the name of their nearest ancestor verb. e second part of their name will be their order
within verbs with the same prefix, again according to the linear order of the sentence. e prefix
and suffix will be separated by a period. So, for example, “verb 2.1” is a verb which is in the
syntactic subtree of the “verb 2”, within which it is first in linear order; “verb 2.1.3” would be
the third verb below “verb 2.1”. We will not represent the intervening path in the syntactic tree
between a verb and its ancestor verb. It can be one edge, such as in constructions of control, or it
can be a multiply nested structure with the subordinate verb expressing merely a property/activity
of some unimportant subordinated noun.

e entire feature vector is constructed by concatenating the verb feature vectors in
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order type description

1 real Information content of the verb.
2 boolean Is the verb in the past tense?
3 boolean Is the verb in the present tense?
4 boolean Is the verb in the passive mood?
5 boolean Is the verb in the progressive aspect?
6 boolean Is the verb in the perfective aspect?
7 boolean Does the verb denote a process?
8 boolean Does the verb denote a culminated process?
9 boolean Does the verb denote a point event?
10 boolean Is the verb iterative?
11 real Information content of the actor of the verb.
12 real Information content of the patient of the verb.
13 real Information content of the third actant of the verb.
14 real Information content of all manner modifications of the verb.
15 real Information content of all temporal modifications of the verb.
16 real Information content of all local modifications of the verb.
17 real Information content of all other adverbial modifications of the verb.

Table 4.1: Anatomy of a verb feature vector.

preorder sequence: 1, 1.1, 1.1.1, 2, 2.1, 3. If a particular verb is not present in the sentence (for
example, in a sentence with a single verb, only verb 1 is present), its features get the value of 0.
Similarly for other constituents – if not present, their respective feature is set to 0. Each verb
feature vector comprises 17 features, summarized in Table 4.1. In that table, when referring to a
verb, it is always the respective verb for the verb feature vector. e table also uses a term we have
not introduced so far, namely information content. It is described in detail in turn in Section 4.2.2.
For now, it suffices to say that it is low for common words with general meaning, and high for
very specific words.

In our experiments, we extracted the features for the corpus sample manually. We
already designed the feature set bearing in mind that they would be extracted by a human, at
least in the first phase of experiments. ese are reasons why the features are rather abstract and
presumably hard to extract by machine. If we find that we get reasonable results using manu-
ally extracted features, then, and only then, it makes sense to proceed to automating the feature
extraction, probably introducing some approximation.

4.2.2 Information Content

From the three properties (the level of detail, the focus, and the verb form), only for the
verb form is it evident how it is reflected by our features, concretely, in features 2–10 in Table 4.1.
We capture the other two properties, at least partially, using information content.

e application of information content (hereaer, IC) for NLP was introduced by Resnik
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(1995). It is defined with respect to an IS-A taxonomy of concepts as:

IC(c) = − log
2
p(c), (IC)

where c is a concept from the hierarchy and p the probability of it occurring in a text (its nor-
malized frequency). Because each concept is also an instance of each of its subsuming concepts,
when counting the frequencies to estimate p, each (disambiguated) word counts towards multiple
concepts. at ensures that more specific concepts get higher IC.

We based our measurement of IC on the WordNet InfoContent 3.0 dataset2 (Pedersen,
Patwardhan & Michelizzi, 2004), the concept hierarchy of WordNet 3.0 (Fellbaum, 1998) with pre-
computed values of IC. We used the version with IC based on the British National Corpus.

Assume we have a sentence and want to measure the level of detail it provides. It is
reasonable to interpret “level of detail” as the IC of the sentence. One could argue that a sentence
can have large IC even if it does not provide much detail, provided it (briefly) mentions many
different things. at is a valid argument; but for our targeted application of describing a clip, the
total amount of available information is fixed. erefore, constructing a sentence with a higher IC
means specifying more details, rather than including more unspecific information.

Assume we have a video clip description and we want to determine how much it details
different aspects of the clip. It is natural to distinguish aspects of the clip by separating parts of
the sentence. For example, we can expect the subject to describe the main character of the clip. By
following this line of reasoning, we arrived at the features numbered 1 and 11–17 in Table 4.1. We
claim that they correspond to the level of detail that the sentence (or, the verb phrase) provides for
different aspects of the video.

We believe that shi of the focus partially translates into the IC of different sentence
constituents, too – focused constituents should tend to have some minimal IC. However, the IC
does not tell the whole story regarding the focus. As seen in Example 5, the sentence focus is a
function of multiple factors, including the order of main verbs and the order of their arguments.

Example 5 (repeated).

1. A man is watching two bear cubs digging.

2. e baby bears dug in the dirt for insects.

It could also be indicated by specific constructions, such as the cle construction; for instance:

Example 6.

4. It is under the roots of a big tree that the two baby bears are digging.

To properly account for the phenomenon of focus shi, descriptions of the same clip need
to be word-aligned. Only then can we discover the difference in the focus for the descriptions 1
and 2. We need to know that the words two bear cubs digging correspond to the bears dug in
order to be able to say that the focus on man (…) watching is different from the focus on baby
bears [having] dug. Moreover, if we want to make conclusions about the focus based on any single
sentence, we should have the sentence compared to a standard sentence template for the particular

2Available from hp://www.d.umn.edu/∼tpederse/Data.

http://www.d.umn.edu/~tpederse/Data/WordNet-InfoContent-3.0.tar.gz
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clip. For instance, in the above example, we would designate digging as the main event, leading
to a standard sentence template like bears dig. In the experiment described in this chapter, we did
not include such features. However, we planned to analyse shi of the focus later in the project.
How this could be done, is discussed later in Section 4.6.

We will now describe how the IC values were obtained for each constituent. Since there
is no clear way of extending the definition of IC to syntactic structure, we abstracted from the
structure of the constituent and treated it as a bag of words. Furthermore, due to limitations of
the WordNet InfoContent dataset, we had to discard all words except for nouns and verbs. We
consider this a reasonable approximation of the ideal quantification of the IC borne by a phrase,
since the meaning of a phrase is usually easy to guess just from its nouns and verbs. To be precise,
the IC of a phrase is computed as the sum of ICs of the verbs and nouns constituting the phrase.
e words are treated as tokens, i.e. the IC of each word is counted in as many times as the word
appears.

For each word, either a noun or a verb, we collect the IC of all its WordNet senses (call
the set of senses, or synsets, of a word w, S(w)). We did not aempt word sense disambiguation
(WSD), although that would be the clean way to estimate the IC of a word. We preferred not to
linger with this task, partly because it is not crucial for completion of the experiment, and partly
because we did not have high expectations regarding the performance of WSD with the limited
context provided by the short sentences from MSR VDC. Instead, we obtained the IC estimates
by combining the IC values for all possible senses s of the word w, weighted by the estimated
probability that w occurs in the sense s:3

ICused(w) = −
∑

s∈S(w)

p(s)∑
s∈S(w) p(s)

· log
2
p(s). (4.1)

4.3 Classification of Relations

In this section, we will discuss ways of discovering relations between features. We will
start by introducing the hand-annotated sample of MSR VDC which provided the input data for
the experiment.

4.3.1 e Sample of MSR VDC

We selected and manually annotated 121 sentences from MSR VDC, describing 8 dif-
ferent clips. Some of the sentences were selected so that they contain interesting variation in
description of the same clip, while other were chosen to be representative of the corpus. We in-
troduce some interesting statistics of the sample here, and provide the whole collection of 121
sentences in Appendix A.

e statistics of the sample are shown in Table 4.2. We computed all the statistics aer
lemmatisation and stemming of the text.

3e estimates of p(s) are based on the SemCor corpus.
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Part I illustrates variability in the verb and noun types present in the 121-sentence
sample. Seeing only 46 different verb types indicates that the descriptions mostly use common
phrases, rather than being more inventive.

Lexical variability is investigated in more detail in Part II. e statistics are shown for
each clip separately to illustrate that some clips tend to be described very uniformly, whereas
others receive quite different descriptions. e clips are listed in the same order in which they
come in Appendix A. e columns of the table show the average length of clip descriptions, and
lexical entropy4 in several positions in the sentence (the first matrix verb, all verbs, all nouns, and
all verbs and nouns, respectively).

Note that there is high variability in the sentence length for all the clips, most notably for
the last one. Remember though that this is influenced by generally short length of the descriptions,
as well as small size of the samples for each clip.

Lexical entropy discriminates between the different clips much more clearly. Most not-
able is the low entropy for verbs in the “guitar” clip. In general, there seem to be many clips on the
topic of performing with a musical instrument, and many other clips on the topic of cooking, in
MSR VDC. Most of them have quite simple descriptions, uniform across different authors. From
the entropy statistics in Table 4.2, we can see that it is the verbs that is so uniform, whereas the
entropy of nouns is average or even higher.

In Part III, we look at differences on the syntactic level. ese can be very influential for
our results, especially because we represent sentences using the rigid feature vectors. For example,
Table III.(a) shows that there are only 2 sentences having verb 1.1.1, and only one sentence having
verb 2.1 and verb 3 in our annotated sample. at means that for features of those verbs, there
will always be a single observed value only (respectively two values for verb 1.1.1).

Table III.(b) uses the term key verb. We take this to be the verb denoting the most salient
event in the clip. We can see that the key verb comes first in the sentence in a large majority
of cases. However, there are a few sentences where this is not the case. In fact, as shown in
Table III.(c), there are similarly few sentences that have more than one verb at all. If we compare
the 8 key verbs in another than the first position from (b) to the 16 descriptions with more than
one clause, as shown in (c), this is a whole half of the cases where a different than the first verb
can be the key verb.

Finally, Table III.(d) summarizes the frequencies of different instantiated valency frames
of the verbs. We ignore all but the first three actants here, just to get a rough feeling for the
character of the data. ACT stands for actor, PAT for patient, and EFF for effect. e table shows
that most verbs (tokens) are transitive (corresponding to the ACT+PAT, and ACT+EFF frames),
next are intransitive (single ACT), and there are just a few verbs with the actor implicit (single
PAT or EFF) or ditransitive (ACT+PAT+EFF).

4.3.2 General Considerations

Our goal is to understand and characterize relations among the different features by way
of finding paerns in the descriptions, or a small set of such paerns. ere are in general two
ways to tackle the problem. First, we could learn what relations tend to govern particular pairs

4Lexical entropy is the entropy in the random variable that generates the particular lexical unit whenever a word of
the given class occurs in the text. For example, the random variable for nouns determines, whenever a noun occurs in
a text, what particular noun it is.
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I. General properties of the sample.

No. of types

verbs 46
nouns 88

II. Length in words and lexical entropy, grouped by the clip.

clip name avg length ±sd lexical entropy [b]
[words] verb 1 any verb any noun any verb or noun

bird 9.87 ± 8.30 2.92 3.27 2.73 3.69
zebras 6.88 ± 6.99 2.09 2.02 1.65 2.75
bears 8.06 ± 10.70 2.02 2.14 3.22 3.57
soccer 10.56 ± 10.68 2.18 2.37 3.25 3.82
cucumber 10.85 ± 12.36 1.91 2.44 3.22 3.83
guitar 8.19 ± 6.50 0.34 0.34 2.72 3.08
mixing 8.87 ± 8.71 1.37 1.37 3.42 3.68
shooting 10.69 ± 18.85 1.85 2.32 2.33 3.24

III. Structural linguistic properties:

verb occurrences
# occurrences position

120 1
8 1.1
2 1.1.1
10 2
1 2.1
1 3

position of the key verb
# of sentences position

112 1
3 1.1
4 2
1 3

(a) (b)

# of clauses in sentence
# of sentences # of clauses

0 1
104 1
12 2
3 3
5 1

frequency of verb frames
frequency frame

49 ACT
2 PAT
1 EFF
76 ACT, PAT
13 ACT, EFF
2 ACT, PAT, EFF

(c) (d)

Table 4.2: Descriptive statistics of the sample of 121 sentences from MSR VDC.
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of features, and then find larger paerns in terms of these basic relations. Alternatively, we could
cluster all training observations by their full feature vectors. We would then proceed by analysing
clusters within clusters, now considering perhaps only a part of the feature vector. e two ways
are completely different in regard to how the problem is viewed, as well as in the method they
require for implementation. ey would probably also deliver different results – starting from
basic pairwise relations will be too localised at first, with more complete paerns for sentences
arising only in later stages; whereas the method of gradual refining clusters will yield complete
sentence paerns aer the first iteration, and successively learn more general pairwise relations.

We have chosen to implement the former approach, analysing pairwise relations first.
Within the restricted time we could spend on this experiment, we only managed to perform the
first step – extracting the pairwise relations. Apart from the extra time it would take to extract
more complex relations, we would also need muchmore data than the manually annotated sample.
For this, the features would need to be extracted automatically, which we worked towards, and
elaborate on in the next chapter.

e problem we tackled and describe in this section is thus classifying pairwise relations
of features for interdependence. We aim for so classification with confidence scores rather than
hard resolution of each case. For this, we need to be able to derive the probability distributions
of feature values being independent, or dependent. Once we estimate these two distributions,
we will be able to predict for any pair of feature values how likely it is to come from either of
the distributions. at translates into being able to tell how likely it is for the two features to be
dependent.

4.3.3 Statistical Dependencies

Let us first discuss how statistical dependencies can manifest themselves in feature val-
ues. Assume that, for example, whenever the first main verb is progressive, it denotes a process.
In terms of our feature vector, this translates to the following assertion: whenever feature no. 5 is
true, feature no. 7 is also true. Let us call the features A and B, respectively. Now, there can be
many observations where the verb in question is not progressive or is absent from the sentence.
en the value for A is false; if the verb is present in the sentence, the value for B is governed by
its other dependencies and otherwise random; if the whole verb is absent from the sentence, B
must be false too. However, in observations where A is true, B must be true as well. us such a
dependency will lead to a table of feature co-occurrences like Table 4.3.

¬B B

¬A P(¬V ) + P(¬B | V ) P(¬A,B | V )
A 0 P(A | V )

Table 4.3: Example table of feature co-occurrence probabilities for features A and B governed by
the implication A → B. V is a random variable which is true iff the relevant verb is
present in the sentence.

When we later classify pairs of features for interdependence, we do so based solely on
values of the two features involved. Classifying for interdependence with three or more features
would be the object of subsequent iterations. Yet there are three features in Table 4.3: A, B, and
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the random variable V.5 Hence, we shall approximate the table by abstracting from V , which in
turn affects the estimates of P(A) and P(B). e estimate of unconditioned P(A), for example,
will cover both P(A |V ) and P(A |¬V ). Considering that P(A |¬V ) = 0 (and the same for B),
the estimated P(A) should have some positive probability mass in the point zero. e simplified
co-occurrence table will then look like Table 4.4.

¬B B

¬A P(¬B) P(¬A,B)
A 0 P(A)

Table 4.4: Example of a simplified table of feature co-occurrence probabilities for features A and
B governed by the implication A→ B.

Generalizing from the above example, features can also be governed by other implic-
ations. Besides A → B, we analogically obtain expected co-occurrence probabilities tables for
B → A, ¬A → B, and B → ¬A. If we recognize pairwise dependencies by looking at the co-
occurrence table, the only other possible dependencies we can discover are equivalences: A↔ B
and A↔ ¬B. ose are recognized by having zeros in the opposite corners of the co-occurrence
table, as in Table 4.5.

¬B B

¬A P(¬A) 0
A 0 P(A)

Table 4.5: Example table of feature co-occurrence probabilities for features A, B governed by the
equivalence A↔ B.

4.3.4 Handling Real-valued Features

Because ofwhatwe have identified as the possible dependencies between features, namely
the relations of implication and equivalence, we need to fit all our features into the boolean-value
paradigm. However, we use non-boolean features to express the IC of each constituent, in the
terms of non-negative real numbers. We map them onto boolean values using a two-stage map-
ping. We first “squash” the domain from [0,∞) to [0, 1] using a squashing function (see Figure 4.3),
and then discretise the real number into the value range for the feature being “true”, i.e. having the
value 1, and the value range for the feature being “false”. ese discretised parts (call them respons-
ibilities), one for true, one for false, are eventually regarded as fractions of an observation. One
fraction represents the observation of the feature being clearly true, the other for it being clearly
false. We will now look closer at the choice of the functions used for squashing and discretising.

We should start with the discretisation function, as it will help determine the right para-
meters for the squashing function. Aer some searching for a function with a smooth gradient

5Note that V is in fact captured by one of our extracted features, namely the IC of the verb. If the verb is present in
the sentence, its IC is positive, else it is zero.
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Figure 4.1: e discretisation function.

between (0, 0) and (1, 1), we concluded it would not be the optimal choice. We have lile re-
quirements on the discretisation function, so it should be as simple as possible (following Occam’s
razor). One condition we want the discretisation function to satisfy is for values close to zero to
be considered a full responsibility of zero (i.e., false); the second condition is that it should be sym-
metric with respect to the qualities true vs. false. e simplest function satisfying these conditions
is composed of three linear segments, a constant zero at the beginning, a constant one at the end,
and a linear segment joining them. We set the constant parts to be 0.2 long. e resulting discret-
isation function is ploed in Figure 4.1. To put it explicitly, the function assigns to a real number
from [0, 1] the responsibility of an observed value being true. () e responsibility for false is one
minus this value.

We will now be looking for an appropriate squashing function, knowing that whenever
it maps an IC value onto a number 0.2 or less, it will equate to the IC of 0. Similarly, any IC
mapped onto 0.8 or more will be interpreted as though the constituent is as explicit (or detailed)
as possible. We obviously wanted these equivalences to be well aligned with our data. Having the
121 descriptions annotated, we created a histogram of IC for the actors of the first main verb6 (see
Figure 4.2).

We also looked at what kind of phrases have what value of IC to fit the squashing func-
tion to the data not only quantitatively, but also qualitatively. A few noun phrases from different
parts of the range of IC, together with their estimated IC value, are shown in Table 4.6. e phrases
a person and someone are the phrases with the minimal IC. Looking at the IC of a man, we note that
it is surprisingly high. is is caused by a few uncommon senses of the word that have a very high
IC according to WordNet InfoContent.7 at illustrates why it would be helpful to do WSD, or at
least know sense priors for our domain (whereas the priors we use are computed from SemCor).

6ere were two obvious choices: the main verb itself, and its actor. ese two are present in most descriptions,
so we can have enough data for the histogram. As opposed to the actor, the IC for the verb is always computed from
the IC of the single word – the verb. On the other hand, the IC of the actor is sometimes based on more words if the
actor has any dependents, as in a man wearing a black cape. So we chose to use actors, as we can judge beer when
this phrase is as detailed as possible, whereas it would not be as clear for single verbs.

7e senses of man in WordNet 3.0 are: “a human being”, “the mankind”, “an adult male”, “a husband”, a “manly
male person”, “a human being (in a specific generic use)”, “a male subordinate”, “military personnel”, “a valet”, “a game
piece”, “Isle of Man”.
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Figure 4.2: Histogram of IC values for the actors of the first main verb. e overlaid function is an
approximation of the distribution, described below in Section 4.3.5.

noun phrase IC squash(IC) discr(squash(IC))

a person 3.5 0.13 0.00
someone 3.5 0.13 0.00
an artist 8.5 0.29 0.15
a man 10.0 0.33 0.22
a lady 13.8 0.42 0.37

Jeff Beck 20.0 0.55 0.58
a man in a black cape 38.7 0.79 0.98

man wearing a black cape 50.8 0.87 1.00

Table 4.6: Selected noun phrases (or phrases with a record in theWordNet InfoContent for nouns),
their estimated IC values, the corresponding squashed value, and the corresponding
responsibility for “true”. Decimal numbers are rounded.
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Lower in the table is Jeff Beck with IC 20.0. is is the IC which we decided to assign to
any proper names for people. Although it is a rather arbitrary value, this IC is later interpreted
as providing slightly more than half of the maximal detail, which seems reasonable. It can also
be interpreted such that about 220 ≈ 1, 000, 000 entities8 could be mentioned with the same
likelihood as the proper name. e last two rows of the table contain noun phrases with the
highest IC within our sample. Note that wearing contributes to the IC of the actor of verb 1, even
if its IC is counted also towards the IC of verb 1.1 (the word wearing itsel). In fact, the IC of all
the words wearing, black,9 and cape contribute both to one of the verb 1.1 IC features, as well as
to the IC of the actor.

e responsibilities derived from our final squashing function resulted are shown in
Table 4.6 together with the phrases and their ICs. ese are the kind of values we have been
looking for – the phrases a person and someone get interpreted as entirely missing information.
is is desirable, since they appear in the sentence mostly because it needs a subject, rather than
to convey any information. On the other end of the spectrum, only a few of the noun phrases in
our sample are considered to be maximally detailed. is is also intended, since most of the noun
phrases are indeed quite terse.

Before we found the squashing function, we had several criteria it should satisfy. Firstly,
as we discussed in the last paragraphs, wewanted it to be aligned to our sample, both quantitatively
and qualitatively. e points 0.2 and 0.8 were fixed, as were the IC values of the observed phrases.
Hence we aimed to map the ICs of a person and someone onto less than 0.2, and have the inverse of
0.8 somewhere around 40. Secondly, it mustmap from [0,∞), have the range [0, 1], and it should be
a non-decreasing function onto its range (or at least onto [0.2, 0.8]). () Put simply, higher IC should
be interpreted as greater evidence that the constituent (or the corresponding aspect of the video)
is described in good detail. Furthermore, it should be possible to have a constituent providing
virtually no detail, and conversely, a constituent providing maximum detail.

Guided again by Occam’s razor, we sought a smooth concave function. e one we
seled on is defined as:

squash(x) = 1− e−x/25. (4.2)

is function, ploed in Figure 4.3, satisfies all the above criteria perfectly. We found it by manu-
ally tweaking parameters of the Weibull distribution CDF (cumulative distribution function) to fit
our criteria. e Weibull distribution CDF has the following generic definition:

FWei(x; k, λ) =

{
1− e−(x/λ)k x ≥ 0

0 x < 0.
(Weibull CDF)

4.3.5 Generating Prototypes

As outlined above in Section 4.3.2, in order to be able to classify observed pairs of feature
values, we need to estimate the distributions that govern

a) features with some kind of dependency between them

8Or, for example, 220−8.5 ≈ 3000 different artists, since according to Table 4.6, the IC of artist is 8.5.
9Wherever an adjective had the same form as a noun which it is derived from and which was present in WordNet

InfoContent, we counted its IC too.
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Figure 4.3: e squashing function. Its inverse for 0.2 is 5.58, and the inverse for 0.8 is 40.24 (both
rounded).
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b) independent features.

In our experiment, we only approximated these two distributions by generating a sample. e
sample itself is drawn from an estimated pair of priors for the two features. e sample then
directly serves to approximate the laer distribution (b). A sample of the former distribution (a) is
obtained from this sample by discarding observations that counter the simulated dependency. Let
us now describe how samples of the two distributions are obtained in more detail.

Modeling e Distributions

Assumewe are trying to determine whether there seems to be any statistical dependency
between given two features A and B. Assume further that these features were originally non-
negative real-valued, but they have already been run through the squashing function, so that their
domain is [0, 1].

We proceed by approximating the distributions of A and B. We have lile information
about the nature of the true distribution (consider we need to estimate a distribution of an arbitrary
feature from all the defined ones), but expect it will peak at a rather low value and gradually flaen
out in a long tail. erefore, we take as the basic component of the estimated distributionmodel the
log-normal distribution. e log-normal distribution is meant to be on par with observed values
of IC, hence it needs to be “squashed” to the right domain. Besides the log-normal component, we
account for the common case of zero feature values by placing some probability mass in the point
zero.

us the class of distributions among which we look for the best estimate of the true
distributions have the following PDF (probability density function) formulation:

ffeat(x; p0) =

{
0 x ≤ p0

squash(flnorm(x; µlnorm, σlnorm)) x > p0,
(4.3)

where p0 is the estimated probability mass in point 0. e parameters µlnorm and σlnorm were set
to the fixed values 40 and 1, respectively, which seem to yield a PDF roughly corresponding to
observed distribution of IC values. Figure 4.2 shows the log-normal component of the resulting
PDF before squashing (which corresponds to ffeat for p0 = 0). Even though it does not fit the data
particularly well,10 it is particularly simple. Furthermore, aer squashing and sampling with noise,
it works well for generating distinct prototypes with or without a dependency between features.

Having decided on the model for feature distributions, and having observations for the
two features, we estimate the feature distributions by MLE. With µlnorm and σlnorm fixed, that
amounts to seing p0 to the ratio of number of observations of the feature with the value false to
the total number of its observations.11 is gives us formulas for fA and fB for the two features,
A and B.

10A substantial part of the bad fit is caused by raggedness of the observed values. ey peak first at the area of the
IC of most English content words, then drop before peaking again at twice that value, corresponding to an NP (noun
phrase) consisting of a pair of nouns, and so on. is will be partly remedied by factorizing the matrix of observations,
described later in Section 4.3.6. Note however that the box plot below the histogram indicates that a distribution similar
to our log-normal one should fit best. Possibly, the µ and σ parameters should not be fixed in future experiments.

11In the implementation, we quantize the estimates of p0 to multiples of 0.1 for the sake of efficiency.
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Figure 4.4: Random samples of 333 coordinates with differing P(A = 0) (0.1, 0.4, and 0.9 for the
three columns, respectively) and P(B = 0) (0.1, 0.4, and 0.9 for the three rows, re-
spectively). e amount of noise is low, and the features A and B are assumed to be
governed by the implication A→ B.
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Figure 4.4 shows the impact of different p0 on the generated sample. You can note that
as p0 grows (from le to right, and from top to boom), an always larger fraction of the sampled
points has a zero value in either dimension (i.e., for one or both of the features). is corresponds
to features being increasingly sparse. With very sparse features, the regions close to 1 become
sparsely populated with sampled points, and thus much harder to distinguish from the regions
that are actually blocked by the assumed dependency.

Sampling

We now sample the joint distribution of A and B, taken to be:

fA,B(x; p0,A, p0,B) = fA(x; p0,A) · fB(x; p0,B) (4.4)

assuming independence of the two features. To start simple, we can now say that we sampled 99
points for each pair of features. More precisely, we grouped pairs of features by their estimates of
p0, and for all pairs of features with the same ⟨p0,A, p0,B⟩, we sampled the joint distribution just
once.

Pseudocode for sampling n points is given in Algorithm 3. It is slightly more complex
than we have indicated so far, because we require each sample to contain a point with the maximal
value (i.e., 1.0) for each of the two squashed features. is is to make different features comparable
within the same [0, 1]× [0, 1] space. If, for example, only one sentence contains the verb 2.2,12 we
do not care anymore how much IC it has; it is notable by just being there. us we normalize both
the testing observations (the annotated sample of the corpus), as well as the training observations
(the prototypes sampled using Algorithm 3) to the maximum of 1.

If we did not enforce the above condition, the algorithmwould shrink to random sampling
points and discarding those points which are non-compliant with the given dependencies. How-
ever, when the points are normalized, some may slip to the region prohibited by the dependency.
Consider the following example.

Example 7. Let us assumewe initially sampled the following points: {(0, 0.4), (0.4, 0), (0.3, 0.3)}.
Judging by comparing them to 0.5, all are instances of the (0, 0) combination of boolean values.
However, aer normalization, they become {(0, 1), (1, 0), (0.75, 0.75)}. at suddenly classifies
them into all other boolean combinations but the original (0, 0). If the dependencywemust enforce
is the equivalenceA↔ B, we have to discard the first two points since they break the equivalence.
at leaves us with a single point, (0.75, 0.75). Here, the story starts anew, since our sample no
longer has the values of 1.0 in both dimensions. Moreover, a repeated normalization could cause
the other points, permissible so far, to slip again to the prohibited regions.

Algorithm 3, which we devised to cope with this problem, proceeds by trial and error. It
starts by drawing a random sample from the two distributions (line 2). e sample is twice as big
as required because part of it will most likely be discarded. e sample is then normalized on line 3
and prohibited points are filtered out (line 4). If we are le with less than the required amount
of points, we start over, else we continue (line 5). If continuing, we try to normalize again the
points aer the filtering (lines 14 and 16). ey still have to not break the imposed dependencies
(lines 15 and 17), and we need to have enough of such suitable points (line 18). Because we may

12Recall the notation we use to refer to a verb in a sentence, introduced in Section 4.2.1.
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Algorithm 3: Sampling points from P(A)× P(B).
Input: number of points to generate: n; critical probabilities: p0,A, p0,B ;

prohibited combinations: ProhCombs
Output: n points from [0, 1]× [0, 1] not breaking prohibited combinations

1 repeat
// Sample from A and B double the required amount.

2 CoordsA← sample( 2n, Pfeat(p0,A) ); CoordsB← sample( 2n, Pfeat(p0,B) )
// Normalize in each dimension to the maximum of 1.

3 NCoordsA← maxNorm( CoordsA); NCoordsB← maxNorm( CoordsB)
// Evaluate which of the points satisfy the dependencies.

4 Good← filter( breaksNot( ProhCombs), NCoordsA, NCoordsB)
5 if length( Good) ≥ n then
6 for Try← 1 to 3 do

// Sample to obtain future maxima in both dimensions.
7 InitSample← sample n points from Good

// Find the maximum values and points having them.
8 MaxA← max( first coordinates of InitSample)
9 MaxAPoint← a point with MaxA as the first coordinate
10 MaxB← max( second coordinates of InitSample)
11 MaxBPoint← a point with MaxB as the second coordinate
12 MaxPoints← [ MaxAPoint, MaxBPoint ]

// Select all points smaller than the maxima.
13 Smaller← filter( lessThan( Point( MaxA, MaxB ) ), Good)

// Normalize the maxima to 1 in both dimensions.
14 NMaxPoints← map( Point( a, b ) 7→ Point( a/MaxA, b/MaxB ),

MaxPoints )
// Check again that the maxima satisfy all

dependencies.
15 if any( x 7→ breaks( x, ProhCombs), NMaxPoints) then continue

// Normalize the smaller points to the maximum of 1.
16 NSmaller← map( Point( a, b ) 7→ Point( a/MaxA, b/MaxB ), Smaller)

// Check again which points satisfy all dependencies.
17 Suitable← filter( breaksNot( ProhCombs), NSmaller)
18 if length( Suitable) + 2 ≥ n then
19 SmallerSample← sample (n− 2) points from Suitable
20 return concat( SmallerSample, NMaxPoints)
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have up to 2n points when entering the inner cycle (on line 6), if we did not succeed with the
second normalization and filtering, we can try other n of all the points and succeed with those.
at is the rationale of the inner cycle. In the end, having found a big enough Suitable sample,
we only need to make sure the returned sample contains points with the maximal values in both
dimensions (line 20). Note that the pseudocode neglects some boundary cases, aiming only to
describe the overall structure of the algorithm.

Obtaining Training Examples from Sampled Points

Having spent a substantial amount of CPU time on generating the 99-point sample for
our two features, A and B, we want to obtain many training observations from each sampled
point, as cheaply as possible. We will now describe how we add multiple samples of noise and
break the logical tables into four observations, thus creating larger (and balanced) training data.

We use the customary additive noise model with the noise normally distributed. How-
ever, we want to account for differing reliability of the observed feature values. For instance,
samples of features with many non-zero observations should be considered more reliable than
those with only few non-zero values. Higher reliability of a feature translates into lower variance
in the estimate of its values. is in turn means we need to reflect the different variance of the
observations in our generated training data. Hence, we set the variance of the generated noise to
be inversely proportional to a measure of feature reliability:

Var(r) = ν/(r + ε). (4.5)

Here, ν is the noise scale, and ε a small number to prevent division by zero. is has the effect
that it is harder for less reliable features to be classified as governed by some kind of dependency:
we do not trust features which show us only a few non-zero observations.

For the purpose of choosing the right variance in the generated noise, we measure the
reliability of a feature by its entropy. More precisely, we discretise the value of each feature obser-
vation into its responsibilities. is is done using the discretisation function discussed above, aer
optional squashing in case of non-boolean features. We then estimate the entropy of the resulting
true/false observations, as though they were generated from an alternative distribution:

H(F ) = −P(F = 0) log P(F = 0)− P(F = 1) log P(F = 1). (4.6)

We estimate these probabilities using MLE, i.e. by the ratio of true (or false) observations to all
observations. Similarly to the estimates of p0, the reliability estimate is also quantized. We use
this measure because it penalizes features with few true observations, as well as features with few
false observations. We do not want to trust such features because these few observations might
have been only random.

e effect of different noise variance is illustrated in Figure 4.5. You can note that train-
ing data for features with low entropy are more or less uniformly distributed over the [0, 1] in-
terval, thus effectively prohibiting successful classification. Only when both the features have
high enough entropy (which means that each of their observations provides decent amount of
information), a confident classifier can be trained from the training data.

While we mentioned sampling 99 points from each distribution of A, B in the previous
section, we actually generate many more training examples per distribution. Firstly, we sample
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Figure 4.5: Random samples of 333 coordinates with differing entropy of A (0.9, 0.4, and 0.1 for
the three columns, respectively) and entropy of B (0.9, 0.4, and 0.1 for the three rows,
respectively). e probabilities P(A = 0) and P(B = 0) are low, the noise scale ν =
0.05, and the features A and B are assumed to be governed by the equivalence ¬A↔
B.
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99 points for each of the 7 possible relations of the features: 4 implications, 2 equivalences, and
the case of no dependency. Secondly, we generate 12 samples of noise for each of the points with
no dependency, 12 samples for each implication, 12 other samples for each implication, which are
treated specially, and 12 samples for each equivalence. Let us term the special noise samples for
implications one corner samples; we will explain them shortly. e remainder of sampled points
serves as four training examples each, and we obtain the four examples in the following way.

e reader will recall that the sampled points come from the joint distribution P(A,B),
from which it is clear that they are pairs of real coordinates in the range [0, 1]2. at corresponds
to real-valued features aer squashing, before discretisation. Similarly to the feature values, these
sampled coordinates get discretised, in both their dimensions. Discretising in the dimension for
feature A gives us responsibilities for (A = 0) and (A = 1); the other dimension works analogic-
ally for B. is all results in generating the four values for the table of boolean combinations of
A and B. Depending on what dependencies we enforced when sampling this point, zero, one, or
two corners of the table are (approximately) zero.

Note that all the dependencies we consider can be expressed in terms of the four implic-
ations. For the only non-trivial case, each equivalence consists of two directions of implication. If
we classify only among the four implications, that already has enough power to distinguish all the
dependencies. Furthermore, to reduce the running times and alleviate sparseness in the training
data, we decided to throw away one of the four fields of the boolean table; if the values in the table
are properly normalized, the fourth value is implied anyway. Hence we a) lose no information;
b) reduce the dimension of the space of observations from 4 to 3; and c) need to classify only two
ways: “displays the paern of an implication” vs. “does not display the paern”. All that needs to
be done is adding all 4 triples of the table’s fields aer discarding one to the pool of training ex-
amples. ose for which the dependency dictated the middle field to be zero are positive examples,
all others are negative.

We admit that in doing so, we mix snapshots of different parts of the distribution (differ-
ent parts of the domain [0, 1]2) without remembering which came fromwhere. However, the prop-
erty of positive examples – that they capture the (noisy) combination ⟨non-zero, zero, non-zero⟩
– remains. And if a testing example happens to be more similar to other parts of the distribution
than it was supposed to, it does not maer. ere are always enough positive examples, as well
as negative examples, for all the four corners of the distribution.

In fact, we manage to have the same number of positive and negative examples in the
training data. We believe that that is desirable, because it sets the non-informative prior on the
dependency classification – there might be a dependency between the given two features, or there
might be not. e training set does not bias the decision. To balance the training set, we had
to provide additional positive examples.13 at is the purpose of the aforementioned one corner
samples. ese were implications for which only the positive example (the corner with the zero)
was added to the training data. Having done so, we multiplied the original sample size by 12 · 4
(no-dependency) plus 4 · 12 · 4 (4 implications) plus 4 · 36 (4 implications – positive samples) plus
2 · 12 · 4 (2 equivalences), i.e. 480 times. 240 of those examples are positive.

13Each equivalence table has two zeros and two non-zeros, yielding two positive and two negative 3-field training
examples. However, implications and no-dependency tables give us more negative examples (no zero) than positive
ones (zero in the middle).
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4.3.6 Classifying with A Linear Model

e previous section described how we generated prototype examples of the two classes
– with a dependency, and without it. It would thus be natural to classify new observations by a
prototype classification method, such as k nearest neighbours. We did that in our earlier exper-
iments but we have found it very inefficient. erefore, we reimplemented the classification to
learn a linear model. e following are reasons that speak for a model-based approach, against
k nearest neighbours classification.

1. With k nearest neighbours, extending the training data by sampling noise is not effective.
It is not improbable for samples of the distribution to contain outliers. By drawing multiple
samples of the outlier point with added noise, its importance is reinforced, and it effectively
causes its neighbourhood to be wrongly classified. erefore, prototypes have to be gener-
ated using the more expensive sampling of the joint distribution more heavily than by the
simple sampling of the noise.

2. As the number of training examples grows, so too does the complexity of classifying new ob-
servations. ere might be a beer implementation of the algorithm for searching k nearest
points in a 3-dimensional space than the one we had. But with the one we used, the time to
run the experiment grew substantially when we increased the number of training samples.
However, with fewer training samples, the quality of the classification was low.

In this section, we will give an overview of the remaining part of the machine learning
process. Only the training data has been described so far. We thus have yet to address further
processing (page 68), learning and selecting a linear model (page 69), but first of all, we should
start by describing how the input observations were smoothed out.

Smoothing e Matrix of Observations

It is the case with high-dimensional feature vectors that most of them are outliers (as
nicely explained in Hastie, Tibshirani and Friedman (2009, pp. 22–27)). Our feature space has 102
dimensions, out of which 57 contain a non-zero value (the other 45 we ignored). For all those
dimensions, we have only 121 observations. When our goal is to discover whether two features
are random or not, for all the pairs of features (there are

(
57
2

)
= 1, 596 of them), it is most likely

that a huge number of “discovered” dependencies would be just due to noise. Even though the
chances of accidental “dependencies” between features with low support14 will be countered by a
larger amount of noise added to their training examples, it is likely for accidental “dependencies”
to come up even among features with higher support. erefore, we need to smooth out the
matrix of observations. e way we did it was matrix factorization (MF), i.e., for our matrix of
observations V ∈ Rm×n, finding two matrices, W ∈ Rm×k and H ∈ Rk×n, such that their
product approximates V : W ·H ≈ V . e matricesW and H are called factor matrices.

Among the methods for matrix factorization, we opted for non-negative matrix factoriz-
ation (NMF). ere are two reasons for that:

14By the support of a feature, we mean the number of its non-zero observations.
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1. By decomposing our matrix of non-negative observation values into non-negative factor
matrices, we alleviate complications with mapping between the unrestricted and the non-
negative domain. We already have a method for mapping arbitrary non-negative obser-
vation values onto boolean values; it is not clear how negative values would have to be
interpreted.

2. As shown by D. D. Lee and Seung (1999), NMF tends to decompose the whole observation
vectors into meaningful parts. at contrasts with other methods for MF, which tend to
rather decompose into one or two dimensions accounting for most part of the matrix, and
the rest of dimensions, covering small remaining discrepancies. e laer do not yield
themselves to interpretation; they do not correspond to natural parts of the observations.

We believe that having our observations factored into their natural parts will smooth out
the rare, random co-incidences in the data, which is exactly the goal.

We did some initial experiments, comparing visualized results of NMF run with the mat-
rix of observations and with a small artificial matrix. Based on them, we set the dimension for the
factor space to 6. We believe that this seing best balances the variance of the result of NMF with
its bias.

We did the matrix factorization using the R package ‘NMF’ (Gaujoux & Seoighe, 2010).
is package implements a few different algorithms for NMF, from which we tried the following
ones:15

“brunet” e standard NMF algorithm based on Kullback-Leibler divergence (D. D. Lee & Seung,
2000; Brunet, Tamayo, Golub & Mesirov, 2004).

“nsNMF” Non-smooth NMF – “brunet” modified so as to yield sparser results (Pascual-Montano,
Carazo, Kochi, Lehmann & Pascual-Marqui, 2006).

“pe-nmf” Paern-Expression NMF. Based on Euclidean distance and regularized for effective ex-
pression of paerns using factor vectors (Zhang, Wei, Feng, Ma & Wang, 2008).

We have chosen these algorithms for the following reasons: e “brunet” algorithm is considered
the standard NMF algorithm, according to the package documentation, thus it should not be omit-
ted. Sparse output of “nsNMF” should approximate our data well since they are also sparse. Lastly,
“pe-nm” was originally designed for blind separation of sources, which is aligned with our dis-
positions – we do not want to inform the NMF process in any way, it has to separate the source
factors blindly.

e last mentioned algorithm, “pe-nm”, regularizes the search for the factor matrices
with two parameters, α and β.ese parameters are motivated by criteria on the ideal basis vectors
(rows of W ) and coefficient vectors (columns of H). e criteria demand that the basis vectors be
spread, having wide enough angles between them; and that the basis vectors describe the column
space of V as effectively as possible. ese two criteria are reflected in α and β, respectively. e
higher the value of a parameter, the more importance is put on that criterion.

We prepared the matrix of observations for matrix factorization by applying the squash-
ing function (see Section 4.3.4) to the real-valued features. e boolean features we le alone.

15e descriptions are based on the documentation of the R package ‘NMF’.
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Let us call Ṽ (= W ·H) the matrix approximating V.e new observation values, fields
of Ṽ , are all guaranteed to be non-negative. However, none of them are guaranteed to be boolean
(i.e., either 0 or 1) anymore. We have to treat all features as real-valued from this point on.

Aer the NMF is completed, we normalized values for each feature to the maximum of
1, the same way we normalize training observations.

Basis Expansions

We can now read from the (smoothed) matrix of observations for each pair of features,
how many times they occurred in each combination (one of ⟨0,0⟩, ⟨0,1⟩, ⟨1,0⟩, or ⟨1,1⟩). Because
each observation is split between true and false using the “discretisation” function, number of
occurrences of feature combinations is again a non-negative real. e four numbers get aligned
into a table, and the four corners of the table can be classified by their comparison to the training
examples.

In an ideal world, if there was no noise in observed feature values, we could classify each
corner positive (as indicating a feature dependency) iff it looked like this:

..

n(¬A,¬B)
> τ

.

0

.

n(A,B)
> τ

,

for some defined threshold τ . (e above example would classify whether there is the A → B
dependency.) In an ideal world, τ would have the limit of 0 as the number of observations grows.

If we accept the fact, however, that there is a noise inherently present in our observations,
it adds a margin of uncertainty to the above numbers. e noise can be caused by, for example,
inadequate video descriptions, soness of the kind of dependencies we are looking for, or non-
precise feature extraction – recall the crude method for measuring IC. Allowing for noise, we
probably want to classify the example on the le as positive – unless τ is low, as at the right hand
scheme (τ = 0.01), in Figure 4.6.

Let us call the fields of each observation triple ⟨x, y, z⟩ in the order top le, boom le,
boom right, as drawn above. We are always looking for x and z being non-zero, and y being zero.
To prevent the example on the right in Figure 4.6 being classified as positive, we should probably
look at the ratio of y to the other counts (x and z). If these ratios are high enough, we will be
confident that the example displays the paern of a dependency. What “high enough” means pre-
cisely, will be determined by machine learning, depending on the set of training examples. What
we are now more concerned about is whether it is exactly these two ratios that the classification
can be based on. ere are several statistics that can help classify an observation. ose we chose
and used in our experiment, are enumerated in Table 4.7.
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..

n(¬A,¬B)
> τ

.

0.03

.

n(A,B)
> τ

..

0.02
(> 0.01)

.

0.03

.

0.02
(> 0.01)

Figure 4.6: Example of observations with fuzzy zeros.

x log (1/(x+ y + z + ε)) 1/(x+ y + z + ε)
y log ((y + ε)/(x+ y + ε)) y/(x+ y + ε)
z log ((y + ε)/(y + z + ε)) y/(y + z + ε)
y2 y/(x+ ε) y/(z + ε)

Table 4.7: e expanded basis used. We assume the observation triplet to be of the form ⟨x, y, z⟩
for the notation here. e ε parameter (fixed to 0.01) serves solely to avoid division by
zero.

Lasso-regularized Linear Models

We used the Lasso (Tibshirani, 1996) regression shrinkage and selection method as im-
plemented in the R package lars v1.1. We generated a set of training data using the procedure
described in Section 4.3.5, and expanded the basis, as noted in the preceding section. From the
sequence of models found by Lasso, we selected one with the lowest degree of freedom within one
standard deviation of performance from the best performing one.

Performance was measured on an evaluation set using residual sum of squares (RSS).
RSS was evaluated for the true class labels being either -1 or 1, and the predicted labels likewise –
if the model predicted a negative value, the prediction was “labeled” (substituted by) -1, otherwise
by 1:

RSSeval =
∑
x∈E

(sign1(prediction(x))− class(x))2, (4.7)

where E are the evaluation data, and the function sign1 is defined in the following way:

sign1(x) =

{
−1 x < 0

1 x ≥ 0.
(4.8)

To be able to compute the standard deviation in performance (i.e. in RSS), we generated 14 eval-
uation sets, each in the same way as training data were generated, but sampling the P(A,B)
distribution only 19 times for each of the sets (as opposed to 99 for the training set).

Having modeled the training data with the simplest good model, we needed to assess
its trustworthiness over the range of values it produces. Without evaluating it, we could only
classify positive vs. negative examples, taking 0 for the decision boundary. is would not suffice
to establish confidence in different dependencies output by the algorithm.
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We can expect the selected model to assign values around 1 to positive examples, and
values around -1 to negative examples. ese were the values it was trained to assign to the re-
spective classes. Having lile counterevidence, we assumed the predicted values for positive, as
well as negative examples, to be normally distributed. Let us call these distributions score dis-
tributions. We estimated the parameters of score distributions from predicted values for all the
evaluation data. If the model fits the data well, the score distribution for positive examples will
have its mean in 1, while the negative examples will have it in -1. anks to the generated data be-
ing balanced, priors for the two classes are equal. us, it is easy to compute the optimal decision
boundary for the two normal distributions. Regarding confidence into the classification decision,
we used two formulae for it in our experiments.

In an earlier version of our program (version 2),16 we adopted a simple formula for eval-
uating the classification confidence:

confidencev2(x) =
P(x = X)

P(x = X) + P(x = Y )
, (4.9)

withX being the class assigned to the observation based on the decision boundary (either “posit-
ive”, or “negative”) and Y being the other class. By x we denote the response of the model for the
given observation (and we shall adhere to this notation until the end of the section).

A typical profile of confidence is displayed in Figure 4.7. Note that the confidence is
the higher the further the predicted value from the middle ground. e decision boundary is not
in zero anymore, it is computed from the estimated score distributions. is does not yield the
optimal classification performance (at least for the data that the model was trained on), but it is
a small price for having a confidence function. In any case, the confidence around the decision
boundary is rather small, so we will not be confused by misclassified observations close to the
decision boundary.

When evaluating the results of the version 2 of our program, we found that the above
confidence function is not good in all cases. When the amount of noise in the training data is
so high that even the best model performs rather bad, there is in fact lile confidence that any
future classification will be reliable. Yet the confidence function assigns values close to 1 to any
observations further from the decision boundary, cf. Figure 4.8. is confidence profile arose for
features that had only a few non-zero observations, whose training data are thus most impacted
by added noise.

In order to lower the confidence in models that do not deserve it, we updated the con-
fidence formula to:

confidencev3(x) = confidencev2(x) · prototypicality(x;µX , σ2
X), (4.10)

where prototypicality measures how close a point is to the center of a given normal distribution,
X is the class assigned to the observation (as in equation (4.9)), and µX and σ2

X the estimated
parameters of the score distribution for X . We will now turn our focus to the measure of proto-
typicality.

From illustrations of the problem with confidencev2 (cf. Figure 4.8), we saw that it was
points that were far from means of both the score distributions, that got assigned an inappropri-
ately high confidence. ey were not necessarily far in absolute terms, but they were far relative

16In this version, we did not include the y/(x+ ε) and y/(z + ε) statistics into basis expansion.
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Figure 4.7: Confidence in classification for values predicted by a linear model. Here, it is computed
using equation (4.9) for classes having their means far apart. e class distributions are
drawn with thinner lines, the confidence curve is the top one. e middle vertical line
demarcates the decision boundary.
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Figure 4.8: Confidence in classification for values predicted by a linear model. Here, it is computed
using equation (4.9) for classes having their means close to each other.
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to the score distribution parameters – they had a high z-score. at motivated us to defining pro-
totypicality as a measure of centrality within the normal distribution. For a given distribution
X ∼ N(µ, σ2), it maps a point x to the percentage of the probability mass that is further from
µ than x. e mean thus has prototypicality of 1, and for instance the points µ ± 1.96σ receive
prototypicality of about 5%.e formula is the following:

prototypicality(x;µ, σ2) = 1− 2 ·
(
F
(
|x− µ|; 0, σ2

)
− 0.5

)
, (4.11)

where F is the CDF of the normal distribution.
We also noticed that the problems with confidencev2 are most severe when means of

the score distributions are far from the (a priori) expected -1 for negative examples and 1 for
positive examples. erefore, we also tried to relativise the confidence with respect to this prior.
For convenience, we chose the priors to be normal and centred in ±1. We can then update the
confidence formula simply by factoring in the prototypicality w.r.t. the prior:

confidence′v3(x) = confidencev3(x) · prototypicality(x;µPX
, σ2

PX
). (4.12)

Here, PX is the prior forX – either centred in−1 (forX = −1), or else in 1.Only if x is close both
to the mean ofX and PX , i.e. when also the two means are close to each other, does confidence′v3
get high.

We compared the confidence measures with, and without the coefficient for the prior.
e outcome is illustrated in Figures 4.9 and 4.10, which contain plots of both the measures to-
gether. As can be seen from the plots, the two measures are highly correlated. On the evaluation
data, their Pearson correlation coefficient exceeds 0.9999. By that token, we abandoned the term
for prototypicality w.r.t. the prior, and used the simpler formula (equation (4.10)) for confidence
computations. We always determined confidence using the same data that had been used formodel
selection.

4.4 Method of Evaluation

In this section, we discuss against what data we evaluate result sets from the algorithm,
and then consider different ways of measuring agreement between the reference result set and the
result set originating from the algorithm.

4.4.1 Creating Reference Result Set

In the present problem, the one of classifying relations, we do not know the true answer
even for the small sample data. erefore, it gets slightly complicated when we need to compare
answers of different algorithms aiming to solve the problem. What we chose to do was restricting
the evaluation only to a small set of feature pairs, for which we know the true answer (from their
definition).

In the feature space, described in Section 4.2.1, there are several mutually exclusive fea-
tures – those capturing the verb tense, and those capturing its aspectual class. Furthermore, we
can be very confident that one of the tense features will be true for verb 1 (the first matrix verb).
is does not hold true only in the exceptional case when the description lacks a verb.

We built our reference result set based on the three assertions just described. For each
verb position in sentence, we obtained positive examples for dependencies, such as:
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Figure 4.9: Confidence in decided class for values predicted by a linear model. Here, it involves
the likelihood, and the prior too. ese two features have high p0, hence the amount
of noise is relatively high and classification is virtually random.
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Figure 4.10: Confidence in decided class for values predicted by a linear model. Here, it involves
the likelihood, and the prior too. ese two features have low p0, hence the amount
of noise is relatively smaller and class centroids well separated.
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Verb V is in the present tense. → Verb V is not in the past tense.

We also obtained negative examples, such as:

Verb V is in the present tense. → Verb V is in the past tense.

e former dependency holds true in all cases, and therefore it is assigned the value 1 in the
reference result set; whereas the laer dependency can never be true, hence it is assigned the
value -1. Finally, there is the almost certain dependency for verb 1:

Verb 1 is not in the past tense. → Verb 1 is in the present tense.

We assign this dependency the score of 0.9 in the reference result set.
e resulting reference set comprises 121 asserted dependencies, out of which 25 are

positive examples, 95 negative examples, and the remaining 1 being the special positive example
with confidence 0.9.

4.4.2 Measuring Agreement

We now turn to evaluation measures for scoring the result set output by the algorithm
relative to the reference result set. Each result set is a sequence of confidence scores between −1
and 1, and we need the evaluation measure to assign a beer score to result sets more similar to
the reference result set, and a lower score to the less similar ones.

An obvious measure for similarity of two result sets is the correlation coefficient. e
correlation coefficient reflects the linear relationship between two sequences. If there is a strong
linear relationship, correlation is high (close to 1) in the absolute value. e sign of the correlation
coefficient is the same as the sign of the linear coefficient of the relationship.

While correlation captures sharpness of the linear relationship (or absence thereo), it
ignores the absolute value of the linear coefficient of the relationship. erefore, we estimated the
linear coefficient separately. We trained a linear model predicting the confidence value output by
the algorithm from the corresponding value in the reference result set.17 e only coefficient of
the linear model is then the linear coefficient which we use as the measure of agreement.

Another view on the agreement is in terms of the error introduced by approximating the
reference result set by the results output by the algorithm. We found the RMS (root-mean-square)
error to be more suitable a measure than other error measures. e RMS error is defined as:

RMS(a, b) =

√∑n
i=1 (ai − bi)2

n
, (4.13)

where a and b are vectors of the length n (the reference result set, and the algorithm output, in
our case).

17e linear model has this single input. Specially, it does not use the constant input (intercept), which is a common
practice.
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4.5 Results

We ran the experiment varying seings w.r.t. the matrix factorization (MF)method, and
varying the level of noise (or, the noise scale ν, as introduced in equation (4.5)). Apart from MF
methods enumerated in Section 4.3.6 (page 67), we included the trivial baseline of not using ap-
proximation with MF at all. In this section, we provide, compare and comment on results from the
different runs.

4.5.1 General Evaluation of All Experiment Runs

e resulting scores for all runs of the experiment are shown in Figure 4.11. Let us first
describe the upper plot. On the x-axis are individual runs of the experiment, each with a different
seing. ey are divided into four parts, corresponding to the three NMF algorithms plus the
baseline of performing no NMF. Within each part, the runs are ordered w.r.t. the RMS error. e
marks below the plot indicate for each run what noise scale ν was used. We experimented with
three values for ν: 0, 0.05, and 0.1.

e horisontal lines highlight important values: Zero is the minimal required value of
the linear coefficient for the results to be trustworthy. Similarly, zero is a lower bound for accept-
able values of correlation. Value 1 is the theoretical maximum for the correlation coefficient. With
confidence scores taking the value from [−1, 1], the value of 1 is also the maximal desirable value
for the RMS error, as the RMS error of 1 can be trivially achieved by outpuing 0 for every obser-
vation. e two horisontal lines between 0 and 1 demarcate the maximum achieved correlation
coefficient (0.885), and the minimum achieved RMS error (0.530).

Now, having explicated the basic criteria for considering a result good, we note that most
of the experiment runs clearly fail the criteria. It is only the best scoring run for the “none” and
“brunet” algorithms, and the five best scoring runs for “pe-NMF”, which meet the criteria.

Surprisingly enough, the “nsNMF” algorithm, supposed to yield sparse results, and thus
capture well our input data, did not show good results in any of the runs. is might be caused
by the small size of our training sample, though – the algorithm approximated the sparse, ragged
matrix by another sparse and ragged matrix, but with too few observations to deliver a reliable
result.

On the other side of the spectrum is “pe-NMF”. For the five runs that meet the above
criteria, the scores are very promising even in absolute terms. e correlation coefficient exceeds
0.7 for the four best-scoring seings, geing as high as 0.885 for the best seing. e RMS error
gets down to 0.53, corroborating that the extracted dependencies are fairly well aligned with the
reference result set.

e careful reader will have noticed that the best experiment seing within each NMF
method was with ν = 0, i.e. with no added noise. We included this seing to have a baseline
w.r.t. the noise parameter. However, it is not meant to reflect performance of the algorithm on real
inputs, because those are going to be always encumbered with error, especially should the features
of descriptions be extracted automatically.

For the above reason, we are more interested in the results for ν > 0. ese are shown
in the lower plot of Figure 4.11. is plot clearly justifies the contribution of NMF, its potential
benefit over the “none” baseline. Whereas the baseline was equally good as the best-scoring run
of “pe-NMF” on results including the case of ν = 0, it is uncompetitive within runs having ν > 0.
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Figure 4.11: e three evaluation scores (correlation, RMS error, and linear coefficient) for all the
experiment seings. Each plot is divided into four regions by the NMF method, and
within each method, different experiment runs are ordered by the RMS error in the
descending order.
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ν = 0 ν = 0.05 ν = 0.1

β



α

1 4 16
ε 0.66 0.13 -0.46
1 -0.46
4 -0.19

1 4 16
ε -0.09 0.32 -0.14
1 -0.38
4 -0.25



1 16
ε 0.89 -0.09
1 -0.13
4 -0.10

ε 1 4
ε 0.78 0.20
1 -0.16 -0.24 0.06
4 -0.25 -0.16 0.05

ε 1 4
ε 0.02 0.38
1 0.12 -0.22 0.01
4 0.21 -0.09 -0.05

Table 4.8: Correlation scores for different parameters of pe-NMF.

Similarly, also “brunet” drops dramatically when we ignore the no-noise runs. On the other hand,
there are seings of “pe-NMF” under which it performed almost as well as in the no-noise case.
is can be seen at the maximum-correlation and minimum-RMS-error horisontal lines, which
shi only slightly from their position in the upper plot. e good performance of the method on
noisy data, and particularly its relative effectiveness on the noisy data as opposed to the no-noise
situation, are the main results of our experiment.

Most of the experiment seings ended unsuccessful in the evaluation, but that does not
mean we should ignore them. ey can show us a few interesting facts.

Firstly, although these unsuccessful experiment seings generally achieve negative or
close-to-zero correlation score, there are four runs of “pe-NMF” with the correlation coefficient
higher (between 0.2 and 0.4), but with a very low linear coefficient score. is proves the useful-
ness of the linear coefficient score, because it is this score that clearly says those runs should be
discarded.

Secondly, note that among the less successful experiment runs in the lower plot of Fig-
ure 4.11, the seings with more noise consistently lead to beer results. is suggests that the
algorithm can actually extract more information from runs with lower level of noise, but it uses
the information incorrectly. is could be partly an artifact of the reference result set, which is
heavily biased towards negative examples (as would, presumably, be the complete set of all true
relations). Only “pe-NMF” can overcome this obstacle and emphasize the “true” observations,
damping those due to noise.

4.5.2 Comparison of Parameter Settings for “pe-NMF”

Tables 4.8, 4.9, and 4.10 provide an overview of the correlation coefficient, RMS error,
and linear coefficient evaluation scores, respectively, for different seings of the parameters α,
β, and ν for “pe-NMF”. We ran the experiment in some of the seings more than once, but the
tables contain only the evaluation score for the first run of the experiment for each parameter
combination.

Each of the tables is organized in the following way. It is divided into three columns,
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ν = 0 ν = 0.05 ν = 0.1

β



α

1 4 16
ε 0.78 1.01 1.41
1 1.45
4 1.13

1 4 16
ε 1.03 0.99 1.02
1 1.06
4 1.03



1 16
ε 0.53 1.08
1 1.11
4 1.11

ε 1 4
ε 0.63 0.99
1 1.19 1.38 1.06
4 1.19 1.13 1.03

ε 1 4
ε 1.03 0.99
1 1.01 1.05 1.01
4 0.98 1.02 1.02

Table 4.9: RMS-error scores for different parameters of pe-NMF.

ν = 0 ν = 0.05 ν = 0.1

β



α

1 4 16
ε 0.27 0.05 -0.32
1 -0.36
4 -0.10

1 4 16
ε -0.03 0.01 -0.01
1 -0.06
4 -0.03



1 16
ε 0.52 0.06
1 0.02
4 0.03

ε 1 4
ε 0.43 0.09
1 -0.12 -0.27 0.04
4 -0.13 -0.08 0.06

ε 1 4
ε -0.02 0.01
1 0.00 -0.05 -0.01
4 0.04 -0.01 -0.01

Table 4.10: Linear coefficient scores for different parameters of pe-NMF.
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corresponding to different values for the noise scale ν. Similarly, it is divided into two rows, labeled
 and . Difference between these will be explained shortly. Each of the cells contains
a smaller table, rows of which differ w.r.t. the parameter α, and the columns differ w.r.t. β. (ε
conventionally stands for a negligibly small value.) e smallest table cells thus each uniquely
correspond to a combination of ν, α, β, and one of  or . ese cells are either gray,
meaning that we did not run an experiment with those parameters,18 or colour-coded and showing
the corresponding evaluation score. For the colours, pure green or blue would be an ideal, pure
red would be the opposite from ideal.

 is the default experiment setup, as described in Section 4.3, whereas in the case
of , we generated 12 times more samples of the joint distribution and only 1 sample
of noise for each of them. is way, we traded speed for accuracy (cf. the motivation for not
doing this in Section 20, page 63). We decided to run the  experiments aer obtaining
the initial results, seeing the relatively good performance of “pe-NMF”, and having optimized the
script enough to make the  version feasible timewise.

All the tables illustrate that the seing α := ε, β := 1 performs the best for the low
(ν = 0) and moderate (ν = 0.05) level of noise. In the  variant with ν = 0.1, we can
see a rather weak trend for the correlation coefficient to improve with either α = ε or β = ε and
the other parameter set to 1, or beer, to 4. However, the other two tables clearly show that this
is irrelevant – especially because the linear coefficient is practically equal to 0. Hence, we have
no well performing algorithms for the seing with high noise level. at is to be interpreted as
that there is virtually no hope for extracting any dependencies from so small data with this much
noise, rather than being unable to find a good algorithm.

4.5.3 Top Extracted Relations

In this section, we present the top extracted results by the algorithm under the best-
scoring seings for the low noise level (ν = 0), and for the moderate noise level (ν = 0.05). ese
best-scoring seings were, according to Section 4.5.1, “pe-NMF” with α = ε and β = 1, run in the
 seing (i.e., sampling more points of the joint distribution of each two features, and
geing the less noise samples), for both ν = 0 and ν = 0.05.

We filter the results aer they have been output by the algorithm, to select only pairs of
features which both have high enough support. To be more precise, we apply a threshold θ for the
x and z value of each observation, where x and z are the two values of the ⟨x, y, z⟩ corner that
are supposed to be non-zero (this notation was introduced in Section 4.3.6 on page 68).

Tables 4.11–4.13 list the top extracted dependencies for ν = 0, with the threshold θ set
to 0, 0.05, and 0.1, respectively. Tables 4.14–4.16 list the top extracted dependencies for ν = 0.5,
for the same sequence of thresholds θ.

Unfortunately, it is hard to directly interpret the extracted elementary dependencies.
ey do not appear to be nonsensical or contradictory, which is a positive sign; however, many
seem to persist to random properties of the training data. is effect of overtraining is countered
by the threshold θ, at the price of considerably reducing size of the result set. For our experiment,
θ = 0.05 seems to be a reasonable compromise.

18Note that we never set α = β = ε, since that would put negligible weight on the two defining criteria of “pe-NMF”,
reducing it to the standard NMF.
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dependency confidence

verb 2: prog→¬(verb 1: PAT IC) 0.98
verb 2: arg2 IC→¬(verb 1: PAT IC) 0.98
verb 2: argM IC→¬(verb 1: PAT IC) 0.98
verb 2: loc IC→¬(verb 1: PAT IC) 0.98
verb 1: loc IC→¬(verb 1: past) 0.97
verb 1: loc IC→¬(verb 1: culproc) 0.97
verb 1: loc IC→¬(verb 1: point) 0.96
verb 1: loc IC→¬(verb 1: iter) 0.96

verb 3: ACT IC→¬(verb 1: prog) 0.96
verb 3: prog→¬(verb 1: prog) 0.96

verb 2: PAT IC→¬(verb 1: prog) 0.95

Table 4.11: Top extracted dependencies for ν = 0; θ = 0.

dependency confidence

verb 3: ACT IC→¬(verb 1: prog) 0.96
verb 3: prog→¬(verb 1: prog) 0.96

verb 3: verb IC→¬(verb 1: prog) 0.95
verb 1: adv IC→¬(verb 1: prog) 0.94
verb 1: verb IC→ verb 1: prog 0.85
verb 2: adv IC→¬(verb 1: loc IC) 0.81
verb 1: ACT IC→ verb 1: prog 0.81
verb 1: verb IC→ verb 1: process 0.79
verb 1: loc IC→ verb 1: verb IC 0.78
¬(verb 1: prog)→ verb 2: adv IC 0.77
¬(verb 1: prog)→ verb 3: verb IC 0.76

Table 4.12: Top extracted dependencies for ν = 0; θ = 0.05.

dependency confidence

verb 1: loc IC→ verb 1: verb IC 0.78
verb 1: loc IC→ verb 1: ACT IC 0.74
verb 1: loc IC→ verb 1: pres 0.68
verb 1: loc IC→ verb 1: process 0.41

Table 4.13: Top extracted dependencies for ν = 0; θ = 0.1.
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dependency confidence

¬(verb 1: prog)→ verb 2: ACT IC 0.95
verb 1: ACT IC→ verb 1: prog 0.92

verb 2: prog→¬(verb 1: PAT IC) 0.91
verb 2: arg2 IC→¬(verb 1: PAT IC) 0.91
verb 2: argM IC→¬(verb 1: PAT IC) 0.91
verb 2: loc IC→¬(verb 1: PAT IC) 0.91
verb 1: pass→ verb 2: verb IC 0.91

verb 1: verb IC→ verb 1: prog 0.91
verb 3: ACT IC→ verb 3: prog 0.91
verb 1: arg2 IC→¬(verb 1: process) 0.90

Table 4.14: Top extracted dependencies for ν = 0.05; θ = 0.

If we compare Tables 4.11–4.13, we notice an evident difference in the top extracted de-
pendencies for different values of θ. Table 4.11 consists only of dependencies of the typeB → ¬A,
where, furthermore, particular features seem to be especially prone to being classified positively –
either as the antecedent (as the feature “verb 1: loc IC” here), or the consequent (here, “verb 1: PAT
IC”). is can be a sign of overtraining, which causes too high sensitivity to random co-incidences.
However, we can find this property also in all the other tables, so, probably, the algorithm was vul-
nerable to overtraining under all seings. is does not mean the algorithmwas bad – recall that it
performed very well in comparison to the reference result set. It rather implies that more training
data would be beneficial.

Regarding the type of extracted dependencies, it seems that while Table 4.11 is clearly
dominated by the type B → ¬A, Table 4.13 contains only the type B → A19 and Table 4.12
is mixed. is indicates that B → A be the type of dependency best represented in the data,
whereas B → ¬A the worst represented, yet the strongest (resulting in the highest confidence
values). Without further investigation, though, we cannot explain what causes this happening.

e results for ν = 0.05 (Tables 4.14–4.16) look very similar to those for ν = 0, at least
on the qualitative level – our comments from above paragraphs can be transfered here almost
verbatim, only noting a difference in some other implication types chiseling in to the top depend-
encies where θ = 0.e quantitative comparison of result sets for ν = 0.05 and ν = 0, truncated
only to dependencies with a confidence higher than 0.75, is shown in Table 4.17. It is somewhat
interesting that the more noisy seing always generates more dependencies with high confidence
than the no-noise seing. is could be an effect of the push to high confidences, created by the
reference result set used for evaluation. It is more interesting to see the MAP (mean average pre-
cision) and other scores corroborating that the robustness of extracted dependencies grows with
growing θ, negating the effects of ν.

Having compared the effects of different values of θ, and considering that noise needs
to be taken into account in later applications (i.e., we aim for ν > 0), the experiment described
in this chapter has determined which seings are the most promising. e best seings are the

19It is indeedB → A, and notA → B, because we always denoteA the feature that comes first in the entire feature
vector, the one at a lower index.
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dependency confidence

verb 1: ACT IC→ verb 1: prog 0.92
verb 1: verb IC→ verb 1: prog 0.91
verb 1: ACT IC→ verb 1: process 0.89
verb 1: loc IC→¬(verb 1: arg2 IC) 0.89

verb 2: verb IC→ verb 2: pres 0.86
verb 2: adv IC→¬(verb 1: loc IC) 0.85
verb 1: verb IC→ verb 1: process 0.83
verb 1: argM IC→¬(verb 1: PAT IC) 0.81
verb 1: loc IC→ verb 1: verb IC 0.81
verb 1: loc IC→ verb 1: ACT IC 0.77

verb 1.1: PAT IC→¬(verb 1: PAT IC) 0.77
verb 2: ACT IC→ verb 1: ACT IC 0.75

Table 4.15: Top extracted dependencies for ν = 0.05; θ = 0.05.

dependency confidence

verb 1: loc IC→ verb 1: verb IC 0.81
verb 1: loc IC→ verb 1: ACT IC 0.77
verb 1: loc IC→ verb 1: pres 0.71
verb 1: loc IC→ verb 1: process 0.40

Table 4.16: Top extracted dependencies for ν = 0.05; θ = 0.1.

θ ν # of results precision recall MAP

0
0 127 (100%) (100%) (100%)
0.05 648 4% 22% 5%

0.05
0 11 (100%) (100%) (100%)
0.05 12 42% 45% 33%

0.1
0 1 (100%) (100%) (100%)
0.05 2 50% 100% 100%

Table 4.17: antitative comparison of the results for ν = 0 and ν = 0.05, restricted only to those
with confidence greater than 0.75. e evaluation measures are evaluated with the
ν = 0 seing as the ground truth, and ν = 0.05 as its approximation.
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following:

training strategy 
ν 0.05

NMF algorithm pe-NMF
α ε
β 1
θ 0.05.

Table 4.18: e best seings for dependency extraction,
as determined in the present experiment.

4.6 Discussion And Future Work

In the previous sections of this chapter, we have described the initial experiment with
extracting feature dependencies, and reported on its outcomes. is opens the door to automating
the whole process, especially the feature extraction, to be able to scale up to much larger input
data. at will be the subject of the next chapter. However, there are a few potential improvements
of the process other than automation, and these are outlined below.

We should first discuss the fundamental decision, why we developed a completely new
procedure for relation extraction when there is a well studied problem with a very similar formu-
lation, known as association rule mining. e reasons are the following:

1. Our data have properties we wanted to account for in the relation extraction procedure.
Namely, we have a basic idea about the shape of the distribution of values of the features
we work with. As discussed in Section 4.3.3 and illustrated in Figure 4.2, the distribution
shape is expected to fit the parameterized PDF given by equation (4.3). e properties of
the distribution that we consider important are the point probability mass in 0, and the log-
normal tail.

While incorporating these distribution properties into the paradigm of prototype generation
is simple, and even required, we are not aware of a way of injecting such assumptions into
the paradigm of association rule mining.

2. e data we had available for this experiment were way too small for application of associ-
ation rule mining methods, as far as we know. Where spurious dependencies are practically
ignored in our approach due to noise added to the sampling procedure, association rule min-
ing would be likely to report them as true dependencies, leading to gross overfiing to the
training dataset.

On the other hand, association rules can have more antecedents in them, whereas we only con-
sidered simple implications with only one antecedent. However, be the approach whatever, much
larger data would be needed for extracting rules involving more variables, in order to keep the
number of purely random relations discovered reasonably low. As an alternative way to including
more variables, we suggest combining the simple implications into one whole in the following
paragraph.
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e reader will agree that the list of top n extracted dependencies, as shown for ex-
ample in Table 4.15, is hard to interpret. It would thus be useful to combine them into a larger
structure and discover repetitive paerns within that structure. One such basic paern would be,
for example, the equivalence of features. e equivalence ¬A ↔ B, for instance, would then be
identified by the edges B → ¬A and ¬A → B both having a high confidence assigned, possibly
requiring also the confidence of the other two implications, A → B and B → A, to be very
low. e results from our experiment actually feature at least one such equivalence, captured by
the third and the last dependency in Table 4.12. However, without the additional computational
processing of our results, this implied equivalence would be easy to overlook.

Eventually, we could think of reconciliating all the elementary dependencies into one
whole, either the strict structure of a Heyting algebra, or into a fuzzy variant thereof, weighted
with scores obtained from what was originally the confidence scores. is would provide one
consistent view of all dependencies. As noted in the previous paragraph, this structure could serve
for finding larger paerns of how information tends to be distributed over sentence, another way
to this target besides the one outlined in the introduction of Section 4.3.2.

Let us now turn our aention to the one goal we have missed so far. In Section 4.1, we
set the three main objects for our analysis to be: 1. level of detail; 2. focus shi; and 3. verb form.
e first and the third are well represented in our current analysis, however the second is not. To
properly account for focus shi, we would need to word-align different descriptions of the same
clip, and then determine the standard sentence template for descriptions of the clip. We motivated
this task earlier in Section 4.2.2, leaving the suggested method for now.

e standard sentence template for a clip could be found in the following way. We
would first need to find the key verb of the descriptions. Key verb was defined on page 51 as the
verb denoting the most salient event in the clip. At the same place, we noted that the key verb
appeared as the verb 1 in a large majority of descriptions in the annotated sample of MSR VDC.
Hence we suggest to use a heuristic that counts which verb appears most oen in the first position
in descriptions for the clip, and asserts that to be the key verb. en, it collects arguments that this
verb takes in different descriptions, and constructs the standard sentence template by enumerating
the verb and its arguments in the natural order (actor, verb, patient, effect, adverbial arguments).
Finally, a feature would be included that reflects the sentence focus, marking constituents that
appear earlier in the sentence than they should according to the standard sentence template.

Finally, let us revisit the estimation of IC. In our experiment, we approximated the IC of
a word w using ICs of its known senses, linearly combined with each coefficient being the prior
for the sense derived from SemCor (see equation (4.1) on page 50).

An obvious room for improvement here is deriving the sense priors from the corpus
we work with, or at least from texts from the same domain. is would require either extensive
manual annotations, or application of WSD to at least a part of the corpus.

If WSD was successfully applied to the corpus, it would actually assign each word a
single sense s and we would not need the formula involving sense priors anymore; the definition
of IC (equation (IC) on page 49) would be directly applicable. However, we could estimate the IC
even beer with WSD output in the form of the posterior estimate of P(s|w,C), with C denoting
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the context. In that case, the MLE estimate of the IC would be the following:

ICoptimal(w) = −
∑

s∈S(w)

p(s | w,C)∑
s∈S(w) p(s | w,C)

· log
2
p(s). (4.14)

ese formulae (equations (4.1) or (IC) with the adapted sense priors, or equation (4.14)) need to be
tested on real data before we can conclude which one performs beer. Althoughwe have discussed
their theoretical merits, their practical performance is probably going to be impacted heavily by
the performance of WSD.

Another idea for improving our IC estimates would allow us to include a majority of
adjectives and adverbs, even if using the same resource (WordNet InfoContent). We would assume
that adjectives and adverbs derived from nouns or verbs express a content similar to the noun or
verb’s content, differing merely in the syntagmatic properties. Under this assumption, we could
take their IC to be the same as the IC of the noun or verb they are derived from. However, in the
current version of this experiment, we simply ignored these parts of speech unless they happened
to be covered by WordNet InfoContent.



Chapter 5

Scaling Up

In this section, we shall discuss the next steps that would need to be taken to allow for
running the dependency extraction on larger input data without human intervention. e main
task that remains to be tackled is automation of the feature extraction. We will document what
we have done on the way to solving the task in the following sections, and outline what should be
done next. By the “larger input data” we want to be able to process, we always mean the whole
set of English descriptions from the MSR VDC corpus.

5.1 Word Alignment

As mentioned in Section 4.6 in the previous chapter, we need to word-align MSR VDC in
order to be able to capture the phenomenon of focus shi. However, word alignment also provides
an invaluable source of information for determining semantic roles, at least in our case of a parallel
corpus like MSR VDC. Semantic roles form the base for extracting the features as we have defined
them.

Let us now demonstrate howword alignment can be used to complement, or even super-
sede a standalone semantic role labeling (SRL) system. We will reuse the examples from Chapter 4:

Example 8.

1. A man is watching two bear cubs digging.

2. e baby bears dug in the dirt for insects.

3. It is under the roots of a big tree that the two baby bears are digging.

In order to extract the features of these sentences, we need to determine that two bear
cubs, the baby bears, and the two baby bears all fill the role of the actor of the verb to dig (and
similarly for all other semantic roles and other verbs). If we apply a standard SRL system, it
processes the three sentences separately, using syntactic and semantic hints to find the actor. It
does not take into account the fact that the words bear or bears denote the same thing in all the
descriptions.

However, the sentences of MSR VDC are simple enough that we can assume that the
same word (other than a stopword) occurring in multiple descriptions of one clip denotes the

88
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same object. If, furthermore, it belongs syntactically to the same verb in those descriptions, it is
almost certain that it fills the same semantic role.

We can take this line of thought a bit further. If we substitute the requirement for the
words in parallel descriptions to be the same by the requirement for them to correspond to each
other, the argument is still valid. Here, the motivation for word alignment arises – we need to
determine which words correspond across different descriptions.

ere are two possibilities how to incorporate word alignment. It can be used side by
side with a standalone SRL system, and their independent predictions combined to improve the
accuracy of SRL. Alternatively, and this might be the first thing to try, word alignment can be
used alone to approximate SRL. We think this is a promising approach, given the high number of
parallel descriptions for most clips in MSR VDC.

In the laer approach, word alignment itself would only determine what are the role
fillers and their correspondence across descriptions. However, it would not tell us what role they
fill. erefore, it would need to be helped by a heuristic to determine which role is which. Such a
heuristic could be based on simple observations, such as:

• If a verb is in the active voice, its subject is most likely its actor; otherwise, it is most likely
the patient, or maybe the effect.

• If there are two candidates for the two roles of the patient and the effect of the same verb
among descriptions of one clip, the word that appears more oen as the direct object of its
governing verb is more likely to be the patient.

• An adverb of place, which is syntactically a child of the verb, most likely expresses the locus
for the verb, and so does its whole syntactic subtree.

5.1.1 Setup of Word Aligning

We word-aligned the MSR VDC corpus using the Berkeley aligner.e training data for
the aligner comprised pairs of corresponding sentences from the training portion of MSR VDC
(700,990 pairs), and from MTA and MTC (283,044 pairs). 9 from all the training pairs (all 9 from
MTA or MTC) were not considered for training of the aligner due to a maximum sentence length
limit.

We additionally compiled lists of all words present in the input corpora and in the “test
– known” portion of MSR VDC, and fed the identity mapping of these words onto themselves into
the aligner as an a priori translation dictionary. Each of these identity mappings was assigned the
weight of 4, i.e. equal to the weight of 4 ordinary training observations. We did not use the “test –
unknown” portion of MSR VDC for training in any way. e identity mappings comprise 20,070
pairs for MTA and MTC, 4,687 pairs for MSR VDC, and they were also part of the training data.

Aer a cursory evaluation of smaller setups, we decided to use the following cascade of
models in the training: IBMModel 1 (8 iterations), IBMModel 2 (12 iterations), HMM (18 iterations,
taking syntax into account in the forward model). In each iteration, the forward and backward
models were trained jointly. e training consumed 16 GB of memory for 34½ days, running in 7
threads on a 64bit Intel® Xeon™ 3.16GHz machine with 8 cores.

We also trained the Berkeley aligner in the same setup only on the MSR VDC portion of
the training data, for comparison. is took an order-of-magnitude shorter time – mere 6 hours
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–, which corroborates our earlier theoretical reasoning in Section 2.2.5 (claiming that short length
of parallel sentences is an important factor for speed of word alignment), and provides strong
evidence for usefulness of the alignment refining step in preprocessing of MTA and MTC.

We postprocessed the output alignments by re-substituting the pronominal coreferring
expressions back in place of their coreferents, which had been substituted there prior to the word
alignment (see Sections 3.1.3 and 3.2.4). is required us to also restore the alignment for the
original wording (with the pronoun) from the alignment for the expanded version (with the core-
ferent). We solved this by simply gathering all correspondence links found for the expanded core-
ferent, and re-assigning them to the one pronoun.1

Although we have trained a word aligner, we have not yet evaluated its performance.
We are planning to build a gold-standard set of alignments for the “test – known” portion of MSR
VDC and evaluate both the training on MSR VDC only, and with MTA+MTC added, against this
gold standard. We expect to see a significant improvement for alignments when trained with
MTA+MTC, as opposed to not using MTA+MTC for training.

5.2 Extracting Verb Aspectual Classes

e set of features we designed presents one more challenge for automating feature
extraction, apart from semantic role labeling, which was discussed in the previous section. is
second challenge is determining the aspectual class of verbs, and we will present work we have
done to tackle the challenge in the present section.

We base this piece of research on results reported in Siegel, 1998. is work uses a set of
14 linguistic features to train classifiers of the aspectual classes. It evaluates several machine learn-
ing approaches, with decision trees performing the best in most of the classification subproblems.
Despite that the author provides the training data in form of the extracted features, we decided to
create a new gold standard training set for our purposes. e reason is, it seems the provided data
classify verb types rather than tokens, and we think that this introduces an inherent error.

Aer peeking into a few books from Project Gutenberg,2 we selected Alice’s Adventures
in Wonderland (Carroll, 1865) as the text to create the gold standard from. It seems as an ideal text
for learning aspectual classes, since it has very diverse verbs in this regard right from the begin-
ning, with the verbs occurring in interesting syntactic structures. e reader will best appreciate
it from a citation:

Alice was beginning to get very tired of siing by her sister on the bank, and of
having nothing to do: once or twice she had peeped into the book her sisterwas reading,
but it had no pictures or conversations in it, ‘and what is the use of a book,’ thought
Alice ‘without pictures or conversation?’

e 14 features for classifying verb aspectual classes, according to Siegel, 1998, are enu-
merated in Table 5.1. Because we were not sure whether to interpret the “participle” feature as
referring to the syntactic category of the verb (as in She came, crying.), or just to its morphology
(e.g., crying, also used in a context like She was crying.), we used two features for “participle” with

1Put in terms of graph theory, what we did is collapsing the nodes of every expanded coreferent into one.
2http://www.gutenberg.org

http://www.gutenberg.org
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feature example clause

frequency (not applicable)
not or never She can not explain why.
temporal adverb I saw to it then.
no subject He was admied to the hospital.
past/pres participle …blood pressure going up.
duration in-PP She built it in an hour.
perfect ey have landed.
present tense I am happy.
progressive I am behaving myself.
manner adverb She studied diligently.
evaluation adverb ey performed horribly.
past tense I was happy.
duration for-PP I sang for ten minutes.
continuous adverb She will live indefinitely.

Table 5.1: Linguistic indicators of verb aspectual class, according to Siegel, 1998.

these two interpretations. We extracted one more linguistic feature, the verb depth within the
syntactic tree, relative to other full verbs.3 We also extracted a few features of a more technical
nature, such as the number of roots of the syntactic tree of the sentence, mainly to be able to
discover defective parses.

As is clear from the definition of the features, extracting them presupposes knowing a
parse of the sentence. We obtained these using the RASP parser (Briscoe, Carroll &Watson, 2006),
asking it to output top 4 parses for each sentence. e features were then extracted from the parses
using an AWK script, aer which we manually annotated the verbs with their aspectual class.

We managed to annotate first 314 verbs, where we had to leave this task for more critical
tasks in the project. We found the annotation task notably hindered by the necessary searching for
the context of each verb being annotated. We therefore started developing an annotation interface
and believe this would be a necessity for creating a large enough dataset.

5.3 Conclusions

e research conducted within this Masters project presents a way for extraction of stat-
istical dependencies between arbitrary features. We specifically show how the procedure can be
successfully applied to linguistic features of one-sentence descriptions a) that capture the distribu-
tion of information (viz information content features for various constituents), and b) a few other
linguistic properties that need to be instantiated in any sentence (verb tense, aspect, aspectual
class). We planned to also include features reflecting the sentential focus and prepared the ground
for that, but have not completed this task.

3is is a similar concept to the verb positions 1, 1.1, 2.1 etc., used throughout Chapter 4. Here, though, we only
counted the level of nesting, without numbering the verbs w.r.t. the surface order.
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We have cleaned and processed the English portion of the Microso Research Video
Description Corpus, and Multiple Translation Arabic and Multiple Transation Chinese corpora.
ese resources were used as English bitext data, carefully optimised for the task of training word
aligners, and possibly also for extracting a synchronous grammar for learning to paraphrase.

As part of resource processing, we devised and implemented two sentence alignment
algorithms tailored for aligning of very small bitexts. We have shown their applicability to the
problem of refining sentence alignment of the MTA and MTC corpora, and report on their ac-
curacies, which reach 97% on our hand-annotated gold standard set.

As the central piece of our present project, we implemented a system for discovering
apparent dependencies (material implications) in the seing of the statistical learning paradigm.
e whole dependency extraction procedure consists of five steps:

1. feature extraction

2. smoothing and other transformations of the matrix of observations

3. generating artificial observations for training and evaluation purposes

4. training and selecting linear models

5. evaluation of the extracted dependencies using a gold standard reference set.

In the present work, we substitute the automated feature extraction by manual feature extraction
on a small sample of MSR VDC.is is the step that is the most urgent one to further work on. We
smoothedmatrices of observations usingNMF (non-negativematrix factorisation), and transformed
them so that each pair of features gets described in terms of a boolean table. ese transforma-
tions were needed to reduce the observation space dimension, as well as to facilitate analysing the
features in terms of implications between them. For generation of artificial feature observations, we
devised a parameterisable PDF (probability distribution function) to beer reflect different nature
of different features. e PDF is designed such as to be in accordance to the observed feature
values in real data. Different nature of features is also accounted for by a parameterised noise
model that effectively prevents extracting dependencies that have dubious support in the data.
We trained linear models using the Lasso method, selecting from them one best model for each
pair of features based on additional generated observations. For each model, we also compute the
confidence in its predictions, so that the dependencies it discovers can be assigned their appropri-
ate weight. Finally, we evaluate extracted dependencies under various seings of the experiment
against a reference set of dependencies. We analyse the evaluation results and report on the best
performing seings for the experiment run on the small data sample.

We suggest a number of ways how this work can be extended: weworked on automating
the feature extraction and outline what remains to be done; possible ways of improving the current
handling of the features are presented too; and finally, we describe how the extracted pairwise
dependencies can be postprocessed by combining them into a single dependency graph.

Once the system presented in this thesis is run on larger data (preferably on the whole
cleaned English portion of MSR VDC), it will extract information paerns present in the human-
generated video descriptions. ese will in turn be advantageous to use in generating video de-
scriptions by machine, so that content is transformed into text that sounds naturally. is state is
still a long way to go from where the present work finished, however, we provided a successful
proof of concept and built the foundations for implementing the system as fully automated.
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Appendix A

Sample from VDC Used in Chapter 4

1 A bird in a sink keeps geing under the running water from a faucet.

2 A bird is bathing in a sink.

3 A bird is splashing around under a running faucet.

4 A bird is bathing in a sink.

5 A bird is standing in a sink drinking water that is pouring out of the facet.

6 A faucet is running while a bird stands in the sink below.

7 A bird is playing in a sink with running water.

8 A bird is playing in tap water.

9 A bird is bathing in the sink.

10 A bird is taking a bath.

11 A bird is taking a shower in a sink.

12 A bird is showering in the sink.

13 e bird is taking a bath under the faucet.

14 A parakeet is taking a shower in a sink.

15 A bird gets washed.

16 e zebras are playing.

17 Two zebras are running and playing with each other in the grass.

18 Two zebras are fighting.

19 Two zebras playing with each other.

20 A pair of zebras interact on the savannah.

21 Two zebras are playing.

22 Two zebras are playing.

23 Two zebras are playing in a field.

24 Zebras are playing.

25 Two zebras fight with each other.

26 Zebras are socializing.

27 Two zebras are playing.

28 Two zebras play in an open field.
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29 Two zebras are playing around with each other on grassland.
30 Two zebras playfully nuzzled each other.
31 e two zebras are playing.

32 Two bear cubs are digging into dirt and plant maer at the base of a tree.
33 Two baby bears are digging.
34 Baby bears are digging.
35 A man is watching two bear cubs digging.
36 Black bear cubs are digging holes.
37 Two baby bears are walking around.
38 Bears.
39 A man is watching two baby bears.
40 Two bears dig around in a dirt pile.
41 Two bear cubs are digging.
42 Bear cubs are digging in the dirt.
43 Baby bears are scratching dirt.
44 Two bear cubs are digging in the dirt.
45 Two baby bears are standing beside each other in mud as one of them walks ahead.
46 e bears dug in the dirt.
47 e bear cubs are digging the ground.
48 Two bear cubs are digging.

49 A soccer player kicking a soccer ball to himself.
50 A soccer player is kicking a ball back and forth between his legs.
51 A man is kicking a ball around.
52 A man is kicking a soccer ball back and forth.
53 A man is passing a football to and from one leg to the other standing on a football field.
54 A man is practicing football.
55 A man kicks a soccer ball from side to side.
56 A man passing a soccer ball between his feet.
57 A person dribbles a soccer ball.
58 A person in blue is dribbling a ball.
59 A person is juggling a soccer ball with his feet.
60 A person is kicking a soccer ball back and forth between his feet.
61 A person is passing a soccer ball from foot to foot.
62 A person is playing football.
63 Someone is dribbling a soccer ball.
64 Someone is kicking a soccer ball.

65 A man cuts a long round green vegetable in half, then lengthwise, and scoops out the
inside with a spoon.
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66 A person is slicing a cucumber.
67 A person is slicing a cucumber.
68 A man cuts a cucumber in half and then scoops out the middle.
69 A person is cuing a central of a cucumber.
70 A man is slicing some vegetables.
71 A man is seeding cucumbers.
72 A man hollows out the inside of four pickles.
73 A man cuts a cucumber, and removes the seeds.
74 A man is slicing a cucumber lengthwise and scooping out the seeds.
75 A man is cuing up a cucumber.
76 e man cut the pickle in half and sliced it lengthwise before scooping the insides out.
77 e man is slicing a vegetable.

78 A man is performing on the electric guitar.
79 A man is playing a guitar.
80 A man is playing a guitar.
81 A man is playing an electric guitar.
82 A man is playing an electric guitar.
83 A man is playing electric guitar.
84 A man is playing guitar at a concert.
85 A man is playing guitar on a stage.
86 A man is playing guitar.
87 A man is playing the guitar on stage in front of an audience.
88 A man playing a guitar in front of a large crowd.
89 A man plays guitar.
90 An artist is playing guitar.
91 Jeff Beck is playing the guitar onstage.
92 Jeff Beck is playing the guitar.
93 Jeff Beck plays his guitar onstage.

94 Ingredients are being mixed in a mixing bowl.
95 A lady mixed up a baer.
96 A man is mixing baer.
97 A man mixes a baking mixture.
98 A person is mixing a bowl of ingredients.
99 A person is mixing ingredients in a bowl.
100 A person is mixing ingredients in a bowl.
101 A person mixes ingredients in a bowl.
102 A woman is mixing ingredients in a bowl.
103 A woman is mixing ingredients in a bowl.
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104 A woman is mixing ingredients in a bowl.
105 A woman is stirring a cookie dough mixture.
106 Awoman is whisking a mixture of sugar, buer and molasses in a bowl using a wooden

spatula.
107 A woman preparing oatmeal cookies.
108 Cookie baer is being mixed.

109 A man in a black cape causes a policeman to disappear and continues to walk aer
being shot several times by another man.

110 A man shoots a man.
111 A man is being shot.
112 A man wearing a black cape is walking toward a group of people and a man in the

group is shooting at him with a pistol.
113 A man is shooting another man.
114 A man sprays a dust at another man.
115 A man is firing at another man.
116 A man with a pistol shoots another man.
117 Two men are shooting a cloaked man.
118 A man is shooting another man with a pistol.
119 People are shooting a man.
120 Two men are shooting at a vampire.
121 e man tried to shoot the vampire.
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