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Abstract

Livestreaming of e-sports events has become very popular in recent years, with

millions of people watching livestreams of competitions and commenting synchro-

nously in chat rooms. As an e↵ect of the rise of e-sports, there is a demand for

match highlight videos. These videos, which consist of the most exciting moments

in a match, help followers of the sport to stay up-to-date with or relive past games.

Since their manual creation is time intensive, automatic and semi-automatic ap-

proaches for highlight detection in live streams have been devised. In this work, we

suggest a novel transformer based approach to highlight detection. We employ the

audience reactions found in live stream chat in order to find gripping segments of

livestreams. To this end, we suggest an approach which combines contextual trans-

former embeddings with additional temporal features of the chat. We pre-train a

language model for the domain of live stream chat in the game League of Legends

and employ it on this task. For training this transformer language model, we collect

a corpus from a popular livestreaming platform which contains audience reactions

to competitive League of Legends matches. With our new model, we achieve an

improvement over the state of the art of 0.01 f-score. We provide a new corpus

for the domain and make available our pre-trained language model, which we call

TwitchLeagueBert.
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1 Introduction

Competition in sports has always attracted audiences for watching the spectacle of the

best athletes in their field fighting for a title. This fascination has also endured through

the digitization of many fields, including sports events. Nowadays, e-sports events, which

are competitions in computer gaming, fascinate millions of people who do not only watch

in person at a venue, but also follow live broadcasts from home.

One of the platforms which have specialized in livestreaming of computer game content

is Twitch1. It is the largest platform with many competitors in the field like YouTube

live, Huya TV and trovo2. These services all operate similarly, providing a live stream of

content on the internet for viewers to watch. In addition, many platforms also o↵er the

option to discuss the content concurrently in a chat room. These chat rooms provide an

immediate way for viewers to interact with the broadcaster and other viewers, making the

watching experience interactive. In Figure 1 we show an example of livestreamed League

of Legends gameplay with the live chat room.

With many computer games being released every year, the potential for competitive

gaming is huge. League of Legends (LoL) 3 has evolved into one of the most played and

followed games, with 180 million active players in 2022 and a record audience of 99.6

million viewers for the world championships in 2018. It is a multiplayer online battle

arena (MOBA) where two teams of five players compete against each other. Each player

controls one character, a so-called hero, and their collective goal is to destroy the enemy

base 4.

With this huge interest in playing and following competitive gaming, the demand for

content besides the actual game and the long-running live streams is given. Thus, highlight

videos of e-sports matches also enjoy popularity. These videos compile the most gripping

scenes of a match into a shorter format, allowing fans to rewatch matches and follow

missed events. A popular way of distributing these videos is through the video publishing

1https://twitch.tv
2https://escharts.com/platforms
3https://www.leagueoflegends.com/en-us/
4https://en.wikipedia.org/wiki/League_of_Legends
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Figure 1: Watching experience of a League of Legends tournament stream on Twitch. On
the left, we see the live stream video and on the right there is the live chat panel. We see
a big fight with multiple heroes, resulting in the defeat of one hero. The chat room is full
of emotes expressing di↵erent sentiments towards the fight.

platform YouTube5. Many channels, dedicated to uploading highlight reels, like Onivia6

and Kaza7, provide a well accepted service to the LoL e-sports community. Highlights

in LoL competitive matches typically include scenes with many kills, important in-game

events, tactical choices of heroes and gear, as well as the conclusion of a game where the

winner is decided. However, not each one of these scenes is of interest to the audience and

there are other actions that are highlight worthy. Thus, choosing entertaining highlights

is not trivial.

Identifying highlights and cutting a video can be time-consuming and requires experts

who have to be familiar with the game as well as the audience in order to provide high-

quality videos. Thus, there is a potential in machine-aided or fully automated generation

of these videos for speeding up the process and allowing organizations who may not have

a team of highlight annotators to provide a good service to their audience.

In recent years, there have been e↵orts in devising techniques for automatic analysis

5https://www.youtube.com/
6https://www.youtube.com/c/OniviaLECLCSLCKLPLHighlights
7https://www.youtube.com/c/LoLEsportsHighlights

2
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of live streams and creating highlight videos from them. These techniques employ the

video content [14] [19] [40], audience reactions in the form of chat messages [16] [34],

broadcaster commentary and facial expressions [37] and combinations thereof [6] [11] [25].

For creating highlight videos from a longer live stream, interesting segments have to be

identified, cut from the live stream footage and stitched together into a video. Typically,

the order of the highlights is preserved. This means that the correct choice of highlight

segments is most important. While the obvious carrier of information is the video itself,

it has been shown that using audience chat reactions improves the results on the highlight

detection task [7] [11] [25].

For processing textual information, di↵erent machine learning techniques have been

prevalent over the last decade. Currently, the most successful deep learning approach is

the transformer architecture [20]. Typically, applying a transformer to a task involves

the self-supervised pre-training of a language model on a large amount of text and then

fine-tuning it to a specific task on a smaller, annotated dataset [35].

In this work, we aim at investigating how transformer models can be employed in

creating highlight videos from League of Legends e-sports live streams. We focus on the

audience reactions which are present in live stream chat.

For this investigation, we raise the question of which model configurations are helpful

for the highlight detection task. We consider di↵erent aspects of chat messages like their

content, temporal relation to the live stream video and how to encode this information.

We test if an approach, previously devised for a recurrent neural network architecture, is

also suitable for transformers and present a new approach which we test with di↵erent

pre-trained language models.

Additionally, we seek to answer whether a specifically pre-trained language model

on League of Legends live stream chat is better suited for this task than a general pre-

trained language model. In order to answer this question, we collect a corpus of English

live stream chat and train our new language model which we call TwitchLeagueBert on

this corpus. We test it against RoBERTa[27].

We structure our work as follows: In Chapter 2 we provide an overview of the current

research in the field of highlight detection on live streams. In order to provide a better

3



understanding of the livestreaming domain and to gain insights into how live stream chat

is used, we also consider other work, which generally outlines communication behavior

of viewers and their use of language. Additionally, we provide information on current

transformer techniques and how they can be employed, which we will leverage later on.

Next, in Chapter 3 we analyze the highlights dataset, which we use as our labeled

training corpus and show how we collect our pre-training corpus which we call Twitch

LoL corpus. In Chapter 4 we provide considerations for baseline models, which help us

gauge model performance, and their features. We show how we set up pre-training for

TwitchLeagueBert and describe our highlight detection models. All these models are

trained and evaluated in Chapter 5 where we present and compare their performance in

order to determine which transformer models are applicable to the highlight detection

task. We summarize our findings in Chapter 6 along with providing future research

directions in this field.

4



2 Background

To start o↵ this investigation, we use this chapter to provide an overview of the fields

of highlight detection and transformer models. To this end, we give an overview of live

stream viewer interactions and describe which style of language is found in live stream

chat in Section 2.1. For the central task of this thesis, we explore in Section 2.2 how this

and other information is leveraged for the highlight detection task, and which techniques

have been employed on it in the past. Finally, in Section 2.3 we introduce transformer

models and how they are applied as the central technique which we employ on the problem

of highlight detection.

2.1 Research on Livestreaming and Language of live stream chat

Like many other social events, e-sports livestreaming is a field of study in academia. In

an early study, Kaytoue and Silva [22] characterize the e-sports livestreaming community

and find that ranking of live streams can be based on viewer count. Like traditional sports

events, many of the e-sports event are held on weekends, emphasizing the entertainment

nature of the sport. Their research is based around viewer numbers and characteristics

derived from those, especially popularity of live streams and their ranking between them.

They find a ranking method for live streams and predict popularity. Here, live stream

chat is not yet considered.

From the study of live stream interactions, we take a turn into the field of chat research

on live stream audiences. Here, we identify work that links the chatting behavior of

audience members and groups to the events that occur in e-sports live streams. Through

the presentation of work characterizing gaming audiences and massive chat rooms, we

draw conclusions to how messages can be interpreted and bundled for processing. Finally,

the importance of emotes, small images which can be used inline in text chat to express

emotions with one single symbol, and their relevance is shown. These are easy and fast to

insert with standardized code words and provide common ground for expressing emotions

in this text-based medium.

Bulygin et al. [5] use audience chat behavior to investigate common reactions to the

content of the live stream in e-sports event. They show which topics are typically ex-

5



pressed by game audiences in reaction to which types of events, and that there is a direct

correlation between events and audience reactions as a whole. They model topics in the

chat in di↵erent stages of a tournament, providing insight on when which topics are preva-

lent. Viewers tend to express boredom when there is a lull in gameplay, while cheering

and reactions to stream and game specific events are linked to events. General discussions

about teams, players and other topics are often found. Their analysis is based on a Dota

tournament, a competition in a game which is similar to the subject of this work.

This finding, that chat reactions correlate with events in a live stream, is also shared by

Musabirov et al. [31] who employ di↵erent sentiment analysis approaches to livestreamed

real-live events. They mostly use the meanings of emotes for finding the polarity of live

stream comments. In general, the averaged sentiment scores across comments in a defined

time frame, match the events which are shown on screen.

Barbieri et al. [1] investigate the usage of Twitch emotes by creating a Bi-LSTM

(bi-directional long short term memory) model for emote prediction. Its main task is

predicting emotes from their message context. Although they only use single messages

as context, the model achieves improved results over bag of words (BOW) and Skip-

gram based baselines. Their second task of “trolling” prediction leverages Kappa-based

emotes as labels for utterances which show trolling, thus making it an easier variant of

the first task. Nevertheless, they show that emotes depend on their context and serve as

an important communicative device in the Twitch chat.

Emotes do not only help to emphasize a concept in a message in chat communication,

but are also used for abbreviation purposes. Usually, the need for brevity arises from chat

rooms with many concurrent users writing a high number of messages [23]. These so-called

massive chats, with 10s of thousands of participants, are the subject of investigation

in [10] in comparison to smaller chat rooms with fewer than 2000 participants. They

investigate the techniques that are used by crowds to keep communication working at

a large scale. To this end they identify voices present in chat, which may or may not

coincide with participants and use counts of lexical items present in messages to define

where concepts are repeated. As a result, they identify three practices of coherence in

massive Twitch chat: Shorthand, voice-taking and bricolage. Short handing is found to be

6



used for generally accepted terms, the meaning of which is agreed upon by a community.

Certain recurring game events may be expressed in that way, emote usage falls into that

category as well. A similar, agreed-upon concept is used in voice-taking, which occurs

when chat participants talk in a way that is associated with a certain emotional expression,

character, or idea. Users adopt this certain voice and thus express their opinion through

a common voice, repeating the same emotes, phrases or even entire messages, giving it

more importance and recognition than any single individual utterance. We see this in the

chat window of Figure 1 where the same emote is repeated by multiple di↵erent users.

This phenomenon helps to gauge general points of view in live chat. Finally, bricolage,

combining a limited repertoire of terms into repeating messages, is found in massive

chats. This is identified as a technique for making messages more readily understood, as

the items used are known by the community and easily decoded. This technique is also

called copypasta by the community and typically is an expression of boredom [31]. These

findings suggest that massive chat is more than individuals expressing their emotions

and ideas. Thus, massive chat as present on many e-sports Twitch channels allows for

summarizing individual utterances under common topics, resulting in a less fractured and

more readily understandable chat room as a whole. However, this kind of understanding

is only granted when the community and their particular way of expressing themselves is

adopted by the reader.

Some work in this area has been conducted on another type of video content with user

comments. So-called time sync video comments [47] are added by users to pre-recorded

video material and displayed for other users. In contrast to livestreaming, these comments

are not created at the same point in time as the airing of the video, but are nevertheless

considered reactions to consumed video content. A temporal di↵erence is, that comments

are shown for a fixed amount of time on screen. We thus consider work on these videos

[48] [28] relevant to our topic. This is because they also research text based reactions to

video content. While the immediacy of live reactions is lost and the way of displaying

reactions is di↵erent, they nevertheless allow for drawing parallels to live stream audience

reactions.

7



2.2 Live stream highlight detection

The central information carrying part of a live stream is the video. Many approaches to

highlight detection use the video information in their models. This seems to be the obvious

source, as the live stream experience is centered around video consumption. Typically,

individual frames of a video are classified as a highlight or non-highlight, which when

combined produce shorter segments from a larger video [40]. In this scenario, feature

extraction from frames and highlight detection may be part of separate modules and

improved with attention mechanisms [19]. Gunawardena et al. [14] extract static and

dynamic features from sequences of frames and combine these into self-organizing maps

to classify highlights.

As the term highlight can be subjective to the viewers, it is of interest to also include

the audience reaction to provide more information to an automatic system for highlight

detection. To this end, chat messages are commonly used in the live stream setting. Chu

and Chou [6] explore the use of chat statistics like message counts and train a support

vector machine to add more information to their video-based highlight detection. Xian

et al. [48] incorporate meaning by using Latent Dirichlet Allocation (LDA) on keywords

extracted from time sync comments on videos to detect shot boundaries and highlights.

Fu et al. [11] go beyond that and create a recurrent neural network (RNN) for chat and

combine it with a convolutional neural network (CNN) for visual information. They try

to exploit some semantic information and show that character-based models work better

than word-based models. Their idea is extended with word embeddings by [16] based on

Word2Vec. They use an RNN model with pre-calculated embeddings for words. Song

et al. [39] even generate live stream chat specific embeddings for emotes from Twitch and

achieve to incorporate even more word meaning into their system for extracting ”epic“

moments.

Another approach uses video data combined with in-game event data extracted from

screen [21] and extract highlights based on changing win-loss probabilities in a match.

Facial expressions of individual streamers are also among the features which have been

investigated for highlight detection [37]. In our data this information is not always avail-

able, and we thus do not consider this kind of information. What would be interesting

8



to address though is the e-sports commentator’s voice. Ringer and Nicolaou [37] and Sun

et al. [41] show how this information can be used.

Although we see a variety of techniques and features used, when it comes to using

audience chat reactions in these models, all the approaches face similar issues. In the

following, we shall outline alignment of chat and video content and the unit of classification

problems with respect to the task of highlight detection.

2.2.1 Aligning chat and video content

While video is made up of individual frames, text chat is based on messages. On Twitch,

both of these can be linked using the time stamps of when they were created. For a video

frame, this is the time when it is created in a live stream. For a chat message, this means

when it is displayed in the chat room. Although it is tempting to simply use the time

stamp information, a chat message is generally regarded as being a reaction to a past

event in the live stream or being part of a general discussion in the chat room which may

be less closely linked to the live stream content [10]. So, there certainly is some form

of delay between video and chat messages. When chat messages are to be used for the

segmentation of the video, a link needs to be established. A fixed o↵set or time window is

often determined empirically, which provides a simple way of linking messages to video.

However, this may fall short when the reactions are more or less delayed. A less delayed

reaction can be a short message with only an emote or few words, whereas a more delayed

reaction may be a well articulated comment on the action in the live stream. It is favorable

to be able to identify which comments are linked to which video segment as accurately as

possible, in order to provide the correct information a classification algorithm needs for

the segment to classify it as a highlight or non-highlight.

Ping and Chen [34] identify messages with similar topics and subsume each topic under

a lexical chain, which aims at representing a conversation or reaction. They use the time

stamp of the first comment to link the whole chain to the video.

2.2.2 Unit of classification

Having explored the di↵erent types of information which are useful for highlight detection,

one of the other fundamental questions of this work is how a live stream can be segmented

9



into highlights. Ideally, a video is cut into highlight and non-highlight parts directly.

However, in practice the features of the live stream are calculated for a certain unit or

span of units of where multiple ones make up a highlight segment[40]. This is done to

create highlights of di↵ering lengths, which is preferred. Here, a unit of interest may be a

video frame [11] or a time window in the broadcast in terms of n seconds [28]. Chu and

Chou [7] extract chat-based information in one second windows and combine those with

additional information from the video.

Abstracting away from the technical aspect of the medium, a video can also be viewed

as made up of a series of shots or scenes and automatic approaches for segmentation of

video into shots are researched [26]. Chu and Chou [7] define a shot based on the changes

in color histograms between frames, while [48] extract shots based on latent discriminant

analysis of key words found in chat messages.

Of course, segments can also be viewed from the chat side and be encoded in terms of

chat characteristics like message density, semantic information and conversations within

the chat room [34].

In this thesis, we take these issues into account theoretically. We provide our models

with implicit and explicit information for aligning chat and video, with context and tem-

poral clues. We choose di↵erent types of units for classification, which are not only based

on temporally fixed length segments. We elaborate on this in Chapter4. Our models are

based on transformer language models, which we explore in the following section.

2.3 Fine-tuning transformer language models

These key concepts of live stream highlight detection inform our approach for fine-tuning

transformer models for this problem. We choose this technology, because in natural

language processing (NLP), pre-trained transformer language models have been found

to be very e↵ective starting points for learning many tasks. Language models allow for

learning of general knowledge about language patterns from text [9]. The transformer

[45] is one architecture of models used for language modeling.

A transformer model is a neural network with multiple encoder-decoder layers. In con-

trast to previous approaches such as (bidirectional) recurrent neural-networks (RNNs)[29],
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the input sequence is processed all at once and not word by word. This allows the trans-

former to encode the context of each word in a generalized sequence representation in

parallel for faster processing. Additionally, the attention mechanism allows for learning

which part of the input sequence is relevant to the meaning of each individual word.

Typically, a transformer language model is pre-trained on a self-supervised task. This

pre-training leverages vast amounts of texts which are available through corpora or web

crawls, which humans have generated. This allows the language model to encode repre-

sentations of texts which are helpful for many downstream tasks [9].

In order to employ a transformer model for a specific NLP task like sequence tagging

or text classification, a pre-trained language model is fine-tuned to the specific task. This

is done by adding a task-specific neural network on top of the pre-trained transformer part

of the model. Then, a smaller amount of annotated data for a specific task used to train

the task specific neural network or the whole model is supplied. Now, the transformer

layers of the pre-trained model can be trained in conjunction with the neural network

specific to the task. This means that the language model keeps training on the task at

hand. Alternatively, the underling language model can be left as-is and the transformer

weights are “frozen”, keeping them the same as they were after pre-training. In this second

approach, called feature-based downstream adaptation, the language model representation

is merely used to derive vectors from the input text and the task-specific architecture is

supplied with these vectors [20].

With fine-tuning, the weights of the transformers can be trained with a specific task,

leading to learning textual representations that are helpful for this setting. However, this

is time and resource intensive [27]. Feature-based adaptation on the other hand does not

backpropagate the loss through the transformer layers, leading to a less computation-

ally heavy task while leveraging the contextual embeddings of the transformer language

model at the expense of performance. For both implementations, task-specific neural

architectures can be added.
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2.3.1 Transformer implementations

A variety of di↵erent transformer models with di↵erent architectures have been intro-

duced [20]. Each one tries to either cater for specific down-stream tasks or improve the

architectures for language modelling performance, lower amounts of pre-training or sim-

plifications.

The widely used BERT model is a transformer model that allows for bi-directionality in

the input by attending simultaneously over all input tokens [9]. This enables dependencies,

long and short distance, to be learned between tokens which yields a context dependent

representation. By using masked language modeling (MLM) and next sentence prediction

(NSP), this implementation aims at even capturing dependencies between sentences. This

means that pairs of sentences are provided during pre-training. For tokenization, byte

pair encodings (BPE) and WordPiece encodings are used. This is applied to a corpus of

roughly 16GB in size containing Wikipedia articles and the BookCorpus.

With this technique, the authors show, not only how to use attention in a fast and

e↵ective way, but also provide a language model that can be trained on a pre-training

task and then fine-tuned to specific tasks.

Based on the BERT architecture, one optimized model is RoBERTa which aims at

implementing a simplified, more e↵ective pre-training architecture [27]. The authors here

do away with NSP and use byte-level BPE encodings in order to avoid unknown tokens

and minimize vocabulary size. They show empirically that MLM alone is enough for pre-

training and yields comparable if not better results than the original BERT architecture.

Here, MLM is implemented with dynamic masking of the input, showing even more varied

training examples to the model. Additionally, a bigger corpus of around 160GB in size is

used for even higher performance.

Another variant of the transformer architecture is BART which seeks to improve upon

BERT and RoBERTa by means of more varied mutations of input text [24]. Here the idea

is to define a number of transformations including the classic MLM task among others

like re-ordering of tokens, replacing multiple tokens and deleting tokens entirely from the

input. The challenge now is to recreate the original input. In this setting, the data of

BERT is used with the training objective of RoBERTa yielding competitive results, but
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also resulting in a larger model. It mainly succeeds in translation and abstractive sum-

marization. Finally, a so-called classification head is not needed for this implementation,

as its purpose is sequence generation.

The final model in this comparison is ELECTRA. With this model, Clark et al. [8]

present a smaller, more e�cient transformer which is competitive with respect to the

other implementations. ELECTRA is conceptualized as a discriminator whose task is to

tell “real” from “fake” tokens in the input. In this case, the original input is corrupted by

a small BERT-based MLM model which generates sentences which may have some tokens

replaced. By trying to determine which tokens are fake and which ones are real, the

problem is defined over all tokens making instead of only the masked ones. It is trained

on the same data as BERT with the same objective as RoBERTa for the generator.

In Chapter 4 we will discuss the theoretical decision to employing one of these archi-

tectures on the task of highlight detection. Later, we evaluate the e↵ectiveness of the

chosen model on this problem in Chapter 5 in di↵erent setups.

2.3.2 Transformers in applications

These transformer architectures have improved the state of the art in many NLP tasks [9],

including various natural language understanding tasks included in the GLUE evaluation

dataset [46] and also other kinds of tasks including sequence tagging, for example named

entity recognition [49] and sequence classification [2].

For each task, usually a di↵erent input format is chosen [20]. This is important to give

the model the specific information it needs to perform best. For sequence classification,

typically a single input sequence is used[46]. For other tasks like information retrieval,

that require more context, multiple inputs can be encoded. This allows for a search query

and a longer passage of where the information can be found to be input and separated by

special tokens. For our work, these ideas are useful, as we want to classify sequences of

chat messages. We want to encode them in context, allowing for structural information to

be present by delimiting them with specialized tokens as well. This is discussed in detail

in Chapter 4.4.
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2.3.3 Transformers in di↵erent domains

While it is evident that transformer models pre-trained on English web-crawled text

perform well on tasks using English in a general setting, domain-specific applications

su↵er from the di↵erent writing style that is present in these domains. Examples of

specific domains are medical publications, computer science publications, poetry, judicial

texts and many more. Here, not only do texts contain a di↵erent, specialized vocabulary,

but also sentence and utterance structures may di↵er. This poses a challenge when trying

to fine-tune a language model pre-trained on Wikipedia articles and books [9]. Previously,

we explore that live stream chat language contains its own peculiarities 2.1 thus adding

another domain to the aforementioned list.

In order to overcome the lack of domain-specific vocabulary, it is suggested to expand

the transformer vocabulary by adding additional tokens and thus improving coverage of

the words used in a specific domain. Gu et al. [13] show that, while pre-training directly

on data from a di↵erent domain is most beneficial, adding additional tokens to a pre-

trained language model does improve its performance in a di↵erent domain. Furthermore,

Gururangan et al. [15] show that continual pre-training also improves domains-specific

performance. They use a pre-trained language model and employ it in a pre-training task

on domain-specific text. Finally, Yao et al. [50] develop a method for combining these

ideas into a continually pre-trained language model with expanded vocabulary. For the

vocabulary expansion, they average existing token embeddings of word pieces and average

them to create a new token, which is then added to the vocabulary. This yields a model,

which contains domain-specific vocabulary and is exposed to in-domain text to learn from

it. This approach proves to be e↵ective in the medical and computer science domains.

Another approach of adapting transformer LMs to a specific domain is shown by [12]

on Twitter and Twitch chat corpora. Here, they employ models for o↵ensive language

detection trained on tweets on Twitch chat messages to find insulting chat participants.

To this end, they analyze the similarity of the two domains and conclude that training on

Twitter data can help performance of this task in the Twitch setting. With this approach

they find additional data to construct a larger training set which helps in task performance,

where not enough task-specific training data is available for a certain domain. This is
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interesting as much more work has been conducted on Twitter in comparison to Twitch

live stream chat. Although the task of highlight detection is not applicable to Twitter,

this work gives an indication that the language used on both platforms has something in

common and that using annotated data from a di↵erent domain can be helpful.

2.4 Conclusion

Because livestreaming of e-sports events is a relatively new phenomenon, the field of

research around it is still evolving. In section 2.1, we have explored some approaches

towards the user behavior on livestreaming platforms, tying into the highlight detection

task. We have seen how users employ emotes and other stylistic means in live stream

chat to express themselves, and how crowds communicate in massive chat rooms with

thousands of users. Additionally, we have explored emote usage and user voices in live

stream chat. In the following chapters, we use these considerations in order to devise

techniques for highlight detection. As we have pointed out, there are a few approaches

to the problem present in current research. We have seen how chat and video alignment

is approached, which units of classification are used, and seen which machine learning

techniques have been employed in the past.

We also provided an overview of how transformer models are pre-trained, fine-tuned

and used on NLP tasks. Furthermore, we have introduced ideas to adapt models to a

di↵erent domain. This is helpful in order to limit the e↵ort that is needed in devising a

specific language model for live stream chat.

With these theoretical investigations, we can next describe the data we use and ap-

proaches we take towards highlight detection.
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3 Data

As is common for NLP and Machine Learning, in this work, too, a big focus lies on the

data. In this project, we use two di↵erent datasets which were collected from the platform

https://twitch.tv. As our goal is to find highlight segments using audience reactions,

we employ datasets which contain chat messages of live streaming content. First and

foremost, we use an annotated dataset of one LoL e-sports tournament, which contains

video and chat information alongside annotations for highlight segments. We call it the

“highlights dataset”, and it was collected and published by Fu et al. [11]. Secondly, we

collect a dataset of Twitch chat messages from LoL e-sports matches for the purpose of

training a language model which is specialized on Twitch chat language. This second

dataset is called “Twitch LoL corpus” and features a variety of English speaking LoL

e-sports channels.

In the following, we describe and analyze these two datasets with respect to the task

of highlight detection.

3.1 Highlights dataset

In order to train and evaluate a supervised model for highlight detection, we need an

annotated dataset of e-sports events which contains chat messages of audience reactions

with their timestamps of submission as well as annotated highlight and non-highlight

segments of these events.

3.1.1 Dataset overview

For their work on highlight detection, Fu et al. [11] collect and annotate a dataset of

the League of Legends tournaments “North American League of Legends Championship

Series” (NALCS) and “League of Legends Master Series” (LMS). The former was aired in

English and predominantly contains English chat messages, while the latter was broadcast

in traditional Chinese, resulting in predominantly Chinese chat messages. Both tourna-

ments are the Spring series of 2017.
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This NALCS dataset is harvested from the Twitch channels nalcs18 and nalcs29. Both

channels have been deleted since the time of data collection. In addition, the gold standard

annotations for highlights are obtained from the ONIVIA YouTube channel10. These

videos are matched by means of automatic image comparison to the original stream video,

thus identifying which segments of a match are present in the published highlight video

on the video publishing platform YouTube. As the original live stream was aired with a

frame rate of 30 frames per second (fps), the granularity of these annotations is 1/30 of

a second or one frame of video time.

So, we can express a highlight segment as a number of consecutive video frames. This

exact representation is displayed in Figure 2.

Figure 2: Highlight annotations for one game.

The messages from the live chat are matched to the video with their time stamps of

when they were published. For the following analysis, this means a strict correspondence

of messages to video content, where in reality we assume that reactions are delayed from

the video.
8https://www.twitch.tv/nalcs1
9https://www.twitch.tv/nalcs2

10https://www.youtube.com/channel/UCPhab209KEicqPJFAk9IZEA

17

https://www.twitch.tv/nalcs1
https://www.twitch.tv/nalcs2
https://www.youtube.com/channel/UCPhab209KEicqPJFAk9IZEA


tournament train val test total
NALCS 128 40 50 218

Table 1: Number of games in the dataset splits as reported by [11]

This dataset uses only the matches isolated from the longer running live streams of the

whole event. Each match is played in a best of three format with up to three individual

games. There are 221 games in the group stage and 24 games in the playo↵s played,

according to liquipedia.net11.Only the matches that were played during the nine weeks

of group stage are considered in this dataset. For their experiments, Fu et al. [11] use

the first and third game, if there is one, of each match as training samples, the second

match of weeks one through four as validation samples and the second match of weeks

five through nine as test samples.

Matches and games are referred to by their shortened name, denoting the tournament,

week and day of play, the teams which played the match and the game number which was

played. Thus, “nalcs w4d3 FOX TSM g1” denotes the NALCS tournament, week four,

day three, the match between team “Echo Fox” (FOX) and “Team Solo Mid” (TSM) and

the first game of this match. With this system, Fu et al. [11] can individually identify

each game.

In this present work, we focus on the English portion of this dataset. This leaves us

with 218 out of 321 videos which we use for our experiments.

Fu et al. [11] report the game distributions as listed in table 1.

3.1.2 Dataset analytics

Now we turn to characterizing the data within this dataset in more detail. It contains

video content of around 165.5 hours in length with a total of 1 733 448 chat messages

recorded. Games range from 30 minutes to 50 minutes of duration. There are 3 106

highlights in total in the dataset. We find 14.45 highlights per game on average with a

standard deviation of 3.69 and between 5 and 30 highlights.

The shortest highlight merely lasts for 0.267 seconds or 8 frames while the longest

one has a duration of more than seven and a half minutes or 13 460 frames. The mean
11https://liquipedia.net/leagueoflegends/LCS/North_America/2017/Spring
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highlight duration is 20.10 seconds with a standard deviation of 20.36 seconds. This

observation suggests that a highlight cannot simply be characterized by its length. We

find, however, that 95.5% of all highlights are shorter than one minute (1800 frames).

Although our main focus lies on chat activity and content, we also report how much

of the total runtime of video content is occupied by highlights. In the dataset, we find

that highlights make up 10.5% of the total runtime, while the number of chat messages

in highlight segments amounts to 16.6% of all chat messages. We can thus conclude, that

chat activity is higher during more exciting parts of a match.

3.1.3 Criticism and notes

Han et al. [16] criticized the approach taken by [11] for constructing the highlight an-

notations. While it is helpful to use professional annotations for highlight segments, the

subjective character of these segments makes using a singular YouTube channel and stu-

dio less reliable and less generalizable. This present dataset has the risk of encoding the

personal preferences towards highlight creation of this video production studio.

During our inspection of the highlight detection dataset, we found that some highlight

segments seem to be impossibly short. Segments which last less than one second probably

do not convey a lot of interesting information. We manually inspected some of these short

highlights and found possible problems with the automatic video matching algorithm. In

the case of match “nalcs w5d2 TL DIG g3” we see screen tearing in the original YouTube

video12. We believe this can cause some unreliable detections in the highlight mapping

process. With some more analysis, we can find out how short a highlight can possibly be

and filter out improbable highlights by length.

Additionally, we see games without any highlight annotations in two cases, “nalcs

w8d3 TSM FOX g1” and “nalcs w8d3 TSM FOX g2”, where we suspect that the video

matching algorithm failed. We can find highlight videos for these two games on YouTube13.

We find files for these matches in the dataset, but they appear empty.

These issues probably impact the performance of automatic highlight annotation sys-

12https://www.youtube.com/watch?v=zWdtNCGZDRM&t=293s
13
highlight videos for “nalcs w8d3 TSM FOX g1” https://www.youtube.com/watch?v=onMKVMeXbI4

and “nalcs w8d3 TSM FOX g2” https://www.youtube.com/watch?v=ZoC3qcv6Gr0
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game name highlight video on YouTube
nalcs w5d2 C9 TMS g1 https://www.youtube.com/watch?v=uh0npPZsUUc
nalcs w6d3 IMT NV g1 https://www.youtube.com/watch?v=U9msQYsWcOo
nalcs w6d2 FOX C9 g1 https://www.youtube.com/watch?v=JF2o7xIg0no
nalcs w6d2 FLY NV g1 https://www.youtube.com/watch?v=TyZRsAT6P5k
nalcs w5d2 C9 TMS g3 https://www.youtube.com/watch?v=xtNhxrG2U5A

Table 2: Missing games in the dataset. We can find highlight videos on YouTube.

tems, which are trained and validated on this dataset. However, to research the model

setups which work for highlight detection, we expect this dataset to be helpful. For

comparability with previous work, we choose to keep the original dataset.

In the NALCS Spring 2017 tournament group stage, there were 221 games in total.

However, in the dataset, we only find 218 games. We do not know how to explain this

discrepancy. The chat content for these games is present in the dataset, however no

highlight annotations are present. These games are excluded from the experiments. We

list the names and corresponding videos in Table 2.

3.2 Twitch Chat League of Legends corpus

For training a live stream chat specific language model, we additionally collect a dataset

containing chat messages from LoL e-sports streams. Because the language style [1] and

communication patterns [10] in live stream chat rooms di↵er from text found on the web,

we create a domain specific dataset with this work. Although we find a sizable number

of chat messages in the highlight detection dataset, it is not enough data for training

a BERT-like language model. Additionally, we want to provide chat content that is not

found in the highlight detection dataset, in order to make the evaluation as fair as possible.

We focus on English as the language of this dataset.

During the process of collecting relevant chat messages, we select appropriate channels

for downloading videos of past broadcasts, also called videos on demand (VODs), and then

use this information to access the recorded chat of these videos. Finally, we clean the data

by filtering out live stream videos that do not meet our criteria for useful information and

discard messages that we deem not helpful. We will now present the process in detail
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3.2.1 Dataset overview

Our Twitch chat League of Legends corpus is collected from 9 di↵erent twitch channels,

which focus mainly on LoL e-sports content. The dataset contains 3110 videos of live

streams with 89 960 287 messages including around 387 652 810 tokens. The total runtime

of the live streams amounts to about 17 583 hours. These live streams were originally

broadcast between December 2014 and March 2022.

3.2.2 Data collection

Because we want to include very specific content into our dataset, we rely on selecting

appropriate videos of League of Legends e-sports broadcasts. We identify channels which

air these broadcasts by consulting lists of LoL tournaments on liquipedia.net14. From

these lists, we extract websites that contain information about each individual tourna-

ment, including a “Streams” section in most cases. For simplicity, we select the first link

that appears in these sections, usually denoting the channel of the English live stream.

This process yields a list of 25 broadcasters on Twitch. We then manually check if their

predominant stream language15 is English and if the channel focus appears to be LoL

e-sports events. We eliminate 16 channels which do not fit these criteria and end up with

a list of 9 channels which we use to download VODs from.

Next, we turn to the twitch.tv API16 in order to discover all the past broadcasts

of these previously collected channels. From nine channels, we select 5 954 videos for

downloading chat messages from.

The o�cial twitch.tv API does not provide functionality for downloading chat mes-

sages of past broadcasts. Thus, we employ an external tool, called TwitchDownloader17,

which provides a command line interface (CLI) for this task. This tool allows the down-

load of all chat messages in VODs which we determined in the previous step. We do not

save the video content, as our focus lies on the chat language.

14
lists of important LoL tournaments: https://liquipedia.net/leagueoflegends/S-Tier_

Tournaments, https://liquipedia.net/leagueoflegends/A-Tier_Tournaments
15https://help.twitch.tv/s/article/languages-on-twitch?language=en_US#streamlang
16https://dev.twitch.tv/docs/api/
17https://github.com/lay295/TwitchDownloader/
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3.2.3 Data cleaning

Although we made informed decisions about which VODs to include in our download

process, we find that some videos are not suitable for our purposes. In order to improve

the quality of our corpus, we filter out certain live stream recordings and messages.

Filtering live streams For filtering VODs, we compute some information about them.

We count the number of messages in each live stream (message count), determine if a

VOD is a rerun of a previous event, and record the duration of the videos.

Then we exclude all videos which are shorter than one hour to maximize the chance

of including actual games in the live stream. Usually, there is a show around matches

and while a game can be as short as 30 minutes, including the show aspect, the one-hour

limit is reasonable.

Next, we inspect the titles of the VODs. These can help us to identify repeated

broadcasts, as they usually contain keywords such as “REBROADCAST” or “RERUN”.

We create a list of such keywords by inspecting the stream titles manually and taking

note of apparent patterns. Consequently, this list is applied to filter out 946 reruns.

Alternatively a statistically driven approach can be applied, using message counts, as

rerun videos typically have fewer comments than the original one. On average, there

are 3 698 in a rebroadcast and, 23 002 chat messages in an original video. These numbers

were determined using the previous criterion, but clustering could be employed for filtering

VODs.

Finally, we also eliminate all the VODs which do not have any comments. This

excludes 1881 videos.

Filtering messages Another way of cleaning the corpus is to inspect the content of

the chat messages. Typically, chat moderation on Twitch is aided by bots. These auto-

mated systems detect spam messages, o↵ensive language, can provide basic information

about the live stream or the topic and are used for promotional purposes with repeating

messages. Messages of these bots appear in the normal chat room. We argue that these

predetermined messages are not part of audience reactions. This is why we try to filter
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username video count raw video count filtered
Riot Games 2361 1058
ESL LOL 1020 193
LPL 913 733
LCK 664 647
GarenaEsports 346 48
RiotGames2 291 103
LEC 256 241
RiotLAN 90 76
lolpacific 12 11

total 5953 3110

Table 3: Number of videos collected from di↵erent Twitch LoL e-sports channels before
and after applying filters. The video counts are summed up by channel on which they are
broadcast.

out messages by these bots. In order to do so, we collect a list of bots and their nicknames

from two websites18. We look up the names of bots and determine their user profile. Then

we store this information to filter messages which were sent by these users.

Bots can also be triggered to send a message by stream viewers by sending commands

via the chat room. These messages are typically preceded by an exclamation mark, “!”.

We filter them out along with hyperlinks, user mentions preceded by “@”, extraneous

white spaces and empty lines.

We are left with a dataset which contains one chat message per line of live stream

chat from LoL e-sports events.

3.2.4 Dataset analytics

In our final, cleaned dataset there are 3110 VODs remaining. The only language found as

stream language19 is English. This is expected as we searched for English channels in the

first place. For ESL LOL about 1
5 of VODs were removed, while for other channels like

LEC almost all the VODs remained in the dataset (see table 3). This can mean that the

former channels broadcast more reruns, have a less active chat or many shorter VODs.

In order to better understand the kind of data we are dealing with, some superficial

18
common livestreaming bots on Twitch: https://blog.lvlupdojo.com/

the-most-common-twitch-bots-e07bed06538, https://www.streamscheme.com/best-twitch-bots/
19https://help.twitch.tv/s/article/languages-on-twitch?language=en_US#streamlang
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token count
max 487
min 1
mean 4.27

Table 4: Token counts per message in the Twitch LoL corpus

measures of the data are computed. We take a look at the messages and use the TweetTo-

kenizer from the Natural Language Toolkit (NLTK) [3] for quickly tokenizing the messages

in the corpus. With this information, we find the longest and shortest messages as listed

in Table 4. Unsurprisingly, the shortest messages are only one token in length, consisting

of one emote or single word exclamations. The longest messages, 487 tokens long, con-

tain copypasta messages. With an average of 4.27 tokens, we generally find more short

messages in the dataset. This is also expected in live stream environments and especially

in e-sports.

We provide a download of this corpus at https://huggingface.co/datasets/Epidot/

twitchlolcorpus.

3.3 Concluding remarks

For our work, we explored two datasets of Twitch chat. The highlights dataset was de-

scribed and analyzed, the annotation scheme was shown, and we presented some statistical

insights. We described the collection of the Twitch LoL corpus from Twitch and presented

statistical measures on it. While we acknowledge the problems of the highlights dataset,

we decide to use it for our work because of availability and comparability considerations.

The second dataset is our Twitch LoL dataset, the starting point for our language model

TwitchLeagueBert. In the following chapter, we describe how we use these datasets for

highlight detection and language model training.
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4 Methods

Having decided on our datasets, we can now turn to the technical considerations behind

the highlight detection task and our experiments. This part involves the design of the

di↵erent techniques we want to apply.

As a first step, we explore di↵erent approaches based on features that we identify

in Chapter 2.2 and standard machine learning techniques. We exploit statistical and

semantic characteristics of the chat message data in order to create baseline models to

compare against our transformer setups. This is done to gain further insights into how

di↵erent features of our data impact the ability to detect highlight segments in e-sports

event live streams from chat messages. Next, we derive di↵erent deep learning models

for this purpose from these insights. The core of these models is a pre-trained language

model, which we fine tune for interpreting the live stream chat text in context. We train

a pre-trained language model on the Twitch LoL corpus described in 3.2 with masked-

language-modeling.

All our models are implemented using Python with the code is available GitHub20.

4.1 Highlight detection definition

As we have established in Chapter 2, the central task of this project is to find segments

in of livestreamed LoL e-sports matches. Because the inherent medium of these matches

is video, we identify a frame as the smallest unit in our considerations. We divide our

videos V into segments S of n frames each. We provide context C for each segment.

Each chat message, Mt is linked to a frame Fi through the timestamp t of seconds

and milliseconds since the beginning of the video. In turn, each chat message contains a

sequence of tokens T1 . . . Tn which make up the chat message.21

Thus, we can define our highlight detection task as a sequence classification task,

assigning a label l of highlight or non-highlight to each segment. We define this binary

label to be 1 if a segment is part of a highlight and 0 if it is not.

We provide an overview of these definitions in Table 5.

20https://github.com/maugl/chat-highlight-detection
21
Tokenization is dealt with in di↵erent ways for di↵erent implementations. See Sections 4.3.2 and 4.4
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V live stream videos of the dataset
S segments of the live stream video consisting of n frames each
Fi ith frame of the live stream video

M(Fi) set of messages linked to Frame F at the ith frame
E(M) set of emotes found in a set of messages
mt message at timestamp t of a live stream video
tn nth token of a message mt

l binary label for a segment being part of a highlight or not
T set of tokens in a sequence of messages

Table 5: Notation for the highlight detection task defined as a sequence classification task.

4.2 Baselines

Since we deal with data which can be interpreted as a time series, we deploy algorithms

which can treat the chat messages as such. To this end, we encode multiple features

as running averages over a fixed window of frames. This process yields smooth time

series which we can apply di↵erent algorithms to. We try to exploit these features to

predict when highlights occur in the live stream. Additionally, we use TF-IDF and Twitch

chat embeddings[39] which we use as features for logistic regression and a Naive Bayes

prediction.

4.2.1 Features

For testing out di↵erent features which we use to predict highlights from time series, we

turn to the work of Liaw and Dai [25] and Chu and Chou [6].

For each of the following measures, we compute a result for each frame of video. We

choose a window of n frames centered around this frame and compute the relevant measure

for this frame. In this way, we keep the temporal resolution of the video and are able to

make fine-grained predictions for highlight segments. Additionally, we take the context

of each frame into consideration. These computed features are shown in Figure 3.

Message density In their experiments, Liaw and Dai [25] compute the number of

messages over a fixed window of time, which we call “message density”. We know that

audiences more readily share their emotions when exciting gameplay happens. Thus, we

for more detail.
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expect an increase of messages in highlight segments. Chu and Chou [6] in contrast, use

raw message counts instead.

message density(i, w) =
i+w/2X

j=i�w/2

|M(Fj)| (1)

Emote density This second feature is closely linked to the previous idea of audiences

sharing their excitement. We do not take the number of messages, but the number

of emotes in a certain window, into account here. We employ a list of emotes that we

collected from the Twitch API for emotes22and compare the strings found in chat messages

to this list to determine the number of emotes in chat messages.

emote density(i, w) =
i+w/2X

j=i�w/2

|E(M(Fj))| (2)

Message diversity Another feature we investigate is basically the normalized entropy

of chat messages. Liaw and Dai [25] call this feature “diversity” and calculate the Shannon

Entropy over the tokens T in a window of frames, normalizing this by dividing the result

with “its possible maximum value”. With normalized entropy, it is assumed that when a

highlight occurs, the audience reacts to that with a response that contains more similar

tokens than in other segments of the live stream [25].

Copypasta density The feature that we implement not from an existing implemen-

tation, but from a theoretical idea, is copypasta density. We try to see if copying and

pasting of the same text decreases when a highlight occurs. For computing copypasta

density, we use the simple idea of comparing similar n-grams found in di↵erent messages.

This is done in order to allow for partial matches where the same sentence is pasted 3

or 5 or 10 times within one message. Thus, we identify n-grams which are used within a

live stream from unigrams, bigrams and trigrams up to a number k of n-grams. We then

count how many times each of these are repeated and sum this up over a window of n

22https://dev.twitch.tv/irc/emotes/
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Figure 3: Temporal features calculated on an example match “nalcs w4d3 FOX TSM g1”

frames. We set a threshold for how many times an n-gram has to occur before it factors

into the count.

Smoothing the density features Each of these features produces a continuous output

over the length of a live stream video or part of it. With relatively small windows for

computing these, we find that the features are quite volatile. To make the output and

highlight detection more gradual, we resort to smoothing the features with a running

average over the signal. The running average is the cumulative sum over the last N

frames for each frame. We denote the output of the density function f(i) at frame with

the index i of the total live stream.

mvg avg(i, N) =

Pi
j=i�N f(j)

N
(3)
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Feature scaling Additionally to smoothing the features, we scale them to the range

between 0 and 1. This is done with the min-max scaling approach. It is defined in

Equation 4 as implemented in Scikit-learn [33]. Here min() and max() are functions to

find the minimum and maximum values in our variable to scale, X. mn and mx are the

minimum and maximum values to scale to, 0 and 1 in our case.

X scaled =
X �min(X)(mx�mn) +mx

max(X)�min(X)
(4)

TF-IDF Term frequency inverse document frequency (TF-IDF) is an established way

of representing tokens as a vector by comparing their overall frequency in a corpus to

their frequency in a document. In this way, their importance for a document is expressed

and can be used to represent this document in contrast to others. We use this to provide

a vector representation for segments of livestream chat, which we treat as documents. We

calculate TF-IDF, see Equation 5, by multiplying term frequency tf defined as the count

of a token t in a given document d by the inverse document frequency idf . idf is defined

in Equation 6 with n as the number of documents in the corpus and df(t) as the number

of documents containing t[33].

tf-idf(t, d) = tf(t, d)⇥ idf(t) (5)

idf(t) = log
1 + n

1 + df(t)
+ 1 (6)

In this application, the corpus of documents is defined as the collection of segments of

combined chat messages.

Twitch chat embeddings With our final semantic feature we rely on the work of [39]

who compute Word2Vec[30] embeddings for Twitch chat with a focus on emotes. We load

these embeddings and encode a sentence as the mean of all of its token vectors following

[17].
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Figure 4: Smoothed and scaled message density and highlight annotations for game “nalcs
w4d3 FOX TSM g1”. Smoothing is done by applying moving average with N = 1500 to
message density counts. We then apply min-max scaling to it

4.2.2 Classification

Peak prediction algorithms With this approach, we assume that highlight segments

appear when certain features reach a peak. This idea is backed by the plot in Figure

4. We clearly see peaks in message density following highlight annotations. Admittedly,

there are peaks where no highlight is annotated, but the feature appears to provide a

good indication. Given this observation, we compare two algorithms for finding peaks.

We use a method to identify peaks by contrasting them to their surroundings imple-

mented in SciPy23as a simple and fast method. This algorithm relies on its parameters

for how much a peak must stand out compared to its surroundings to output a signal.

Through preliminary tests, we find that only certain parameters have great e↵ect on our

dataset. We test the performance when altering the following parameters:

23https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html#
scipy.signal.find_peaks
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• prominence defines, how much higher a peak has to be compared to the surround-

ing signal.

• relative height defines how high a peak should be.

• width sets the minimum and maximum width of the peak to be detected.

With these and a fixed o↵set parameter to account for message lag, we predict highlight

segments from peaks in our feature signals.

In contrast, we also use a more elaborate approach called real time peak predictor

(RTPP) which leverages a moving mean distribution of the feature signal and produces a

positive output when there is a sudden change in the signal. This jump needs to be higher

than a threshold defining the number of standard deviations that the signal needs to jump

to produce an output. The algorithm has a lag parameter built-in which influences how

many time steps, in our application frames, contribute to the moving mean distribution.

This algorithm was suggested on https://stackoverflow.com [44] and has been used

in various publications. The Python implementation that we use for our experiments can

be found in the same thread24.

Highlight prediction with semantic features While we see a use for temporal fea-

tures for highlight prediction [25], we also find that [11] [18] [39] show that semantic

features of the audience reactions benefit our task. We explore this with some standard

ML-methods for text classification and with help from a tutorial25. We concatenate to-

gether n frames worth of chat messages and treat these as our text samples we want to

classify. The ground truth label for each segment is given by the first frame’s label. With

a step of 30 frames, we classify each second in the 30 fps videos, like Fu et al. [11] do.

In order to obtain features for our machine learning approaches, we apply TF-IDF over

this corpus and translate each text representation into a vector representation using the

Word2Vec model of Song et al. [39]. Our highlight prediction in this context classifies

chunks of n frames as highlight or non-highlight. For the logistic regression algorithm, we

24https://stackoverflow.com/a/56451135
25https://scikit-learn/stable/tutorial/text_analytics/working_with_text_data.html
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use the implementation of Scikit-learn [4]. Here, we employ the default model as provided

by this implementation and feed TF-IDF vectors to the algorithm for classification. The

same approach is taken for the Naive Bayes classifier, whose implementation also stems

from Scikit-learn. Instead of TF-IDF, we use the averaged Word2Vec document vectors,

which are loaded using zeugma26. We balance the dataset by over-sampling the minority

class of highlight to match the number of samples in the majority class.

4.3 Transformer language model

From the simpler baseline models, we want to turn to deep learning models for highlight

detection. As we have examined in Chapter 2, a variety of model architectures have been

used on this task, among them CNN and RNN. In this work, we focus on transformer

models [45] as the next step in the development of these models that are used for encoding

tokens in context. Our model of choice is the RoBERTa architecture [27].

As we have seen, the basis of these transformers are pre-trained language models.

While there are a variety of di↵erent English language models available, we suspect that

they perform poorly on Twitch chat data. To verify this claim, we pre-train a transformer

model based on the RoBERTa training regime on the Twitch LoL corpus described in

Chapter 3.2 and compare its performance to a pre-trained RoBERTa model that has

been trained on a more general web collected corpus[27]. We follow the methodology

of this approach with respect to the tokenizer training, data pre-processing and model

architecture as well as training parameters. We use the implementation by huggingface27

with default hyperparameters. We call our model “TwitchLeagueBert”.

4.3.1 TwitchLeagueBert - RoBERTa for Twitch chat modeling

We use the RoBERTa architecture over plain BERT, for several reasons. Firstly, RoBERTa

promises reduced complexity by removing token types not needing to specify which to-

kens belong to which input sentence. As our domain contains many shorter messages,

we do not see a benefit in encoding di↵erent tokens as parts of di↵erent sentences. In

26https://github.com/nkthiebaut/zeugma
27https://huggingface.co/docs/transformers/model_doc/roberta#transformers.

RobertaForMaskedLM
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the live stream chat, messages quickly follow each other and do not necessarily appear

in a sensible order on a micro level. However, since it has been shown that there are

multiple voices present in big chat rooms which are embodied by di↵erent users [10], we

expect a benefit to separate these individual short messages by the sentence beginning

and sentence end tokens.

While we believe it necessary to keep the original order of messages within a training

sample, predicting the exact order is probably not helpful. We ground this idea in the

fact that in live stream chat users send their messages, as part of a reaction to the action

on screen, an expression of partisanship for a team or other kind of copypasta behavior or

messages that are part of an ongoing discussion. If the messages appear as a reaction, the

order in which di↵erent viewers react to the same event is irrelevant, as they most likely

do not reference each other. In the copypasta case, the chat messages usually do not have

a reference to anything going on in the livestream, possibly a lull in gameplay. In the last

case, with a high volume of messages, the exact order will not be important, only that

responses to earlier messages, appear later. However, these will most likely not appear

in messages that exactly follow each other. This reasoning, together with the fact that it

has been shown that the NSP task does not necessarily improve model performance for

our purposes, the RoBERTa training method makes sense in this regard.

Additionally, the tokenizer that RoBERTa uses is much more robust, allowing for

encoding emojis and words that have never been encountered before. Because of the non-

standardized language that is found in livestreaming chat, these features are preferred.

We understand that RoBERTa has been trained on a larger corpus than the one we

use (160GB vs. 1.9GB). Thus, the increased score that RoBERTa shows over BERT

[27] may not directly transfer to our setup. However, in the increased training data

RoBERTa has been presented with much more varied language, which we believe to be

an advantage. Another issue that we want to mention is the one of societal bias. We

know that language models pick up social biases from the data they learn from [32],

especially as their size increases [42]. Additional considerations in this direction may

be fruitful to create highlights that are catered towards a wide range of people from

di↵erent communities. For now, we focus on which techniques we have to employ to make
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transformer models usable for the highlight detection task.

4.3.2 Model definitions

Tokenizer As the first step in language model training, the input text is prepared to

be fed to the transformer model. Transformers need input tokens split and converted

into numerical values. These so-called input ids are determined by the tokenizer. In this

implementation, we use a byte-level byte pair encoding (BPE) for the tokenizer, following

[36]. We train it with a vocabulary of 50 000 tokens.

Model structure Following [27], our model has an input length of 512 tokens. It

comprises 12 layers with self-attention with a total of 81 966 416 parameters. The output

of the model are logits for each token of the input.

4.3.3 Data structuring for MLM training

Because we use the same architecture and setup as [27], we also structure the corpus that

we use for training similarly. In order to provide the model with messages in context,

we concatenate all the chat messages and group them into groups of pre-defined length.

The length is measured in number of tokens after tokenization and is determined by the

maximum sequence length for the final model. This procedure results in no truncation,

and text simply overflows to the next group of messages when there is a cut in the middle

of a message. Additionally, we do not pay attention to which stream the message was

harvested from. A new stream may begin in the middle of one group. This lazy grouping

procedure can result in many split messages and some incorrect contexts. For illustration

purposes, we include Figure 5 which shows the split message “< s > c9 skins where :) <

/s >” spanning two di↵erent groups. We can also see how the beginning and end tokens

“< s >< /s >” are used to delimit messages.

4.4 Highlight detection models

For investigating how transformer models can be used for the downstream task of high-

light detection in live streams, we devise di↵erent architectures with di↵erent models and
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[ ” f o r the emperor</s><s>Res identS leeper</s><s>SJOKZ rbzS leeper</
s> <s>PEOPLE BLAMING DRAFTS LUL</s><s>top gap</s><s>JG DIFF</
s> <s>YEP next game ba t t l e o f the bronze YEP</s><s>farm KEKW
</s><s>Topgap BigBrother</s><s>5Head</s><s>INF FeelsDankMan</
s><s>−700 KEKW</s><s>BibleThump BibleThump BibleThump
BibleThump BibleThump</s><s>heyyy</s><s>why on earth would
you put Perkz on Viktor .</s><s>c9 ” ,

” sk i n s where : )</s><s>D OMEGALUL TA</s><s>NA SO BAD WINNING
DRAFT MEANS NOTHING TO THEM KEKW</s><s>bra in gap</s><s>Gaming
</s><s>quantPick le quantPick le?</s><s>Why can DWG group with
3 wi ld cards ? That ’ s un f a i r WutFace</s><s>tournament d r a f t
but bad execut ion MikeHogu MikeHogu</s><s>AYAYAQQQAA</s><s>
Opt imi s t i c about NA KEKW</s><s>C9 got clapped</s><s>NA JUNG” ]

Figure 5: Example for data preparation for language modeling. Chat messages are joined
together by special tokens “< s >” and “< /s >” into sequences and cut to a fixed length.

compare their performance. Theoretically, the models should take several dimensions of

the problem into account and solve the following problems:

• semantic features: As we work on chat messages, we need to encode their

meaning. To this end a model should be able to encode words, emotes and emo-

jis. Additionally, phenomena like chants and copypasta may be detected through

contextual clues.

• Temporal features: Another important factor in language in general and live

messaging is timing. The ideal model should have a mechanism to encode temporal

patterns that evolve over time, like the features defined in Chapter 4.2.1. From

previous work [25], we know that these changing features can help with the task at

hand.

• Message and live stream linking: To address the lag between the live stream

broadcast and the audience reactions, a mechanism for the model to dynamically

link the time when a highlight occurs and when the reaction emerges in chat, should

be devised.

• Space e�ciency: We aim to align a sequence of messages to their respective time

stamps or frames in the video. However, chat activity can vary over time, resulting
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in more or less dense spans of time in terms of message and token counts. Thus,

there needs to be a way to e�ciently pack messages in sparse chat segments and

dense ones equally while preserving temporal features. This consideration stems

from the practicality of having constrained input length for transformers.

In the following, we define our models theoretically and discuss the design choices with

respect to the above described criteria.

4.4.1 Transformer model for sequence classification

For our first model, we directly lean on the idea introduced by [11] with their L-Word-

LSTM. We replace the recurrent neural network part in their setup with a transformer

model and keep the rest similar. This model solves the highlight detection problem with

a sequence classification approach. Each frame is assigned a sequence of messages in a

window of n frames following it. They choose each kth frame of the input for classification

and feed it to an LSTM-based RNN which outputs a prediction for the sequence.

As this task is a sequence classification problem, we can choose an established archi-

tecture for the transformer model. The classification head for sequence classification com-

prises a dropout layer and a simple feed-forward layer. The loss function used in this setup

is the mean squared error (MSE). The target is a binary label (0 or 1). We use hugging-

face’s AutoModelForSequenceClassification28 with “roberta-base” and our TwitchLeague-

Bert as the transformer models. We call this model setup the “AutoModel” because of the

implementation we employ. In Figure 6 we show a diagrammatic view of this approach.

In this setup, the continuous stream of messages is associated with the frames in the

video when they were sent in live stream chat. We take 210 frames worth of messages

and concatenate them, including sequence delimitation tokens. Then, these sequences are

tokenized, padded and truncated from the beginning to the maximum model input size.

We truncate from the left because [11] find that the later messages in a sequence are more

helpful for this task.

In terms of semantic encoding of the messages, we expect the transformer model to

be able to find the most important features for this task by fine-tuning. As we provide

28https://huggingface.co/docs/transformers/v4.20.1/en/model_doc/auto#transformers.
AutoModelForSequenceClassification
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Figure 6: Model schema for sequence classification (AutoModelForSequenceClassifica-
tion): The input tokens for delimitation tokens (green/red), and other tokens (grey) are
encoded into a sequence representation to be classified by the feed forward and output
layers.

a sizable sequence of messages to the model, temporal cues should be picked up as well,

especially with empty frames included in the input. This makes this implementation less

space e�cient in terms of transformer input, with a higher ratio of sequence beginning and

end tokens to content tokens. There is no explicit frame and message linking mechanism,

but truncation from the left leaves out the earliest messages, resulting in an implicit

linking based on the number of messages in a segment. It is left entirely to the model to

learn linking from it.

4.4.2 Transformer model with additional features

While this first model architecture relies entirely on the outputs of the transformer model

to encode all useful information, for our second setup we explore adding time series fea-

tures separately to the language model part. To achieve this, we also use a pre-trained

transformer to encode the textual data, but leave out empty frame sequences, compressing

the data and removing temporal spacing between the individual chat messages. In order

to compensate for this loss of information, we compute features as the ones described in

Chapter 4.2.1 and add them to a classifier along with the transformer embeddings for the

input sequences.
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Again, we define the task for this model as sequence classification, predicting highlight

or non-highlight for one or more chunks in the center of the input sequence. We define

a chunk in terms of the number of tokens T per chunk. Each chunk should contain

the same number of tokens, cutting at the end of messages. This means, we split each

input sequence into k number of chunks and classify over the number window size of

chunks by providing window size number of targets to be predicted. Context is given

by the number of leading and trailing chunks defined as context size. Because we use

the number of tokens as our measure to calculate chunk boundaries, we lose the direct

connection of the label to each frame. Thus, we re-calculate the label as the average

label found in the frames associated with a chunk. This leads to more coarse than frame

level labeling. In evaluation, we have to adjust the results to bring them to the same

granularity as the reference.

In this way, we add contextual information, over which we do not classify directly.

Also, with this setup, we provide a step to classify over each chunk only once. With

window size = 2 and one chunk of context before and after the classified chunks, the

classification of a sequence would result in two labels per example. Together with step = 3,

each chunk is classified and context for classification is given. This model architecture

is shown in Figure 7 and is called “temporal” model as it encodes temporal features

explicitly.

When combining the temporal features and the token embeddings, we take the mean

of the token representations and concatenate them with values of the additional features.

These features are scaled “by removing the mean and scaling to unit variance” [4]. For

normalization, we add a dropout layer with 0.3 of dropout. As a loss function, we use

mean squared error (MSE).

With this setup, the direct association between video frames and prediction is removed

from the input messages. We trade this loss of information for more e�cient packing of

input tokens when leaving out empty frame representations. Subsequently, there is more

textual context information present. This information is compressed, based indirectly

on the number of messages that are found in a span of stream chat, providing more

information even if few messages are sent in chat. When there are many messages in
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Figure 7: Model schema for transformer with temporal features: The input tokens for
delimitation tokens (green/red), and other tokens (gray) are encoded separately, into a
sequence representation and explicit features to be classified by the feed forward and
output layers. The input sequence is split into chunks and classification is done over
window size = 2 chunks with context size = (1, 1) of chunks of context.
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a short period, this process e↵ectively shortens the live-stream segment that we classify

over. Again, the linking of the stream action, video frames and the chat messages is

modeled indirectly and must be learned by the model.

With these ideas, we find a tradeo↵ in every setup. The more complex an architecture

becomes, the longer data pre-processing and training will take. Here, we see the challenge

as devising the most simple, yet most powerful model.

4.5 Defining evaluation

While we can create di↵erent models to address the highlight prediction task, we want

to quantify how well they do. Ultimately, the quality of highlights lies in the eye of the

viewer. On video publishing platforms like YouTube, we find highlight videos and how

well they are received by the community. On the streaming platform Twitch, we find user-

generated clips which can also be regarded as highlights and may inform how well a model

does at this task. Although these videos provide an indication at how good highlights are,

there is still a lot of possibility for variation in personal preference. Some viewer would

prefer a longer or shorter highlight or would deem a scene in the video not highlight worthy

while the whole video is generally appealing. Thus, we see that using highlight videos as

a reference for the quality estimation of this task, is problematic because of the inherent

subjectivity of the task. Following this argument, training and evaluating a system on a

dataset of these videos is inherently imprecise. These considerations play into the choice

of evaluation measure and how precise prediction needs to be. Song et al. [39] tested

acceptability of automatically generated videos of “epic moments” which outperformed

the expert annotations. Thus, we will evaluate the system empirically on the dataset,

but point to actual viewer feedback as a more suitable way of measuring the quality of

highlights.

4.5.1 Evaluation on highlight boundaries or segments

Generally, with the task of highlight detection, we have two possible predicted values to

analyze. We can define this task as boundary prediction, where the beginning and the

end of a highlight need to be detected. Encoding these boundaries is straight forward by
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simply using a time stamp of seconds since the video start or the frame number. This

is exemplified by looking at a highlight segment in the game “nalcs w4d3 FOX TSM g1”

as displayed in Figure 2. Here, we find the beginning of the first highlight at 252.93

seconds or 7588, frames and the end at 257.56 seconds or 7727 frames. In contrast,

defining segments to classify over, we provide a series of parts which in conjunction make

up a highlight segment. In the simplest case, we count all contiguous segments which are

classified as highlight towards the same highlight. Both of these approaches come with

their own advantages and disadvantages when it comes to evaluating the quality of the

highlight detection.

Boundary evaluation If we quantify how well the two boundaries of a highlight seg-

ment have been detected, we ground our evaluation in two predictions. Depending on

the time measurement, we can achieve a fine granularity with the prediction, possibly

resulting in highlight segments with very precise cuts. This precision, however, comes

with the problem of defining an appropriate error term. With a large search space of

frames/milliseconds and few boundaries in a video, it is important to show how far o↵ a

prediction has been in comparison to the gold standard. This is done in object recogni-

tion by calculating intersection over union. We can define it over our time intervals and

see how many milliseconds or seconds fall within our defined highlight segment. Alterna-

tively, we calculate error measures like mean square error (MSE) on the milliseconds or

frames by which the predictions are o↵. Measures like these are more commonly used as

error terms or objectives for machine learning models rather than evaluation measure, as

they do not provide a lot of insight about the task performance. Another point with the

boundary prediction is the problem of less data points to evaluate. The less information

we use to quantify the performance of a technique, the less reliable it is. While predicting

boundaries directly is much more closely related to how a human would cut a video, for

evaluation purposes it poses some challenges.

Segment Evaluation The second approach, for task definition and evaluation, is to

quantify over segments which are individually classified. Here, we can influence the gran-

ularity and number of evaluation points by choosing a tighter or less tight window for the
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task. In practice, this window is determined empirically. Each of these segments directly

influences the performance score and thus can be more gradual. This, however, can lead

to disjointed predictions, which can be accounted for by applying post-processing to the

results of the classification task. One approach is to apply smoothing, like a running

average of predictions, over the predicted segments. This is a relatively cheap way to

mitigate inconsistencies with disjoint highlight segments. Together, these considerations

also mean that this second approach of defining segments is less precise, as with larger

segments a boundary may not be able to be hit exactly as defined in the gold standard.

4.5.2 Evaluation measures

In previous works, the latter approach in conjunction with precision, recall and f-score

has been dominant. For the purpose of comparability, we use these measures as well and

provide more in depth analysis of the results of our experiments. Following [11], we define

the set of correctly predicted highlight segments as S pred and the set of gold standard

highlight segments as S gold. For precision (P), recall (R) and F1-score (F) we use the

definitions in Equations 7 and 8.

P =
|Sgold \ Spred|

|Spred|
R =

|Sgold \ Spred|
|Sgold|

(7)

F1 =
2PR

P +R
(8)

4.6 Conclusion

In order to address the highlight detection task on live stream chat, we have presented a

variety of models. We showed how we calculate temporal features over segments of chat

message, especially message density as well as semantic ones with TF-IDF and Word2Vec

embeddings. For peak prediction, we introduced SciPy’s peak prediction and the real

time peak prediction algorithm. Additionally, we explained how the semantic features

can be used in Naive Bayes and logistic regression models.

Furthermore, we mentioned how to use a transformer based deep learning architecture

for the highlight detection problem. We presented a pre-training approach for Twitch-

LeagueBert, a transformer language model pre-trained on Twitch chat from League of
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Legends e-sports live streams, and theoretically explored two architectures the model can

be used in. Finally, we showed why we chose RoBERTa as a comparison model in these

architectures.

In addition, we discussed di↵erent approaches for evaluation and defined how we com-

pute precision, recall and f1-score on segments of highlight predictions. Next, we move

on to training and evaluating the models we have presented in this chapter.
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5 Experiments and Results

Now, with di↵erent models defined for the main subject of investigation, detecting high-

lights with live stream chat data, we train and test them in the following chapter. To

this end, we use the dataset introduced by Fu et al. [11] and described in Chapter 3.1

as a training and testing corpus with the previously defined train, validation and test

sets. First, we evaluate the techniques as presented in Chapter 4.2 starting with the peak

prediction algorithms and next move to semantic features with machine learning tech-

niques. Finally, we train and evaluate di↵erent transformer based models on the highlight

detection task. To judge the quality of these techniques, we compare these results to the

ones reported by [11].

5.1 Baseline investigations

As a baseline for our transformer models, we evaluate less complicated setups. These

setups are chosen because of their conceptual and computational simplicity and are in-

formed by previous work. First and foremost, we use message density as an information

source. From our first plots of message density and the other features as displayed in

Figure 3, we quickly see that message density has the most variation and highest correla-

tion with highlights. Thus, we focus on this feature as the central information metric for

our peak prediction algorithms. In the following, we describe the training and evaluation

parameters we use.

5.1.1 ScipyPeaks

For the ScipyPeaks predictor we find some parameters by hand through trial and error, in

order to judge which parameters may provide best results and also run a more commonly

used grid search with cross validation with five folds over a parameter grid. Surprisingly,

we find two di↵erent configurations, which are found in Table 6. The hand-picked con-

figuration fares better not only in validation, but also in the test dataset. With this

configuration, SciPyPeaks achieves 0.32 f-score with 0.40 precision and 0.27 recall.
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parameter name hand-picked grid search
prominence 0.2 0.14
relative height 0.35 0.7
width [600, 5000] [600, 5000]
shift 0.9 0.3
width scale 0.8 -

Table 6: Parameter configurations for the SciPyPeaks predictor

5.1.2 Real-time peak predictor

With the real-time peak predictor, we also use a grid search with five-fold cross validation

to search over a parameter grid. The parameters used are: ”lag” = 30, ”threshold” = 2.0

and ”influence” = 0.7. These parameters achieve 0.17 f-score with 0.3 precision and 0.12

recall. We see that this predictor is significantly worse in finding highlights, resulting in

low recall, while the precision is relatively high.

5.1.3 Semantic predictors: logistic regression and multinomial naive bayes

Our last two baselines are the models with semantic features. Here, we use a span of

messages from 7 (210 frames) seconds of stream for each document, which we determine

by a parameter grid search with five-fold cross validation. With the default parameters,

the Scikit-learn models reach the best performance in training[4]. Specifically, the logistic

regression classifier with Word2Vec word embeddings reaches an f-score of 0.40 with 0.29

precision and 0.66 recall while the multinomial naive Bayes classifier with TF-IDF features

reaches 0.41 f-score with 0.30 precision and 0.65 recall as displayed in Table 7. These

two classifiers easily outperform the other baselines, especially in retrieving highlight

documents correctly.

model name precision recall f-score
SciPyPeaks 0.40 0.27 0.32
RealTimePeakPredictor 0.30 0.12 0.17
Logistic regression 0.29 0.66 0.40
MultinomialNaiveBayes 0.30 0.65 0.41

Table 7: Precision recall and f-score results for the baseline models on the test set.

45



5.2 Training TwitchLeagueBert

Before we train task-specific models for highlight detection, we pre-train the Twitch-

LeagueBert language model on our “Twitch LoL corpus”. We mainly follow the training

procedure of RoBERTa, but providing input sequences of a maximum length of 128 tokens

and a batch size of 64. We train 1 million steps (14.86 epochs). After 500 000 steps, we

save a version of the model for later comparison which we call “TwitchLeagueBert-500k”.

For the masked-language-learning objective, we mask 15% of tokens in each epoch. In

terms of optimization, we use the same approach as RoBERTa. The training is done on

an RTX6000 GPU and takes 7 days.

With this model, we conduct two tests to see if it has learned some of the text found

in Twitch chat. We let the model fill some masked tokens and compute perplexity over

the datasets.

In order to provide an indication about what TwitchLeagueBert is able to learn from

the Twitch LoL corpus, we test the model with phrases which we construct. We provide

a masked input sequence of tokens and let the model predict the missing token. We start

with a sentence that aims to discover the model’s emote understanding. To this end,

we provide the sentence “[emote] this is <mask>.” where we replace [emote] with the

following emotes:

• LUL - Laughter. The emote version of Laugh Out Loud.

• ResidentSleeper - For when there’s a lull in action, a boring cut scene or event, or

when someone literally falls asleep.

• WutFace - Used to express shock, disgust, or to note a loud, disruptive noise on

stream.

• NotLikeThis - Used to express dismay at an outcome, usually due to bad luck or a

misplay.

The definition for the emotes are taken from the o�cial Twitch website29. Twitch-

LeagueBert provides predictions for the five most likely tokens to fill the mask. As we can

29https://www.twitch.tv/creatorcamp/en/learn-the-basics/emotes/

46

https://www.twitch.tv/creatorcamp/en/learn-the-basics/emotes/


see in Table 8, generally adjectives are predicted, which is expected. We can relate these

to the meanings of the emotes. For “LUL” we first see “hilarious”, which exactly repre-

sents the meaning of the emote. The same is true for the other emotes. With RoBERTa,

however, the results do not correspond to the filled in tokens. While we mainly find ad-

jectives as well, we see that the meaning of the emotes is not captured. This di↵erence is

expected and provides a possible insight for highlight prediction models based on these

pre-trained models.

emote TwitchLeagueBert RoBERTa
LUL hilarious, sad, awful, amazing,

boring
awesome, interesting, great,
cool, bad

ResidentSleeper boring, exciting, it, intense, so not, me, better, good, for
WutFace awful, horrible, amazing, terri-

ble, cancer
awesome, great, me, interest-
ing, hilarious

NotLikeThis sad, embarrassing, painful, aw-
ful, ridiculous

private, experimental,
JavaScript, personal, inter-
active

Table 8: Five best predictions for TwitchLeagueBert and RoBERTa for filling the masked
sentence “[emote] this is <mask>.” beginning with the respective emote.

For gauging how well these models understand the language style on the highlights

corpus, we compute the perplexity on this dataset. Perplexity is a measure of how well

a language model models a set of inputs. It describes how surprised a model is about an

input sequence [38]. Thus, lower perplexity is better. TwitchLeagueBert achieves 12.96

and RoBERTa does 50.12 as presented in Table 9. Here again, we see that RoBERTa does

not model the Twitch language style as well as TwitchLeagueBert, which is expected.

Neither model has been trained on the highlights corpus.

model name perplexity
RoBERTa 50.12
TwitchLeagueBert 12.96

Table 9: Perplexity measures for RoBERTa and TwitchLeagueBert on the highlights
corpus.

47



5.3 Transformer model investigations

For the main part of our experiments, we now train and test the transformer models for

highlight detection, which are defined in Chapter 4. We choose two approaches, one with

sequence classification employing a similar strategy as [11] and another with an additional

feature added. With both setups, we test “roberta-base” and “TwitchLeagueBert” for

language models. We use the same dataset splits as with the baselines for training,

validation, and testing.

5.3.1 Transformer model for sequence classification

We train the AutoModelForSequenceClassification30 with “roberta-base” and “Twitch-

LeagueBert” as language models for a maximum of 10 epochs, with possible early stop-

ping if there is no improvement after 3 evaluations. Evaluation on the validation set takes

place 20 000 steps on the mean squared error loss, precision, recall and f1-score. The early

stopping mechanism is based on f1-score. The learning rate is 2E � 5.

With this setup, we find in Table 11 that both TwitchLeagueBert models perform

worse than the RoBERTa based model. We see that the scores on the validation set for

TwitchLeagueBert-AutoModel and TwitchLeagueBert-500k-AutoModel are substantially

lower than RoBERTa-AutoModel as shown in Table 10. We observe the same trend on

the test set, which is shown in Table 11. Thus, we can see a trend in improved model

performance when using TwitchLeagueBert which has been pre-trained for more epochs.

However, a better performance with the RoBERTa model indicates, that the importance

of the structure of messages is exaggerated compared to their meaning with this setup.

We suspect, that RoBERTa can interpret the sequences of empty frames in comparison

to frames with message contents better than TwitchLeagueBert resulting in a better

performance.

5.3.2 Transformer model with additional features

For our second model architecture, we explicitly encode a temporal feature, namely mes-

sage density, and supply it alongside with compressed chat content. Again, we base these

30https://huggingface.co/docs/transformers/v4.21.3/en/model_doc/auto#transformers.
AutoModelForSequenceClassification
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models on RoBERTa and TwitchLeagueBert. The models are trained for a maximum

of 25 epochs with early stopping (3 evaluations) based on F1-score and evaluation after

every epoch. We train with a batch size of 16 and a learning rate of 2E � 5. Each model

is trained on a single RTX6000 GPU.

With this set of models, we observe TwitchLeagueBert performing better overall than

RoBERTa. While TwitchLeagueBert-temporal achieves 0.55 precision, 0.44 recall and

0.49 f1-score on the test set, RoBERTa-temporal scores 0.43 precision, 0.24 recall and

0.31 f1-score (see Table 11). Additionally, when comparing TwitchLeagueBert-500k to

the full model, we see an improvement for the latter over the former one. Here, precision

is traded for recall, with TwitchLeagueBert-temporal achieving a higher overall f1-score.

We see these results, both on the test and validation sets (see Table 10). It appears that

the test set is represented better by the training set than the validation set, as we see

overall higher scores in the test set, even if only marginally.

The greater performance can be traced back to one more explicit feature available to

the model in comparison to the previous structure. A full ablation study may prove this.

Apart from this, we see RoBERTa-temporal not achieving the same performance. We

attribute this to the language model, which is not pre-trained on Twitch language style.

With providing as much context as the model can fit, we seem to leverage TwitchLeague-

Bert’s better modelling of this writing style.

In order to be able to compare the results to the ones of the AutoModel, we need

to bring it to frame-level precision. This is done by associating the number of frames

with each predicted chunk, and then using the chunk label to label each frame. When

evaluating, for TwitchLeagueBert this results in a lower score of 0.43 precision, 0.46 recall

and 0.44 f1-score on the test set, RoBERTa-temporal scores 0.21 precision, 0.24 recall and

0.23 f1-score. As expected, we find a drop in performance compared to the coarser output

here. Now, comparing the results to the AutoModel approach, RoBERTa seems to be

able to access less structural information, resulting without being able to compensate for

it with the message density feature. We thus assume the transformer model to be able to

pick up on more temporal features than message density alone.
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5.4 Comparability of models and results

While di↵erent techniques with di↵erent encodings are not always directly comparable,

we use the same dataset for all the models in training and evaluation, providing us with

some comparability. For the AutoModel approaches, we follow the same evaluation strat-

egy as [11]. All the models that we train, perform worse than their [11] best chat model,

L-Char-LSTM, with F1-score of 0.432. We thus conclude that this approach, which may

be adequate for RNN training, does not yield good performance with transformer models.

Our baselines also do not reach the level of their best model, which is expected. Multino-

mialNaiveBayes produces results, which are only slightly worse, suggesting a model with

less complexity and more additional features may work well for this task.

The second model setup produces better results on segments which are formed by the

number of chat messages in a fixed length sequence of tokens. Thus, we do not see direct

comparability of the results. However, we can revert the predictions back to frame-level

granularity, which is done by expanding the prediction of each chunk into the number

of frames it contains. With this conversion, we see RoBERTa-temporal drop to 0.23 F1-

score. For TwitchLeagueBert-temporal we see a drop to 0.44 f-score barely outperforming

the classifier by Fu et al. [11].

model name P R F
TwitchLeagueBert-500k-AutoModel 0.97 0.11 0.19
TwitchLeagueBert-AutoModel 0.82 0.13 0.22
RoBERTa-AutoModel 0.69 0.24 0.35
TwitchLeagueBert-500k-temporal 0.70 0.33 0.45
TwitchLeagueBert-temporal 0.53 0.44 0.48
RoBERTa-temporal 0.49 0.20 0.28

Table 10: Evaluation of the highlight detection models on the validation set. P: Precision,
R: Recall, F: F-score.

5.5 Conclusion

Having trained, fined-tuned and evaluated our di↵erent models, we see that the Twitch-

LeagueBert temporal classifier outperforms all other setups. For the baselines, we showed

our peak prediction algorithms with message density at the lower end of all models. This
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model name P R F
TwitchLeagueBert-500-AutoModel 0.97 0.11 0.20
TwitchLeagueBert-AutoModel 0.84 0.13 0.22
RoBERTa-AutoModel 0.67 0.24 0.36
TwitchLeagueBert-500k-temporal 0.73 0.34 0.46
TwitchLeagueBert-temporal 0.55 0.44 0.49
RoBERTa-temporal 0.43 0.24 0.31
TwitchLeagueBert-1000k-temporal-frame-level 0.43 0.46 0.44
Roberta-temporal-frame-level 0.21 0.24 0.23

Table 11: Evaluation of the highlight detection models on the test set. P: Precision, R:
Recall, F: F-score.

did not come as a surprise as we focus on one single feature. However, it showed us, that

the amount of messages present in live chat is a helpful feature for highlight prediction.

With the semantic baselines, we found out that using word embeddings provides even

better results, supporting the conclusion that actual message content is of greater value

to this task than temporal information. We thus pre-trained and evaluated a transformer

language model specifically for Twitch LoL chat, TwitchLeagueBert, and saw in exam-

ples of mask filling, that central information about emotes was picked up quite well in

comparison to RoBERTa. Additionally, it reached lower perplexity in a held out corpus.

Our two highlight detection model setups, showed disparity in performance. The Auto-

Model setup for sequence classification only outperformed the peak prediction baselines

with the RoBERTa language model. With our second setup, we found that encoding

additional features, like message density, in addition to textual information, resulted in

better performance for the TwitchLeagueBert based model, suggesting, that it success-

fully combined the token embeddings with the temporal information. Finally, we conclude

that training TwitchLeagueBert as a specialized in-domain language model is beneficial

for the highlight detection task in comparison to RoBERTa.
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6 Conclusion

In this master thesis, we set out to apply transformer models to the task of highlight

detection in League of Legends e-sports live stream chat. To this end, we pre-train and

fine-tune a transformer language model which we call TwitchLeagueBert and compare it

to RoBERTa [27]. In order to do so, we collect a corpus from live stream chat on the

platform Twitch and pre-train TwitchLeagueBert on it. For fine-tuning on the highlight

detection task, we use the highlights dataset introduced by Fu et al. [11] and compare the

results to their L-Char-LSTM model. In the following, we describe the outcomes of this

thesis and point out potential for additional research in this area.

6.1 Outcomes

In order to address the highlight detection problem on Twitch chat, we decide to employ

transformer deep learning models. As these models advance the state of the art in many

NLP applications, we apply them to this task as well.

As the base step to providing a new approach to this task, we collect a sizable dataset

that we use to pre-train our language model. Our Twitch LoL corpus comprises almost 90

million chat messages in a LoL e-sports setting, making it the largest corpus of this kind,

that we know of. We provide a methodology for creating a dataset from Twitch chat and

show how we clean and preprocess this corpus for further research. We make it available

for download at https://huggingface.co/datasets/Epidot/twitchlolcorpus. This

is a significant addition to resources in the line of live stream chat research, which hopefully

provides opportunities to other members of the research community.

Next, we pre-train a RoBERTa based language model on the Twitch LoL corpus

and name it TwitchLeagueBert. We follow along the same lines as Liu et al. [27] in

order to pre-train this language model. We use this architecture over plain BERT

[9] for its improved performance and lower complexity. We also argue that the byte-

level BPE tokenizer is more robust and better suited for encoding live stream chat

messages. We pre-train TwitchLeagueBert to 1 million iterations and provide exam-

ples showing its understanding of Twitch Emotes. We make it available at https:

//huggingface.co/Epidot/TwitchLeagueBert-1000k. With this contribution, we pro-
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vide another useful tool in live stream language research. Thus, we advance this field of

research from Word2Vec token embeddings which were made available by [39] to trans-

former language models.

Our main finding of this work, is the comparison of highlight detection models in

LoL e-sports live streams on chat data. We introduce two approaches for using trans-

former models on this task and provide performance measures on them. We follow in

the line of work of [11] and improve on their L-Char-LSTM with an f1-score of 0.44

over 0.432. Although we do not see the revolutionary improvement that we saw in

other NLP tasks when transformers were introduced, we provide a first application of

this technique to the highlight detection problem. Our technique successfully reproduces

and barely outperforms the previous LSTM technique, showing potential for this kind

of application. We additionally show that using a domain specific pre-trained language

model is preferred over a more general one. We present these results on our English

datasets. We also make our pre-processed datasets and models available for download

at https://huggingface.co/Epidot providing opportunity for future research into this

area.

6.2 Future research and limitations

In closing, we would like to mention areas of our work that allow for further research.

Namely, we remark the application of multimodal models to the highlight detection task

and di↵erent potential setups for transformer training on this task. Additionally, we

discuss limitations with our approaches. Here, we mention the inherent subjectivity of

highlight detection, as well as existing crowd feedback for highlights clips.

With the inherent multimedia character of live stream interaction consisting of video,

audio and viewer generated live chat, it is not a far reach to use all of these factors in

a multimodal approach for highlight detection. While we have seen combined models in

past research, we have not leveraged this kind of information in this master thesis. Thus,

an interesting future direction is applying our chat models together with audio and video

analysis models to the task. As [11] and [25] suggest, combining di↵erent approaches is

fruitful and beneficial to the task.
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As discussed in Section 3.1, we found several issues with the highlight corpus. Thus,

we encourage the creation of a cleaned up and improved version for future research which

mitigates the mentioned problems.

In terms of chat based models and transformers, we have merely provided a first

architecture that does work, but can probably be improved. We have not conducted

extensive hyperparameter fine-tuning, nor have we explored adding multiple temporal

features to our models. We see the potential for other model setups, that include an

additional learning objective for detecting if a highlight boundary is close to the classified

segment.

With respect to the subjectivity of the highlight detection task, we argue that the

quality of a highlight video lies in the eye of the viewer. Thus, conducting viewer accep-

tance studies, as [39] and [43] do, of the highlights produced by our model would provide

more insight into about model performance. Additionally, the dataset used for this work

consists of annotations by one singular video production company, making the reference

annotation possibly skewed. This may be mitigated by combining highlight segments

from multiple videos or even user-generated clips from twtich.tv.

These user generated clips are a way for viewers to save short segments of a live stream

for distribution or later reference. As this possibility is given on live stream platforms,

this is another possibly data point which may be accessed for automatically creating

high-quality highlight videos. We suggest investigations into using user-generated clips in

combination with model prediction for better highlight detection.
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[29] Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan Černocký, and Sanjeev Khu-
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