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Abstract

Standard machine learning approaches in NLP require large amounts of data for train-

ing. These do not exist for the majority of languages. Creating annotated data, which

is crucial for supervised approaches, can be both expensive and time-consuming. The

result is that languages for which such data is missing may not receive the attention of

the language technology community. This thesis addresses the question whether it is

possible to build an accurate NLP tool for a low-resource language using small amounts

of data and some linguistic information. It also investigates whether such a tool can be

further adapted to perform on a genetically related language by harnessing the power

of crosslingual similarities between both languages.

We use an off-the-shelf NLP toolkit (OpenNLP) to train a number of models for

the morphological analysis and part-of-speech (POS) tagging of Zulu - a South African

Bantu language of the Nguni group with 10.3 million speakers. The training is done with

a linguistically informed semi-supervised approach, where each POS model is incremen-

tally augmented with different features derived by our linguistic knowledge of Zulu. The

models are then tested and compared. Some implications are then discussed, having to

do with the possibility to linguistically adapt and apply the best-performing model to

another, closely related Bantu language.
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1 Introduction

Africa is a continent which is linguistically very rich, and it is the home of many ethnic-

ities and many typologically diverse languages (the count of the latter is estimated to

be around 2,000). In the Republic of South Africa alone, there are 11 official languages,

of which nine are indigenous Bantu languages with a large number of speakers. Bantu

languages are among the better-researched languages in African linguistics. In terms

of language technology development, though, they are lagging behind and fall into the

group of low-resource languages.

There is no single reason why a language would be under-resourced. An endangered

language or one with a small number of speakers is often resource-poor, but there is no

one-to-one mapping between the number of speakers of a language and the availability

of resources for it. The South African Bantu languages are widely spoken (with for

instance 10.3 million speakers of Zulu and 7.9 million of Xhosa) but due to the social and

political past of South Africa they did not become strategic in education and commerce

until recent years. The resulting lack of linguistic resources, both primary (e.g. text and

spoken corpora, wordlists) and secondary (e.g. dictionaries, grammars, study guides),

and tools (e.g spell-checkers) holds back the development of African language technology.

Even though Zulu (the language of choice for this study) is an official language, and its

use is encouraged and aided in different ways, the fact remains that English is the

dominant language of trade, public life and education (Spiegler et al., 2010a).

Researching low-resource languages is worthwhile for more than one reason. Aca-

demically, in-depth research of lesser-known languages may give insight on linguistic

phenomena that are not encountered in better-researched languages such as English,

deepening our understanding of the capabilities of human language. African languages

are a prime example for this, as many of their typological characteristics are distinctly

different from those of other language families of the world.

From the point of view of society, resulting language technology (LT) applications
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may either benefit people directly, e.g. in the form of spell-checkers and translation

systems, or indirectly through supporting and encouraging further research. NLP tools

can for example motivate native speakers with either specialised knowledge or native

competence to participate in the research effort (Childs, 2003, p12).

Typological differences are not the only interesting research point of African languages.

Due to the strong social and cultural diversity, the historical contact with speakers of

other languages during colonialism, and also because of increasing urbanisation and

migration, the linguistic situation in African states is very dynamic. On the one hand,

African languages play a big role in the formation vernacular languages of the New

World (Childs, 2003, p.8)). On the other hand, new urban varieties of indigenous

languages develop (e.g., “Town” vs. “Red”, or traditional, Xhosa (Childs, 2003, p.8)).

In South Africa, code-switching and linguistic borrowing between English, Afrikaans and

the indigenous languages is widespread, giving rise to new research questions both for

general linguistics and for the natural language processing (NLP) community.

A decision that the language technologist needs to make when dealing with any lan-

guage, including low-resource languages, is how language-specific a solution to pursue.

Language-independent solutions, typically probabilistic, require a lot of data. When data

is available, probabilistic approaches are quick and inexpensive. Language-specific so-

lutions rely more on manually defined rules and constraints. Such rule-based approaches

can perform well for tasks with a limited scope. However, they don’t scale well, as devel-

oping rules is expensive and human intuition often translates badly into machine logic.

Rule-based systems also tend to be prescriptive in nature, rather than descriptive, i.e.

they describe how a language should be used, as opposed to how it is used by speak-

ers. Consequently, these systems perform poorly when faced with noisy real-world data

(De Pauw and de Schryver, 2009)

Scalability also depends on the task in question. While formalizing a language’s entire

syntax and handcrafting machine-readable rules for it can be very arduous and time

consuming, modelling the morphology of a language is often a lot more feasible (Roark

and Sproat, 2007). Still, the development of a mature and robust morphological analyzer

for a morphologically complex language is a lengthy and involved process. ZulMorph,

the UNISA protoype morphological analyzer for Zulu, took a decade to develop (Bosch

et al., 2008a).
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For such cases were scalability is an issue, a data-driven approach may be beneficial,

despite the previously mentioned issues. NLP offers many techniques for processing and

generalizing from large amounts of data. When data is limited, there are still a number

of machine learning approaches that can be employed in order to achieve satisfactory

solutions. With some linguistic expertise in the form of, for instance, understanding the

phonological, morphological, and syntactic structure of a given low-resource language,

standard machine learning approaches could be tailored to the needs of low-resource

NLP.
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2 Zulu and the Bantu Languages

This section presents a simplified overview of the Bantu languages, specifically their

morphology. It focuses on features common to the Bantu group as such - the Bantu

languages are tied closely together in terms of phonology, morphology, syntax, and

vocabulary - as well as on some features of the Niger-Congo family. We are primarily

interested in generally applicable features, as the objective of this thesis is to contribute

to approaches for low-resource languages which are both linguistically motivated and

yet not strictly language-specific.

2.1 Classification

The classification of African languages has been influenced both by geographical factors,

as well as by typological ones, and has been the subject of many controversies (Childs,

2003, p.18). Currently, African languages are classified in four phyla, or families: Niger-

Congo, Nilo-Saharan, Afroasiatic, and Khoisan. Niger-Congo is the largest phylum

and it covers, among many others, the Bantu languages, whose number is nearly 500

(De Pauw et al., 2012). Zulu is a major representative of the latter, together with other

widely spoken and researched languages such as Swahili, Youruba, and Hausa. Zulu

(also, known as isiZulu) belongs to the Nguni group of South-eastern Bantu languages

(Pretorius and Bosch, 2009).

2.2 Writing System

The orthographic system is important to consider when building NLP tools for Bantu

languages, especially when considering exploiting their similarities. Zulu and the other

three Nguni languages are written conjunctively: the morphemes are concatenated to

each other to build word forms. Other languages use a disjunctive system of writing,

where some morphemes are written separately from the stem, though still forming one

lexical item. Languages from different groups fall onto different points on the spectrum of
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conjunctive and disjunctive writing systems, which has implications for the development

of NLP tools for them. Taljard and Bosch (2006) discuss different approaches to word

class tagging (POS tagging) with respect to these differences.

An additional issue for the automatic processing of written Bantu languages is that

they often use a larger or smaller set of diacritics to denote some language-specific sounds,

such as the clicks for which these languages are popularly known. Linguistic texts may

additionally use diacritics to denote tone: Zulu and some other Bantu languages are

tonal languages, and in speec, tone would be an important feature for disambiguating

what would otherwise (in print) be ambiguous morphemes. The problem of text corpus

normalisation and diacritic restoration from a machine learning perspective has been

discussed by De Pauw and de Schryver (2009) (see chapter 3).

2.3 Morphology

Zulu and the other languages from this group are agglutinative: a surface word form

is composed of concatenated morphemes which encode not only inflectional and deriva-

tional information, but some syntax as well. The two most complex categories are the

nouns and the verbs, both interacting with each other and the other lexical categories

with a system of concords.

2.3.1 Noun Classes and Concord

The Zulu noun is composed of a prefix (which can often be further analysed) and a stem

which belongs to one of twelve classes (labeled 1-7, 9, 10, 11, 14, and 15). There are

stems which can be observed in more than one class, however; this is especially the case

because the singular and plural are separate classes. As Welmers (1974, p. 161) observes

about the Bantu:

“(it is) difficult to say that a particular stem ’belongs in a particular noun

class. Rather, a given stem ’occurs’, along with many other stems, in con-

junction with a particular prefix or pair of prefixes, and perhaps also with

other prefixes or pairs of prefixes as well. The classification is not inherent

in noun stems as such, but is rather associated with the prefixes.”

Generally, Zulu noun classes can be identified from the prefix of the noun, and they

affect the form of the other parts of speech. The latter phenomenon is known as concord
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noun class example noun class example
1 u-mu-ntu ’person’ 2 a-ba-ntu ’people’

u-0-baba ’father’ o-baba ’fathers’
3 u-mu-zi ’village 4 i-mi-zi ’villages’

u-0-nogwaja ’hare 2 o-nogwaja ’hares’
5 i-0-gama ’name’ 6 a-ma-gama ’names’
7 i-si-tsha ’dish’ 10 i-zi-tsha ’dishes’
9 i-m-pala ’impala’ 10 i-zim-pala ’impalas’

i-0-khwaya ’choir’ 6 a-ma-khwaya ’choirs’
11 u-0-phondo ’horn’ 10 i-zim-pondo ’horns’
14 u-bu-hle ’beauty’

u-0-tshani ’grass’
15 u-ku-dla ’food’

Table 2.1: Noun classes in Zulu, after Spiegler et al. (2010b)

or agreement. Table 2.1 appears in Spiegler et al. (2010b) and presents the Zulu noun

classes.

As was mentioned in the previous paragraph, the noun prefix is not always simple.

The class prefix, which is concatenated with the stem, can be preceded by a number of

other prefixes, which differ depending on the parts of speech with which the word is in

agreement. Bantu languages also allow for the concatenation of class prefixes themselves.

“There are numerous instances in Bantu languages of a single noun form

which includes two, or even three or four class prefixes in sequence. In such

cases, a stem with one prefix is taken as a ’base’, and to this entire base a

further prefix is added; such a form may then again be treated as a base to

which yet another prefix is added.” (Welmers, 1974, p.168)

It is also not the case that prefixes and stems are simply concatenated together. Many

prefixes have allomorphs which occur in specific contexts, for example before stems which

begin with a vowel (Welmers, 1974, p.166). The morphophonemic rules which govern

the alternations can be as simple as vowel harmony and “alliterative concord” (Welmers,

1974; Childs, 2003).
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2.3.2 Verbs and Concord

The verbs in Bantu language take the following form (taken from Childs (2003, p.104)):

(NEG–) SM – TMA – (OM–) Root (–Ext1-Ext2...) – FV

The verb root, which in Zulu can be as small as a single letter, is preceded by:

• SM - a subject marker,

• TMA - prefixes for tense, mood, and aspect,

• OM - an object marker.

It is followed by:

• Ext1-Ext2 - verb extensions

• FV - final vowel.

This is a very abstract picture, however, and the system of a specific languages can

depart from it. Zulu for example also has suffixes, such as the negative suffix or the

subjunctive suffix, in addition to the negative and the subjunctive prefixes.

The verbal prefixes SM, TMA, OM, and the optional NEG have grammatical functions

and realize the concord between the parts of speech. Thus, in the Zulu verb form akazi,

a- is the negation, -k- is the negative subject prefix for noun class 1, and -azi is the verb

root. -k- indicates that the subject is a noun from class 1. In contrast, the related verb

form abazi agrees with a subject belonging to class 2, as indicated by the prefix -b-. The

negative prefix and the verb root are the same.

The extensions (verbal suffixes) affect the semantics of the verb root, and are in

turn affected by the root semantics, as well as by other extensions that are used to-

gether (Welmers, 1974; Childs, 2003). Depending on the Bantu language, the number

of concatenated extensions can vary, but Welmers (1974, p.339) reports that up to four

extensions are sometimes acceptable - all modifying the meaning and the semantic force

of the others to a very nuanced effect. Zulu has six extensions: applied, causative, inten-

sive, neuter, passive, and reciprocal. Zulu verbal forms with one or two extensions are

common. Like other morphemes, their form can be affected by morphophonemic rules

(Welmers, 1974, p.337).
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Finally, as it is the case with noun bases, compositional verb bases are possible in

Bantu languages. Such a base is formed by a root and one or more bound morphemes:

inflections or other verb roots (Welmers, 1974, p.329).
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3 Related Work

3.1 Approaches to low-resource languages

Computational linguistics for low-resource languages is a complex area, because the

individual linguistic situations can vary widely. Depending on the endangerment sta-

tus of a language and its political and commercial importance, projects and priorities

vary: they may be as broad and fundamental as data collection, data preservation, and

language documentation, or as specific and time-sensitive as machine translation for

crisis-handling (Lewis et al., 2011). In recent years, low-resource languages have become

the focus of a number of major conferences, such as COLING 2012 and ACL 2013.

Streiter et al. (2006) addresses the differences between projects for high-resource and

low-resource languages from a functional perspective. Some of the contrasts he draws

are well-known: chronic shortage of data, loss of data because of legacy formats or fragile

storage options such as CDs, loss of access when the main researcher changes projects,

institutions, or stops working. This section echoes Bird and Simons (2003), who thor-

oughly review the effects that legacy formats have on language documentation - namely,

that painstakingly collected data gets lost because different scholarly communities use

incompatible software and formats. Where Bird and Simmons discuss best practices to

ensure data portability in general, Streiter outlines ways for small-language developers

to ensure that their data and research artefacts survive the end of the project - incorpo-

rating language packages into open-source software, and taking advantage of the various

licences under the “copyleft” paradigm.

What is particularly informative in Steiter’s presentation is that he discusses at length

the process of choosing a research paradigm and what decisions researchers in high-

resource and low-resource language projects need to make. “Big-language” projects

set trends in research and owing to the plethora or resources can and are expected

to experiment with cutting-edge (or simply fashionable) approaches. “Small-language”
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projects have to maximize their profit from the limited data they have, meaning that

they might have to settle for approaches that might have fallen out of favour. Work

in high-resource language projects is usually partitioned between different researchers,

experts in their discipline; work in low-resource language projects is performed by one

or two scholars who cover all positions - language expert, developer, annotator, etc.

3.2 Computational Approaches to Morphology

3.2.1 Finite-state Approaches

Roark and Sproat (2007) offer an overview of the history of computational morphology.

A significant portion of their account is focused on the finite-state approaches, which

they identify as the dominant paradigm in the discipline (Roark and Sproat, 2007, p.113).

They make a case for this aproach by pointing out that there are ways for finite-state

tools to handle even difficult cases of non-local dependencies.

In these approaches, an algebraic model of morphology is built. What can be modeled

is morphotactics, as well as rules which govern morphophonemic alternations, spelling

changes, or morphosyntactic behaviour. A system which has been of fundamental impor-

tance to finite state morphology is Koskenniemi (1983)’s KIMMO Basics, where “each

transducer reads the lexical and surface ’tapes’ simultaneously”(Roark and Sproat, 2007,

p.104)

3.2.2 Machine Learning Approaches

Machine learning approaches to morphology aim to induce morphology from corpora.

Supervised approaches involve presenting the learner with forms and patterns which

are known to be related. Unsupervised and semi-supervised approaches attempt to

induce morphology from raw corpora. More specifically, they are used to discover mor-

phologically related forms, or to infer through a process of generalization the rules for

generating new forms that are not present in the training data (Roark and Sproat, 2007,

pp.117-119).

(Roark and Sproat, 2007, p.118) point out that “[...]statistical n-gram language-

modelling approaches to morphology have been mostly restricted to agglutinative lan-
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guages.” They review the following two papers on machine learning for agglutinative

languages, which relate closely to our methodology.

Hakkani-Tür et al. (2002) present a solution for morphological disambiguation for

Turkish - a language with highly agglutinative morphology which leads to large mor-

phological tagsets. Inspired by statistical POS-tagging techniques, they segment the

word forms as if they were sentences and the morphemes were words. Then they use

SRILM to model trigram probabilities for the new corpus and tagset.

The second paper on n-gram models which Roark and Sproat present is Lee et al.

(2002). It models syllable trigrams for Korean, assuming “that syllable trigrams are

indicative of part-of-speech tags” (Roark and Sproat, 2007, p.117). Roark and Sproat

comment that this treatment of the problem for agglutinative languages is very apt,

because morphemes in these languages “obey ’word-syntactic’ constraints”.

3.3 Computational Morphology and the Low-resource

Languages

Creutz and Lagus (2005) report on a morpheme segmentation and morphology induc-

tion programme - Morfessor. It is language-independent, which is an advantage when

dealing with highly inflective languages such as Finnish and Turkish (which usually re-

quire language-specific morpheme analysers). The Morfessor employs a greedy search

algorithm to find a “morph” lexicon and to choose the most probable morphological

segmentation.

Biemann (2009) proposes an approach to unsupervised POS tagging that differs from

earlier approaches in that the tagset is acquired automatically from unstructured text.

This is achieved with a graph clustering algorithm and the resulting categories may be

different from those suggested by linguists. It is also different in that not every word is

necessarily tagged.

Petrov et al. (2012) contribute to the body of research on POS tagging for low-resource

languages by proposing a universal POS tagset, which is evaluated on an unsupervised

grammar induction task. The tagset consists of 12 coarse-grained categories, which
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leaves language experts the option to refine the categories and revise the decisions made

by Petrov and colleagues when the task calls for it.

3.4 The South African Situation

While there are many African languages which are resource-poor, there is an increase

in the computational research going on in the continent. Information about the ever-

growing pool of tools, resources, and academic texts is being collected in the Aflat.org

initiative. South African language technology in particular has been endorsed by the

country’s government as a priority domain. In 2010 this prompted a country-wide audit

of the state of Human Language Technology (HLT).

The outcome of the South African HLT audit is reported by Grover and Huyssteen

(2010), who conducted a survey on the technological representation of each of the official

South African languages with the purpose of giving recommendations for the future

development of South African HLT. It is a qualitative review of for-profit as well as

academic institutions. The authors surveyed different organisations about the type of LT

components that are available, their maturity, accessibility, and the range of languages

they cover. The results show that among the indigenous languages, Zulu and Xhosa are

the ones on which work has been more intensively conducted. Some possible reasons for

this are the increasing awareness of the large community of speakers and the importance

of these languages for trade and education. What also became apparent through this

survey, though, is that while there is work on basic components for text pre-processing

and morphological analysis for indigenous languages, work on higher-level components

is still limited.

Bantu languages are relatively well-researched from the perspective of general lin-

guistics. Because of their complex agglutinating structure, they favour computational

research within the rule-based paradigm - intensive work on South African Bantu lan-

guages with the Xerox xfst tool (exemplified by the corpus of work by Professors Sonja

Bosch and Laurette Pretorius at UNISA), as well some initial work on Swahili and

Tswana with the GF tool1. While models for some of the languages are limited, the

Nguni group is very well represented. There is a mature morphological analyser for

1http://www.grammaticalframework.org/lib/doc/status.html, December 2012
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Zulu (Pretorius and Bosch, 2003) and multiple developments of HLT components for

the other languages of the Nguni group (Bosch et al., 2007, 2008b).

In attempts to alleviate the resource situation for South East Bantu languages, Bosch,

Pretorius and colleagues research the possibilities for quick development and deployment

of morphological analysers for the Nguni languages, to which Zulu belongs. In Bosch

et al. (2008a) they describe an experiment in bootstrapping morphological analysers for

Xhosa, Swati and Southern Ndebele on the basis of the existing Zulu morphological anal-

yser ZulMorph. ZulMorph consists of two modules: one specifying the existing affixes,

roots and permitted combinations, and one for the morphophonological alternations.

The authors define bootstrapping as the iterative process of applying ZulMorph to the

target languages, analysing the errors, updating the analytical rules and lexicon (where

relevant), and analysing the development corpora of the target languages again. At the

first iteration ZulMorph is initially applied to a small 200-type parallel corpus. The

resulting errors stem mainly from unknown verb and noun roots, as well as incongruent

word structures. Next, a Xhosa lexicon is added, which supplies additional types for

the use of the Xhosa prototype as well as the the other target languages, and ZulMorph

is applied again. At the next step, all the missing roots from the first step are added.

Finally, additional rules for the target languages are introduced.

As Streiter pointed out, evaluation for low-resource languages (especially for hybrid

systems) is particularly difficult. Firstly because data is insufficient, and secondly be-

cause of the novelty of the methods there may not be informative evaluation standards

(such as the BLEU metric for machine translation, for instance). Nevertheless, Pre-

torius and Bosch (2009) succeed in designing a reliable evaluation process. They test

the prototypes on a 7000-type parallel corpus and compare the results to the ones from

the development corpus. The authors observe a decrease in performance (20%-40%),

which they attribute to new roots, named entities, and foreign language borrowings.

They conclude that while the rule-based modelling of ZulMorph was time-consuming

and challenging, subsequently adapting the morpological analyser for Xhosa, Swati and

Southern Ndebele was considerably quicker, and while tests on accuracy are still in

progress, the results are promising.

De Pauw and de Schryver (2009) make a case for corpus-based data-driven approaches

for African languages. The picture they draw for the language technology situation in
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Africa is one of a great mismatch between number of speakers and available language

technology resources, Swahili being one of the radical cases with 50 million speakers

and a limited number of resources. Another detail of this picture, though, is increased

Internet usage in the urban areas, the web being a huge resource of text data available

to be gathered through techniques such as web crawling and web scraping.

De Pauw and De Schryver explore data-driven approaches for various African lan-

guages, including some South African Bantu languages, and conduct three experiments

with limited data, which aim to assess the potential of standard machine learning ap-

proaches for low-resource African languages. The criteria for assessment are language-

independence, development speed, robustness, and empiricism, tested on various tasks

ranging from corpus normalisation to morphological anlysis and part-of-speech tagging.

The results show that even though having more data is preferable, accurate solutions can

be achived quickly with moderate amounts of data and can be evaluated with real-life

(performance) data.

The experiment which is relevant to our current project is the first experiment of

De Pauw’s and De Schryver’s: corpus normalisation. The research question is whether

diacritics lost during corpus collection can be restored from the orthographic context.

The authors set up a machine learning task, the training data for which is a corpus

with correct orthography. From this they identify the pairs of graphemes to be disam-

biguated. Then they remove all diacritics from the text and form classification features

- each character and its immediate context. The features are paired with the correct

classes, thus forming the training data for a memory-based learner. During the diacritic

restoration task, words from the test data are split and reanalysed into features in the

same way and are compared to the features in the training data. The class of each

entry in the memory which is the closest to the corresponding test data feature is then

assigned to the training feature. This approach was applied to seven African languages

from three different families, including the South African Bantu languages Northern

Sotho and Venda. In all cases, the memory-based approach beat the baseline, a simple

lexicon lookup of words.

De Pauw et al. (2012) also report on two very promising experiments on knowledge-

light approaches to the tagging of Bantu languages. They start from the premises that

machine learning approaches to POS tagging rely on the context of the token in order
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to disambiguate and tag it, and that there is little research on the linguistic features

- what kinds of features there are, how they are selected, and what exactly is their

contribution to the disambiguation task. The authors set up two machine learning

experiments for the tagging of four Bantu languages: Swahili, Northern Sotho, Zulu,

and Cilubà. The first experiment is on context-based tagging, for which they use a

memory-based tagger. The tagger employs two classifier for handling the known and

the unknown tokens, respectively. The two taggers use different sets of features. In

the case of Zulu, the classifier for known words takes into account the left context of a

token. The classifier for unknown words takes into account the suffixes, the prefixes, the

token, and its left context. All the features are acquired automatically, because they are

strongly dependent on the dataset. While the memory-based tagger performs very well

for Swahili, Northern Sotho, and Cilubà, its performance for Zulu is decreased because

of the many unknown words.

What is particularly encouraging, however, is the second experiment which uses a

Maximum Entropy classifier with a “Bag of Substrings” approach. This experiment has

the significant advantage that it does not necessarily require a morphologically annotated

corpus for training. Instead, the words are reanalyzed into all their substrings and fed

as features to the classifier. The classifier itself figures out what the salient features are.

Practically, the authors explain, this is a unigram tagger, but the unigram is supplied

as a series of substrings and the unigram class. The results for Zulu are very good. This

experiment also serves as a good point of comparison for the current project, since we

also approach the construction of a POS tagger from the point of view of morphological

analysis and feature selection.
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4 Methodology

4.1 The Part-Of-Speech Tagging Task

Part-of-speech tagging is a task for which we need a solution when building NLP tools

for low-resource languages. In the classical task of POS tagging, the input consists of a

tokenized corpus and a predefined tagset. The process of disambiguation and tagging is

done by a tagging mechanism (Jurafsky and Martin, 2008). Two of the most common

machine learning frameworks for POS tagging are Hidden Markov Models (HMM) and

Maximum Entropy (MaxEnt) models.

4.1.1 HMM tagging

HMM is a probabilistic sequence classifier. It infers the correct tag for a token in a

sequence, computing the probability from limited information - it cannot observe all

tags in a sequence. The model operates on two assumptions:

1. the probability of a state depends only on the previous state, and

2. the probability of an output observation depends only on the state that produced

the previous observation and not on any other state or observations.

The process involves a forward algorithm that computes the likelihood of an observation

sequence, a decoding task (commonly performed by the Viterbi algorithm), and learning

- performed by the Forward-Backward algorithm.Jurafsky and Martin (2008)

4.1.2 Maximum Entropy

Maximum Entropy (MaxEnt) is a framework whose task is to choose such a classifi-

cation, that is consistent with a predefined set of constraints, while making the fewest

assumptions about the data. In a POS tagging task the classifier extracts a set of fea-

tures from the input, where each feature has a weight that signals how strong the cue
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is. The intuition of maximum entropy is to build a distribution by continuously adding

features (Jurafsky and Martin, 2008).

4.1.3 Our Approach

Our approach is related to the “Bag of Substrings” approach that De Pauw et al. (2012)

take. We adopt the Maximum Entropy framework for POS tagging and explore different

configurations for features using substrings in addition to n-grams. The departure point

is that we do not use mere orthographic substrings. Instead, we train a morphological

analyser which supplies us with linguistically-plausible substrings.

We define “morphological analyser” as a pair of two related model: Morpheme De-

tector and Morpheme Labeler. A morpheme detector is a model which is applied on

tokenized word forms. It detects the morpheme boundaries on the basis of statistical

inference from training data, and outputs the word forms segmented into (predicted)

morphemes. A Morpheme Labeler is a model which has learned a set of morphological

labels (a labeling scheme) and relationships from morphologically analyzed data and la-

beled data. It is a sequence labeler like a POS tagger, and it labels segmented wordforms

(from the output of the Morpheme Detector) with the labels from the labeling scheme.

We propose standard POS tagging features (a token and a context window), simple

analyzed tokens (or unigrams in the sense of De Pauw’s and de Schryver’s), analyzed

and labeled tokens, and combinations of all. We also suggest strategies for future cross-

lingual adaptation.

4.2 Tools

OpenNLP Toolkit

This project does not intend to implement new machine learning algorithms or applica-

tions. Instead, the OpenNLP toolkit1 was used. It is a collection of machine learning

tools which allow for building models for various NLP tasks, for applying the models

on data, for evaluation and k-fold cross-validation. The model builders are based on a

Maximum Entropy implementation, but the POS tagger also allows for training a per-

ceptron model. We have used these tools and their output as a black box, only tuning

1http://opennlp.apache.org/
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for cutoff (the minimum number of times a feature needs to be seen by the learner before

it considers it in the training) and number of iterations.

OpenNLP MaxEnt Classifier

In addition to specialized tools, OpenNLP also includes a general Maximum Entropy

classifier. This classifier accepts custom-built features and can be used for a large variety

of prediction tasks. We used this implementation to train models with linguistically-

informed features. Additional tuning for cutoff, iterations, and smoothing is possible,

though we only experimented with the former two.

MaxEnt Evaluation Script

As the OpenNLP POS Tagger Evaluator tool is not compatible with the MaxEnt clas-

sifier, we needed a separate evaluation script to evaluate the output of the classifier

against a gold standard. We based our script on the source code for the OpenNLP POS

Tagger Evaluator, evaluating for tag accuracy.

Further Text Processing Tools

For basic text processing we used custom Python and Perl scripts, shell scripts, and the

tools in text editors.

4.3 Data

Three corpora were used in this project: the Ukwabelana corpus was used for the training

and testing of advanced models for morphological analysis and for POS tagging; a corpus

from Wikipedia was used to train basic models for sentence detection and tokenization;

the CTexT parallel corpus was processed with the purpose to be used later on in a

cross-lingual adaptation task, as well as for the future extension of the adapted system

via domain adaptation.

4.3.1 Corpora Description

Ukwabelana Corpus

This is an open-source morphological Zulu corpus consisting of 10,000 manually labeled

word types, 100,000 word types, 3,026 POS-tagged sentences, 30,000 raw sentences, a
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morphological grammar of Zulu in DCG format, a parsing algorithm for identifying

possible word roots, and a POS-tagger which “assigns the category to a morphologically

analysed word type.” (Spiegler et al., 2010a) It is comprised of fiction novel texts and

the Zulu translation of the bible. The corpus comes preprocessed without capitalisation

or punctuation, one sentence per line. The DCG is a format for grammars in Prolog.

The grammar and the parsing algorithm provided were used by the authors during the

annotation phase of the corpus creation.

CText Corpus

A proprietary corpus of parallel texts in ten South African official languages (excluding

English), collected from the official website of the South African government - South

Africa Government Online2. The Zulu part of the corpus contans36 838 tokens. The

corpus is collected by CTexT3.

Wikipedia (Wiki) Corpus

A toy corpus of 53 raw sentences (one per line), manually collected from the Zulu

Wikipedia4.

4.3.2 Data Split

The three corpora outlined in the previous section are used for distinct tasks in the

experiments. The basic data is split into a training set and a test set.

Sentence Detection

For the Sentence Detection model, the entire Wikipedia corpus was used as a training

set. The model was tested on a random subsection of the CTexT corpus. Due to the

simple nature of this model, no further divisions of the corpus were necessary.

Morpheme Labeler

A modified version of the morphologically analysed wordlist from the Ukwabelana corpus

was used for the Morpheme Labeler. The modification consisted of the following: where

the Ukwabelana wordlist gives alternative analyses for a word (listed on the same line,

2www.gov.za
3http://www.nwu.ac.za/export/sites/default/nwu/p-news/pm_808_a.html
4http://zu.wikipedia.org/wiki/Ikhasi_Elikhulu
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separated with a comma), we took each analysis as a new corpus entry and transferred

it to a new line. This way, the wordlist expanded from 10,000 to 10,188 entries (lines).

Two-thirds of the list (6,792 randomly selected lines) formed the training set, which will

be referred to as the Original Labels Training Set. One third (3,396 lines) formed the

development set, to be referred to as the Original Labels Development Set. The two sets

were further modified by replacing the original morpheme labels with the labels from

the conflated labeling scheme. The resulting training and development set are thus to be

referred to as the Conflated Labels Training Set and the Conflated Label Development

Set.

Morpheme Detector

For the Morpheme Detector, the Conflated Labels Training Set and the Conflated Label

Development Set were altered by replacing labels with OpenNLP’s native token SPLIT

tag - a special tag, used for marking token boundaries during a tokenization-learning

task. The two new sets will be referred to as Detector Training Set and Detector Devel-

opment Set.

Part of Speech Tagger

For the POS taggers, the 3,026 sentences from Ukwabelana were used. The sentences

were automatically randomized, after which 60% were designated to be a POS Training

Set, and 40% a test set.
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5 Workflow Description

The pipeline for POS tagging a text in this project consists of the consecutive application

of several models on a corpus. The corpus to which we apply these models is the CTexT

corpus of Zulu. The workflow itself involves three stages: Stage 1 is preprocessing steps,

Stage 2 is morphological analysis, and Stage 3 is POS tagging. Stages 1 and 2 will be

covered in this chapter, while stage 3 will be discussed in detail in a chapter 6.

5.1 Preprocessing Stage

The CTexT corpus comes as a run-on text that in the given form cannot be simply

plugged into a pipeline. To be used, it needs to be converted to a format that is

suitable for the various NLP tools. This process of convertion is known as preprocessing

and involves identifying sentence boundaries (Sentence Detection), and word forms or

tokens (Tokenization). In addition, some further processing must be done, so that the

data is as similar in format as the data on which the models were trained. In our case

that meant removing capitalisation (even though capitalisation provides extra context

in languages written with the Latin alphabet) and if necessary conflating or removing

punctuation and End-of-Sentence and Start-of-Sentence markers (henceforth: EOS and

SOS markers).

5.1.1 Sentence Detection

Sentence Detection takes raw text input and determines sentence boundaries on the

basis of a trained model. The output of the Sentence detection task is one sentence per

line. In our case that also includes sentence segments such as the text chunks held in

the bullets of a bullet list, between semicolons, or a semicolon and an end of sentence

punctuation mark.

A model for sentence detection is one of the simplest models to train with the

OpenNLP toolkit. For languages written like English, usually only several dozens of
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sentences suffice to train a reliable sentence detector. As the writing system of Zulu

was designed by European missionaries who followed the linguistic traditions of their

languages - Latin alphabet, capitalized start of sentences, end-of-sentence punctuation

- it was to be expected that the issues should be the same and that sentence detection

models for English and Zulu should perform similarly.

While the model is not demanding, the training data still needs to conform to a certain

format: to have once sentence per line and to include both positive and negative examples

of sentence boundaries, so that the learner can disambiguate. As the Ukwabelana corpus

has been stripped of both capitalisation and punctuation, it was unsuitable for training

in this form. In order to avoid using the CTexT data, we had to work around this

problem in a different manner. During this development phase, several models were

built with the following data:

Simple Wiki corpus

We used the manually collected Wikipedia corpus with original Zulu capitalisation and

punctuation. It consist of 53 lines with both positive and negative examples of sentence

boundaries. After trying out several parameter configurations, we ended up with a

model trained for 500 iterations with a cutoff for the features set on 2 (i.e., a feature

needs to be seen at least twice in order to be considered in the training). Due to the

discrepancies in punctuation between the government website and Wikipedia (an issue

of domain and style), some possible EOS markers such as the question mark (?) were

missing in the training data. When applied to the CTexT corpus, this model recognised

2,066 sentences.

Augmented Wiki corpus

We expanded the aforementioned Wikipedia corpus with a small set of auxiliary sen-

tences: we repeated ten of the Zulu sentences, but used alternative punctuation to mark

the end, in order to provide for EOS punctuation that is only seen in the CTexT data:

semicolons and question marks. While these sentences may or may not be grammati-

cally correct, they are formally acceptable, as they allow the model learner (which only

looks at the EOS markers) to disambiguate between true and false sentence boundaries.

Training with different parameters did not make a difference: with cutoff varying be-

tween 5 and 5 and for 100 to 500 iterations, when applied to the CTexT data, though,

this model only found 1964 sentences.
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Combined Wikipedia and Ukwabelana corpus

The model was trained on the original data from Wikipedia, combined with an auxiliary

set: the first 5,500 sentences from the Ukwabelana corpus, with manually added EOS

marks - 1,000 question marks, 1,000 semicolons, and 3,500 full stops. After training a

model for 500 iterations and no feature cutoff, the CTexT corpus was processed. 2067

sentences were found - one more than with the Simple Wiki corpus.

English model

Finally, the English sentence detection model which comes with the OpenNLP toolkit

was applied on the CTexT data. Its performance was completely comparable with both

the Simple and the Combined corpus models. It recognised 2,043 sentences.

After examining the output files, we concluded that the models perform comparably,

not missing any existing sentences but occasionally splitting unnecessarily when encoun-

tering URLs and other non-typical sequences, such as: 607.04.10(03), 607.04.10(09) and

607.04.10(12). Eventually, the Combined model was used, the justification being that a

model which detects more sentences could double up as a chunker, splitting longer se-

quences and forcing the Maximum Entropy analyser (used later) to consider immediate

neighbouring tokens first and foremost.

5.1.2 Tokenization

Once sentences and other large chunks were detected and empty lines removed, the

corpus needed to be tokenized. A tokenization model was trained on the Wiki corpus,

which was extended with examples of email addresses and URLs from the CTexT data,

where they appear infrequently, as well as with two CTexT examples of single quotation

marks and ellipsis (...). Finally, two auxiliary sentences containing question marks were

randomly selected from the Combined corpus and added to the training data. Examples

of loan words with native affixes (signalled with a dash), e.g., e-Afrika or i-website were

left unsplit at this point.

Several models were trained with different cutoff values (0 to 2) and number of iter-

ations (100 to 500). Three-fold cross-validation showed that training with no cutoff for

100 yields the highest scores: Precision: 0.9519, Recall: 0.9387, F-Measure: 0.9452. The

folds are limited to three, because of the small amount of training material.
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Applying the model on the CTexT corpus, tokenization was carried out correctly,

except for isolated cases where an opening parenthesis or an opening single quotation

mark was not separated, as well as most forward slashes (e.g., kwh/kl). The tokenizer

also had trouble with cases where there is a multi-word expression which is also a foreign

loan term, hence written with a dash and quotation marks. Such cases were either left

unchanged, for example yi-’duty to maintain’, or were partially tokenized, e.g., le-’Save

as ’. The corpus itself is not consistent, as such expressions also occur without quotation

marks, as is the case with lwe-Adobe Acrobat Reader 4 or u-Director-General. As Taljard

and Bosch (2005) point out, the South African Bantu languages as a whole are yet to

become more standardised with respect to their orthography and spelling rules (Taljard

and Bosch, 2006).

The fact that English expressions would be treated as native words later on was not

seen as a problem, since loan words can be incorporated very deeply into the language’s

system. (Welmers, 1974, p.182) discusses this issue with examples from KeRezi:

“If the first syllable of the foreign word is sufficiently reminiscent of a prefix

in the adopting language, the word is likely to be taken into the class for

which that prefix is appropriate, singular or plural, and the pairing prefix is

then also used with the reanalyzed stem, as in the case of the pair /i-mato,

to-mato/.”

Additional preprocessing

The preprocessing was completed by clearing up the rest of the tokenization errors: split-

ting parentheses, quotation marks, and forward slashes, and by removing capitalisation.

Eventually, punctuation that does not mark a sentence boundary was removed: commas,

parentheses, quotation marks, bullet points, slashes and sentence-initial whitespace. At

this step, dashes occuring within a word form were deleted and the substrings were

concatenated. We chose this so that during the next step (morpheme detection and

labeling) these word forms are analysed as if they are native Zulu words. Stand-alone

English words did not receive special treatment at this point, so they introduce noise.

However, the problem of code-switching between different South African languages is a

complex one and lies beyond the scope of this thesis. Finally, digits were removed.
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5.2 Morphological Analysis

The second stage of the project involves the development of a morphological analyser.

This set of models involves a lot of linguistically interesting information: information

about the structure of Zulu words, morphological ambiguities, and fuzzy morpheme

boundaries. There is a reason why morphological analysis makes sense as a first step.

Because Zulu is an agglutinating language which is also written conjunctively, it is often

the case that a corpus would feature a large number of long, morphologically complex

words, that only occur once: a weak type token relationship. However, “the output of

a morphological analyser is a rich source of significant information that facilitates the

identification of word classes”(Taljard and Bosch, 2006, p.125).

A large part of the computational work on Zulu involves hand-crafting complex finite-

state models of the Zulu morphology and morphotactics (cf. S. Bosch). Alternatively,

De Pauw et al. (2012) suggest that linguistically motivated morphological analysis may

be a step in POS tagging that can be avoided. Instead, they suggest a pseudo-linguistic

word segmentation approach they dub the “Bag of Substrings” approach.

Often in a Zulu word, there is a morpheme that gives enough information on the

word category (Spiegler et al., 2010b). It is then reasonable to perform morphological

analysis first. The Ukwabelana corpus includes a morphologically analysed word list,

which is suitable for training a Morpheme Detector (and subsequently, a Morpheme

Labeler). The analyser consists of two models: a model for morpheme detection, which

takes a word form as input and outputs a segmented version of it, and a morpheme

labeler, which takes the segmented word form and applies a morphological label to each

morpheme.

5.2.1 Morpheme Detector

In order to achieve morpheme detection, we took a morphologically analysed word list

(one word per line) and treated each word as a sentence, similar to Hakkani-Tür et al.

(2002). The Morpheme Detector was trained with a cutoff of 2 for 300 iterations. After

ten-fold cross-validation with the OpenNLP cross-validation tool, the reported precision

is 0.8156 and the recall 0.8094, with the F-Measure being 0.8127 (81.27%).
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False negatives False positives
504 a 656 a
274 i 246 e
262 e 128 el
161 o 116 i
135 b 113 n
134 el 101 o
114 y 95 w
113 s 91 ba

Table 5.1: Ambiguous morphemes in Zulu.

In order to understand the issues of the language at hand, we analysed the morphemes

which the Morpheme Detector misclassified. We found that there is small number of

morphemes which are highly ambiguous, appearing both within the numbers of the false

negatives and the false positives. These morphemes can be seen in table 5.1.

What one notices first is that almost all of these morphemes are vowels. This is not

surprising, because two of the characteristics of Zulu are that nouns have an initial vowel

(cf. table 2.1), and that verbs end in a vowel (often -a). The negative prefix for verbs

is also a-, and in general morphemes in Zulu exhibit vowel harmony, so one expects to

see morphemes whose allomorphs are vowels.

These ambiguities may present a problem for the Morpheme Labeler, which has to

associate these morphemes with a large number of tags. A big enough corpus would

alleviate the problem by providing sufficient data for the learner to infer relationships.

For a small corpus like this, though, one would need to find alternative approaches. Our

solution was to attempt to reduce the tagset itself. The following section addresses this

issue in greater detail.

5.2.2 Morpheme Labeling

POS Tagger as Morpheme Labeler

As a POS tagger functions as a sequence labeler, assigning tags to a sequence of to-

kens, it can be used to label morphemes as well, provided that there is training data.

The morphologically analysed word list that was used in the training of the Morpheme

Detector served as the basis for developing training data for the labeler as well.
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Original Labeling Scheme

At this point a decision had to be made: to use the original label set of the Ukwabelana

Corpus or to design a new one. The argument in favour of the original label set is that

it has been tailored to the specifics of Zulu. It was “[...] based on the idea that each

morpheme in a word should be labeled, even when words belong to a very restricted

class” (Spiegler et al., 2010a). The resulting scheme consists of 206 morpheme labels.

The original set thus carries an immense amount of linguistic information. This means

that a dedicated language technologist can design many feature sets, ranging from very

specific to very abstract ones, and use them to augment or bias higher-level applications

(e.g., a POS tagger, a syntactic parser, etc.) in various ways.

The drawback of the original labeling scheme is the large number of labels. While this

may be necessary for rule-based applications which benefit from fine-grained distinctions,

given the small dataset we have, we feared that the large label set would exacerbate the

problem of data sparsity: the ambiguous morphemes that the Detector has found would

be associated with a large number of tags, but there would not be sufficient data for

the learner to learn to disambiguate between the different cases. In addition, a small

number of tokens and a large tagset would result in a large number of singleton pairs.

Again, this would mean that subsequently, the POS tagger would not be able to infer the

necessary relationships from the morphological data and would fail to associate certain

morphological relations or sequences with the respective parts of speech.

Conflated Labeling Scheme

“The degree of granularity of a tagset should be appropriate to the purposes of the

tagged corpus”(Allwood et al., 2003)1. In accordance with that idea, we folded the

original label set of the Ukwabelana corpus to 66 new labels. The labels that were

affected are primarily the affixes for the noun classes and their object concords: where

the Ukwabelana label set has a separate label for each affix, we only kept a general

label for the affix function. For example, where the original label set had 12 labels

for demonstrative agreement (denoted d1 to d15 ), we only have a single label da for

demonstrative agreement.

1Paraphrase quoted from Taljard and Bosch (2006)
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Original Scheme Conflated Scheme

Type Error count Type Error count
adv 63 adv 66
ar 31 ar 36
gClass 53 g 33
iClass 146 i 71
iv 25 iv 22
iv-nClass 43
locpf 21 locpf 16
n 65 n 46
nr 72 nr 77
oClass 94 o 56
pClass 97 pp 56
sClass 79 s 44
vr 33 vr 35
zClass 72 za 28
TOTAL Errors 1,209 TOTAL Errors 856

Table 5.2: Mislabeled types. Note: *Class refers to any Zulu noun class 1 to 15

Training, Cross-Validation, and Error Analysis

We trained two Labeler models - one with each labeling scheme - with a cutoff of 2

for 300 iterations, as these parameters gave the best accuracy scores in ten-fold cross-

validation. The estimated accuracy immediately showed that a coarser-grained label set

performed better than a finer-grained one. The accuracy of the Original Scheme model

is 82.55%. For the Conflated Scheme model, the accuracy climbed up to 88.48%. These

models were trained with the OpenNLP POS Tagger learner with in-built features, so

we did not have any control over the feature selection.

The wrong predictions we compared in terms of errors per token and errors per

type. The Original Scheme model labeled 11,437 tokens incorrectly, while the Con-

flated Scheme model mislabeled only 7,548 tokens, which is a vast improvement. Many

of the mislabeled morphemes are the ones which were also problematic for the Morpheme

Detector.

The types of errors that occur are represented by the pairs of reference tags vs. pre-

dicted tags. Again, where the Original Scheme labeler makes 1,209 errors, the Conflated

Scheme labeler only makes 856. Some type of errors were slightly increased, such as

those the the label ar and nr. However, for other types the errors was much lower, for
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instance for the iClass (146), which dropped by half to 71, for n (from 65 to 46), and for

z (from 72 to 28). Some more examples can be seen in table 5.2.
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6 Part-Of-Speech Tagger

This section presents the range of experiments on the final work bundle in the current

project - the training of a custom part-of-speech tagger for Zulu. Two ideas were of

vital importance for this: a negative and a positive view. On the negative point of

view, our work was motivated by the intuition that a POS tagger which bases its feature

generation of European languages could not handle the complex relationships inherent to

Bantu morphology, especially in a low-resource situation. On the positive side, work by

De Pawl and de Schryver on resource- and knowledge-light approaches to POS-tagging

for African languages showed that with an appropriate machine learning algorithm, it

is possible to build a POS-tagger which relies on random orthographic substrings.

Therefore, we decided to explore further De Pauw’s and de Schryver’s concept of

what they call the ”Bag of Substrings”, and attempt to build a tagger which takes

linguistically-motivated substrings. In other words, we wanted to make a tagger which

employs the information that our Morpheme Detector provides. Moreover, we wanted

to attempt including even more complex features, which take into account not only

which substrings carry linguistic information (i.e. are actual morphemes), but also what

kind of information is encoded (i.e. what morphological label has been assigned to each

morpheme by the Morpheme Labeler).

In order to investigate the different scenarios, we trained three baseline systems and

a number of augmented systems with different feature configurations. All the systems

were trained on the same training material from the Ukwabelana corpus: 60% of the

POS-tagged sentences (12,595 tokens), a random selection. They were all tested on the

remaining 40% (8821 tokens). The test consisted of applying the tagger on an unlabeled

variant of the test data, and then comparing the predicted tag for each token to the

original tag of the token. Thus, the 40% of the data served as a Gold Standard, and

this is how we are going to refer to the list of token and tag pairs from this data split.
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The tagset consists of 16 tags/outcomes. All systems were trained for 500 iterations

and no cutoff as initial trial experiments showed that the final results are not influenced,

although the probabilities of individual tags vary a little. In order to keep track of all sys-

tems, we adopted a naming convention, where each system is named alphabetically after

the NATO (military) alphabet: Alfa, Bravo, Charlie, etc. When within a system several

models were trained with different configurations, these were named alphabetically with

human names (Annie, Bobbie, Carrie, etc). Thus, for example, system Delta has the

submodels Delta-Annie, Delta-Bobbie, and so on. The different feature configurations

are in table 6.1

6.1 Baseline Systems

6.1.1 OpenNLP POS Tagger with Features for English (Alfa)

Experiment setup The first baseline system is for the OpenNLP tagger with fixed

features for Indo-European languages. The output of the tagger was compared agaist the

Gold Standard (the same tokens, with the tags that they came with from the Ukwabelana

corpus).

Results Out of 8,821 tokens, 2,066 were matched correctly. The large majority (6,755),

however, were mismatched. The total accuracy for this tagger is 23.42%.

6.1.2 MaxEnt Classifier for Unigrams (Bravo)

Experiment setup This baseline aimed to asses how well the tagger can predict when

all the context it sees is the token itself.

Results Surprisingly, this system performed much better than the OpenNLP POS

tagger, with 69.50% accuracy, calculated in the same way. 6,131 tags were correctly

matched, while 2,690 were mismatched.

6.1.3 MaxEnt Classifier for Trigrams (Charlie)

Experiment Setup This system takes as features the token and its left and right neigh-

bour. For this experiment we added with end of sentence and start of sentence tokens,

but in later n-gram experiments we discarded this information.
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Results With trigrams, the accuracy jumped by over 10% in comparison with the

unigram system. With an accuracy of 80.98%, 7,143 of the tags matched the Gold

Standard tags, and 1,678 were mismatched.

6.2 Augmented Systems

These systems build upon the baseline systems in that they include additional mor-

phological information. The first set of systems experiment with adding morphemes and

some rudimentary information about their position in the word. The second set expands

this idea by combining morphological information to token bigrams. The third set also

attempts to improve the tagger with including labels for each morpheme.

6.2.1 Unigrams with Morpheme Detection (Delta)

Delta-Annie

Experiment Setup This is the first of the experiments with the linguistically-motivated

output of the Morpheme Detector as additional context. The input features give the to-

ken first, then the morphemes and the tag for the token without encoding any additional

information.

ngisho ngi sho v nje nje adv

Results Already, there is an increase in the accuracy to 88.73%. 7827 of the tags are

correctly matched and 994 are wrong.

Delta-Bobbie

Experimental Setup This is the same sequence of unigram and morphemes, but some

additional information is passed by distinguishing the first morpheme from the token.

The intuition behind this feature is that some prefixes that come in the leftmost position

would be indicative of certain parts of speech, for instance the prefix for negation - of

verbal forms.

ngisho Start=ngi Morph=sho v ukuba Start=u Morph=ku Morph=ba conj

Results The accuracy rises by 2% to 90.96%, which we could consider an indication

that at least some connections are made. 8,024 are correctly matched tags and 797

mismatched.
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Delta-Carrie

Experiment Setup This purpose of this feature configuration is to establish if some

part of the word segmentation can be discarded. The feature consists only of the leftmost

and rightmost morphemes.

ngisho Start=ngi End=sho v nje Start=nje End=nje adv ukuba Start=u

End=ba conj

Results The accuracy drops by one percent but still this feature configuration remains

above the baselines. The tagging accuracy is 89.80%, 7,922 tags match the Gold Stan-

dard, and 899 are mismatched.

Delta-Eddie

Experiment Setup This feature set combines the information from Delta-Bobbie,

-Carrie, and -Donnie: we provide the entire set of morphemes, but also give promi-

nence to start and end morphemes, which could be indicative of concordat prefixes and

sufixes.

ukuba Start=u Morph=ku End=ba conj abonge Start=a Morph=bong End=e v

Results This is the best-performing feature set: the accuracy is 92.31%, the number

of tags that match is 8,143, while for the mismatches it is 678.

6.2.2 Trigrams with Morpheme Detection (Echo)

Experiment Setup

This feature set diverges from the other sets, because it combines a lot of different

information. There is the morphological analysis, prominence of first, secon and last

morphemes, as well as previous and next token.

ngisho Start=ngi Second=sho End=sho Next=nje v nje Start=nje End=nje

Previous=ngisho Next=ukuba adv ukuba Start=u Second=ku End=ba

Previous=nje Next=abonge conj

Results

Given such a detailed set, we feared that the inherent relationships may be introducing

more noise to the system. There is a drop in accuracy (91.13%), but the system is still
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among the top performers. There are 8,039 correctly matched tags and 782 mismatched

ones.

6.2.3 N-grams with Full Morphological Analysis (Foxtrot)

These systems all include a new element - morpheme label information. The system is

incomplete, in that we have not yet experimented with different formats for introducing

the morpheme labels. Currently, in every model the feature Label is paired with the

combined form morpheme label. As the classifier is very sensitive to input form, it is

unclear whether the resulting low scores are due to formatting issues or to problems

typical for linguistic data.

Annie

Experiment Setup This system includes the full morphological analysis with labels.

ngisho Label=ngi_i Label=sho_vr Start=ngi Morph=sho v nje Label=nje_ar

Start=nje adv ukuba Label=u_iv Label=ku_n Label=ba_o Start=u Morph=ku

Morph=ba conj

Results With the accuracy dropping down to 64.80%, this is still the best system of

the four. 5,716 tags were correctly matched and 3,105 were mismatched.

Bobbie

Experiment Setup This feature set has features for the full analysis with the first

morpheme prominent, and labels for the morphemes.

ngisho Label=ngi_i Label=sho_vr Start=ngi Morph=sho v nje

Previous=ngisho Label=nje_ar Start=nje adv

Results The accuracy drops to 64.08%. There are 5,653 matched tags and 3,168 un-

matched tags.

Carrie

Experiment Setup This set uses a bigram setup, i.e. in addition to the full labeled

analysis it also knows the next token.

ngisho Next=nje Label=ngi_i Label=sho_vr Start=ngi Morph=sho v nje

Next=ukuba Label=nje_ar Start=nje adv
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Results Accuracy drops to 63.29%. Tag matches: 5583. Tag mismatches: 3238.

Donnie

Experiment setup The setup is the same as in Carrie, but with trigrams.

ngisho Next=nje Label=ngi_i Label=sho_vr Start=ngi Morph=sho v nje

Previous=ngisho Next=ukuba Label=nje_ar Start=nje adv

Results Again accuracy drops to 62.79%. Tag matches: 5539. Tag mismatches: 3282.

6.2.4 Comparison of Baseline and Augmented Systems

The classifier performs best when it has information both about word structure, in the

form of linguistically-motivated substrings, and of the immediate context. In terms of

morphological analysis, fewer but more precise linguistic features are better than many

but confusing features. They do not need to be as precise as rules, but basic morpho-

tactics needs to be encoded, such as concord between starting and ending morphemes.

6.2.5 Linguistic Substrings vs. ”Bag of Substrings”

While we cannot directly compare our systems with the ”Bag of Substrings” system, be-

cause of different evaluation metrics, there are many ideas of De Pauw’s and de Schryver’s

that cross with our issues here. First of all, even though they use automatic feature selec-

tion and we craft out features, we agree that a knowledge-light approach where substring

information is used without morphological labeling (systems Delta and Echo) is a robust

and viable approach. Another point of convergence is the form of features: detailed lin-

guistic information may actually be unsuitable for such approaches: the system Foxtrot

is a warning against overuse of complex linguistic features. More abstract features about

position of salient morphemes in a language fare better (cf. the memory-based learner

of De Pauw and de Schryver, and our systems Delta and Echo).

An issue that still remains to be investigated more in-depth is the importance of

context. With the memory-based system and the ”Bag of Substrings” system context

appears to be only of partial importance. With our MaxEnt approach, adding immediate

neighbouring token context seems to improve the accuracy, as long as the morphological

information is kept on the level of detected morpheme boundaries (i.e., no morpheme

labeling).
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7 Steps Towards Cross-Lingual

Adaptation

The larger context for the current project is to explore the possibilities for cross-lingual

adaptation of POS taggers and morphological analyzers between the Bantu languages.

Despite the huge number of languages in the group, they are very similar to one another.

Still, variations do exist, and languages that belong to the same sub-group share more

characteristics to those outside the group.

The language considered for the adaptation is Xhosa, another Bantu language of the

Nguni group. Choosing it stands to reason. First, as a Nguni language it is very similar

to Zulu, which means that presumably we could pursue adaptation strategies that are

easy to control. The fact that there is much code-switching and borrowing between

the two would be to our advantage. Second, over seven million South Africans speak

Xhosa, meaning that there is a very large community which would benefit from a wider

availability of language technology applications in their tongue. Third, as work on the

adaptation of morphological analysers for Nguni languages has already been under way

in the rule-based paradigm (Bosch et al., 2008a), it is reasonable to contribute to the

body of research by exploring an alternative paradigm.

Unfortunately, the inherent limitation of working with low-resource languages pre-

vented us from completing this stage of the research. While we obtained an unanotated

Xhosa corpus with the package of parallel corpora by CTexT, acquiring morphologically

analysed or POS-tagged data for it was largely unsuccessful despite numerous inquiries.

This meant that although we could apply the preprocessing models for sentence detec-

tion and tokenization on the unlabeled Xhosa corpus, and be reasonably certain that

the output is comparable to the one for Zulu, we could not evaluate the output either

of a morphological analyser or of a POS tagger.
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7.1 Possible Adaptation Strategies

7.1.1 Direct Application

Nevertheless, we could still conceive of a number of ways to approach the problem of

tool adaptation. In this simplest approach, no models would be built specifically for

the target language. Provided that the Zulu processing system is sufficiently refined,

the models could be applied on the Xhosa data directly. The morphological analyzer

(morpheme detector and labeler) would function as a black box and its output would

be fed into the POS-tagging system without further evaluation. Only the POS-tagged

output would need to be evaluated.

7.1.2 Domain Adaptation Through Self-Training

In addition, the fact that we have parallel data for all South African languages means

that we could use them for domain adaptation. The key is the fact that the training

material for the models comes from biblical and fiction texts, while the corpus on which

it is applied (the CTexT corpus) is from public domain texts. The procedure for the

domain adaptation would involve self-training: the morphological analyser would be

applied to a portion of the CTexT Zulu data, after which the sequences with the highest

probabilities would be appended to the training data and the model would be trained

again. This cycle would be repeated for several iterations. Finally, the model would be

applied on the Xhosa data from the same corpus for testing.

7.1.3 Feature Biasing

Yet another strategy for the adaptation could to enhance the Zulu POS model with

some features that would bias the tagger in favour of morphological analyses that are

more likely to occur in the target languages. One could even conceive of a rudimentary

rule-based filter that could be applied at an early stage of the workflow in order to cope

with specific cases. Finally, these strategies could be combined with any of the other

strategies described earlier in this section.
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8 Conclusion and Future Work

8.1 Conclusion

This thesis contributes to the body of research on NLP for African languages by investi-

gating whether an accurate part-of-speech tagger for a low-resource African language can

be improved by augmenting sparse annotated data with some automatically generated

morphological information. For the purpose of this, we trained a Morpheme Detector

and a Morphological Labeler for Zulu on the basis of the OpenNLP implementation of

the Maximum Entropy framework. Subsequently, we trained a large number of systems

with both generic features for Indo-European languages and with custom configurations

of features, abstracted from our knowledge about the morphology of Zulu and the Bantu

languages in general.

From the experiments we confirmed that standard features for Indo-European lan-

guages may not be directly applicable to typologically different languages such as Zulu

and the Bantu. Also, our systems indicated that while some linguistic information such

as morpheme boundaries and number and position of morphemes may perform better in

comparison with simple n-gram approaches, encumbering the system with information

about morpheme function (i.e., with labels) may in fact impair the performance.

8.2 Future Work

8.2.1 Further Feature Configurations

The output of the MaxEnt classifier with custom features suggests that these feature sets

can be refined further. In particular, the configurations for the Foxtrot system (n-grams

and analyzed and labeled morphemes) must be modified to a format that the classifier

can interpret. Only then can we understand better if the decreased accuracy scores

resulted from a technical problem with the format or if it an issue with the approach

53



itself: it is well known that introducing too much linguistic information into probabilistic

systems often causes performance to drop.

Subsequent feature tuning must also be combined with cross-validation of the models,

so that the systems can be evaluated against the comparable ”Bag of Substrings” system.

Such validation would also give us a measure of how well the models generalize.

8.2.2 Adaptation for Related Languages

Once the best-performing Zulu systems have been identified, the next step would be

to select a one or a few Bantu languages as candidates to be the target language for

adaptation. The two most important strategies to pursue would be the direct application

of the source model on the target language, and the domain adaptation through self-

training and parallel corpora.

8.2.3 Hidden Markov Models (HMM) POS Tagger

Finally, it would be interesting to attempt to build a similar system, but based of an

HMM tagger. The HMM tagger handles tag generation for strings in a way which may

prove to be more robust. Again, an off-the-shelf toolkit and API could be used.
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