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Abstract

Human language varies across many dimensions due to numerous factors, and a large

body of research in natural language processing (NLP) aims to identify and measure

these factors, often combining insights from linguistics and the ability to leverage large

amounts of language data. One of the most studied dimensions of language variation in

this field is diachronic language change, i.e. change of language over time. In NLP, the

de-facto standard representation of lexical meaning are word embeddings (Turney and

Pantel, 2010), which express the meaning of a lexical item as a vector in a multidimen-

sional space. Intuitively, the angle between two such word vectors can be interpreted

as the semantic similarity of the words, and the vectors’ difference as ‘shift’ of meaning

from one word to the other.

In this thesis, I delve into the research of diachronic language change on the basis of

word embeddings. I aim to contribute to research in two ways. I first outline the many

methods involved in and related to diachronic research of language via embeddings in

order to provide a solid basis for other researchers from fields outside of NLP. Then,

secondly, I introduce and explore a new unsupervised method for the detection of sys-

tematic conceptual shifts. For this, I make two assumptions; namely that (1) diachronic

language varieties should be treated as distinct despite their obvious similarities, and

(2) no assumptions about specific changes should be made a priori.

The starting point for the investigations are word embedding models of various time

intervals of the Royal Society Corpus (RSC, Fischer et al., 2020), a collection of En-

glish scientific texts that spans from 1665 to 1929. Previous work on language change

within the RSC (cf. Bizzoni et al., 2020) employs both corpus linguistic methods and

measurements on these word embedding models (or: spaces). Differently to this, I aim

to measure shifts across spaces and operate directly on these shifts.

In order to make spaces comparable to each other and work under the assumption

of bilinguality (assumption 1), I align pairs of spaces via Gromov-Wasserstein Opti-

mal Transport (GWOT, Alvarez-Melis and Jaakkola, 2018). GWOT is an optimization

problem which creates a probabilistic association between points across two spaces. It

achieves this without any knowledge of language; instead it matches up points across

spaces by a measure of how similarly they behave in their own respective spaces. This

probabilistic association can then be used to project one space onto the other. In order

to preserve the diachronic shifts, the projection considers only the most stable concepts

(i.e. those concepts for which the ‘spatial profile’ changes the least across time).

To detect systematic conceptual shifts, I calculate vectors of conceptual shift, apply

a clustering algorithm, and approximate the meaning of the shift vector’s direction with

nearest-neighbor search. The result is a set of clusters with human-interpretable labels

which express the components of meaning which change over time.

Thorough investigations of GWOT as well as the experiments with the proposed

method show that the assumption of bilinguality is not necessary. The proposed method

is promising; it confirms previous findings and is able to identify new dynamics of

diachronic change, e.g., that similar words tend to change in similar ways. I provide

impulses to improve the proposed method and to apply it to further language resources.
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1 Introduction

Language takes on various forms depending on many factors. The most obvious such

factor is typology itself; Dutch, Farsi, Russian, Bulgarian, Chinese, Italian, and German

are all different from each other both in their surface structures as well as in their po-

tential and ways to express specific concepts. Moreover, any such typologically distinct

language itself can take various forms. In the terms of Ferdinand de Saussure, one can

distinguish between langue (a construct of lexical items connected by rules) and parole

(a set of linguistic utterances); between language system and language in use. With

this distinction, any one language such as the ones above can also be looked at from the

aspect of language in use, and clearly, no two instances of parole are the same. Lan-

guages themselves are organic; they are means to express the thoughts of their speakers.

Therefore, differences between and developments of the users of a language lead to dif-

ferences between the corresponding instances of language in use. These differences and

changes can take many forms; two newspapers, two social groups, two generations of

users, two topics etc. are all likely to exhibit some sort of difference in the way that lan-

guage is used. Linguistic research has long shown great interest in characterizing these

differences as well as picking apart the factors that influence them. One particularly

well-established area of research investigates the diachronic perspective: how and why

does a language change over time?

An example of research on diachronic language change is the Royal Society Corpus

(RSC) (cf. Fischer et al., 2020), which comprises English scientific texts from 1665 to

1929.1 During those 265 years, scientific English has undergone numerous changes based

on advances in the sciences, the humanities, scientific culture, and the English language

in general. This is the language resource of interest to this thesis.

There are various methods that can be used to study a collection of parole like the

RSC; this thesis employs word embeddings (Turney and Pantel, 2010; Ling et al., 2015),

which are the de-facto standard form of semantic representation in Natural Language

Processing (NLP). In principle, the embedding of a linguistic unit (a character, word,

lexeme, phrase) is a vector in a multidimensional space which expresses the similarity of

any two units by means of spatial distance. Following the distributional hypothesis (cf.

Firth, 1961), embeddings are calculated from large text corpora by modeling the contexts

in which the linguistic units appear. If two such units appear in very similar contexts,

their embeddings are highly similar and will follow similar directions in the vector space.

Embeddings, most often word embeddings, form the basis of many applications in NLP,

because they express the semantics of the corpus (i.e., the parole) on which they are

built in a relatively reliable and algorithmically convenient way.

Two of the fields that advanced substantially with the use of embeddings are machine

translation and diachronic computational linguistics. In both fields, a central challenge

to leveraging the power of embeddings is the alignment of two or more embedding spaces;

the challenge of making them comparable to each other. While monolingual scenarios

of embedding alignment can rely on information from a largely mutual lexicon, the

1these numbers refer to version 5.1; the current version 6.0 of the RSC, cited here, comprises more
recent texts as well.
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bi- and multilingual scenarios most often encountered in machine translation only have

few lexicon entries with a shared spelling. Many approaches to bi- and multilingual

embedding alignment rely on dictionaries of one-to-one translations which are compiled

manually or generated with heuristics.

Nonetheless, there are several successful approaches to multilingual embedding align-

ment. One of these approaches is described in Alvarez-Melis and Jaakkola (2018). It

relies on the observation that the two embeddings of one concept (or: of two very simi-

lar concepts) in two distinct embedding spaces tend to have similar constellations with

other concepts in their respective spaces, even for rather unrelated language pairs. The

method, which I build upon in this thesis, solves an optimal transport (OT) problem by

minimizing the Gromov-Wasserstein distance (GW) between two embedding spaces. A

special feature of Gromov-Wasserstein Optimal Transport (henceforth: GWOT) is that

it works fully unsupervised; that is, there is no need for manually compiled or generated

dictionaries.

Why use an unsupervised bilingual method for alignment if the embedding spaces for

these diachronic investigations are all constructed on English text? If investigated with

a narrow sense of semantic identity, one might claim that the lexicons of two varieties

of language use (i.e., paroles) do not match in the monolingual case either. In this

sense, it is possible that while a lexicon entry has the same spelling across two language

uses, the underlying concept may differ. Indeed, it is not hard to imagine scenarios

in which the precise meaning of a word or an utterance depends on its source: the

speaker, the situation, the topic — or the time in which it was uttered. Besides the

generation of new words, language change happens within words; they are re-purposed,

ascribed new meanings, and stripped from old ones without changing the surface form

(cf. Traugott, 2017). For this reason, I make the strong assumption that studies of

diachronic conceptual change should not fully rely on the largely shared vocabulary

across time intervals either. Instead, any two paroles of one language from distinct

periods in time might as well be regarded as two distinct languages: similar, but different.

GWOT as an unsupervised method for alignment satisfies this assumption of bilinguality.

Once two embedding spaces are aligned to each other, it is possible to compare em-

bedding vectors across time. Previous research of word use in the RSC has successfully

discovered and confirmed several developments of scientific English over time; addition-

ally, the decade-spanning word embedding spaces have been used for investigations of

general dynamics of language change (cf. Bizzoni et al., 2020). For example, Bizzoni

et al. (2019a) report that the scientific language within the corpus becomes more spe-

cialized over time: clusters of words that are used in similar contexts become tighter,

while the clusters grow apart from each other (i.e. become less similar to each other).

In this thesis, I use the embedding spaces to detect conceptual changes on a smaller

scale, specific to small groups of concepts. Besides the quantitative aspects of language

change (how much language or specific groups of concepts change over time), a partic-

ular interest here lies in the qualitative aspects, that is, in which direction the change

happens.2 To this end, I propose a novel combination of widely applied techniques to

2Here, ‘direction’ is to be taken in the spatial sense: when the usage of a word changes over time, its
vectorial representation also changes; the word has varying positions in space depending on the point
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find systematic conceptual shifts and make their nature of change more interpretable.

In addition to the first assumption that one should not rely on similar (i.e. overlap-

ping) vocabularies as an anchor to align word embeddings, I assume that it is desirable

to exclude human intuition from the detection of shifts. The main reason for this as-

sumption is human bias and the tendency to miss subtleties: it is simple to come up with

obvious candidates for diachronic semantic change of English such as gay, broadcast, or

cell (cf. Hamilton et al., 2016b) and investigate their behavior over time. However,

it is much less intuitive to think of developments such as the tendency to speak of

an assumption rather than a supposition, and the question of whether this is because

supposition changed its meaning. Subtle changes like this one are hard to detect with

human intuition alone. Therefore, it is desirable to approach the task of detection of

diachronic conceptual change as an unsupervised task. The proposed method for shift

detection aims to satisfy this by considering every word in the vocabulary and finding

groups of concepts which change in a similar way and filtering those groups which show

an unusual pattern of change.

What to Expect. With these two assumptions, the application of GWOT to embed-

ding spaces of the RSC, and the proposed method for the detection of shifts, I aim to

find answers to the following questions:

1. Is it useful to frame the detection of diachronic conceptual change as bilingual

task?

2. How well does the method for unsupervised alignment work with respect to the

RSC; is it reliable and feasible?

3. Does the proposed method for the unsupervised detection of shifts work; is it

sensible and expressive?

4. Do the insights from the proposed method relate to previous findings?

5. Can the proposed method uncover new (general and/or specific) dynamics of lan-

guage change within the RSC?

This thesis, seen in the context of current research on the development of scientific

English in the past 350 years, aims to establish a basis of knowledge for the investigation

of conceptual change via word embeddings. It is addressed to a mixed readership of the

fields of linguistics, NLP and history; therefore, it provides overviews and background

information on many established methods of NLP for further reference. Besides this

channeling of information, the thesis contributes to current research in three ways. First,

by proposing and applying a novel method of shift detection. Second, by applying a

specific technique for alignment and the proposed method for shift detection to word

embeddings of the RSC. Third, by evaluating both, alignment and shift detection, with

respect to the RSC. Fourth, by increasing the state of knowledge about the data at hand

in time at which it is observed. The difference between these points is itself a vector that expresses the
direction of shift.
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through new insights and validation of previous findings. With these contributions, this

thesis should give insights about the possibilities and limitations of embedding-focused

research on conceptual shifts within diachronic corpora such as the RSC and possibly

inspire research on other language resources. The relevant code is available online.3

Structure. Chapter 2 gives a frame of reference for related research. Specifically, it

gives an intuition and references to techniques for the construction of embedding spaces

(§2.1), the alignment of such spaces (§2.2) and the detection of conceptual shifts within

them (§2.3). Chapter 3 reports on the text data (§3.1) used to construct embedding

spaces, which are described and evaluated in (§3.2). Chapter 4 goes into detail about

unsupervised alignment via Gromov-Wasserstein Optimal Transport (GWOT) with the-

oretical foundations (§4.1) and introduces an adaptation of GWOT for diachronic sce-

narios (§4.2), followed by applications to the data at hand (§4.3). The insights from

Chapter 4 are then used in Chapter 5 to select and align a sub-set of the available em-

bedding spaces of the RSC (§5.1) and apply the method for shift detection presented in

Section 5.2. The results, both quantitative and qualitative, are presented and discussed

subsequently (§5.3, §5.4). Chapter 6 critically reflects on the methodology, findings and

insights from the preceding two chapters, followed by considerations for future investi-

gations. Chapter 7 concludes the thesis.

2 Related Work

This chapter aims at giving a background for the work carried out in this thesis. For

this, I will first give an overview of the construction of and work with distributional

semantic models in Section 2.1. This is followed by a presentation of previous research

on the two main methodological aspects (i.e., word embedding alignment and detection

of embedding shifts) in Section 2.2. The chapter concludes with previously established

observations about language change over time, both in language in general and an within

the language data at hand (Section 2.3).

2.1 Background of Distributional Semantic Models

In order to understand the behavior of alignments for word embeddings, and later on,

of shift detection, it is important to have an intuition about the methods with which

the word embeddings were constructed in the first place. Therefore I will first briefly

describe the broad variety of modeling techniques of Distributional Semantics (DS),

followed by intuitions about DS spaces.4

3https://github.com/SimonPreissner/get-shifty
4As for the terminology, I use the term embedding more broadly than usual. While the term was

coined specifically in the context of predictive modeling, I use it for any vectorial representation of
meaning in a distributional semantic model. Similarly informally, I refer to DS models as spaces.
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2.1.1 Modeling Techniques

Embeddings are the de-facto standard for the representation and processing of seman-

tics in natural language processing (NLP). The numerous approaches mainly vary in

two ways: the size of the represented units of meaning and the technique with which

the approaches model those units. For a long time, the most commonly used unit of

meaning was the word (e.g. Turney and Pantel, 2010; Baroni and Lenci, 2010; Mikolov

et al., 2013b; Pennington et al., 2014), but especially recent advances in computational

semantics treat larger units such as phrases or sentences (e.g. Peters et al., 2018; Devlin

et al., 2019; Yang et al., 2019; Sanh et al., 2020; Brown et al., 2020).5 In general, the

amount of data (and processing power) required for reliable modeling grows with the

size of the linguistic units to be modeled. Most diachronic text corpora, especially for

less recent times, are not large enough to make approaches with larger units of meaning

feasible. Consequently, diachronic studies involving DS representations normally use

word embeddings; work on larger units (e.g., Martinc et al., 2020) is the exception.

With respect to the modeling technique, the two main paradigms are count-based

and predictive modeling. Going back to the origins of DS, the distributional hypothesis

(cf. Firth, 1961) states that the meaning of a concept can be estimated by the set of

contexts in which it is used, that is, by its distribution in language. In the simplest

count-based approach, this means that given a corpus C with v different words (i.e., a

vocabulary V of size v), the co-occurrences of words within a certain proximity (e.g.,

±5 words apart) can be stored in a matrix Mv×v, and each row of M is a v-dimensional

vector xw that represents the distribution of a word w ∈ V in the corpus. These vectors,

all of the same size, can be thought of as points in a v-dimensional space. Words with

relatively similar contexts correspond to points which are relatively close together in this

space. Thus, under the assumption that similar use expresses semantic closeness, the

spatial proximity of two word vectors expresses the semantic similarity of their words.

Note that the one-to-one correspondence between contexts and vector dimensions in

this naive approach is infeasible in reality, because (a) the models do not scale well

with vocabulary size and (b) the models value the sheer frequency of a context higher

than its actual informativeness. A large body of research has addressed both issues and

developed robust and convenient count-based models (e.g. Landauer and Dumais, 1997;

Deerwester et al., 1990; Rohde et al., 2006; Levy et al., 2015; cf. Turney and Pantel,

2010 and Bullinaria and Levy, 2007 for overviews).

Predictive methods approach the construction of DS models from a different angle.

They use corpora to produce training data for machine learning models which are trained

to solve completion tasks. Intuitively, the goal of training is to find features in the

observed words which are useful to solve that task. For example, Bengio et al. (2003)

train a neural network to predict the next word in a given sequence of words. Within

the neural network, the input words are converted to vectors with d features, which are

stored in a matrix Mv×d. The values of M (i.e., the values of the embeddings) are

5To this day, the notion of ‘word’ is debated, and so is its relation to units of meaning (i.e, concepts).
The relationships between distinct words (in the sense of letter strings) and concepts are often 1:n
(polysemy) or n:1 (synonymy); some concepts can only be expressed with multiple compounds; and so
on. In this thesis, the main linguistic unit is the word, in the meaning of letter string.
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adjusted by the training algorithm. After training, each row in M corresponds to the

d-dimensional embedding of a specific vocabulary item. There are various tasks used for

training word embedding models, for example predicting a word from its surroundings,

or inversely, predicting the surroundings of a word (cf. Mikolov et al. (2013b); Ling

et al. (2015)).

While distributional semantics has its roots in count-based models (cf. Bullinaria

and Levy 2007), there has been a great shift towards predictive modeling with the rise of

machine learning. Both approaches do have commonalities; Levy and Goldberg (2014)

for example show that skipgram with negative sampling (SGNS), a predictive approach,

implicitly uses PMI, which is a common technique in count-based DS models. Still,

predictive models tend to perform better on a wide range of tasks (Baroni et al., 2014).

The distributional semantics models employed in this thesis are trained as structured

Skipgrams, a technique proposed by Ling et al., 2015, who extended the SGNS technique

from Mikolov et al. (2013b) in order to capture syntactic regularities additionally to

purely semantic information. The training of these models will be discussed in detail in

Chapter 3.2.

2.1.2 Properties of Vector Space Models

Word embeddings are commonly treated as vectors in a multidimensional (and usually

euclidean) space. Two vectors pointing into similar directions correspond to semantically

related concepts. The vectors usually are normed to unit length so that the similarity

between two vectors is expressed by the angle between them. This measure is called

the cosine similarity and is arguably among the most widely used (Turney and Pantel,

2010). Values of cosine similarity typically range from -1 (opposite directions) to 1

(identical direction), with a value of 0 expressing no semantic relation at all. Cosine

similarity (and its counter-part, cosine distance) is frequently used to identify concepts

which are most closely related to a given concept, for example to create topical clusters

or, if the word embeddings are multilingual, to find translations of words.

Another convenient characteristic of most vector space models is compositionality:

basic mathematical operations apply such that adding and subtracting word vectors from

each other yields a new vector which is very similar to a concept combining the semantics

of the original vectors. The prime example, taken from Mikolov et al. (2013c), is that in a

reliable vector space model, the vector resulting from king−man+woman has as nearest

neighbor the vector of queen. Intuitively, by subtracting the highly male-connoted man

from king, the resulting vector should resemble the concept of royalty. Compositionality

is often exploited to operate on components of meaning, e.g. by Bolukbasi et al. (2016)

in order to mitigate bias in word embeddings.

Beyond compositionality and simple analogies such as the above, Mikolov et al.

(2013a) observe that the overall geometric arrangement of concepts in embedding spaces

is similar across languages; they are isomorphic. Thus, two such vector spaces which are

isomorphic to each other can be aligned to one another by rotating and scaling one of

them so that similar concepts from both spaces lie close together. Chapter 2.2 (and in

fact, the entirety of Chapter 4) presents some approaches which exploit the observation
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of isomorphy.

Despite the many convenient characteristics of vector space models and the fact that

DS models nowadays serve as a reliable basis for most semantics-related applications

in NLP, there are certain limitations to the modeling capabilities of word embeddings.

First, they are known for assigning similar points in space to antonyms (i.e., words with

opposite meaning). This happens because antonyms tend to be used in very similar con-

texts, with the only difference being that one is the negation of the other. Consequently,

there has been research specifically on how to distinguish antonymy in word embeddings

(e.g. Ono et al., 2015; Nguyen et al., 2016). Second, standard word embedding models

which define words as sequences of letters do not account well for polysemy, that is,

they model the multiple senses of a word (in the sense of a sequence of letters) as one

single embedding. Additional information can help mitigate this problem (cf. Liu et al.,

2015; Mancini et al., 2017; Kekeç et al., 2018).6 Third, word embedding spaces tend to

contain embeddings which are popular nearest neighbors of many other words. These

hubs, discovered by Radovanović et al. (2010), can become problematic in the cluster-

ing, comparison and alignment of word embeddings. Fourth, word embedding models,

count based as well as predictive, are not necessarily stable. That is, two models which

are trained in the same way on very similar data can be relatively different from each

other. Wendlandt et al. (2018) find that even relatively frequent words can be unstable,

which is counter-intuitive given that they are more likely to be observed often enough

to be modeled well. Finally, not all embedding spaces are approximately isomorphic

to each other. Especially across languages and even for relatively similar languages

(Søgaard et al., 2019), it can not be guaranteed that the geometric constellations of

similar concepts are similar across spaces.

These and other issues as well as the intense research on how to mitigate them show

that results from experiments directly involving vector semantics are to be taken with

a grain of salt. The limitations of word embeddings do not allow to take singular ob-

servations out of context. Rather, multiple consistent observations in such experiments

can inform about more general tendencies.

2.2 Alignment of Word Embeddings

There are several scenarios in which it is of interest to relate two or more existing

embedding spaces to each other; the two most prominent are multilingual and diachronic

scenarios. In multilingual scenarios, two embedding spaces from different languages

(i.e, with different vocabularies) need to be related to each other in order to find the

closest translation of a given word. A secondary interest in this scenario is to compare

the behavior of concepts to infer commonalities and differences in conceptualisation

across languages. In diachronic scenarios, the embedding spaces’ underlying language is

roughly the same (i.e., with largely overlapping vocabularies), but stems from different

6Note that deep neural models such as in Peters et al. (2018) or Devlin et al. (2019) do solve this
issue to a great extent. As they are trained on larger units of meaning, their embedding representations
for a single word differ depending on the context in which the word is used.
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periods or points in time. Aligning spaces in this scenario allows to compare the behavior

and development of single concepts as well as the underlying language in general over

time.

There is an extensive body of research about alignment methods for both multilin-

gual and monolingual (e.g., diachronic) embeddings. Approaches range from supervised

alignment on shared vocabulary or with translation dictionaries (e.g., Mikolov et al.,

2013a; Artetxe et al., 2017; Faruqui and Dyer, 2014; Lazaridou et al., 2015) to fully

unsupervised methods (e.g., Conneau et al., 2018; Alvarez-Melis and Jaakkola, 2018;

Jawanpuria et al., 2020) and from simple matrix decomposition (cf. Artetxe et al.,

2018) to the training of generative adversarial networks (GANs, Goodfellow et al., 2014;

e.g., Zhang et al., 2017; Conneau et al., 2018). Not all of these methods are suitable

for the task at hand, but in order to give a frame of reference for the task of word

embedding alignment in general, I will outline a variety of previously devised methods:

mapping-based, second-order and adversarial alignments.

2.2.1 Supervised (and Mapping-Based) Methods

These approaches aim to create a linear transformation in form of a projection matrix

P which projects any point in the source space X either directly onto the target space

Y or onto a shared projected space Z. They work supervised, that is, they require a set

of words which are known to be ‘translations’ of each other. The construction of this

bilingual signal is crucial to the quality of the resulting alignment. Some of the relevant

aspects for the construction of such dictionaries are investigated in Vulić and Korhonen,

2016.

Orthogonal Projection with (Minimal) Supervision. Given a bilingual signal,

the simplest solution to finding P is to solve an orthogonal Procrustes problem, which

will be introduced in Chapter 4.1.2. Intuitively, such a P rotates and scales all points

in X at the same rate, thus it works especially well if X and Y are (approximately)

isometric.

The challenge for orthogonal methods is to find a set of ‘anchor terms’ which are very

likely corresponding to each other, and to have the bilingual signal be representative of

the two word embedding spaces. Of course, it is appealing to achieve a good mapping

with as few anchor terms as possible, because the construction of dictionaries is costly

and external resources may introduce translation errors. For this, Artetxe et al. (2017)

propose an iterative framework for the creation of large bilingual signals: with a small

set of at least 25 anchor terms, they create a mapping between source space and target

space, perform bilingual lexicon induction, and use the obtained translation pairs as

additional anchor terms in the subsequent iteration. In an additional experiment, they

use shared numerals as anchor terms, starting with a larger, but trivially constructed

set of translation pairs. An equally simply constructed bilingual signal is used by Smith

et al. (2017), who base their alignments on shared strings. Differently to this, Zhang

et al. (2016) take the 10 most frequent words in the corpus underlying a target space and

construct a bilingual signal with these 10 words’ Wiktionary translations. The coarse
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mapping obtained from this weak signal is then used in a part-of-speech (POS) tagger

which itself is trained to the bilingual task. This combination allows to restrict the

bilingual signal for the mapping to a bare minimum, but Zhang et al. (2016) argue that

a bilingual signal of this small size makes the isometric constraint of the projection a

necessity.

Regression Methods. As with the orthogonal Procrustes problem (cf. Chapter

4.1.2), regression methods aim to find a projection of one space onto the other that

minimizes the distances between certain pairs of points. Here as well, the construction

of a reliable bilingual signal is important.

However, instead of using matrix factorization such as in the solution to the Pro-

crustes problem formulated in Schönemann (1966), the projection is optimized via gra-

dient descent, for example with a least squares objective as presented in Mikolov et al.

(2013a). In this context the bilingual signal functions as training data and consists of

translations from online Google Translate of the 5k most frequent words from the source

language. The least squares method has a similar objective as the orthogonal Procrustes

problem, with the difference that it can be modified, for example with L2-regularization

(cf. Lazaridou et al., 2014). Subsequent research on partial least squares regression as

a mapping method has found that the hubness problem (ie., the negative effect some

points being the nearest neighbor of many other points) is somewhat unidirectional and

that hubness effects in one direction can be mitigated by learning the projection in the

reverse direction (e.g., learning P Y to X in order to translate from X to Y ; cf. Shigeto

et al., 2015).

Margin Methods. In the effort to learn mappings from distributional semantic spaces

to the visual domain, Lazaridou et al. (2015) include cross-linguistic experiments. They

attribute the increase of hubness effects with the least-squares method (presented above

via Mikolov et al., 2013a) specifically to that method and present an alternative objective

called max-margin.

Just as in other settings, the starting point are two spaces X and Y and a small

bilingual signal. The max-margin objective requires a measure of distance dist() that

can be applied to a pair of vectors of the same dimensionality. Similar to the regression

method, the aim is to find the optimal mapping W from X to Y . This is achieved

by minimizing Σki6=jmax{0, γ + dist(Wxi, yi) − dist(Wxi, yj)} for all x and y in the

bilingual signal. This means that W should project every xi onto Y in a way that the

projected vector is closer to the true translation yi than to negative translations yj . The

hyperparameter γ allows the mapping to lead to wrong translations, which is desirable

in some cases in order to prevent overfitting. The translation pairs serving as training

data are obtained from bilingual, possibly word-aligned data; Lazaridou et al. (2015)

use the 5k most frequent word pairs obtained from a Europarl-derived dictionary. In

their experiments, the max-margin objective outperforms a regression model similar to

the one outlined above.
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Canonical Methods. This approach to word embedding alignment, such as Canoni-

cal Correlation Analysis (CCA), described in Faruqui and Dyer (2014), establishes two

mappings, one for each space X and Y , to project into a common space Z. Here, the

vectors of the words in the bilingual signal form sub-spaces X ′ and Y ′. CCA finds two

projection vectors v and w that maximize the correlation between projected vectors of

translation pairs, ρ(xiv, ziw), across X ′ and Y ′ respectively. The vectors v and w can

then be used to map the remaining words (of X and Y , respectively) into two new spaces

of equal dimensionality. To obtain a bilingual signal, Faruqui and Dyer (2014) select

words in one language and their most frequently aligned word in the other language as

translation pairs using word-aligned corpora. This results in 36k translation pairs (as

reported in Lu et al., 2015).

Further work on canonical methods in this field has seen neural approaches as well.

Lu et al. (2015), for example, employ neural networks, one for each embedding space,

to extract feature vectors which are then used as the starting point for CCA. Using the

same embedding spaces and translation dictionary as Faruqui and Dyer (2014), they

report better performance on multiple word similarity tasks than conventional CCA.

Artetxe et al. (2018) subsume the four mapping techniques outlined above under

a generalized framework. It defines each technique as a linear transformation with

partly optional pre- and post-processing steps: normalization, whitening, re-weighting,

de-whitening, and dimensionality reduction. All of the presented techniques map two

monolingual embedding spaces onto one shared space, using bilingual dictionaries as a

basis.

Non-Orthogonal Projections Many mapping-based techniques (e.g. Mikolov et al.,

2013a; Miceli Barone, 2016) are based on the assumption that word embeddings are

approximately isomorphic, i.e. can be aligned with linear and even orthogonal trans-

formations. However, this assumption has been criticised as not being true for every

language pair, especially for farther-apart languages (Søgaard et al., 2018; Vulić et al.,

2019).

For this reason, some research has gone into locally sensitive mapping techniques.

Nakashole (2018) identify ‘neighborhoods’ of vectors which are close to each other. Each

neighborhood has an associated weight vector which is used to ‘enrich’ a word vector with

information from its neighborhood before being projected onto the target space. The

projection as well as the neighborhood weights are learned jointly. While not leading to

state-of-the-art results on closely related languages, this approach proves to be effective

for aligning word embedding spaces from more distant languages.

Another locally sensitive approach is presented by Glavaš and Vulić (2020). Here,

starting with a bilingual signal, a source space X is first rotated to roughly match

the target space Y and then every vector xi in the bilingual signal is mapped to its

corresponding yi. These mappings are also applied to the closest neighbors of each xi

individually in order to induce new translation pairs. These two steps, rotation and

instance-based mapping, are repeated in order to extend the bilingual signal.

14



2.2.2 Unsupervised and Second-Order Methods

In the unsupervised setting, no bilingual signal is given. Thus, an alignment must be

built solely on the linguistic commonalities between two word embedding spaces. In

other words, instead of comparing vectors directly to one another across spaces, these

methods often measure and relate their behavior.

Alvarez-Melis and Jaakkola (2018) make use of an abstraction from the points in a

vector space to distances between them. The key idea is that although two embedding

spaces do not share dimensions, the same metrics (e.g., cosine distance) can be employed

within them. This allows to construct metric spaces via within-space measurements

which are directly comparable. Solving an optimal transport (OT) problem analytically

over these metric spaces minimizes the Gromov-Wasserstein (GW) distance and yields

a ‘transportation plan’ Γ between the points in X and Y , which can be interpreted as

a probabilistic translation table – or a bilingual signal (cf. Chapter 4.1.3). This is then

used to solve an orthogonal Procrustes problem to obtain a projection P from X onto

Y . This OT approach is generalized in Alvarez-Melis et al. (2019).

Differently to creating a bilingual signal analytically, Grave et al. (2019) learn an

orthogonal projection matrix with stochastic gradient descent. Their objective is to

minimize the Wasserstein distance between the projected space XP and the target

space Y . The objective function employs P and the ‘transportation plan’ Γ between X

and Y . Γ is sub-sampled in each iteration, which makes optimization faster than the

approach of Alvarez-Melis and Jaakkola (2018) and achieves state-of-the-arts results in

bilingual lexicon induction.

Very recently, Jawanpuria et al. (2020) present an approach which also operates on

distance matrices such as those in Alvarez-Melis and Jaakkola (2018). It also learns a

permutation matrix rather than a projection, but unsupervised alignment is framed as

a bidirectional domain adaptation problem between the distance matrices. The permu-

tation matrix is constructed with a manifold optimization algorithm and subsequently

used to infer a bilingual signal.

These methods are appealing to the task at hand for multiple reasons.7 First, by

framing the alignment of diachronic word embeddings as a bilingual task, there is very

little to no bilingual signal available, as there is little need for diachronic dictionaries.

Second, an unsupervised approach seems ‘cleaner’ than a supervised approach involving

heuristically constructed dictionaries such as those based on shared strings. Third, the

inherent similarity of the spaces at hand might very well allow for orthogonal projec-

tions, despite the fact that embedding spaces are not generally isomorphic (cf. Søgaard

et al., 2018). The diachronic embeddings are trained on data of (more or less) the

same language and the set of domains is largely consistent (cf. Chapter 3). This justi-

fies the assumption of (close) isomorphism, which is required for successful orthogonal

projections.

7The choice for Alvarez-Melis and Jaakkola (2018) is was made before Jawanpuria et al. (2020) had
been published.
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2.2.3 Adversarial Methods

This unsupervised approach employs the encoder-decoder architecture of generative ad-

versarial networks (GANs, Goodfellow et al., 2014). Training a projection P from a

source space X to the target space Y involves an adversarial game: a generator is

trained to sample embeddings from X and transforms them to be as close to embed-

dings in Y as possible. At the same time, a discriminator is trained to detect which

embeddings in a given set are originally from Y and which ones are created by the

generator. After training, the generator is used as P.

Zhang et al. (2017) perform experiments on three different GAN architectures, out-

performing the regression method of Mikolov et al. (2013a). In a combined approach,

Conneau et al. (2018) use GANs to learn a rotation which coarsely aligns spaces. Pairs

of highly frequent words, one from each of the two spaces, which come close to each

other by this rotation are then used as bilingual signal to solve a Procrustes problem.

Finally, the authors introduce a new density-sensitive similarity metric, CSLS (cross-

domain similarity local scaling) which mitigates hubness effects and shows to be better

than cosine similarity with respect to the induction of translations between the less

frequent words of the spaces.

To conclude the short overview of approaches to the alignment of word embeddings,

Søgaard et al. (2019) contains a comprehensive review on methods for the construction

of multilingual word embeddings, including their construction from parallel and compa-

rable data, such as in Yao et al. (2018) or Upadhyay et al. (2016). On the basis of the

large variety of methods reviewed, some key insights are: (1) with supervised methods,

the choice of bilingual signal is often more important than the underlying method itself;

(2) cross-domain similarity local scaling (CSLS) as a measure for spatial proximity is

more robust against hubness than cosine similarity; and (3) unsupervised methods often

struggle to align embedding spaces from corpora of varying sizes or domains.

2.3 Shift Detection with Word Embeddings: Techniques and

Findings

The fact that distributional semantic models can capture subtleties of word use and se-

mantics, combined with the possibility to make such models comparable to one another,

has brought about research on semantic change from various areas such as linguistics,

computational linguistics, history, political sciences, and social sciences. Two surveys of

semantic change should not be missed when delving into this topic: Kutuzov et al. (2018)

provide a selection of influential past and current research on language change with word

embeddings and outline the open challenges in the field. The survey of Tahmasebi et al.

(2018) is more general, additionally describing non-embedding-based approaches. It

also includes considerations from the perspective of linguistics. The following presents

a selection of past research, describing a variety of methods as well as findings. The

aim here is not to give an exhaustive survey; the presented works are selected in order

to provide an intuition about the wide range of possibilities of and the limitations to
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the detection of semantic change in word embeddings. The ‘laws’ of semantic change

formulated in the presented literature are listed in Table 1.

Incrementally Trained Embeddings. A popular technique to compare word em-

beddings to each other, especially in the diachronic scenario which allows to cleanly

partition training data, is to train the embeddings incrementally : the embeddings for

each time interval (years, decades, centuries) are trained by initializing the model with

the embeddings of the previous time interval. This method is used by Kim et al. (2014),

who train year-wise word embeddings on the Google Books Ngram corpus (Michel et al.,

2011) starting from 1850. They allow for a ‘starting phase’ of 49 years, comparing word

embeddings across years beginning from 1900. Comparisons are carried out by means of

cosine similarity between the various vectors of a word across time; lower similarity val-

ues are associated with greater shifts. To better characterize the shifts, they also track

the development of cosine distance from a word to its ‘old’ and ‘new’ nearest neighbors.

The same training paradigm and corpus is used by Dubossarsky et al. (2015), but

only every full decade is saved. The study then performs K-Means clustering on the

embeddings of the 7000 most frequent words and computes the cosine distances between

the words’ decade-apart pairs of vectors. The distance of a word (i.e., the amount of

change over time) is then correlated to its proximity to the cluster’s centroid. They find

that words which are closer to the centroid are less likely to change (later called the ‘law

of prototypicality’).

In a non-diachronic study of semantic differences, Cafagna et al. (2019) train word

embeddings incrementally on topic-aligned sub-corpora of two Italian newspapers. Here,

the conceptual difference of a word between the two spaces is not quantified by cosine

distance. Instead, the authors subtract one of the vectors from the other and measure

the length of the resulting shift vector. Differences between two different words are

also measured, adjusting the length of the resulting vector according to the difference

between two words’ corpus frequencies.

Training diachronic word embeddings incrementally is a viable approach to circum-

vent the need for alignment. However, as Kim et al. (2014) point out, the diachronic

change of a word can only be characterized if that word appears reasonably often at

both points in time. If for example the word’s usage suddenly drops, the corresponding

vector will stay similar and not be re-trained very much.

Aligned and non-aligned Embeddings. In order to demonstrate the capabilities of

varying methods, Kulkarni et al. (2015) employ frequency methods on raw and on POS-

tagged tokens and perform experiments with skipgram embeddings which are trained

individually for each time period and aligned with least-squares regression. Similarly to

Kim et al. (2014), they use series of a word’s cosine distances across time to measure

how much it shifts. They additionally devise a method for ‘change point detection’ to

identify which of the shifts are statistically significant and show its effectiveness on three

large corpora (Google Books Ngram, Amazon Movie reviews, and Twitter data) with

varying temporal granularity (every 5 years, yearly, and monthly, respectively).
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Hamilton et al. (2016b) investigate the influence of word frequency and degree of

polysemy on rates of semantic change. For this, they train word embeddings with

count-based as well as predictive methods, decade-wise on various sub-corpora of the

Google Books Ngram corpus, and align them with Procrustes. As an alternative to the

change point detection of Kulkarni et al. (2015), the time-series of cosine distances are

compared by means of Spearman correlation in order to detect words with statistically

significant rates of change. The degree of polysemy of a word is approximated by the

diversity of its contexts; intuitively, a polysemous word is a member of many otherwise

relatively disjoint clusters. Based on their findings, Hamilton et al. (2016b) proclaim two

statistical laws of semantic change, namely the ‘law of innovation’ (degree of polysemy

and rate of semantic change are positively correlated)8 and the ‘law of conformity’

(corpus frequency and rate of semantic change are negatively correlated).

In a follow-up study on the same embedding spaces, Hamilton et al. (2016a) use

two different measures of semantic shift; the ‘global’ conventional cosine similarity and

a ‘local’ shift measure. The latter first finds the word’s k nearest neighbors at both

points in time and then constructs two similarity vectors from this joint neighborhood.

The similarity vectors consist of the cosine similarities between the neighborhood and

the word in question. Finally, the cosine distance between these similarity vectors is

taken to be the extent to which the word’s neighborhood has changed. By contrasting a

word’s global and local change, it is possible to distinguish linguistic drift from cultural

shift. The experiments also show that nouns tend to shift locally while other classes of

content words (verbs, adjectives, adverbs) tend to shift globally.

Another law of semantic change is formulated by Eger and Mehler (2016): the ‘law

of linear decay’ states that the similarity of a word to itself at different points in time

decreases linearly with the temporal distance. The embedding models are not aligned

as in other studies; instead, words are expressed as vectors of cosine similarities to other

words at the same time (similarly to the ‘local’ measure in Hamilton et al., 2016a).

These second-order vectors are then used to construct a graph which represents a word’s

change in ‘spatial role’ over time. Indeed, several studies demonstrate that embedding

spaces need not be aligned in order to uncover diachronic tendencies. Gonen et al.

(2020) propose to quantify conceptual shift of a word by the amount of overlap of large

neighborhoods (e.g., 1000 nearest neighbors) at different points in time. Earlier, Xu

and Kemp (2015) have used this approach, comparing the changes in neighborhoods of

100 nearest neighbors, and found that synonyms as well as antonyms change at similar

rates. They conclude that their experiments are in line with the ‘law of parallel change’

(Stern, 1921). In the case of near synonyms, this change may also be semantic decay

(cf. Kutuzov et al., 2018).

Finally, Schlechtweg et al. (2019) compare a variety of embedding methods and

measures of similarity and divergence and conclude that the best performing approach

is to first train embedding models with SGNS, align them with orthogonal projections

and then use cosine similarity as a measure for shift detection.

8From the view of polysemous words being less likely close to the center of a word cluster and more
likely at overlapping outskirts of multiple clusters, this is somewhat similar to the ‘law of prototypicality’
from Dubossarsky et al. (2015).
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Developments of Scientific English. Apart from the more recent studies on the

RSC which focus on writing styles and purely linguistic developments, the RSC (or parts

of it) has previously been subject of research on scientific language, with outreach to the

humanities. For example, taking a rather sociolinguistic perspective, Atkinson (1996)

finds that scientific writing in the 17th and 18th centuries was greatly influenced by

norms of social conduct. Moessner (2009) confirms the hypothesis that the formation

of a new, scientific style of writing was influenced by language policies of the Royal

Society. Clearly, historical, sociological, and normative linguistic developments such as

the introduction of a reviewing process in 1751 (Degaetano-Ortlieb and Teich, 2018)

all have an influence on the development of the language of the RSC, both in terms of

linguistic style (i.e., how science is communicated) and conceptualization of words (i.e.,

what certain words mean).

To uncover these developments, Degaetano-Ortlieb and Teich (2016) estimate proba-

bility distributions over part-of-speech (POS) trigrams for spans of 50 years and measure

the Kullback-Leibler divergences (KLD) between consecutive distributions. This allows

to identify POS-trigrams which become more typical over time. Additional analyses

with the average surprisal of these trigrams inform about the versatility of their con-

texts. They find that gerund and passive constructions both become more conventional-

ized over time: they become a more typical part of the syntactic structure of sentences,

but at the same time they are not used in a greater variety of contexts.

KLD is also used in Degaetano-Ortlieb and Teich (2018) to characterize the de-

velopments of lexis and grammar and to compare them with one another. The KLD

models are created in multiple granularities (min. 2-year periods), either on lemmas

(for lexis) or POS-trigrams (for grammar). The comparison of models from consecutive

periods shows that in the RSC, grammar becomes increasingly consolidated and lexis, in

contrast, experiences a back-and-forth between periods of lexical expansion and lexical

consolidation. Additionally, the diachronic modeling of lemma usage with KLD allows

to identify the words that contribute to lexical changes (e.g., by being newly introduced).

Differently to these information- and frequency-based methods, Bizzoni et al. (2019a)

use word embeddings. Specifically, they use structured skipgrams (cf. Chapter 3.2) and

measure cosine distances between varying types of part-of-speech. The results suggest

that these embedding spaces expand over time, reflecting the law of linear decay. This

tendency to drift apart is more pronounced for terms with a specialized meaning; in con-

trast, highly functional words are less affected. Words in between these two classes, i.e.

content-bearing words with grammatical function such as verbs in gerund or past tense

forms, also undergo the process of specialization that pure content words experience.

These more recent findings are combined in Bizzoni et al. (2020) to present a compre-

hensive overview of the dynamics of language change in the RSC, from the perspective

of topical, lexical, and grammatical development.

Challenges for Diachronic Research. Research on language change and specifically

on diachronic conceptual shifts in word embeddings undoubtedly faces some method-

ological obstacles. The two most pronounced ones, treated in both Tahmasebi et al.

(2018) and Kutuzov et al. (2018), are the quality of the embedding models and the
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Source Name Description

Dubossarsky et al. (2015) law of prototypicality More prototypical concepts are less likely to shift.
But: this is much weaker than initially claimed (Du-
bossarsky et al., 2017)

Hamilton et al. (2016a) linguistic drift vs. cul-
tural shift

Nouns tend to shift locally, verbs/adjectives/adverbs
tend to shift globally.

Hamilton et al. (2016b) law of conformity More frequent words change at slower rates. But:
this is largely an artefact of word frequency (Du-
bossarsky et al., 2017)

Hamilton et al. (2016b) law of innovation More polysemous words change at faster rates. But:
this is largely and artefact of word frequency (Du-
bossarsky et al., 2017)

Eger and Mehler (2016) law of linear decay Self-similarity decreases linearly over time.

Xu and Kemp (2015) law of parallel change Synonyms and antonyms have similar rates of
change. First mentioned by Stern (1921).

Degaetano-Ortlieb and Teich
(2018)

lexical change varies The rate of lexical change varies around a certain
average value.

Degaetano-Ortlieb and Teich
(2018)

grammar consolidates Over time, fewer syntactic patterns are used more
often (i.e., grammatical variation declines steadily).

Bizzoni et al. (2019a) lexical specialization Words drift apart over time, especially when they
are infrequent.

Bizzoni et al. (2019a) function word stability Clusters of function words drift away from other
clusters, but do not themselves disperse.

Table 1: ‘Laws’ of semantic change (upper rows) and dynamics of language change in
the RSC (lower rows).

verification of findings.

Tahmasebi et al. (2018) rightfully criticises that many word embedding models do

not differentiate the senses of polysemous words, and do not account for orthographic

variation over time. Such embedding models thus do not make full use of their potential

expressiveness. In larger corpora such as the Google Books Ngram, which itself has

frequently been used for diachronic studies (Kutuzov et al., 2018), this is feasible. How-

ever, many diachronic (and especially the domain-specific) corpora are relatively small,

so that sense-differentiation is often not feasible because of data sparsity. Another issue

of quality arises with the inherent role of word frequency in the construction of word

embedding models. Dubossarsky et al. (2017) examine three statistical laws of semantic

change (prototypicality, conformity, and innovation) and replicate the original exper-

iments on a control condition. In the experiments, the laws also hold for the control

conditions, which leads to a theoretical analysis for the involvement of word frequency in

measurements of cosine similarity. The authors conclude that the previously established

laws of semantic change are mainly artefacts of frequency inherent to the examined

count-based embedding models.9

The second methodological obstacle is posed by the large diversity of studies on

diachronic conceptual change and the lack of human judgements on historical word

meaning. Research in the field is carried out on a wide variety of text resources which

all differ in size, time of origin, quality, domain, and other aspects. Diachronic develop-

9Dubossarsky et al. (2017) also argue that the similarity of SGNS to a factorized PMI matrix, shown
by Levy and Goldberg (2014), may allow implications for frequency effects in SGNS, too.
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ments observed in one study are thus often not transferable to other studies. In terms

of validation of methods, the time- and domain-specific human-rated data to statisti-

cally validate how well a method identifies conceptual shifts usually does not exist (cf.

Tahmasebi et al., 2018).

Some solutions to circumvent the issue of missing gold standards are proposed by

Kutuzov et al. (2018). A straight-forward approach, taken in Rosenfeld and Erk (2018),

is to generate synthetic data in which conceptual shifts are introduced in a controlled

manner. Ecologically more valid methods are based on historic facts. Yao et al. (2018)

use ‘diachronic equivalents’ in a time-dependent question answering task; here for exam-

ple, the answers of time-specific embedding models to the question Who governed [like

Obama-2016]? can be compared to who actually was the US president at the models’

respective times. Such use of historic events and facts as an objective point of reference

is used by Degaetano-Ortlieb and Teich (2018), who verify a detected increase in the

use of ’oxygen’ with the fact that at the same time oxygen was discovered. This type

of verification might be carried out as a prediction task, similarly to Kutuzov et al.

(2017), who use diachronic word embeddings to predict the time at which certain armed

conflicts happened.

3 Data and Resources

3.1 The Royal Society Corpus

The language resource underlying the present work is the Royal Society Corpus (RSC),

version 5.1; the most recent release 6.0 is described in full detail in Fischer et al., 2020.

The RSC is a diachronic corpus of English texts from the Royal Society of London (both

from the Philosophical Transactions and the Proceedings). Its earliest texts date back

to 1665, the most recent ones in version 5.1 are from 1929. As such, the RSC covers

265 years of language in science – a field that has constantly been changing throughout

time, both in the discussed topics and the style of scientific discourse. The RSC (version

6.0) is publicly available up to the 1920s10 (the more recent parts are omitted due to

copyright restrictions).

The RSC was constructed from raw files taken from JSTOR11 (years 1665-1869)

and files provided by the Royal Society (1870-1929). After OCR-scanning, errors were

either corrected with pattern matching (for JSTOR files, Kermes et al., 2016) or with

the Noisy-Channel Spell Checker (otherwise; cf. Fischer et al., 2020). The documents

were then annotated in varying granularities with the available metadata, which allows

first-glance analyses as well as the construction of sub-corpora. In this work, I will make

use of word embeddings trained on the decade-wise sub-corpora. On the token level,

the corpus is POS-tagged (Knappen et al., 2017) and annotated with normalized forms

and other information. The RSC version 5.1 contains about 91.2M tokens which are

distributed relatively unevenly across the various decades. Figure 1 shows the decade-

wise token count.

10https://corpora.clarin-d.uni-saarland.de/cqpweb/
11https://www.jstor.org/publisher/rsl
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Figure 1: Token counts of the RSC (version 5.1) per decade.

(a) Main topics (b) Sub-topics of ‘LifeScience2’

Figure 2: Distributions of main topics in the RSC (version 5.0) over time. Figures taken
from Bizzoni et al. (2020).

These metadata at the document level and the token level have made it possible to

investigate the scientific English in the RSC in various ways, as discussed in Chapter

2.3. While the corpus is smaller than other diachronic corpora of English such as the

COHA (400M tokens, Davies, 2012) or the English Google N-grams corpus (361B tokens,

Michel et al., 2011), it is domain specific to science and thus especially well-suited to

investigate the development of scientific concepts and scientific discourse. Within the

RSC, however, the distribution of scientific topics and sub-topics does change over time,

as Figure 2 shows. Especially before and after the 1750s, the majority style of ‘reporting’

gives way to texts which can be attributed to more distinct scientific fields.

3.2 Word Embeddings of the RSC

3.2.1 Background: Model Architectures

Although the word embedding models have been trained prior to this work, I will de-

scribe the algorithmic background of their construction in order to give a complete

picture of the data at hand.
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Figure 3: Neural architectures from Bengio et al. (2003), Mikolov et al. (2013b), and Ling
et al. (2015). The prediction step after passing O is the same in all three architectures;
the output representation of size |V | is not shown in the skipgram architectures for
better readability.

The word embeddings used here were constructed by means of predictive modeling.

That is, the embeddings are the result of a language model that was trained to predict

a word, being provided some input (usually one or more words in the near context).

One of the earlier neural language models, introduced by Bengio et al. (2003),

achieves this by creating a neural network with a hidden layer that performs n-gram

modeling: given n consecutive words w−n, ..., w−1, the model predicts the next word

w0 (cf. Figure 3, left). Each of the words in the input is first transformed into a d-

dimensional word vector with a matrix X ∈ Rd×|V |, where V is the vocabulary of the

language model. These vectors are then combined in another (hidden) layer H ∈ Rnd×h

which applies a non-linear function (typically tanh or sigmoid), to form a hidden repre-

sentation h. For prediction, h is forwarded through an output layer O ∈ Rh×|V |, which

transforms the hidden representation into a probability distribution over V . All the

parameters (i.e. the values in X, H, and O) are adjusted during training with standard

stochastic gradient descent and backpropagation. After training, each column xi in X

is the embedding of the corresponding word in V .

In their highly influential Word2Vec architecture, Mikolov et al. (2013b) remove H

and directly forward the word vectors obtained from X to make a prediction. This

simplification of the architecture makes training considerably faster.12 However, this is

not the only difference; there are three more novelties to Word2Vec. The first one is the

prediction task. Bengio et al. (2003) use n-gram prediction (i.e., given n consecutive

words, predict the next word); Mikolov et al. (2013b) instead introduce two new tasks as

alternatives. The task which is of interest here is called skipgram: the model is given one

word wi and has to predict one of the context words within a window of ±n positions

(cf. Figure 3, center). A second novelty from Mikolov et al. (2013b) is subsampling,

12In fact, Word2Vec turned out to be influential not only to language modeling (the focus of Bengio
et al., 2003), but especially to Distributional Semantics (DS), where it allowed major steps towards
the goal of creating one generalized, rather than multiple specialized, models of semantics (cf. Baroni
and Lenci, 2010). At its core, Word2Vec is inspired by the notion of DS that context and frequencies
matter. This shows (1) in the two prediction tasks introduced in Mikolov et al. (2013b) which both
take into account the context to both sides of a word and (2) in the use of downsampling to mitigate
frequency effects (both points discussed below).
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whereby tokens in the training data are discarded with a certain probability relative

to their frequency. This counteracts the negative effects of very frequent words on

modeling and also helps to model meaningful relations, as the usually less subsampled

content words can take over the context positions of highly frequent words and ‘move

into the window’ of other context words (cf. Goldberg and Levy, 2014). The third

novelty is the use of negative sampling, which makes training of word embeddings from

a certain amount of text more efficient. In principle, negative sampling constructs a

set of training instances (i.e., input-target word pairs) which are very likely not in the

original corpus. The training objective now becomes slightly different, as the aim is to

give a high score vc to input-context pairs (w, c) which are in the original corpus D and

a low score to the constructed pairs in D′ (i.e., the negative examples). All put together,

the objective is formulated by Goldberg and Levy (2014) as

argmax
θ

∑
(w,c)∈D

log σ(vc · vw) +
∑

(w,c)∈D′
log σ(−vc · vw), (1)

where σ is the sigmoid function σ(x) := 1
1+e−x .

Intuitively, word embeddings trained via skipgram with negative sampling (SGNS)

represent a word w as a vector xw which is optimized to describe that w’s textual

surroundings in the training data. This is achieved by repeatedly presenting positive as

well as negative examples of what such word somewhere in the surrounding of w can

be. By discarding many of the high-frequency words before training, frequency effects

are mitigated. By constructing a set of negative examples, the available data can be

leveraged more effectively.

The architecture of skipgrams is slightly varied by Ling et al. (2015) in order to

account for positional information of context words. In their structured skipgrams,

there is not just one output layer O. Instead, each of the ±n context positions in the

skipgram model has its own Oi (cf. Figure 3, right). This allows to make different

predictions depending on how far away a context word is and whether it comes before

or after the input word. Structured skipgrams have the same complexity as their non-

positional predecessor, because each training step only involves one of the Oi. However,

each output layer is only involved in a share of the training steps. While Ling et al.

(2015) demonstrate a high performance of their structured SGNS on syntax-involving

tasks like POS-tagging and dependency parsing, this splitting of prediction layers might

lead to slower learning for purely semantic tasks.

3.2.2 Training

The word embeddings used in this work were created following the procedures described

in Fankhauser and Kupietz (2017) and first researched in Bizzoni et al. (2019a); they

are available online13. There are multiple sets of word per-decade embedding models,

each set being constructed in a different way. The variables for training one such set of

word embedding models are as follows:

13http://corpora.ids-mannheim.de/openlab/diaviz1/description.html
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• ‘Incremental’ training: This approach follows Dubossarsky et al. (2015), who ini-

tialize the training of word embeddings for one time interval with the embedding

model from the time interval before. This creates somewhat comparable word

embedding spaces. The following will only treat one set of spaces which are not

trained in this way; this set is denoted as ‘individual’.

• init/no-init: For the incremental approach, the first decade normally has no

predecessor on which to base the training. Therefore, the embeddings of the first

period (i.e., the 1660s) can be initialized with embeddings which were trained on

the entire corpus. The main benefit from corpus-wide initialization is that sparse

data problems can be alleviated, which leads to more stable embeddings. The

drawback is that the influence of period-specific information may be overshadowed.

• counts/no-counts: The implementations of Mikolov et al. (2013b) and Ling

et al. (2015) use information on token frequency for subsampling, negative sam-

pling, and the adjustment of the learning rate. Token counts are used in any

case; here, the distinction is between using each decade’s individual token counts

(counts) and using the same, corpus-wide token counts forvevery model (no-

counts). By using the token counts of each sub-corpus when training the corre-

sponding embedding model, these hyperparameters can be set more sensibly.

• struct/no-struct: Structured SGNS (Ling et al., 2015) captures some syntactic

information in addition to the semantics of a term. However, the involvement of

multiple prediction layers may lead to slower training and slightly lower scores in

purely semantic tasks.

All other hyperparameters are the same for all sets of models: words with less than

5 occurrences are ignored and the threshold for subsampling of frequent words is 1e−4.

The maximum window size is ±5 words. The proportion of negative samples to positive

samples is 10. Each model is trained for 25 epochs with the default adaptive learning

rate.

3.2.3 Evaluation

To illustrate the effect of the variable hyperparameters, I evaluate the decade-wise em-

beddings against the MEN similarity test set from Bruni et al. (2014), which contains

3000 word pairs constructed from 751 different words, each labeled with a score between

0 and 50 (Table 2 shows example pairs).14 In this purely semantic task, word pairs

are ranked by the cosine similarity of their embeddings. The model is then evaluated

with the non-parametric Spearman correlation ρ between this ranked list and that of

the MEN dataset.

14The dataset was constructed as follows: pairs were rated by crowdworkers who were presented with
two of the pairs at a time and decided which one of the two pairs had a stronger semantic relation.
After labeling, each pair was scored by randomly sampling 50 instances of comparison involving the
pair in question and counting the number of times that this pair was rated to have the higher semantic
relatedness.
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I test 5 different sets of models, each with a different configuration of the aforemen-

tioned hyperparameters. Four of these sets are trained ‘incrementally’, i.e. each decade

is initialized with the space from the previous decade. init-counts-struct is trained

by (i) initializing the first decade with a corpus-wide model; (ii) using decade-specific

token counts; and (iii) training with structured skipgram. The other three ‘incremental’

sets of models each ablate one of these options (no corpus-wide initialization; corpus-wide

token counts; regular skipgram). For the fifth set, decade-individual, each decade

is trained with SGNS solely on its respective sub-corpus. Figure 4 shows the ρ-values

across all 27 decades.

The conventional skipgram with corpus-individual counts and corpus-wide initializa-

tion achieves the highest performance, with ρ-values between 0.462 (1730s) and 0.539

(1860s). The scores of the structured skipgram variant are similar but slightly lower,

between ρ = 0.425 (1730s) and 0.491 (1870s). Using corpus-wide token counts instead

of decade-specific ones is detrimental to the score (ρ between 0.289 and 0.432), and

the embedding models without corpus-wide initialization only achieve reasonable scores

(ρ ≥ 0.4) for the most recent decades. The non-‘incremental’ variant performs similarly

to the non-initialized variant, but the scores of subsequent decades vary more.

The results show that without corpus-wide initialization which leverages all 91.2M

tokens, the representations for the early decades cannot express the semantics of their

small sub-corpora. With this initialization, however, the models have a decent perfor-

mance across all decades. To put these scores into perspective: Bruni et al. (2014)

report a human performance of ρ = 0.84, which could be taken as the upper bound of

performance on this test set. Hamilton et al. (2016b) report ρ = 0.649 for SGNS em-

beddings on a 850B tokens sub-corpus of Google books. Levy et al. (2015) report ρ =

0.723 of SGNS embeddings on a 1.5B tokens dump of the English Wikipedia. However,

these comparisons do not factor in the effects of varying hyperparameters (window size,

number of dimensions etc.).

How reliable is this evaluation with the MEN test set? It is important to keep

in mind that the word pairs in the MEN test set are labeled by English speakers of

the 21st Century while the texts used to construct the embeddings date back several

decades and centuries. Additionally, the embeddings from the RSC are domain-specific

while the raters of the MEN test set were not, which may result in different conceptual

nuances of words. This evaluation will thus not paint a precise absolute picture, but it

can validate the quality of the embeddings to a certain extent and indicate differences

between decades and training methods relative to each other.

For the work in this thesis, I choose the init-counts-struct variant as the default

type of embedding model,15 as it contains relatively reliable word embeddings for all

decades — and work with the no-init and no-counts variants is not feasible across

the whole range of the RSC. Another strong reason for this variant and against the

conventional skipgram models is continuity of research: previous work on language

development in the RSC has used structured skipgrams to investigate syntactic changes

additionally to semantic ones. Re-using them here allows to better compare results to

15In Chapter 5, I will make use of decade-individual models.

26



Figure 4: Performance of varying word embedding
(WE) models against the MEN test set.

Rank Word 1 Word 2 Score
1 sun sunlight 50
5 morning sunrise 49

10 cat feline 48
50 flowers petals 46

100 grapes vine 44
200 leaf nature 43
500 bloom daffodils 39

1000 eat strawberry 33
2000 dawn snow 18
3000 bakery zebra 0

Table 2: Example pairs from the MEN
test set.

the previous findings. It also opens up the possibility to investigate semantic changes

in words which are important to discourse and syntax. It is true that the init-counts-

struct embeddings are already somewhat comparable to each other. Still, the post-

training alignment of two spaces promises to additionally adjust them more precisely by

minimizing shifts between the most stable concepts and at the same time pronouncing

the shifts of less diachronically stable concepts.

3.3 Hardware

Experiments are carried out on two machines: my PC and a CPU cluster. The PC has

an Intel CoreTM i7-8565U CPU with 4 cores (8 threads) at 1.8 to 4.6GHz and 14.9GB

of available RAM. The CPU cluster consists of 4 AMD OpteronTM 6380 CPUs, each

with 16 cores at 2.5 to 2.8GHz and 996GB of available RAM.16

4 Alignment of Word Embeddings

This chapter introduces and presents insights about the alignment of word embedding

spaces with Optimal Transport via Gromov-Wasserstein distance (GWOT), which was

first carried out by Alvarez-Melis and Jaakkola (2018). There are four main questions

to be answered:

1. Is it feasible to frame the alignment of diachronic embeddings as a bilingual align-

ment task?

2. How well does GWOT work with respect to the RSC; is it reliable and feasible?

3. How can embedding spaces be aligned (and concepts be associated diachronically)

while preserving diachronic shifts?

16While the 64 threads of the CPU cluster seem to allow for fast computations, the optimizations in
Chapter 4 take about the same time on both machines. However, the limiting factor for the PC when
it comes to larger optimization tasks is RAM. This is no issue with the CPU cluster.
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4. Which factors influence the quality of alignment with GWOT, and in what way?

To this end, I will first give the foundations of the relevant techniques in Section

4.1. Section 4.2 aims to answer the question regarding shift-preserving alignment. This

is followed by the more practically oriented Section 4.3 which applies the previously

introduced techniques to the data at hand, including a coarse analysis of the quality

and divergence of the embedding models. The chapter concludes with Section 4.4 which

distills the insights. It further presents a selection of pairs of embedding spaces which

will be used for further investigation as well as a setting of hyperparameters for their

alignment.

4.1 Background

4.1.1 Notation

The following contains an account of definitions and naming conventions which will be

used throughout the thesis. It aims to formally connect corpora, embedding spaces, and

the main components obtained from GWOT. Table 3 lists the most frequent elements.

The RSC is split into a set of 27 Word2Vec models (or spaces), each incorporating

one specific decade-long sub-corpus. As the alignment method acts on two spaces at a

time, a pair of spaces is expressed simply as a tuple of the first years of the spaces’

incorporated decades. For example, 〈1680, 1770〉 refers to the pairing of the space for

the 1680s with the space for the 1770s.

Spaces and sub-spaces are denoted as Xdecade or Ydecade; the subscript decade

denotes the first year of the space’s incorporated decade. Formally, a space Xm×d
decade is a

matrix which is constructed by “stacking” m real-valued vectors of length d. Differently

to conventional denotation of matrices as X, the denotation X refers to a matrix of

embedding vectors (as opposed to a weight matrix, for example) and is therefore used

to refer to spaces. Sub-spaces may only denote the differing m as d is fixed (cf. Section

3.2.1). If not specified, the selection of vectors in a sub-space Xk of X is based on the

k most frequent words in the sub-corpus underlying X.

A space has a corresponding vocabulary UX ; a set of words u. It has a functional

role as well, denoting a mapping from u to the index of the corresponding vector

(or point or embedding) xu in X (analogous with VY , v, yv, and Y ). Similarly to

the notation of spaces, the embedding vectors are denoted as x rather than x as their

multidimensional nature is irrelevant to most parts of the alignment methods.

The frequency distribution fX maps words u ∈ UX onto a number that expresses

how often the word appears in the sub-corpus of X. Similarly to this, p and q are prob-

ability distributions for the vocabularies UXk and VY k of sub-spaces, respectively,

normalizing the values of fX and fY over their frequency mass.

Concerning alignment, the central element connecting two sub-spaces Xk and Y k is

a coupling ΓkX,Y . It is a k × k matrix of likelihood values. From this coupling, a set T

of translation pairs 〈u, v〉 ∈ U × V can be constructed. A specific interest lies on the

pairs of best mutual translations, therefore T is restricted to those word pairs for which
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Component Definition Source Shared Target

space Xm×d
decade X,m d, decade Y, n

sub-space Xk ⊆ {xi ∈ X}; |Xk| = k k

vocabulary UX := u 7→ Nm−1
0 ; |UX | = m U, u V, v

word u ∈ UX u v

vector/point/embedding x ∈ Rd : XUX(u) = xu x y

frequency distribution fX := u 7→ Q;u ∈ UX f

probability distribution p := UX(u) 7→ fX(u)/
∑
u∈UX fX(u) p q

coupling ΓkX,Y Γ

projection matrix PXkY l ∈ Rk×l P

translation pairs*
TΓ := {〈u, v〉 ∈ U × V |

T〈argmax
ΓV (v),·

, argmax
Γ·,U(u)

〉 = 〈U(u), V (v)〉}

Table 3: Overview of frequently used definitions and denotations for the alignment of
two embedding spaces (“source” and “target”). *Γi,· and Γ·,j are shorthand for selecting
row i or column j from Γ.

the coupling maximizes translation likelihood for both words. By solving a Procrustes

problem on vectors of such pairs, a projection Pd×d from X to Y can be obtained in

the form of a matrix. The following sections discuss these processes in more detail.

4.1.2 Orthogonal Procrustes Problem

This mathematical problem (henceforth: Procrustes) is a variant of a family of op-

timization problems in linear algebra called least square problems. It was solved by

Schönemann (1966) who defined the problem as “transforming a given matrix [X] into

a given matrix [Y] by an orthogonal transformation matrix [P∗] so that the sums of

squares of the residual matrix [E = XP∗ −Y] is a minimum”. More formally, we seek

to find an orthonormal matrix

P∗ = min
P
||XP−Y||2F , (2)

subject to P>P = PP> = I, where || · ||F is the Frobenius norm ||A||F =
√∑

i,j |ai,j |2

(cf. Alvarez-Melis and Jaakkola, 2018). The general solution under these circumstances

can be computed efficiently with singular value decomposition (SVD, cf. Klema and

Laub, 1980):

XY> = UΣV>, (3)

where

P∗ = UV>. (4)

In the context of the alignment of two word embedding spaces X and Y , the solution

of the Procrustes problem is an orthogonal matrix P that can be used to project any
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x ∈ X onto Y so that Px is comparable to any y ∈ Y (and of course, any projected x

as well). P is obtained via SVD on two sub-spaces Xk and Y k of k vectors where xi

and yi express similar concepts.17

Procrustes is thus only solvable if there is a known set of pairs of points which

correspond to one another. In other words, some form of bilingual signal is needed. If

only a coarse mapping between X and Y is needed, this can be achieved with small

and/or hand-curated data. For example, Zhang et al. (2016) use translations of the ten

most frequent words in the target language. In a weakly supervised approach, Smith

et al. (2017) propose to construct a ‘pseudo-dictionary’ of words that appear in both

vocabularies. Artetxe et al. (2017) go one step further and construct the initial bilingual

signal of their iterative approach purely from shared numerals.

These approaches work reasonably well for dictionary induction and other bilingual

tasks and suggest a straight-forward solution for the alignment of RSC spaces: that is,

to pair up embeddings of string-matching words and then solve Procrustes. However,

the assumption of bilinguality (i.e., two snapshots of a language from different points in

time should be treated as two different languages), does not allow to take this simple

solution. In principle, there are two reasons which speak for making this assumption.

First, it would be wrong to assume that two words with identical spelling always express

the same general concept. Although the spaces at hand are all from more or less the

same language and domain (namely, British English of scientific texts) and show a large

overlap in vocabulary, the lexical and semantic diachronic shifts cause the spaces to

diverge from one another. Pairing embeddings by the shared orthography of their labels

rather than their position in space would thus introduce errors. Second, in order to

detect semantic shifts, it is of interest to align spaces only along a selected subset of

embeddings, for example along the most stable concepts. With Procrustes alone, there

is no notion of stability by which to filter the bilingual signal. One might prioritize pairs

of more frequent words to less frequent ones, but even highly frequent words are often

not modeled reliably (cf. Wendlandt et al., 2018) and within a set of frequent and thus

relatively stable words, some may experience more diachronic change than others.

With the conservative attitude that assumes bilinguality and for the sake of finding

the best possible anchor points, the alignment task here requires an approach to align-

ment that does not assume a shared vocabulary and incorporates a reliable notion for

the diachronic stability of concepts. Procrustes alone thus does not suffice for the task

at hand.

4.1.3 Optimal Transport with Gromov-Wasserstein Distance

A solution that satisfies all these requirements is presented by Alvarez-Melis and Jaakkola

(2018), who frame the alignment task as an Optimal Transport (OT) problem that re-

lates two embedding spaces to one another by minimizing the Gromov-Wasserstein (GW)

distance between their respective metric spaces. OT itself is a very active field and has a

broad range of applications, for example in object matching (Mémoli, 2011, Haker et al.,

17Ideally, xi and yi should express exactly the same concept, but this is extremely unlikely. In
practice, the approximation with highly similar concepts works well enough for most applications.
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2004), economics (Koopmans, 1949), or traffic modeling (Helbing, 2013). The following

briefly introduces OT and GW with respect to the task at hand. The aim is to provide

an intuition, a formal frame and algorithmic solutions for the method. As most of the

information presented and several implementations throughout this thesis are adapted

from Alvarez-Melis and Jaakkola (2018), I will use their notation. Further details are

mostly taken from Peyré and Cuturi (2019), which provides a thorough account of OT.

Monge’s OT Problem. Optimal Transport (OT) is a family of optimization prob-

lems that aim to find a mapping between two distributions that minimizes a certain

cost function. OT is often introduced informally with the example of Gaspard Monge

(1746-1818), in which a worker needs to move a pile of sand from one location to another

with a shovel.18 The “source” pile as well as the “target” pile each have a distinct shape

which is known (i.e., they are distributions of sand). The worker wants to spend as

little energy on this task as possible. The aim is to find a transportation plan (i.e., a

description of how many shovels of sand should be carried from each part of the source

pile to each part of the target pile) which minimizes the distance that the worker has to

walk between the two locations.

In the context of OT for two word embedding spaces X and Y , the two discrete

distributions µ, ν are defined over subsets Xm ⊆ X,Y n ⊆ Y of embedding vectors:19

µ =

m∑
i=1

piδx(i) , ν =

n∑
j=1

qjδy(j) , (5)

where p and q are non-negative weight vectors associated with Xm and Y n, respectively.

The discreteness of the distributions is formally expressed by the Dirac function δ, which

allows to distribute portions of probability mass over a finite set of points rather than

over a continuous range.

These two distributions need to be associated. In the Monge problem from 1781 (cf.

Peyré and Cuturi, 2019), each xi needs to be assigned to exactly one yj so that the

combined mass of all xi assigned to a particular yj is equal to that yj ’s mass.20 The

function T] that verifies this is called a transportation map and defined as

T : {x1, ..., xm} → {y1, ..., yn} | ∀j ∈ {0, ...,m}, qj =
∑

i:T (xi)=yj

pi (6)

There could be multiple such transportation maps for which T]µ = ν (i.e., which

transport the mass of µ to ν), but the aim is to find the one which minimizes the cost

18For this reason, it is also known in the field of computer vision as earth mover’s distance (cf. Peyré
and Cuturi, 2019)

19While the formulations of OT problems generally allow m 6= n, in practice, many applications set
m = n, including the computations in this work.

20As there is no notion of “mass” for word embeddings in this context, assume that the mass is
distributed uniformly across all xi and yj , which only leaves p and q for comparison.
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c(x, T (x)) of transportation:

min
T

{∑
i

c(xi, T (xi)) | T]µ = ν

}
(7)

Note that this is only possible for discrete measures. For problems involving continuous

probability measures, the solution to the Monge problem is

min
T

{∫
X

c(x, T (x))dµ(x) | T]µ = ν

}
. (8)

Before discussing the choice of cost function, the Monge OT problem needs to be

modified as it is not suited for the task at hand. This has multiple reasons, but most

importantly, it defines T] to be surjective, meaning that OT between word embedding

spaces assignins exactly one target word to a given source word. This is problematic,

because words and concepts can have multiple corresponding counterparts across natural

languages.

Probabilistic OT: Kantorovich’s Relaxation. Instead of the deterministic nature

of Monge’s OT problem, Kantorovich’s approach from 1942 considers OT to be a proba-

bilistic problem in which the mass from a certain source point can be split across several

target destinations (cf. Peyré and Cuturi, 2019). This leads to several re-formulations.

Instead of the transportation map T], the connection between two distributions now

is a coupling in the form of a matrix Γ ∈ Rm×n+ . The set of possible couplings is defined

as

Π(p, q) =
{

Γ ∈ Rm×n+ | Γ1n = p, Γ>1m = q
}
, (9)

where 1k is a k-dimensional vector of ones. In other words, the probability mass of pi

for point xi is represented as a distribution over the n target points. Conversely, each of

the n columns of Γ is a distribution which expresses how much of the mass qj is received

from each of the m source points. Returning to the example of the worker moving sand

from one pile to another, the coupling cell Γij prescribes how much sand (in terms of

grains, shovels, ...) should be moved from point i to point j. In the context of OT for

word embedding spaces, Γij can be interpreted as the likelihood that xi is a translation

of yj .
21

Similarly, the transportation cost in this setting is given as a matrix C ∈ Rm×n+ . The

optimization problem with Kantorovich’s relaxation is thus to determine Γ∗:

Γ∗ = min
Γ∈Π(p,q)

〈Γ,C〉 :=
∑
ij

ΓijCij . (10)

Algorithmic solutions to this problem and further variations are described in more

detail in Peyré and Cuturi (2019). There are several programming libraries that im-

plement optimizers for a wide variety of OT problems, for example the POT library

21This probabilistic formulation makes any coupling Γ symmetric so that Γ> can be used analogously
for OT from Y to X.
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(Flamary and Courty, 2017), which is used by Alvarez-Melis and Jaakkola (2018) and

thus in this work as well.

Faster Computation with Regularization and Matrix Scaling. There is one im-

portant modification to the objective in (10) which has algorithmic implications, namely

regularization. This is commonly done with entropy regularization, first introduced by

Cuturi (2013), of the coupling:

Γ∗ = min
Γ∈Π(p,q)

〈Γ,C〉 − λH(Γ), (11)

where λ is used for scaling the entropy of the coupling matrix, defined as

H(Γ) = −
∑
ij

Γij(log(Γij)− 1). (12)

Intuitively, this regularization term allows solutions that make use of the probabilistic

nature rather than a deterministic one and leads to couplings with lower sparsity, i.e.,

overall smoother distributions, which shows in visualizations of such couplings as a

blurring effect (cf. Peyré and Cuturi, 2019).

Decreasing the sparsity of couplings has a second effect: it allows for faster computa-

tion. Specifically, (11) can be solved efficiently using a Gibbs kernel K that is associated

with the cost matrix C:

K ∈ Rm×n := Kij = e−
Cij
λ . (13)

In combination with two vectors a ∈ Rm+ and b ∈ Rn+ which function as scaling variables,

this allows to re-write the couplings as defined in (9) as

Γ = diag(a) K diag(b). (14)

Now, instead of a matrix Γ with mn parameters, the goal is to find the right vectors a

and b, which amounts to optimizing m+n parameters. The two variables are bound to

satisfy the mass conservation constraints to couplings (cf. (9)):

diag(a) K diag(b)1n = p, diag(b) K>diag(a)1m = q. (15)

A solution to (11) with the formulation of Γ as in (14) is possible with the Sinkhorn-

Knopp algorithm, which first initializes K in dependence to C and b as a uniform

vector (e.g., b0 := 1n) and then iteratively updates a and b until convergence or a

certain number of iterations t is reached:

at+1 :=
p

Kbt
, bt+1 :=

q

K>at+1
(entry-wise division). (16)

This matrix scaling procedure is much faster than linear programs: while a linear pro-

gram for (10) has a complexity of O(n3 log(n)) (Alvarez-Melis and Jaakkola, 2018), the

Sinkhorn-Knopp algorithm can approximate (11) to τ in O(n2 log(n)τ−3) (Peyré and

Cuturi, 2019). Cuturi (2013) demonstrate the acceleration empirically and show that it
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is “several orders of magnitude faster”.

Cost Functions and Gromov-Wasserstein Problem. A central component to

optimization, namely the cost function, has been left out so far for the sake of simplicity,

because the choice of cost function depends on the nature of the distributions to be

coupled. In the example of the worker re-allocating sand from one pile to another, the

cost for transporting some sand from point xi ∈ µ to point yj ∈ ν might be defined as

a combination of distance and amount of sand carried from xi to yj , or more simply, as

just the distance walked from xi to yj .

For Monge problems like (8), the cost function c associated with a transportation

plan T from µ to ν is typically defined as c(x, T (x)) = ‖x − T (x)‖. For Kantorovich

problems like (10), the cost of transportation between the points in µ and ν is represented

as a matrix C ∈ Rm×n and typically defined as Cij = ‖xi − yi‖. In the context of OT

between word embeddings, this translates to the cosine distance dcos between vectors,

a metric commonly used to measure the similarity of word embeddings to each other.

The cost matrix can thus be defined as

C ∈ Rm,n := Cij = dcos(xi, yj) = 1− xi · yj
‖xi‖2‖yj‖2

, (17)

where ‖ · ‖2 is the euclidean distance. Such a cost matrix is then used together with a

chosen regularization λ to initialize the Gibbs kernel K, and apply the Sinkhorn-Knopp

algorithm. This definition of the cost function, however, relies on the assumption that

X and Y share the same metric space, i.e., for all dimensions d of X and Y , di(X) and

di(Y ) express the same component of meaning. This is not generally the case, especially

in bilingual scenarios such as in Alvarez-Melis and Jaakkola (2018) which aim at the

coupling of two independently trained embedding spaces.22

This complication requires a cost function which abstracts from the individual spaces

and allows to compare points across spaces independently from their absolute positions.

The key insight is the observation that word embeddings of similar concepts tend to

have similar geometric arrangements, independently from the space in which they exist.

For example, for two embedding spaces X and Y , the two embedding vectors xkatze and

ygatto of the concept “cat” each have a similar distance to xhund and ycane (“dog”), re-

spectively, a similar distance to xschuh and yscarpa (“shoe”), and so on. This observation

has previously been exploited by Mikolov et al. (2013a) for bilingual lexicon induction.

Alvarez-Melis and Jaakkola (2018) use it to relate the points in X and Y in terms of

their geometric arrangement (or: spatial role), which is defined by their distances to

other points within their space.

The Gromov-Wasserstein (GW) distance was introduced by Mémoli (2011). At first

glance, the Gromov-Wasserstein problem for spaces X, Y is an OT problem that seeks

to find the optimal coupling by means of two distance matrices C ∈ Rm,m and C′ ∈ Rn,n

over X and Y , respectively. Intuitively, each row (or column) Ci can be interpreted as

the “profile” of distances of xi to other points in X. The most straightforward choice

22Alvarez-Melis et al. (2019) provide a generalized approach to solve this problem, but the solution
from Alvarez-Melis and Jaakkola (2018) is sufficient for the task at hand.
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of within-space distance measure for C and C′ is the cosine distance as defined in (17).

These distances serve as inputs for the cost function l : R × R → R, which is typically

defined as either the “square loss” 1
2 (a− b)2 or the Kullback-Leibler divergence KL(a|b)

(Alvarez-Melis and Jaakkola, 2018). The computed values can be stored in a 4-th order

tensor L ∈ Rm×m×n×n. Written in length, the square loss function for the GW problem

on cosine distance matrices computes

L ∈ Rm×m×n×n := Lijkl = l(Cik,C
′
jl) =

1

2
(dcos(xi, xk)− dcos(yj , yl))2

. (18)

Lijkl can be interpreted as the share of the cost of coupling xi with yj which is incurred

by associating two within-space distances of their profiles (namely those distances to

xk and yl, respectively) to one another. Another interpretation is that of the cost of

pairing up the start points and the end points of the two distances (cf. Alvarez-Melis and

Jaakkola, 2018). By minimizing this cost, the solution to the GW problem prescribes

how the points in X should be associated to those in Y so that their profiles of distances

match optimally. The discrete version of the GW problem is thus formally defined as

Γ∗ = GW(C,C′, p, q) := min
Γ∈Π(p,q)

∑
i,j,k,l

LijklΓijΓkl. (19)

This problem is non-linear and non-convex and thus mathematically much harder

than the Kantorovich OT problem in (10). It is also computationally more complex,

because it requires operations on the 4-th order tensor L ∈ Rm×m×n×n, which leads

to a complexity of O(m2n2). Peyré et al. (2016) propose to solve (19) with projected

gradient descent, which involves solving a common OT problem in each iteration. They

additionally show that the initialization of the Gibbs kernel K for these iterations can

be accelerated for certain cost functions: If the loss can be written as l(a, b) = f1(a) +

f2(b) − h1(a)h2(b) for functions (f1, f2, h1, h2), then for all Γ ∈ Π(p,q) a pseudo-cost

matrix ĈΓ can be computed, which has the form

ĈΓ(C,C′,Γ) = Cxy − h1(C) Γ h2(C′)>, (20)

where Cxy is a matrix of fixed values that incorporates p and q:

Cxy = f1(C)p1>n + 1mq
>f2(C′)>. (21)

Such a decomposition is possible for example for the square loss function from (18)23

and allows to solve the problem in O(m2n+mn2) instead of O(m2n2).

In the context of OT for word embeddings, the solution to the GW problem on X and Y

is a coupling Γ that provides a direct probabilistic alignment between the two coupled

spaces. That means that each cell Γij can be interpreted as the likelihood that the

23The functions used in the implementation of Alvarez-Melis and Jaakkola (2018) are f1(a) = a2

2
,

f2(b) = b2

2
, h1(a) = a, and h2(b) = b. Note that their example algorithm uses a slightly different cost

function than (18) which decomposes to f1(a) = a2, f2(b) = b2, h1(a) = 2a, and h2(b) = b.
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words of xi and yj are translations of each other (Alvarez-Melis and Jaakkola, 2018). I

will henceforth refer to the optimization of a coupling by solving the GW problem as

“GWOT”. With the intuitions and formal background given in this section, the next

steps are to adapt this alignment method to the diachronic scenario and to gain empirical

insights with respect to the available word embedding models.

4.2 Two Connections Between Spaces

In the context of this thesis, the difference between two spaces X and Y is always

diachronic, that is, X and Y express concepts on the bases of text dating to different

points in time. By convention, X is the ‘earlier’ space and Y is the ‘later’, ‘more recent’

space.

Performing GWOT on two word embedding spaces X and Y (or: sub-spaces) results

in a coupling Γ which can be interpreted as a table of translation likelihood between all

possible word pairs. This allows to create a dictionary T of bidirectional translations:

if a coupling cell Γij holds the maximum value for both row i and column j, then the

corresponding words u ∈ UX and v ∈ VY form a pair (u, v) of mutual best translations.

This is the first of two connections between the two spaces: for each of these trans-

lation pairs, Γ claims that across the two (sub-) spaces, the behavior of u in X is most

similar to the behavior of v in Y and vice-versa. This approach is clearly more complex

and time-consuming than the usual approach to diachronic lexical semantic research,

in which the two embeddings xw and yw of the same word w (i.e., the same string)

are compared. However, a key point of reasoning here is that the language modeled

by two embedding spaces should not the assumed to be the same, even if they both

express a widely similar language and the only major difference seems to be the time in

which their underlying corpora were produced. Orthographic reforms and other dynam-

ics of lexical change affect the surface form of concepts and may also affect the concepts

themselves, but in these cases, it is difficult to pair up the two concepts, because their

labels do not match. GWOT is agnostic of surface forms; it relates embeddings based

on how similarly they behave within their space rather than whether their labels spell

the same. As shown in Section 4.3.7, this can overcome effects of orthographic change

and hint towards lexical change. The first connection between two spaces, namely the

set T of translation pairs, is thus a lexical connection obtained from a coupling, based

on conceptual similarity.

The second connection is that between the word embeddings themselves; it is the

projection matrix P. Alvarez-Melis and Jaakkola (2018) obtain this simply by solving

a Procrustes problem on the translation pairs obtained from Γ. Their motivation for

this step is scaling: for bilingual lexicon induction (BLI), a coupling of the entirety of

X and Y would suffice, but GWOT becomes increasingly complex for larger sub-spaces,

making a full-fledged optimization on entire embedding spaces unfeasible (cf. Section

4.3.2). A reasonably large bilingual signal obtained from a coupling between sub-spaces

Xk and Y k provides enough information to create a projection matrix that precisely

maps between the two spaces so that BLI can be carried out via nearest-neighbor search.

The motivation for the task of conceptual semantic shift detection is that embeddings
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can be compared across spaces even if their labels are not contained in both spaces’

vocabularies. In this case, one can project the embedding of u from X to Y and then

compare: Pxu to yv.

The crucial requirement for P if it is used for the detection of shifts is restricted

optimality : P should not align spaces perfectly, but rather project X along those points

which change the least with respect to Y . By restricting the bilingual signal for Pro-

crustes to the word pairs of the most stable concepts, the differences between other, less

stable concepts are preserved. The selection of these “anchors” is straightforward, as the

translation likelihood values in Γ provide a direct measure for the stability of translation

pairs. The intuition here is that two vectors of a stable concept have relatively similar

profiles of distances to other vectors, even if those other vectors are less stable. GWOT

thus assigns a large translation likelihood score to the two vectors in question (i.e., de-

clares that a lot of probability mass should be moved exclusively between these two

points). Note that this notion of stability promises to be more robust than the assump-

tion that corpus frequency correlates with embedding stability. While Hamilton et al.

(2016b) demonstrate that more frequent words show less conceptual change, Wendlandt

et al. (2018) claim that the frequency of a word is not a major factor regarding the

reliability of its vector representation. This means that embeddings of highly frequent

and thus semantically rather stable concepts can still have unstable embeddings. The

scores of Γ take into account both sources of divergence – the actual semantic shift of a

concept as well as the potential inaccuracy of its embedding.

4.3 Application of GWOT to the RSC Embedding Spaces

With the two connections between X and Y , namely the set T of translation pairs and

the projection matrix P which is non-optimal on purpose, there are various possibili-

ties for diachronic investigations. Before turning to such experiments, however, there

are multiple considerations to be made regarding the parameters for GWOT as well

as certain hyperparameters such as the number of anchor terms for P. As the partic-

ular embedding spaces certainly have an influence on the feasibility of the previously

discussed theory, these considerations are best made after preliminary investigations,

which will be the matter of the following sections.

Based on the insights from Alvarez-Melis and Jaakkola (2018) on GWOT for word

embeddings, the following experiments are carried out with normalized embeddings. The

intra-space distance matrices, computed at the initial step of GWOT, are normalized as

well. The entropy regularization parameter λ, however, will differ.

4.3.1 Use of String Matching among Translation Pairs

While alignment of embedding spaces is being treated as a bilingual task, the fact that

both parts of the alignments in question stem from largely the same language is conve-

nient for practical reasons: there is a very large overlap in vocabulary. A qualitatively

good coupling of two spaces is bound to relate embeddings with the same label to one

another, leading to many translation pairs which are string-matching. Moreover, a

translation pair’s score can be interpreted as the confidence with which the coupling
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Figure 5: Example histogram of string-
matching (blue) and mismatching (or-
ange) pairs by coupling score (x-axis).

rank 1800s 1830s rank 1800s 1830s

400 current stream 1024 materially greatly
448 lately recently 1034 constituent elementary
636 tympani marrow 1040 broad wide
739 happens occurs 1062 native british
859 hon. rev. 1063 annual diurnal
954 related detailed 1082 acquainted aware
957 velocities intensities 1088 arguments data
975 resemble constitute 1089 electrified charged
978 firmly closely 1090 signs sign
983 smallest slightest 1107 emitted excited

Table 4: Highest-scoring mutual translation pairs with string
mismatches obtained from a coupling of 〈1800, 1830〉 (uniform
p/q, k=2000).

relates two words. A reliable coupling should thus yield matching pairs with high scores

and mismatching ones with lower scores, leading to a distribution that can be nicely

partitioned by means of their score.

In Section 4.3.3 I will use this to carry out sanity checks for couplings of various space

pairs. As a simple form of visualization, Figure 5 depicts a histogram of the number of

matching and mismatching translation pairs as a function of their translation score.

The opportunity to use surface forms as a source of information leads to a second

possible use valuable to the discovery of language changes: string-mismatching pairs

with a high translation likelihood can be seen as indicating lexical shift. In these cases,

two concepts are coupled because they take on a very similar role in their respective

embedding spaces; however, their labels are not the same. In other words, the referring

expression of a concept changes while the concept itself does not. Table 4 illustrates

this by showing the highest-scoring mutual translation pairs from a small coupling of

〈1800, 1830〉. Mismatches that are of interest occur predominantly for pairs which

are (1) semantically similar (current and stream), (2) semantically related (annual and

diurnal), (3) morphologically different (signs and sign), or (4) orthographically different

(connexion and connection, not listed). Out of these, semantically similar pairs (2) can

inform about possible lexical shifts. At the same time, it is important to recognize

especially the semantically close word pairs as not necessarily shift-indicating and in

some cases (such as for antonyms) to treat them as noise (Section 4.3.7 discusses this in

more detail).

Bear in mind that although comparing the string representation of words to one

another can lead to various insights, it is not a valid source of information under the

assumption of bilinguality. On the one hand, such insights about the general behavior of

GWOT can influence the decisions involved in the alignment process and further steps,

e.g. choices of hyperparameters. On the other hand, string comparisons should not

directly inform about the bilingual signal T , conceptual shifts, or alignments.
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4.3.2 Complexity Constraints of GWOT

Optimizing distances between distances (cf. Alvarez-Melis and Jaakkola, 2018), GWOT

is a quadratic optimization problem. Although it can be approximated efficiently, the

amount of memory and especially computations needed to align any pair of word em-

bedding spaces with reasonably sized vocabularies in full is very high.

With the available hardware, the GWOT on sub-spaces of size k=20000 requires

about 21 hours (Table 16 in the Appendix reports the times taken for the optimization

of couplings of various sizes). This shows that GWOT does not scale well to complete

word embedding spaces which usually comprise embeddings for well above 30K words.

A coupling between two spaces will thus necessarily always be optimized on sub-spaces

of a certain size k.

This leads to the question of what will be a reasonable coupling size k for the task

at hand. For their bilingual lexicon induction (BLI) task, Alvarez-Melis and Jaakkola

(2018) optimize couplings of 20K words. Differently to BLI, the aim here is not to

induce a set T of translation pairs, but rather to directly use the pairs obtained from

the coupling as bilingual signal for shift detection. The coupling size thus also puts an

upper limit to the number of concepts that can be investigated for shifts. Nonetheless,

20K appears to be a sensible size for the task at hand. With the available hardware,

the 21h taken for an optimization with 300 iterations is acceptable. The number of

translation pairs retrieved from such a coupling varies and depends on the spaces which

are coupled. Preliminary tests on various pairs of RSC spaces showed that this number

ranges from 6.6K to 16.4K. Assuming that most of the interesting (i.e., relevant and

non-arbitrary) shifts occur for moderately frequent concepts, |T | ≥ 10K should include

most cases of interesting shifts. Therefore, the default size of a “large coupling” will

henceforth be 20K.

4.3.3 Divergence of RSC Spaces

Intuitively, the differences between two languages (or language uses) tend to increase

along with their temporal distance. In context of the RSC, it is reasonable to assume

that two spaces (more specifically: their vocabularies and the embeddings of shared

words) from far-apart decades differ more than a space pair of neighboring or close-by

decades.

There are 27 decade-spanning embedding spaces at hand, or 351 possible space pairs.

A thorough analysis of all of these pairs would exceed the scope of this thesis; a selection

of a few pairs of spaces is required. Alvarez-Melis and Jaakkola (2018) use the objective

of alignment, the Gromov-Wasserstein distance DGW , as a metric for the similarity of

two spaces: highly similar spaces tend to align well, which is captured by a small DGW .

However, a low DGW does not necessarily imply a large, high-quality set of translation

pairs which is needed as one of the two connections between two spaces.

Conceptual divergence. Therefore, I investigated the feasibility of alignment by

means of small-scale couplings, evaluating both byDGW of each coupling (i.e., the overall

cost of transportation) as well as string-matching of translation pairs. For each pair of
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spaces, I optimized two couplings of the 1K24 most frequent shared words; one of the two

couplings was initialized with uniform p/q, the other one with distributions drawn from

log-flattened corpus frequencies (cf. Section 4.3.4). The quality of a coupling is then

estimated by the number of string-matching translation pairs relative to the coupling

size. As the underlying vocabularies for both sides of the coupling are the same, a truly

optimal coupling will lead to 1K matching translation pairs, while couplings of lower

quality will lead to fewer matching pairs and/or fewer pairs in general.

What is the intuition behind the number of string-matching pairs as estimator for a

coupling’s quality? By optimizing on a shared vocabulary, it is certain that both sub-

spaces X and Y comprise the embeddings of the same 1K words. In the case that X

and Y belong to close-by decades with only small differences in language, the profiles of

distances of xw in X and of yw in Y for one and the same word w will tend to be similar

to each other, leading to a higher translation score and a greater chance to become a

translation pair. If X and Y belong to decades with greater linguistic differences, these

profiles will diverge more, making it more difficult for GWOT to associate xw in X with

yw in Y . This decreases the chances of string-matching translation pairs as well as the

overall chances for finding translation pairs. Both consequences are captured by the

number of string-matching pairs relative to the coupling size.

Figures 6a and c show the quality estimations for 1K-couplings of all combinations of

the RSC’s decade-wise word embeddings, for optimization once without and once with

frequency information. This confirms the intuition: couplings for pairs of decades close

to each other (depicted along the diagonal) allow for near-to-perfect sets of translation

pairs. In contrast, the couplings for pairs of spaces which are more than 5 decades apart

yield fewer matching translation pairs, with exception of the five latest decades, which

appear to be slightly easier to align to one another in all settings (Figures 6a – e).

Spaces between 1690 and 1750 tend to be more difficult to align to spaces between

1810 and 1850 than other pairs, clearly indicated by the blue patch in Figure 6c. This

may indicate that the ‘mid-section’ of the RSC experiences more language change than

the early and the late periods, and that within this section, farther-apart spaces are

naturally more different than close-by pairs. At the same time, the lighter colors in the

bottom-left corners of the two heat maps indicate that couplings to the recent spaces

(1850s or later) work better for the 17th century spaces than for spaces of the 18th

century. I attribute this observation in part to the incremental training method of

the embedding models: the 1660s space is initialized on a corpus-wide model which is

conceptually biased towards the most recent decades, because these contribute the most

text to the model. The re-training of the 1660s space and subsequent spaces does adjust

the embedding vectors; however, it is possible that the ‘legacy of initialization’ is still

present in these early spaces and allows GWOT to find mutual translation pairs more

reliably than for spaces of the mid-section of the RSC. Lastly, the differences in scores

between the two figures underlines the slight negative effect of frequency information on

medium-to-large-sized couplings (cf. Section 4.3.4).

24The choice of 1K as size for the couplings is based on considerations of complexity and expressive-
ness. While larger couplings operate for more words than smaller ones and are thus challenged more to
pick the correct (i.e., string-matching) word pairs, they are considerably more expensive to optimize.
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These observations on translation pairs are supported by Figure 6e, which shows the

DGW values associated with the couplings from Figure 6a. However, the two reported

measures do not correlate perfectly. For example, some of the couplings of relatively

difficult (i.e., distant) pairs such as from the first half of the 18th century to the 20th

century yield a reasonable number of matching translation pairs.

To conclude, these experiments on sub-spaces with identical vocabulary inform about

the conceptual divergence of pairs of spaces, which can be used to select a balanced range

of pairs of spaces for further investigation.

Lexical Divergence. As much as the optimization of couplings on shared words looks

promising and can inform about the overall potential to relate two spaces, the reality is

different: the distribution of words varies from decade to decade, and so does the set of

the more frequent words. It is thus very unlikely that the vocabularies of any two sub-

spaces are the same. For this reason, I repeated the experiments from above, but without

the requirement that the most frequent words be mutual. At a size of 1K, the two sub-

vocabularies are large enough to not only contain function words and small enough to

only capture words in a relevant range of frequencies. The estimator of quality in this

experiment is the number of string-matching pairs relative to the vocabulary overlap.

Figures 6b, d, and f show the results and the corresponding vocabulary overlap.

As before, it is apparent that while couplings of the given size for temporally close

spaces still work well, spaces which are farther apart in time are harder to couple. This

is expressed by tiles in light-blue, indicating that less than 50% of the shared vocabulary

can be coupled in the form of string-matching translation pairs. Specifically, almost all

couplings of spaces for decades before 1770 with spaces of decades after 1850 show a

systematically low performance.

One could argue that this is due to a decrease in vocabulary overlap, as each point in

either sub-space that does not correspond to a mutual word acts as a distractor during

the optimization of the coupling. However, the vocabulary overlap decreases smoothly

in correlation to two spaces’ distance in time. This smooth development cannot account

for the sudden drop in performance for couplings of spaces from before the 1770s to

after the 1850s. Also, differently to the couplings with shared vocabulary, the earliest

spaces in this setup are not coupled to the recent spaces more reliably. The hypothesis

of the ‘legacy of initialization’ cannot explain the light-blue zone in the bottom left of

Figures 6b and d.

A possible external factor is the introduction of a reviewing process for the Pro-

ceedings of the Royal Society in the 1750s, bringing about “a major period of change

around the 1750s [...] related to conventionalized style of writing” (Degaetano-Ortlieb

and Teich, 2018, p.29). The reviewing process requires authors to communicate find-

ings clearly and to refer to concepts without causing ambiguities; it sets standards for

scientific communications. To meet these standards, authors started using the same syn-

tactic constructions in similar situations more and more. To avoid lexical ambiguities,

the scientific vocabulary, already specialized, was further developed to give each term

a unique meaning. These changes introduce differences between the embedding spaces

before and after the 1750s.
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(a) shared vocabulary, uniform p,q (b) individual vocabulary, uniform p,q

(c) shared vocabulary, log-flattened frequencies (d) individual vocabulary, log-flattened frequencies

(e) GW-distance (shared vocabulary, uniform p,q) (f) vocabulary overlap

Figure 6: Semantic and lexical divergence in terms of string-matching translation pairs ob-
tained from couplings of RSC decade-wise embedding space pairs, optimizing for the 1K most
frequent words (a, b, c, d). Left : coupling on shared words; score relative to the coupling
size; range for color-coding: 0.8–1.0. Right : no shared vocabulary assumed; score relative
to vocabulary overlap; range for color-coding: 0.5–1.0. Top row : couplings initialized with
uniform distributions. Middle row : couplings initialized with log-flattened frequency informa-
tion (cf. Section 4.3.4). (e): GW distance of couplings optimized as in (a) (×102, range for
color-coding: 0.2-0.8). (f): vocabulary overlap for (c) and (d).
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Lastly, the experiments uncover that certain spaces and space pairs are consistently

difficult to couple, often leading to extremely poor results. This is the case for spaces of

the 1660s and 1760s as well as for several pairs involving a space from the 1710s, 1720s,

or 1730s. This low performance could be due to “bad luck” in the optimization process,

which is non-convex and therefore does not guarantee to converge to the optimum or

at all. This could be further investigated with more repetitions of the experiment.25

However, the chances of no convergence to the optimum happening as selectively as

depicted in Figure 6a can be deemed very small. A suitable explanation for these

observations has still to be found.

To conclude, the vocabulary overlap of two sub-spaces influences the quality of their

coupling. For pairs of decade-wise sub-corpora from the RSC, the overlap of the 1K

most frequent words in each sub-corpus ranges from 0.48% to 0.91%. As more reliable

models allow for better couplings irrespective of their conceptual divergences, couplings

of space pairs of the decades 1860 or later perform well. This is underlined by the

major coupling difficulties for spaces from before the 1770s to after the 1850s, which are

likely to arise as a combination of differences in training data and increases conceptual

divergence.

How will larger and smaller couplings perform based on changes in vocabulary over-

lap? For larger couplings, it is likely that the relative vocabulary overlap will decrease

slightly once the coupling size exceeds the number of words which occur moderately

frequently. At the same time, the absolute number of correct translation pairs obtained

from a reliable large coupling will increase. For very small couplings, it is likely that the

relative overlap increases, because the distribution of the utmost frequent words does

not change a lot. If this is the case, smaller couplings will yield fewer string-mismatching

translation pairs, but also fewer ‘non-trivial’, interesting pairs.

String Matches and Translation Scores. Following the intuitions from Section

4.3.1, Figure 7 shows a more detailed view of sets T of translation pairs, obtained from

2K-sized couplings of a range of space pairs. In general, string-matching pairs tend to

have high translation scores, while mismatching pairs are assigned lower scores. Figures

7b, c, j, and l depict extremely unreliable couplings judging by their T ; the reasons for

this difference in performance are not completely clear. Note, however, that the temporal

distance is is not the deciding factor per se: the spaces of the T shown in Figures 7a,

d, and k are the same number of decades apart as b, c, and j, respectively, (0, 2 and 9

decades, respectively), but these sets contain mostly string-matching translation pairs.

There is a development observable for Figures 7f, g, h, and i, which form a ‘chain’ of

subsequent space pairs, each 2 decades apart: the number of mismatching translation

pairs decreases and the number of matching pairs as well as their median score increases.

These developments lead to the assumption that it becomes easier over the course of

this period to couple two spaces. This may indicate that language change slows down

over time between the 1770s and the 1890s. However, on the basis of Figure 7 alone,

these are just speculations; further work is needed to clarify such developments and their

25Interestingly, couplings of pairs with the 1660s space do reach reasonable performance if frequency
information is provided for optimization (cf. 6d).
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driving forces.

Lastly, it remains to mention for further reference Figures 27 and 28 in the Appendix

which show the same analysis for couplings of the same space pairs, with the difference

that those couplings were provided frequency information for optimization.

4.3.4 Effects of Frequency Information on Optimization

Alvarez-Melis and Jaakkola (2018) mention that frequency information is helpful for

solving the optimal transport problem. That is, the information about relative token

frequencies in the corpora underlying two spaces can be passed to the optimization

algorithm in the form of two probability distributions p and q. The coupling is then

initialized as the outer product of these two distributions rather than as a uniform

matrix.

Foreshadowing the results of the following investigations, Section 4.3.3 presented cou-

plings optimized both with and without frequency information and discloses the overall

tendency that additional frequency information does not improve couplings per se. Here,

I present two variants of providing frequency information: raw and flattened. Given

two sub-spaces Xk and Y k, the probability distributions p and q are estimated from

the frequency distributions fXk and fY k , respectively. The raw variant of f maps

words to their token counts in the space’s sub-corpus; the flattened variant of f

maps to the logarithm of these counts. Figure 8 shows the number of string-matching

and mismatching translation pairs obtained from couplings of selected pairs of k = 2K

sub-spaces, optimized with raw, flattened or uniform p and q.26

There are several observations to be made. First, the scores for couplings optimized

with both variants of frequency information reach scores of up to 10−3, while those of

uniformly initialized couplings are at most 0.5× 10−3 (i.e., 1
k ). The abrupt cut of scores

for the latter is likely due to the fact that the initial couplings are uniform. These

uniform distributions greatly underestimate the higher translation probabilities of the

more frequent words. Apparently, the optimization process does not tend to assign a lot

of additional probability mass to the very frequent words and therefore does not react

to this initial underestimation as much as to the overestimation for less frequent words.

Second, couplings of the raw variant have a considerably low performance with

respect to both the number of string-matching translation pairs as well as the correlation

between translation score and error rate. Even for couplings that lead to a reasonable

T , the translation scores do not allow for a clear partition into string-matching and

mismatching pairs. Compared to that, couplings of the flattened variant perform

reasonably well. What could explain these observations? One likely reason is the highly

uneven distribution of words in natural language (‘Zipfian’ distribution, cf. (Zipf, 1932)).

As the frequency information is used to initialize the coupling, any one translation pair’s

score correlates with the respective token frequencies of the pair’s words. It seems likely

that these distributions are skewed too much in order to be useful for the optimization

algorithm. When the differences between frequencies are reduced by applying a simple

logarithmic function, the distributions are better suited to initialize couplings, providing

26Figures 27 and 28 in the Appendix show further examples.
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(a) 1740, 1750 (b) 1750, 1760 (c) 1680, 1710

(d) 1710, 1740 (e) 1740, 1770 (f) 1770, 1800

(g) 1800, 1830 (h) 1830, 1860 (i) 1860, 1890

(j) 1700, 1800 (k) 1800, 1900 (l) 1700, 1900

Figure 7: Distributions of translation pairs by coupling score (range: [0, 0.5 × 10−3]).
Couplings optimized on sub-spaces with k=2000, initialized with uniform p/q. Matches
in blue, mismatches in orange.
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Figure 8: Distributions of translation pairs by coupling score (range: [0, 10−3]). Cou-
plings optimized on sub-spaces with k = 2000, initialized with varying distributions p
and q. Matches in blue, mismatches in orange. Scales of y-axes vary.
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flattened uniform

Top 10 Rank 1830s word 1860s word Score* Top 10 Rank 1830s word 1860s word Score*

the 446 founded based 0.417 them 211 founded based 0.461
of 478 detached isolated 0.405 which 220 detached isolated 0.459
to 584 ounces c.c. 0.377 such 393 tend tends 0.426
a 596 ascertained determined 0.374 to 423 crystallized crystalline 0.419
in 598 happens occurs 0.374 been 446 besides including 0.415
and 613 supposition assumption 0.369 be 478 happens occurs 0.406
by 615 platina platinum 0.368 place 483 ingredients constituents 0.405
that 627 foregoing previous 0.363 remaining 557 lately recently 0.389
as 636 grains grammes 0.361 form 559 signs sign 0.389
be 640 besides including 0.36 by 571 supposition assumption 0.386

Table 5: Overall highest-scoring translation pairs (all string-matching) and highest-
scoring translation pairs with string mismatches. Pairs obtained from couplings (k =
2K) with varying initialization. *×10−3

less extreme initial estimations for translation likelihood.

Third, couplings of the flattened variant, while leading to comparable results, are

in general slightly outperformed by uniformly initialized couplings in terms of the num-

ber of retrievable string-matching translation pairs. However, the flattened-couplings

tend to be more consistent in producing reasonable results (consider also the differences

between Figures 6b and d, with 6d showing fewer low-performance couplings). This in-

dicates that frequency information, if used with caution, can indeed assist in optimizing

a coupling, especially in cases in which the spatial constellations of points alone would

not suffice.

Lastly, Table 5 presents a comparison of the highest-scoring string-matching as well

as mismatching translation pairs obtained from the flattened variant and the uni-

formly initialized coupling. For both couplings, most of the high-scoring mismatches

occur between semantically similar or related words. With respect to matching transla-

tion pairs, the flattened variant behaves differently to the uniform variant; here, the

highest-scoring words are not just mainly, but exclusively function words. As shown by

Wendlandt et al. (2018), a high corpus frequency of a word does not necessarily lead

to high embedding stability (i.e. a reliable vector representation of one and the same

concept). Uniformly initialized couplings operate solely on the similarity of spatial con-

stellations between points.27 For a uniformly initialized coupling, the highest-scoring

translation pairs can thus be considered to be the most stable concepts across spaces,

regardless of their corpus frequency. Conversely, it is possible that the highest-scoring

pairs from frequency-informed couplings do not belong to the most stable embeddings.

To conclude, information on token frequencies in the spaces’ underlying corpora can

help to optimize couplings with GWOT if the embeddings alone do not allow for good

optimization. This is subject to the condition that the naturally extreme skewedness

of the frequency distribution is first flattened, for example by applying a logarithmic

27Uniformly initialized couplings are still influenced by frequency information, because the points in
the two sub-spaces to be coupled are selected on the basis of corpus frequency. This, however, does
not affect which score is assigned to one word pair or another; it only affects which word pairs are
considered by GWOT in the first place.
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(a) 1000 (b) 2000 (c) 3000

(d) 5000 (e) 10000 (f) 20000

Figure 9: Distribution of string-matching mutual translation pairs by translation likeli-
hood ×10−3. Optimal coupling computed for the k most frequent words in 〈Xk

1830, Y
k
1860〉

(not necessarily mutual), optimized without frequency information. Matches in blue,
mismatches in orange. X-axes scaled individually.

function to the raw frequencies. While the couplings optimized in this way tend to hold

fewer mutual translation pairs, these pairs have a wider range of scores.

4.3.5 Effects of Coupling Size on Mutual Translation Pairs

Section 4.3.2 discussed the consequences of coupling size for the time required for opti-

mization. The following showcases the influence of the size parameter on the contents

of couplings.

To this end, I optimized couplings of various sizes k of 〈1830, 1860〉 which has

previously shown to allow a good coupling at k = 1K and k = 2K (cf. Figures 6b

and 7h, respectively). This also leads to the assumption that the couplings do not

require frequency information for successful optimization. They were thus initialized

with uniform p/q. Table 9 shows the distributions of translation pairs obtained for the

various couplings.

There are two tendencies observable with increasing coupling size. Firstly, the dis-

tribution of coupling scores for mutual translation pairs shifts from a long left-tailed

distribution with mostly high-scoring pairs to a right-tailed distribution with a large

number of low-scoring pairs. One possible explanation is that larger couplings have to

relate embeddings of words which are less frequent in the underlying corpus.28 As the

quality of a model depends, among other factors, on the amount of available data (cf.

Wendlandt et al., 2018), two embeddings x and y of less frequent words tend to be less

stable across spaces, even if the x and y are supposed to express the same concept. In

28As before, this is because sub-spaces are compiled by picking the vectors based on token frequency.
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these cases, GWOT does couple x and y, but assigns a relatively low score because the

spatial constellations of x and y do not match as neatly as would be the case for more

stable embeddings.

Secondly, the ratio of matches to mismatches decreases. As larger couplings have to

relate more points to one another, there is a higher chance that two unrelated points

have deceptively similar spatial constellations. This makes it harder to achieve a reliable

coupling. The number of string-matching mutual translation pairs is still large for k =

5K and k = 10K, but drops to 0 for k = 20K. This last result is unexpected and does

not fall in line with the other couplings of 〈1830, 1860〉 or with other couplings of size

20K. The reasons for this drop are unclear and as with the other cases in Section 4.3.3,

further investigations are required to shed light on these anomalies.

The unexpected result for k = 20K stresses that GWOT behaves differently with

each space pair and the predictions are not to be trusted blindly. Still, there are general

tendencies observable for the alignment of spaces with GWOT.

4.3.6 Dynamics for Small Couplings

As presented in Section 4.2, a space pair 〈X,Y 〉 is aligned by solving Procrustes on a

small bilingual signal, namely the most stable concepts from both spaces. There are two

options to obtain this bilingual signal. One could simply re-use the list of translation

pairs from the large coupling Γk>15000
X,Y and take the highest-scoring such pairs. A cleaner

option, however, is to optimize a new coupling for small sub-spaces 〈Xk, Y k〉 which

comprise only the most stable concepts from both spaces. This is computationally easy

to achieve for k 6 500 and minimizes the number of points that might act as distractors

during optimization.

As previously shown, the coupling size and the availability of frequency information

during optimization influence a coupling’s quality. These factors are investigated in the

following for 〈1830, 1860〉 for various k 6 500. Figure 10 shows the numbers of mutual

translation pairs obtained from these couplings as well as the numbers of string-matching

mutual translation pairs.

The main factor of comparison is the availability of frequency information (‘flattened’

in Figure 10). Frequency-informed couplings of a size up to k = 250 slightly outperform

uniformly initialized couplings with respect to the overall number of mutual translation

pairs, and they clearly yield more matching mutual translation pairs than the uniform

variant. If the latter is taken as an indicator of coupling quality, this suggests that

couplings of size k 6 250 should be initialized with frequency information. The second

factor, size, plays a minor role to the quality of a coupling at this magnitude. Note,

however, that frequency-informed couplings tend to yield fewer mutual translation pairs

than the uniform variant for k > 300. The size for couplings ΓP used to create a

projection P is therefore set to 300. The bilingual signal obtained from such a coupling

can then be further reduced, for example by solving Procrustes on the embeddings of

only the, say, 100 highest-scoring mutual translation pairs.
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Figure 10: Performance of couplings of 〈1830, 1860〉 as a function of coupling size,
both with and without frequency information. Left: number of mutual translation
pairs in proportion to coupling size. Right: number of string-matching pairs relative to
vocabulary overlap.

4.3.7 Evaluation of the String-Match Estimator

The previous sections operationalized the number of string-matching and of string-

mismatching translation pairs as a rough estimator for the quality of a coupling between

two word embedding spaces. This string-match estimator is used because it provides a

more intuitive interpretation of how similar two spaces are to each other than the GW-

distance. It can be used to a certain extent because the diachronic scenario at hand is

monolingual and the vocabularies of a pair of sub-spaces have a large overlap. How-

ever, as mentioned previously, the unsupervised nature of GWOT can be used to view

diachronic investigations as a bilingual task. While under the assumption of monolin-

guality, a string-mismatching translation pair can be treated as an erroneously aligned

item, this is not necessarily the case from the bilingual point of view. For example, one

and the same concept might be referred to with varying expressions (i.e., show lexical

change) or simply be spelled differently, perhaps due to orthographic reforms. As Biz-

zoni et al. (2019a) point out, in the RSC there is a tendency for “lexical specialization”

over time (e.g., 〈detached, isolated〉, cf. Table 5). These cases of string-mismatching

translation pairs should not be seen as false alignments per se, as their two correspond-

ing vectors may very well be the most similar to each other in terms of their intra-spatial

roles.

Annotation Experiment. In order to gain empirical insights about the reliability

of the string-match estimator, a small set of string-mismatching translation pairs was

annotated and evaluated.29 The source for these pairs is a large coupling of 〈1740,

1770〉, uniformly initialized and optimized over sub-spaces of size k = 20000 with the

default λ = 5 × 10−4.30 Γ20000
1740,1770 yields about 14000 mutual translation pairs, about

29Annotation schema and labeled pairs are openly available at
https://github.com/SimonPreissner/get-shifty/tree/master/annotation.

30The annotation task was carried out after the 12 space pairs, selected in Chapter 4.4.1, had been
optimized (cf. Chapter 5.1 for results). I chose this coupling because it appears to be in between the
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Label Name Treated as Proportion Examples

O orthographic/morphological match 1.08% toward–towards, ankles–ancles, fallen–falls
S semantically similar match 1.76% producing–forming, article–essay, pond–pool
R semantically related noise 13.36% artery–vein, confirmed–convinced, fruit–seed
A antonymy noise 1.72% inferior–superior, floor–roof, wet–dry
N noise noise 81.28% w–58, minus–rectangle, ancients–l’abbe, 21/–03
X wildcard noise 0.68% laurin–rutty, quent–cerning, glewed–pluck

Table 6: Labels for the annotation of string-mismatching translation pairs, with relative
frequency in the annotated data.

5800 or 41% of which are string-mismatches. Annotation was carried out on the 2500

highest-scoring of these mismatches. The decision to only annotate the highest-scoring

pairs and to treat the other mismatching pairs as false positives is motivated by the

time and resources available as well as by earlier observations that the coupling score

of a pair is negatively correlated with the chances that it is noise (i.e., that there is

no reasonable linguistic connection between the two words). The 2500 data points were

randomly split into two sets of 1500 samples each, with an overlap of 500 used to estimate

inter-annotator agreement via Cohen’s κ (Cohen, 1960).

The annotation task was carried out by two annotators (fluent speakers of English),

each one annotating one of the two sets. For each translation pair 〈u, v〉, the task was

to assign one of six labels which most closely describes the relationship between u and

v. Table 6 gives an overview of the classes and corresponding examples. The annotation

scheme was designed to be as simple and straight-forward as possible while leading to

relevant insights. It thus includes the wildcard label X, which can be assigned to cases

in which the annotators are uncertain.

One critical point is the distinction between those pairs which are semantically sim-

ilar (in the sense of near-synonymy) and those which are semantically related (having

any semantic relationship, cf. Budanitsky and Hirst, 2001). While semantically similar

words can be used interchangeably in a sentence without fundamentally changing its

meaning, semantically related words do not necessarily refer to similar concepts (e.g.,

there is an important difference between “artery” and “vein” as shown by the sentence

“the medicine was injected into the artery/vein”).31 For evaluation of the coupling’s

quality, the labels are interpreted either as denoting correct pairs (semantically simi-

lar pairs (label S ) and orthographically or morphologically different pairs, label O) or

incorrect pairs (all other classes of mismatches, including semantically related pairs).

Results. The annotations reach an inter-annotator agreement (IAA) of κ=0.45, which

is usually interpreted as “moderate agreement” (Landis and Koch, 1977). Additionally

to this notoriously conservative measure for IAA, the frequency of the wildcard label X

sheds light onto the difficulty of the task. As the data contains many domain-specific

surprisingly good large couplings such as Γ20000
1740,1750 and the very unreliable ones (e.g., Γ20000

1710,1740) in

terms of string-matching and mismatching translation pairs (cf. Figure 12 in Chapter 5.1).
31This description of semantic similarity stands in contrast with other definitions. For example,

Resnik (1995) defines semantic similarity as the relation holding between co-hyponyms in a semantic
hierarchy; this would include the pair artery/vein. Semantical relatedness).
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Figure 11: Distribution of labels. Bins were calculated over ranked lists of coupling
scores instead of scores directly in order to factor out the number of pairs per score
interval. Left: distribution of infrequent labels (R and N are evenly distributed). Right:
box-and-whiskers plot of all labels (the horizontal symmetry of R and N indicates their
even distribution).

terms and the annotators are not trained, X was included in the annotation scheme in

order to prevent guesswork in difficult cases. X was used only for 0.7% of the pairs,

which means that either the task was not very hard or that the annotators were shy to

use this label and still guessed in difficult situations.

Table 6 reports on the relative frequencies of labels. The two most prevalent labels

among the annotated data are, as expected, N and R. They make up about 95% of

annotated pairs (81.3% for N and 13.4% for R). The two classes of mismatches deemed

to be false negatives (O and S ) are observed in only 2.8% of the annotated data.

What does this mean for the string-match estimator? Expressing that quality by

the number of string-matching pairs relative to the coupling’s vocabulary overlap, the

estimated quality of Γ20000
1740,1770 is 0.722. This improves only marginally to 0.728 when

adding the 71 S- and O-annotated pairs to the matching ones. However, this conserva-

tive evaluation assumes that all mismatching pairs with a score lower than these 2500

annotated pairs are to be interpreted as noise. As Figure 11 shows, this assumption does

not hold for Γ20000
1740,1770: all labels are distributed more or less evenly across the whole

set of annotated pairs. Only S - and X -pairs have a slight tendency to hank higher and

lower, respectively. With the less conservative assumption that the labels are distributed

evenly across all mismatching pairs, Γ20000
1740,1770 achieves an estimated quality of 0.736,

which is not very different from the most conservative score (0.722). These results show

that in this quasi-monolingual scenario, the string match/mismatch analysis is a reliable

estimator for the quality of a coupling.

The results also show that for this pair of spaces, lexical and/or orthographic changes

are unlikely, which raises the question of whether it is useful to frame diachronic studies

as bilingual. It is possible that other pairs of spaces which are farther apart in time

or experience greater lexical and orthographic change still benefit from the bilingual

approach. In Chapter 5, I will experiment from the monolingual as well as the bilingual

point of view and compare the two variants. This will allow a final verdict on the
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question of whether the assumption of bilinguality is needed.

Further Use. The annotation task fulfills a second purpose: pairs which are labeled

as either O, S, R, or A are potentially interesting for further investigations of semantic

shifts, especially when they show a relatively high score in the coupling. Specifically, the

pairs with the labels O and S form a set of 71 word pairs that can be used for further

investigations on 〈1740, 1770〉. For example, it could be investigated whether sorts and

kinds are close to each other when the 1740s space is projected onto the 1770s, and also

to see where kinds ‘comes from’ and where sorts ‘goes to’.

A final remark to the string-match estimator: it is clear that any set T of translation

pairs obtained from GWOT will contain some noise. As mutual translation pairs are

obtained directly from the scores of a coupling, there might be ways to transform these

scores in a sensible way in order to increase the correlation between a pair’s score and

the probability that it is a true translation pair. I tested some methods, none of which

yielded satisfactory results (cf. Figure 29 in the Appendix for more details); future work

might include further investigations in this direction.

4.4 Conclusions and Considerations for Shift Detection

The following summarizes the insights gained from the previous sections and applies

them to (a) determine a selection of space pairs on which to focus in the subsequent

experiments and (b) determine the circumstances under which to optimize larger and

smaller couplings. The answers to the main questions posed at the beginning of this

chapter are as follows:

1. It is feasible to frame the detection of diachronic conceptual shifts as a bilingual

task. However, annotation of the bilingual signal for one pair of spaces revealed

that orthographic and lexical changes are relatively infrequent, so that the benefits

of a bilingual approach can be deemed rather small.

2. Yes, diachronic embeddings can be aligned with GWOT to a certain extent. As an

investigative method, it can uncover differences between embedding spaces. As a

tool for alignment, its success is dependent on the particular spaces to be aligned

(see Chapter 5.1).

3. Diachronic shifts are preserved by aligning the spaces only along the most stable

concepts. Other, potentially shifted points are associated either via a dictionary

of ‘diachronic translations’ or by assuming that a word shared by the vocabularies

of two spaces corresponds to the same concept at two different points in time.

4. The quality of a coupling is most strongly influenced by its size and the availability

of frequency information. Additionally, differences in the reliability of embeddings

(correlated with corpus size) and the temporal distance of space pairs become

apparent when performing GWOT.
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4.4.1 Selection of Space Pairs

I will not perform full-fledged experimentation with all of the available spaces for three

reasons. First, a pairwise comparison of all 27 word embedding spaces from the RSC

would by far exceed the scope of this work. Second, not all space pairs can be aligned

equally well with GWOT. It would be nonsensical to base experiments on unreliable

large couplings. Third, the experiments are designed to go in-depth about conceptual

shifts rather than describe the general diachronic tendencies present in the RSC. In

order to focus on qualitative analysis of the results, I reduce the number of investigated

space pairs to 2 in two steps.

In the first step, I select a variety of 12 pairs which differ in time span, epoch, and size

of sub-corpus. The selection is presented in Table 7. In order to allow for experiments

on a wide range of diachronic dynamics, the selection comprises space pairs of different

chronic distances (1, 3, 10, and 20 decades apart) as well as a sequence of seven equally

distant pairs, spanning from 1680 to 1890 in steps of 3 decades. This interval was chosen

because the experiments on divergence in Section 4.3.3 suggest that space pairs at this

interval already diverge enough to show shifts and are still similar enough to lead to

reliable couplings. Another factor that might influence the feasibility of experiments

is the amount of data available to each space. The pairs in the selection have various

combinations of sub-corpus sizes, accounting for the earlier spaces with smaller as well

as the later spaces with larger sub-corpora. Finally, the selection includes pairs such as

〈1700,1900〉 and 〈1750,1760〉 – spaces or space pairs which have shown to be difficult to

align.

In the second step, described in Chapter 5.1, I optimize large couplings for each of

these pairs and select two pairs which promise realistic results. Narrowing down the

selection in two steps gives a more complete picture of how well large couplings of RSC

spaces can be optimized. For the second step, it also allows to pick two space pairs

which are both promising for the experiments and representative of the capabilities of

GWOT.

4.4.2 Translation Pairs (Large Couplings)

As presented in Section 4.2, the set T of translation pairs is used to relate points across

spaces to one another irrespective of whether the purposefully non-optimal projection P

projects them to be close to one another or not. T is obtained directly from a relatively

large coupling. The size of these couplings is limited by the algorithmic complexity of

GWOT and with the available hardware, the largest couplings optimized in a reasonable

time are of size 20000. The number of good translation pairs in T will be smaller than

this, partly because the vocabularies of such sub-spaces do not overlap completely and

partly because the coupling itself will lead to false translation pairs. At k=20000,

however, T is expected to still contain a substantial number of translation pairs that

show semantic shifts and other diachronic dynamics. For optimization, these couplings

should be initialized with uniform probability distributions. The entropy regularization

term is fixed to λ = 5×10−4, which is the smallest value that does not lead to numerical
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Source, Target Decades Tokens ×106 % Overlap* DGW ×10−2**
1740, 1750 1 1.01 1.18 64.88 0.36
1750, 1760 1 1.18 0.97 61.66 0.37
1680, 1710 3 0.57 0.49 73.73 0.48
1710, 1740 3 0.49 1.01 58.85 0.51
1740, 1770 3 1.01 1.50 56.79 0.50
1770, 1800 3 1.50 1.61 53.88 0.52
1800, 1830 3 1.61 2.61 58.63 0.47
1830, 1860 3 2.61 5.87 62.68 0.40
1860, 1890 3 5.87 10.20 62.11 0.32
1700, 1800 10 0.78 1.61 51.33 0.63
1800, 1900 10 1.61 10.33 47.98 0.53
1700, 1900 20 0.78 10.33 37.39 0.84

Table 7: Selection of space pairs for experiments on shift detection. *vocabulary overlap
calculated from the 20K most frequent words from each space. **GW-distances of
couplings obtained from 1K-sub-spaces (cf. Section 4.3.3).

errors.32 The negative correlation between translation score and error rate (cf. Sections

4.3.1 and 4.3.7) backs the validity of higher-scoring translation pairs and indicates that

lower-scoring ones should be treated with caution, irrespective of whether their strings

match or not.

4.4.3 Projection Matrix (Small couplings)

The comparably tiny couplings that yield the bilingual signal for the computation of

P via Procrustes behave differently to the large couplings. The question of size is a

trade-off between expressiveness and reliability: on one hand, P should be as small and

thus as non-optimal with respect to less stable words as possible in order for shifts to

be observable more clearly. On the other hand, the set of anchor pairs needs to be large

enough to be representative of the most stable concepts from each space, especially

because even the most frequent words can be unstable at times (cf. Wendlandt et al.,

2018).

In practice, the set of translation pairs for P suffers from the same limitations as T ,

namely an incomplete vocabulary overlap of the sub-spaces and a certain error rate of

the coupling. Therefore it seems reasonable to optimize a coupling for slightly larger

sub-spaces and then pick the highest-scoring translation pairs as anchors to compute P.

From the preceding experiments, a solid size for the bilingual signal is estimated to be

|TP | = 100. A coupling of sub-spaces of size k = 300 should yield enough translation

pairs so that the highest-scoring 100 are correct. Note that the embeddings in the sub-

spaces are selected on the basis of their tokens’ frequencies in the sub-corpus. This can

be seen as a first coarse-grained selection for alignment which is then followed by a more

sensible selection by GWOT to the most stable points.

Small couplings will be initialized with (log-flattened) frequency information and, as

with all couplings, with λ = 5× 10−4 (cf. Section 4.3.6).

32This stands in contrast to Alvarez-Melis and Jaakkola (2018) who optimize with λ = 10−4 and
report numerical errors at the same coupling size only for smaller λ.
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5 Detection of Conceptual Shifts

The previously gained insights about GWOT are now applied to a selection of embedding

spaces to make them comparable to each other, optionally working under the assumption

of bilinguality. This chapter treats the second major methodological part of the thesis:

the detection of systematic conceptual shifts. To this end, I propose and experiment with

a novel method which is based on the intuitions that concepts usually change together,

and that only certain aspects of their semantics change at a time. The proposed method

attempts to express these ‘changes of components of meaning’ in a natural way. The

aim of this chapter is to answer the following questions from the introductory chapter:

1. Is it useful to frame the detection of diachronic conceptual change as a bilingual

task?

2. Does the proposed method for unsupervised detection of shifts work; is it sensible

and expressive?

3. Do the insights from the proposed method relate to previous findings?

4. Can the proposed method uncover new (general and/or specific) dynamics of lan-

guage change within the RSC?

The chapter is structured as follows. Section 5.1 determines the pairs of embedding

spaces on which to perform the experiments. The proposed method is presented in

Section 5.2, where it is also embedded in the general experimental setup. These include

two unsupervised experiments, presented in Section 5.3, and a supervised experiment

in Section 5.4; both sections include quantitative and qualitative investigations. The

chapter closes with answers to the questions above in Section 5.5.

5.1 Embeddings and Couplings for Subsequent Experiments

5.1.1 Optimization of Large Couplings

For each of the space pairs from the selection in Table 7, a large coupling is optimized

with the parameters previously estimated to be optimal for this task.33 As discussed

previously, the main use of a large coupling is the compilation of a set T of translation

pairs, which allows to carry out shift detection on the coupling’s two embedding spaces

while following the assumption of bilinguality. Table 8 shows the relevant statistics for

all 12 large couplings; Figure 12 visualizes T for each of the couplings as a histogram of

string-matching and mismatching pairs.

From Table 8 it becomes apparent that while certain couplings perform very well,

GWOT does not successfully couple each space pair: only 5 out of the 12 couplings yield

a T that can be deemed as at least moderately reliable in terms of the number of string-

matching translation pairs; this is surprising. Given that any two embedding spaces

from the RSC are probably more similar to each other than a pair of embedding spaces

33Parameters as set in Section 4.4.2: k = 20000; p/q uniform; λ = 5e−4; distance matrices normalized
with mean; maximum iterations: 300.
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Space pair Overlap Pairs Matches Mismatches Retrieved*
1740, 1750 12976 16407 11494 4913 88.58%
1750, 1760 12331 7510 24 7486 0.19%
1680, 1710 14746 12799 7466 5333 50.63%
1710, 1740 11769 6593 12 6581 0.10%
1740, 1770 11357 14031 8196 5835 72.17%
1770, 1800 10776 11009 4208 6801 39.05%
1800, 1830 11726 7107 265 6842 2.26%
1830, 1860 12535 5426 0 5426 0.00%
1860, 1890 12422 9179 3360 5819 27.05%
1700, 1800 10267 6828 39 6789 0.38%
1800, 1900 9596 5188 0 5188 0.00%
1700, 1900 7478 5075 0 5075 0.00%

Table 8: Statistics of the large couplings. *matches/overlap

in a true bilingual task34 and given that Alvarez-Melis and Jaakkola (2018) achieved

reliable couplings with this method in such a bilingual setup, the present results fall

behind the expectations. The GW-distance between a pair of spaces is clearly not the

decisive factor, as demonstrated by Γ〈1750,1760〉. This is a coupling of incrementally

trained embedding spaces covering two adjacent decades, but its T contains less than

0.2% of the possible matching translation pairs.

If it is not the data which causes these results, it might be the method of evaluation;

in this case, the string-match estimator. However, the annotations of string-mismatching

translation pairs in Chapter 4.3.7 demonstrate this estimator’s validity. The numbers

and the histograms in Figure 12 thus paint a relatively reliable picture. As almost all

of the couplings’ two vocabularies have a substantial overlap of 10000 words or more, 7

out of the optimized couplings do not manage to connect these common words to each

other.

As neither the provided data nor the evaluation are likely causes for under-performing

couplings, the issue lies withing GWOT itself. The couplings are optimized with the

implementation from Alvarez-Melis and Jaakkola (2018) which was adapted only slightly

to the twofold optimization approach. The most likely reason for the difference in results

is the hyperparameter λ fr entropic regularization. Intuitively, larger values lead to a

more ‘fuzzy’ coupling which tends to distribute probability mass more wirdespread than

couplings with a smaller λ. The authors set λ between 5e−5 and 1e−4 and report that

they “never had to go beyond these two values in all [their] experiments” (Alvarez-Melis

and Jaakkola, 2018, §3.2). In the present case, however, I set λ = 5e−4, because smaller

values led to floating point errors. It is probable that some of the optimized couplings

are too ‘fuzzy’ and distribute the translation probability mass over too many candidates,

which in turn (1) makes it harder to find mutual best translations and (2) may cause

more false translations. Table 9 displays these possible effects of an overly large λ in

the form of highly probable but mismatching translation pairs.

34In fact, the logs from the optimization of 20K-couplings of individually trained spaces report GW-
distances in the range of 0.0085 to 0.0095, which is about half of the smallest GW-distance of 0.017,
reported in Alvarez-Melis and Jaakkola (2018) §4.4, achieved by a coupling between Spanish and French.
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Space pair Translation pairs

1740, 1750 (grin gram), (crystallizations crystallisations), (revives quenches), (wears stepping)
1750, 1760 (sea-breeze planman), (concamerations rain-gage), (austere undiluted)

1680, 1710 (cristalline rudus), (wrack calving), (ud ****), (portsmouth 1620), (eucl prax)
1710, 1740 (moivre historian), (-where funis), (**a plum), (-if austere), (***** sublime)
1740, 1770 (thunder-clouds reck), (elec tric), (half-complements 1000ths), (morbi lateribus)
1770, 1800 (810 1465), (threes tetrahedra), (back-horizon-glass ient), (rackwork carlings)
1800, 1830 (lepidolite opoponax), (acide cheltenham), (resin-like coarse-grained)
1830, 1860 (brome collin), (crassula eller), (1584 schonbein), (bipartite qg), (wrecked peligot)
1860, 1890 (peligot kellas), (friedel riedel), (grignon autun), (37’6 infrasternal), (sylvius lancisi)

1700, 1800 (bregmatis flucan), (sinistra lid), (javan tragacanth), (brachia iinch)
1800, 1900 (polarize litk), (respectability s.c.c.), (fiscal polymorph), (6i5 trachea), (=h jaggar)

1700, 1900 (jacobo hsemolysin), (pratense prolific), (mno correspondents), (re-action rectangles)

Table 9: Insights about the large couplings: highest-scoring translation pairs with string
mismatch.

It is unclear why here the same values of λ in Alvarez-Melis and Jaakkola (2018)

lead to floating point errors. It should be noted, however, that even with the relatively

large λ = 5e−4, several couplings manage to connect their two embedding spaces in

a meaningful way. This is not only true for temporally adjacent spaces such as 〈1740,

1750〉, but also for pairs like 〈1680, 1710〉 or 〈1740, 1770〉, which are three decades apart.

This leads to the conclusion that while λ does play an important role in optimization, it

is not the sole reason for underperforming couplings. Further investigations on this issue

are left for future work; for the next steps, i.e. the detection of systematic conceptual

shifts, I focus on the couplings which do show reasonable and reliable performance.

5.1.2 Pick Two

In the second of the two steps to select pairings of embedding spaces (and their cou-

plings), I choose 〈1740,1770〉 and 〈1860,1890〉 as the data for subsequent experiments.

The primary reason to pick these pairs is that their couplings show moderate to good

performance in terms of the makeup of their T , which is essential to carry out shift

detection under the assumption of bilinguality (cf. Figure 12). However, this is not the

only reason. As the spaces of both pairs are 3 decades apart, it is likely that there are

more (and greater) conceptual shifts observable than in the temporally adjacent space

pairs. Furthermore, these two pairs are 90 years apart from each other, promising to

show different shifts and slightly different dynamics of language change.

The unsupervised bilingual scenario is not the only experiment to be conducted.

Consequently, there are additional points individual to the two selected pairs which

lead to the decision for 〈1740,1770〉 and 〈1860,1890〉 rather than for other space pairs

like 〈1680,1710〉 with couplings which would be much better suited to construct a high-

quality T .

As for 〈1740,1770〉, this space pair was already used for the validation of the string-

match estimator (cf. Chapter 4.3.7). As a result, there is a set of 71 string-mismatching

translation pairs annotated as either orthographically, morphologically, or semantically

closely related. This labeled data can be used in the unsupervised bilingual case to

58



(a) 1740, 1750 (b) 1750, 1760 (c) 1680, 1710

(d) 1710, 1740 (e) 1740, 1770 (f) 1770, 1800

(g) 1800, 1830 (h) 1830, 1860 (i) 1860, 1890

(j) 1700, 1800 (k) 1800, 1900 (l) 1700, 1900

Figure 12: Distributions of mutual translation pairs by translation likelihood as obtained
from the large couplings. Matches in blue, mismatches in orange; ranges of x- and y-axes
set individually.
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investigate the dynamics of orthographic and lexical changes.

The coupling of 〈1860,1890〉 is not as good as for other space pairs; however, the

embeddings of these spaces are both trained on larger sub-corpora than spaces from

earlier decades. As shown at the beginning of Chapter 4.3.3, these more recent spaces

align better to each other than older spaces. In addition, the increased size of the

sub-corpora allows to compare the shift detection across embedding methods.

5.1.3 Individually Trained Embeddings

All previous investigations have made use of the ‘incremental’ word embedding models,

for which each decade’s model is initialized with the model of the previous decade. The

second, more common type of embedding method is to train a decade’s embeddings solely

on the corresponding sub-corpus. In order to compare these two methods, I optimized

large couplings for both pairs of decades, using the individual instead of the incremental

embedding models.35 As the individually trained models do not use a shared vocabulary

across decades, their individual vocabulariies may be smaller than 20K. This is the case

for 〈1740, 1770〉, for which the largest possible coupling is of size 9323.

The evaluation of these models in Chapter 3.2.3 showed that the individually trained

embeddings lag behind the incremental models up to the 1850s, where the ρ scores on

the MEN similarity test set are almost on par. This leads to the expectations that the

individually trained 〈1740, 1770〉 is difficult to align because of the embeddings’ qualities,

and that 〈1860, 1890〉 could yield a reliable coupling. The first of these expectations

is met; the T obtained from Γ9323
1740,1770 on individual spaces contains 6624 translation

pairs, 5 out of which are string-matching (vocabulary overlap: 6168). The numbers

for Γ20000
1860,1890 are comparable to the large couplings on incremental spaces, but out of

the 12000 translation pairs in its T , just 1916 are string-matching (vocabulary overlap:

12422).

These large couplings on individually trained spaces are thus not used in the unsu-

pervised bilingual scenario. Still, the embedding spaces of 〈1860, 1890〉 are of a similar

quality for both incrementally and individually trained models. This comparability is

useful to inform about how the training method of the embedding spaces influences

the detection of shifts in them. Therefore, the subsequent experiments will also be

performed on the individually trained spaces of 〈1860, 1890〉.

5.2 Methods

5.2.1 Detection of Systematic Shifts

In the experiments I investigate a novel approach to finding and labeling systematic

conceptual shifts. For this, I combine two well-known and frequently used techniques:

nearest-neighbor search and unsupervised clustering with Affinity Propagation (Frey

and Dueck, 2007). The novelty of the approach is to apply nearest-neighbor search to

35These models are also trained as structured skipgrams, with the same hyperparameters as were
used for the incremental models.
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Figure 13: Schema of the proposed method of shift detection. Left : clustering variant
APsource for comparisons with APshift. Center : Difference vectors are clustered
with AP (inner distance of a cluster = average cosine between its members). Atom is
chosen as a cluster exemplar. Right : ‘labels’ are determined by nearest-neighbor search
to the exemplar, atom.

shift vectors rather than to original or projected ones. To the best of my knowledge, it

has not yet been part of research for the purpose of shift detection.

Prior work on the detection of lexical semantic change in word embeddings has seen

a wide variety of approaches, many of which are quantitative, measuring the amount

of change of a lexical item. However, the aspect of interest here is also a qualitative

one: additionally to measuring how much a concept or a group of concepts changes, the

aim is to uncover in which direction this change happens. Given that two embedding

spaces X and Y are aligned to each other, the direction of shift between two vectors x

and y is trivially calculated as y − x. The result is the shift vector sx,y which expresses

the component(s) of meaning of x that change in the process of shifting to y. For

example, if the concept for atom shifts from a neighborhood of chemistry to that of

physics, its core meaning may remain the same, but it might be understood from a

slightly different viewpoint: atom might be treated less as a component of molecules, an

elementary unit, or an agent in chemical reactions, and be more talked about from the

aspects of storing and emitting energy, exercising certain forces, and so on. This slight

conceptual change may be captured by sx,y, but it cannot be interpreted by humans,

because there is no label (i.e., vocabulary item) attached to sx,y to give an intuitive

explanation for the expressed shift. The solution to this is similar to the analogy task

in Mikolov et al. (2013a): as all shift vectors reside in Y , it should be possible to ‘put a

name’ on any sx,y by finding those y in Y closest to it. Such nearest neighbors should

approximately express the components of meaning which change between x and y. The

intuition behind a nearest-neighbor search for sx,y in the example of atom is that this

development towards a more ‘physicized’ conceptualization of atom can be described

by those concepts whose embedding vectors point in a similar direction as the shift

vector. In this example, such proxy labels might be power or emit, highlighting that

these aspects of the meaning of atom become more prominent. Figure 13 visualizes this

intuition.

With this approach to labeling conceptual shifts, it would be interesting to investigate
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how individual concepts change over time. In this case, each sx,y would be characterized

by its k nearest neighbors, determined by similarity measures such as cosine distance

or CSLS (cf. Conneau et al., 2018). The focus on the following experiments, however,

is slightly more macroscopic, as they treat clusters of conceptual shifts rather than

individual words. This has mainly two reasons. First, it is to be expected that the

experiments operate in a noisy environment: every processing step (the construction

of the corpus, the training of the embeddings, GWOT for alignment, and finally the

orthogonal projection) introduces noise to the environment in which the shift vectors

are created, and so it is to be expected that several of the shifts are spurious. Clustering

the shift vectors allows to better assess their reliability. For example, when shift vectors

are clustered by cosine distance and some sx,y belongs to only a small cluster with a

high average pairwise cosine distance among its members (i.e., a ‘loose’ cluster), then it

is likely that this sx,y is noisy. This is less likely for difference vectors belonging to larger

and at the same time tighter clusters. The second reason to investigate clusters rather

than individual difference vectors is that it offers a continuation of previous work on

scientific English in the RSC (cf. Chapter 2.3). Here, the focus lies on the emergence and

development of topics and language style rather than the lexical semantics of individual

words. Experiments on systematic shifts rather than individual shifts allow to gain

insights about these more general dynamics of scientific English from the point of view

of distributional semantics.

5.2.2 Experimental Setup

All subsequent experiments on shift detection follow these two principles of clustering

and nearest-neighbor search on difference vectors (Figure 14 shows a schematic). The

starting point is a space pair 〈X,Y 〉 with corresponding vocabularies U , V and corpus

token counts fX , fY . The main distinction between the experiments is the signal, i.e.

the set T of translation pairs according to which pairs of embedding vectors from 〈X,Y 〉
are selected to measure change. In the unsupervised bilingual experiment, UnsupBi,

T is obtained from the large coupling of 〈X,Y 〉 that has previously been optimized

(this is the first of the two connections described in Chapter 4.2). In the monolingual

variant, UnsupMono, T is simply the shared vocabulary; each word is paired with

itself. The third, supervised experiment DisTech, operates separately on two sets of

word pairs which are constructed from lists of discourse-related words and of technical

terms (cf. Section 5.4 below). T is restricted to words with a minimum corpus count

of 10 and 15 for 〈1740, 1770〉 and 〈1860, 1890〉, respectively.36 This filters out the less

reliable embeddings of very infrequent words and should improve clustering. For better

nearest-neighbors search, Y as well is reduced to embeddings with a minimum token

count.

The embeddings of the source words in T are projected with P (obtained from solving

a Procrustes problem with the 100 highest-scoring translation pairs of the space pair’s

small coupling; the second of two connections between X and Y , cf. Section 4.2). Now

36〈1860, 1890〉 has a larger sub-corpus than 〈1740, 1770〉; this allows to increase the minimum count
while retaining a similar number of words as for 〈1740, 1770〉. This reduction in size was also necessary
because of memory restrictions during nearest-neighbor search for individual x ∈ X and y ∈ Y .
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Figure 14: Basic structure of the experiments on shift detection. Clustering alternative
APsource vectors of the source space (dotted line) instead of the difference vectors D.

the set D of difference vectors (i.e.: shift vectors) sxu,yv is computed by subtracting the

projected embedding vector of any u in T from the embedding vector of its associated v.

As differences in corpus frequency between the two end points of a shift vector are likely

to influence its length, each shift vector is scaled with the logarithm of the absolute

token count difference:

D :=

{
yv −Pxu

log(|fX(u)− fY (v)|)
| 〈u, v〉 ∈ T

}
. (22)

This scaling method is inspired by Cafagna et al. (2019), who use a similar measure to

mitigate frequency effects in shift vectors across two distinct words.

The vectors in D are then grouped into clusters in one of two ways; either by cluster-

ing D directly (APshift) or by first clustering the selected x of the source space and sub-

sequently grouping the shift vectors by the cluster of their source vector (APsource).

Both variants matter: the default APshift is used to group words with similar concep-

tual changes; APsource allows to compare the conceptual changes among semantically

similar words. Figure 13 visualizes the difference between the two variants. The clus-

tering algorithm used here is Affinity Propagation (AP, Frey and Dueck, 2007), which

creates clusters with exemplars as centers. Differently to K-Means or KNN clustering,

AP does not require a fixed number of clusters; in this sense, it works ‘unsupervised’.

The similarity values on which to perform AP are the pairwise cosines of the vectors to

be clustered. The intuition behind AP is that data points iteratively exchange messages

of two kinds: how well they deem other data points as the exemplar of their cluster; and

how well other data points deem them as the exemplar of a cluster. The exchange of

messages converges after c iterations without changes in the number of clusters. In the

subsequent experiments I set the maximum number of iterations to 100 (empirically)

and start out with SciPy’s default criterion of c = 15, decrementing by one whenever

AP does not converge.

The last step collects the potential ‘labels’ of each cluster by determining the nearest

neighbors in Y of each cluster’s exemplar. The measure used for this is cosine distance,

which is computed from the dot product of two vectors x and y, scaled by their euclidean
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norm (already mentioned in equation 17 in Chapter 4.1.3):

dcos(x, y) = 1− x · y
‖x‖2 ‖y‖2

. (23)

For quantitative measurements, the clusters are measured as units in two ways: by

the average length of their members (maximum, mean, median, standard deviation)

and by the ‘inner distance’, i.e. the average cosine distance between members of a

cluster. Inner distance is inspired by Bizzoni et al. (2020), who devise a similarity

measure between two clusters C1, C2 by summing all possible pairwise cosine similarities

between the members of C1, C2 and normalizing with |C1| · |C2|. In that context,

inner distance is calculated in the case that C1 = C2. As the only cluster distances

of interest in this context are inner distances, I do not take into account all possible

pairwise measurements. Rather, given a square matrix of cosine distances for C, the

inner distance measure only considers the upper triangle of that matrix. Formally, the

inner distance of a cluster C := {c1, ..., cn} is defined as

dinner(C) :=

∑n
i=0

∑n
j>i dcos(ci, cj)
n2−n

2

. (24)

Inner distance expresses the spread of a systematic shift. A small inner distance within

a shift cluster implies that its members experience a similar degree of change in similar

components of meaning (a ‘harmonic’ shift). A high inner distance indicates that the

cluster’s members change their relative distance to each other, either by growing apart

or by converging. For example, the atom-cluster in Figure 13 (center) has a relatively

small inner distance, because only one of its shifts grows apart from the rest. One of the

other two clusters shows a slightly larger inner distance, because its members are less

parallel than for the atom-cluster; here, however, the concepts shift towards each other.

This is the proposed pipeline for unsupervised detection of systematic conceptual

shifts. In addition to these measurements on shift vectors, I also measure the cosine

distance dcos(Pxu, yv) for each word pair (u, v) ∈ T , and compute each of the words’

nearest neighbors, using CSLS by Conneau et al. (2018) to mitigate hubness effects as

much as possible.

5.2.3 Evaluation

Post-processing and visualization comprises three parts: the generation of a baseline to

the performance of AP clustering; the selection of shift clusters with unusual features;

and the visualization of shift clusters.

After the run of an experiment has finished, I construct a clustering baseline in order

to put into perspective the effect of APshift with respect to APsource. The baseline

for an experiment is constructed by sampling the same number of clusters as created

by APshift from a normal distribution, ensuring that (a) the average size of a cluster

is similar to APshift and (b) every shift vector in D is a member of a cluster. These

random clusters are expected to have the largest inner distances and approximately

normally distributed length measurements.
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The manual qualitative evaluations treat ‘interesting’ clusters in order to determine

whether certain types of words experience different conceptual shifts than others, and

if so, how these shifts differ. At first glance, clusters are ‘interesting’ if they have

unusual measurements. As measurements I take cluster size (small/large), inner distance

(tight/loose), mean length (short/long), and standard deviation of length (even/uneven).

To determine interesting clusters in terms of these measurements, I select clusters with

significantly small or large values. Formally, I select the set Cm ⊂ C of interesting

clusters by means of measurement m from the set C of all available clusters as follows:

Cm =

{
C ∈ C | m(C)− µ(m)

σ(m)
< −1.65

}
∪
{
C ∈ C | m(C)− µ(m)

σ(m)
> 1.65

}
, (25)

where µ and σ are the mean and standard deviation, respectively. This approximately

corresponds to the smallest 5% and largest 5% of m-values under the assumption that m

follows a normal distribution (Figure 30 in the Appendix shows the KDE-approximated

distributions of the measurements).

Shift clusters are visualized as follows: given a cluster C := {s0, ..., sn} of shift

vectors, I retrieve the xi ∈ PX and the yi ∈ Y which constitute the si ∈ C as well

as the nearest neighbors (i.e., the labels) of the exemplar of C. All of these vectors

are simultaneously processed with t-SNE (van der Maaten and Hinton, 2008), which

computes 2-dimensional vectors as approximations to the 100-dimensional embedding

vectors. Shifts are expressed as lines going from a Px (darker color) to a y (lighter color).

The exemplar of a cluster is marked as a red line. The directions of the exemplar’s

nearest neighbors (i.e., the cluster’s labels) are marked as colored lines going out from

the origin.

By definition, the dimensionality reduction from 100 to 2 implies that a lot of infor-

mation of the original vectors is lost. The resulting 2D images thus only show a snapshot

of the actual spatial arrangement of a cluster’s vectors. As for the lengths of shifts, this

means that the lengths of t-SNE vectors do not correlate one-to-one with the lengths of

the original shift vectors. Furthermore, as t-SNE is non-deterministic, there are many

possible different visualizations (or many different ‘angles’ from which to look at a shift

cluster). A fixed point, however, is that the cluster’s labels are defined as the nearest

neighbors to the cluster’s exemplar. In order to present more expressive visualizations,

I create multiple visualizations and select one, judging the success of t-SNE reductions

by how similar (in direction) the labels are to the exemplar.

Note also that t-SNE is sensitive to the number of points visualized. The reason

for this is the objective of t-SNE to differentiate between the data points in a given

set or arbitrary size (cf. van der Maaten and Hinton (2008)). Consider two cases of

visualization: once of a single small shift cluster and once of multiple large shift clusters.

In both cases, the algorithm utilizes the same 2D space to maximally differentiate all

the given points. In the first (small) case, however, this is often much easier, as there

are simply not as many points, each with its nuances, as in the second case. T-SNE

visualizations of small point sets are thus often more nuanced; for example, the angle

between two shifts will be greater than if these same two shifts were to be visualized as
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〈1740,1770〉 |X|=5809, |Y |=7408
APshift APsource

pairs conv-it clusters avg. size conv-it clusters avg. size
UnsupBi 3720 14 324 11.5 15 336 11.1
UnsupMono 4544 5 387 11.7 15 388 11.7
Dis 626 15 68 9.2 15 71 8.8
Tech 119 15 19 6.3 15 18 6.6

〈1860,1890〉 |X|=17374, |Y |=25165
APshift APsource

pairs conv-it clusters avg. size conv-it clusters avg. size
UnsupBi 7970 15 559 12.3 15 559 14.3
UnsupMono 10233* 3 774 13.2 5 748 13.7
Dis 1237 15 126 9.8 15 117 10.6
Tech 252 15 35 7.2 15 33 7.6

〈1860,1890〉 (individual) |X|=17374, |Y |=25165
APshift APsource

pairs conv-it clusters avg. size conv-it clusters avg. size
UnsupMono 10233* 15 545 18.8 15 565 18.1
Dis 1237 11 94 13.2 15 100 12.4
Tech 252 15 29 8.7 15 37 6.8

Table 10: Clustering statistics per experiment and clustering variant.. conv-it : criterion
for AP clustering convergence (= number of iterations without changes in centroid
candidates). *minimum corpus frequency: 15 (instead of 10).

part of a larger point set.

5.3 Unsupervised Experiments

The following sections report on the first two experiments on shift detection, UnsupBi

and UnsupMono, which both aim at detecting new systematic shifts without being

provided human intuition. The main difference between the two experiments is the

signal, i.e., the set T of word pairs which is used to relate the shifted embeddings. In

UnsupBi, T is constructed from the large coupling corresponding to the investigated

space pair. UnsupMono however does not need to take the step of optimizing a large

coupling: the two spaces are assumed to belong to the same language, so T is simply

the shared vocabulary of the investigated space pair.

The discussion of the results is divided into several parts, each one addressing and

comparing a particular aspect of the two experiments from a quantitative point of view.

This is followed by a discussion of specific shift clusters of interest. These sections

evaluate both the findings of diachronic language change and the methods used for

detection and visualization. For a general reference, Table 10 reports the sizes of the X,

Y , and T as well as clustering statistics of all experiments and clustering variants. The

default variant of clustering is APshift; the default method of embedding construction

is ‘incremental’ (as opposed to the one pair of individually trained embedding models).

66



5.3.1 Bilingual vs. Monolingual

The first aspect of interest is concerned with the effect of the signal on clustering. Put

concretely, the questions to be answered are whether the bilingual experiment yields

results different to the monolingual experiment and if so, whether this difference is

clear enough to justify the efforts of optimizing a large coupling, taken to satisfy the

assumption of bilinguality.

Figure 15 shows the approximated distributions of cluster sizes, inner distances (i.e.,

the ‘tightness’ or ‘spread’ of a cluster), mean cluster lengths (i.e., the size of the shift),

and standard deviations of shift lengths, for both space pairs in both experiments.

The distributions are approximated with SciPy’s implementation of Gaussian Kernel

Density Estimation (KDE) using Scott’s factor (cf. Scott, 2015). It is clearly visible

that APshift creates shift clusters of very similar sizes across all relevant conditions,

and these sizes are distributed very similarly. The average sizes of a cluster for Un-

supBi/UnsupMono are 11.5/11.7 on 〈1740, 1770〉 and 12.3/13.2 on 〈1860, 1890〉 (cf.

Table 10). The clusters’ inner distances as well show practically no difference between the

two experiments, and neither between the two space pairs (0.780/0.774 and 0.767/0.761),

and the distributions are practically identical (Figure 15b).

The averages of mean lengths of the 〈1740, 1770〉 experiments are very similar

(0.506/0.497); for 〈1860, 1890〉, they differ slightly (0.422/0.390). As Figure 15c indi-

cates, the distributions of mean lengths are very similar across the experiments. Lastly,

the standard deviation of cluster lengths shown in Figure 15d indicates virtually no

difference between experiments for 〈1740, 1770〉, but slight differences for 〈1860, 1890〉:
UnsupBi has fewer evenly long clusters than UnsupMono.

In order to put the observations on UnsupBi and UnsupMono into perspective, it

is important to note that filtering infrequent words with a minimum count reduces the

number of mismatching translation pairs in the T of the two UnsupBi experiments. For

〈1740, 1770〉, this filtering increases the percentage of string-matching pairs in T from

58.4% (in T as obtained from the large coupling) to 90.2% (in the T used in UnsupBi).

For 〈1860, 1890〉, this percentage increases from 36.6% to 48.7% (cf. Table 8). It is

possible that the differences observed with the 〈1860, 1890〉 UnsupBi experiment stem

from the fact that it is being provided a signal with about 50% of mismatching pairs

which, as determined in Chapter 4.3.7, are mostly noise.

These observations on the clusters’ statistics suggest that UnsupBi and Unsup-

Mono do not behave differently and that their differences are mainly due to noise in

the bilingual signal. This affirms the speculation from Chapter 4.3.7 in which the anno-

tation of translation pairs revealed that only a small number of string-mismatching pairs

is valuable (i.e, meaningful at the same time). The advantage of using these valuable

mismatching pairs in a bilingual setup can be deemed marginally small. Thus there

is no reason to approach the detection of diachronic conceptual shifts as a bilingual

task; at least not with respect to the RSC. Consequently, the remaining comparisons of

experimental conditions will mostly treat UnsupMono.
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(a) cluster size (b) spread

(c) length (d) unevenness

Figure 15: Cluster sizes and lengths for both space pairs and both unsupervised exper-
iments (clustering variant: APshift). Distributions approximated with KDE.

5.3.2 〈1740, 1770〉 vs. 〈1860, 1890〉

With respect to the two different space pairs, Figure 15c shows that later clusters are

on average 21.5% shorter than earlier ones (0.497 and 0.390 for 〈1740, 1770〉 and 〈1860,

1890〉, respectively).37 This indicates that language in the RSC changes more between

1740 and 1770 than between 1860 and 1890. In addition, these greater changes vary

more in their size: for most of the 〈1740, 1770〉 clusters, the standard deviation of their

members’ length is 0.29; 〈1860, 1890〉 instead shows two modes of standard deviation, at

0.28 and at 0.10 (cf. Figure 15d). Although the graphs in Figure 15 are only approxima-

tions, it can be said that there are certain conceptual changes in 〈1860, 1890〉 which go

in a similar direction at relatively similar rates.38 The cluster size and spread/tightness

of the clusters is not considerably different between the two space pairs (cf. igures 15a

and b).

The observation of greater changes happening in 〈1740, 1770〉 than in 〈1860, 1890〉
37the default: UnsupMono
38This is not necessarily a showcase of the law of parallel change, because in the APshift variant

here, the ‘similar vectors’ are not vectors of concepts, but vectors of shifts of concepts.
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is in line with the findings of Bizzoni et al. (2020). There, lexical innovation (new words

entering the vocabulary) of 〈1860, 1890〉 is lower and only reaches the levels of 〈1740,

1770〉 in the first couple of years. In terms of lexical thinning, i.e., the development of

words being used less frequently or not anymore, 〈1860, 1890〉 again shows less devel-

opment. Intuitively, new terminology as a result of lexical innovation has a tendency to

change more than established terminology, because it is yet to be firmly positioned in

language. The greater lexical innovation in 〈1740, 1770〉 might explain the higher mean

length of shift clusters.

5.3.3 APshift vs. APsource

All measurements in the experiments are taken on shift vectors or groups of shift vectors.

Consequently, it is to be expected that APshift, operating directly on the set of shift

vectors, will yield the tightest clusters. The shift clusters created with APsource are

based on the starting points of the shifts; as it is not guaranteed that similar concepts

shift in similar directions, it is expected that the inner distances of clusters from AP-

source is higher. The baseline of randomly created shift clusters is expected to have

the loosest clusters (i.e., the least harmonic ‘systematic’ shifts).

Figure 16 shows the KDE-approximated distributions of inner distances for both

space pairs and the three clustering variants. The results are as expected and the

differences are clear (means for APshift/APsource/baseline: 0.774/0.828/0.924 and

0.766/0.821/0.950 for 〈1740, 1770〉 and 〈1860, 1890〉, respectively). The improvement of

inner distance of APsource over the baseline is about twice as large as the improvement

APshift over APsource. It is thus possible to group shift vectors into more or less

coherent clusters solely based on their source vectors’ similarities. This suggests that

there is a correlation between the cosine similarity of a given word vector and its shift

vector; that additionally to the law of parallel change (‘similar words change at similar

rates’), similar words tend to change in similar ways.

The differences in clustering behavior do not have a big effect on the clusters’ length

measurements. Figure 16 depicts the maximum, mean, and median lengths as well as the

clusters’ standard deviations from their mean lengths. The distributions are practically

the same for APshift and APsource, but they differ a lot from the baseline which,

despite being constructed from the same shift vectors, shows smaller length values for all

measurements. For example, the longest shift of most AP-created clusters from 〈1740,

1770〉 has a length of about 1.18. For the baseline, almost no cluster contains a shift

vector of this length, even though the AP variants clearly indicate the existence of shifts

with this length. The cause for this mismatch is unclear; further investigations might

shed light onto it.

5.3.4 Incremental vs. Individual

As the earlier decades of the RSC each comprise relatively little data, it would be

unfeasible to train them individually, i.e. to initialize them from zero. Shift detection

for earlier portions of the RSC (e.g., 〈1740, 1770〉) is therefore bound to be carried out

on spaces which are constructed with some form of initialization. However, embedding
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Figure 16: Clusters’ average shift length measures (left) and inner distances (right) for
the UnsupMono experiment (APshift: solid; APsource: dotted; baseline: finely
dotted). Distributions approximated with KDE.

spaces are normally trained individually. Therefore it is of interest to shed light on

possible differences between these two training methods and see whether one of them

might be better suited for the task of diachronic shift detection. For this, I will discuss

the results from UnsupMono on the 1860, 1890〉 space pairs (incremental/individual),

concentrating on the default clustering variant APshift.

The first insight comes from Table 10, which reports that clustering of the incremen-

tal space converged at a criterion of 3 (for APsource: 5), whereas AP on the individual

space converged with a criterion of 15. In other words: while AP on the incremental

space achieved at most only 3 consecutive iterations without changes of possible cluster

exemplars, AP on the individual space achieved up to 15 unchanged iterations. This

indicates that the clusters found on individual spaces are more stable.39

39Note that contrary results can be observed for clustering discourse words (convergence criteria for
incremental/individual: 15/11). I deem the difference between these convergence criteria not large
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(a) cluster size (b) spread

(c) length (d) unevenness

Figure 17: KDE-approximated distributions of cluster sizes and lengths for both training
methods of the 〈1860, 1890〉 spaces (experiment: UnsupMono).

Regarding the measurements of cluster size, spread, and length, further differences

are observable. Figure 17 shows the corresponding measurements (the same as for Figure

15, but with the focus on the training method). At the same size of T , the shift clusters

determined in the individually trained space pair comprise 4 to 5 more vectors than

the clusters on the incremental space pair (cf. Table 10); Figure 17a furthermore shows

that the sizes have a larger variance. The mean lengths of these clusters are relatively

similar (0.390/0.431), and so is their distribution (cf. Figure 17c). The same is true for

the standard deviations of these mean lengths. However, the APshift clustering leads

to fewer clusters with even shift sizes.

The greatest difference between the training methods is observable for the inner

distances. As Figure 17b shows, the shift clusters of incrementally trained embeddings

are considerably looser than those of individually trained ones, indicated by a larger

inner distance. This holds for both clustering conditions (0.766/0.616 for APshift,

enough to express a clear difference in ease of clustering.
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0.821/0.678 for APsource) as well as for the baseline (0.950/0.784). This means that

even when clustered randomly, the vectors from the individually trained space pair

change more ‘harmonically’ in general. This is peculiar, given that the shift vectors are

computed from the same T . There are two possible explanations, both based on the

fact that the incremental spaces are trained on more and more diverse data. After all,

with the incremental method, training is initialized with embeddings which themselves

incorporate information about the previous 195 to 225 years of the RSC, which amounts

to 23.0M - 48.1M tokens.

The first explanation follows the intuition that having observed more text, the in-

cremental spaces are more nuanced. This increases their ability to express nuances not

only of concepts, but also of conceptual shifts – put differently, the spaces are more sen-

sitive to the orthogonal projection. The inner distance measure captures these nuances

of shifts. The individually trained spaces, while relatively expressive on their own (cf.

Chapter 3.2.3), do not capture as many slight differences when being projected and thus

the average cosine distance in their shift clusters is smaller.

The second possible explanation focuses on the fact that while the incrementally

trained spaces have more data available, these data are not homogeneous. Spanning

a couple of centuries, the data that is supposed to give the incremental spaces a head

start captures not just the bare conceptual content, but all of the conceptual change

that happened over the years. Moreover, as pointed out by Kim et al. (2014), an

embedding from one decade only gets re-positioned well in the next incremental step if

its corresponding word occurs sufficiently often in the new portion of text. If that is

not the case, the embedding in question remains in its outdated position. It is possible

that the ‘legacy’ of language change as well as the existence of ‘outdated’ embeddings

lead to more slightly spurious embeddings. These slight errors may not be detected in

a simple similarity task, but possibly do carry some weight in the shift detection, where

they are captured by more difficult AP clustering and a greater average inner distance.

The observations from this comparison indicate that the method of training embed-

ding models matters to the proposed method for shift detection. Individually trained

embedding spaces appear to express systematic shifts in larger and at the same time

tighter clusters. This has implications for the applicability of the proposed shift de-

tection method to pairs of incremental spaces: in Section 5.3.1, there is practically no

difference in inner distance between UnsupBi and UnsupMono on 1860, 1890〉. Un-

supBi, however, uses a T with about 50% noisy translation pairs. If this large amount

of noise does not affect inner distance, then it could be that the proposed method for

shift detection is not feasible for incremental spaces.

5.3.5 Qualitative Results

Despite the assumption that the detection of systematic shifts on the individually trained

spaces leads to better results, I will continue investigations on the results from experi-

ments on incrementally trained spaces. This decision is motivated by the aim to connect

the present insights and methods to previous research, which uses incrementally trained

embedding spaces (cf. Bizzoni et al., 2019a, 2020). Potential insights on these em-
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Figure 18: The (instrument,instrument)-cluster from
UnsupBi on 〈1740, 1770〉.

Figure 19: Clusters of (fits, fits) and (equally, equally),
with members (sorts, kinds) and (kinds, sorts) in the
upper part.

bedding spaces are better comparable than findings on individually trained embedding

spaces. Furthermore, it is likely that future work on language change within the RSC

will make use of incremental training rather than individual training in order to be able

to also research the earlier periods of scientific English.40

Unsupervised Bilingual, 〈1740, 1770〉. The word pairs in T in the bilingual experi-

ments on 〈1740, 1770〉 are mostly string-matching; as mentioned earlier, the requirement

of a minimum count reduces the proportion of string-mismatching word pairs to about

10%. Shift vectors of mismatching words are thus observed rather infrequently. As most

of mismatching pairs are noise, they might be expected to lead to noisy shifts and thus

to be included in topically completely different clusters. Within the unusual clusters,

there are members of both kinds, matching and string matching, which are topically

noisy, i.e. do not fit into the cluster. However, there is no observable difference between

matching and mismatching noisy members. For example, the (instrument, instrument)

cluster, visualized in Figure 18, contains two mismatching shift vectors, (tangent,arc)

and (cabinet,collection). While the earlier is depicted as divergent from the exemplar,

the latter mostly follows the exemplar’s direction. (cabinet,collection) probably is a

noisy bilingual signal, but the conceptual shift from cabinet in the 1740s to collection in

the 1770s seems to be similar enough to the shift of certain components of instrument

to be included in the cluster.

40That being said, the promising quantiative results on individually trained word embeddings invite
to apply the proposed method of shift detection to the later decades of the RSC, or to other, larger
corpora.
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Exemplar Labels Members

enquiries labours, botanical, in-
vention, members, pur-
poses

severity, honoured, labours, friends, purposes, examination,
petrification–preparation,* notions, descent, removal, qualities, inven-
tion, enquiries

Table 11: One of the unusually long clusters from UnsupBi on 〈1740, 1770〉. *string-
mismatching pair.

Pair Type Overlap* Pair Type Overlap*

assise – assize orth. 45 assign – determine sem. 14
pour – poured morph. 27 adjoining – adjacent sem. 27
aequilibrium – equilibrium orth. 18 cloud – clouds morph. 31
toward – towards morph. 17 adjacent – neighbouring sem. 13
perpendicularly – vertically sem. 19 terms – expressions sem. 22
longitude – longitudes morph. 24 suppose – imagine sem. 14
commotion – shock sem. 19 sorts – kinds sem. 21
kinds – sorts sem. 26

Table 12: String-mismatching word pairs with type of mismatch (morphologi-
cal/orthographic/semantic) used as part of T in UnsupBi on 〈1740, 1770〉. *mutual
nearest neighbors of a pair’s individual words in their respective space, out of 100.

Among the unusually long clusters, there are several clusters which contain shifts of

words related to discourse, that is, words which are typically used across scientific fields

to communicate findings. While the clusters are not clear-cut into discourse terms and

other words, this is a hint towards the findings of Bizzoni et al. (2020) that there are

developments to the style of scientific writing between the 1740s and the 1770s.

One of the unusually long clusters, the enquiries-cluster reported in Table 11, con-

cerns the topical changes in the RSC. 3 out of 5 of the exemplar’s nearest neighbors in Y

are also members of the cluster. This can be interpreted as a form of ‘standardization’

which I call conceptual establishment : the conceptual change occurs most strongly in

those components which already characterize the concept. From this point of view, the

concepts in the enquiries-cluster become stronger in their dominant meaning.

In the case of the enquiries-cluster, however, the second-best label to express the

conceptual shift (at least of the exemplar) is botanical, which clearly belongs to a specific

field of science. On the one hand, this is in line with the diachronic topic model of Bizzoni

et al. (2020) which categorizes botany and biology as part of a topic ‘LifeScience’ become

slightly more prominent. On the other hand, botany and biology are also summarized

under the topic ‘Reporting’, which experiences a drastic decline throughout the 18th

century (cf. Figure 20). This is a point at which further research could start. With

the unusually long enquiries-cluster, the proposed method for shift detection indicates

that these rather domain-independent concepts related to research are amplified in their

main components of meaning and at the same time experience a shift towards a specific

scientific topic; they receive a slight connotation of ‘botanical enquiries’.

Human-Annotated Translation Pairs. Out of the 2500 string-mismatching trans-

lation pairs from the large coupling of 〈1740, 1770〉 that have been annotated (cf. Chap-
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Figure 20: Topic models on the RSC, taken from Bizzoni et al. (2020). Left : Distribution
of coarse topics over time. Right : Distribution of the ‘LifeScience2’ sub-topics over time.

ter 4.3.7), 71 are labeled as ‘good translations’, showing only slight differences in spelling,

morphological form, or semantic content. 15 of these 71 were considered in UnsupBi

(the rest was filtered out by the minimum count requirement). The word pairs are listed

in Table 12, which also reports for each pair (u, v) the overlap of the k = 100 nearest

neighbors of u in X and v in Y . Neighbors were computed with CSLS (Conneau et al.,

2018). This approach to measuring individual words’ changes via the intersection of

their nearest-neighbors sets is similar to Gonen et al. (2020), albeit on a much smaller

scale.

The average overlap of orthographically different word pairs is 31.5 (2 pairs); the ones

of morphologically different and semantically similar pairs are 24.8 (4 pairs) and 19.4 (9

pairs), respectively. While the number of samples is too small to make a statistically valid

statement, the differences should be noted. As the structured skipgram models capture

syntactic and semantic information, it is intuitive that the pairs with morphological and

semantic differences change more over time than words which differ in spelling.

A somewhat peculiar case are the two pairs (kinds, sorts) and (sorts, kinds), which

are members of distinct shift clusters. The joint t-SNE reduction for an expressive

visualization turned out to be difficult; however, the shifts corresponding to the two

pairs were consistently placed parallel to each other (cf. Figure 19). These two word

pairs in the bilingual signal were constructed by GWOT based on the embeddings’

spatial roles. If GWOT erroneously mixed up these two words, this is likely because

kinds in the 1740s ‘behaves’ like sorts in the 1770, and vice-versa. This suggests that

the two words experience a conceptual switch between the 1740s and the 1770s.

Observations on Both Space Pairs. For insights about UnsupMono, I will change

space pair and investigate the results of 〈1860, 1980〉. Before that, three observations

shared for both periods are to be discussed.

The first observation is that shift vectors of words (for UnsupBi: word pairs) with

similar grammatical forms tend to be clustered together. At first glance, this is not

75



Feature Exemplar Labels Members

large providing ensuring, save,
sustaining, se-
cure, forcing

close, carrying, supposing, allowing, preparing, constituting, absorbing,
holding, constitutes, indefinite, regulating, preventing, amply, subjacent,
demands, completes, confocal, providing, ensuring, implying, remedied

large nerves nerve-roots,
roots, nerve,
cervical, ganglia

nerve, roots, nerves, skin, cervical, ganglion, ganglia, holes, employ-
ment, resulted, thickening, oblongata, nerve-cells, knew, 13th, nerve-
roots, turbinal, branchial, labyrinth, hundredths, trigeminus, bellows,
pulsations, cava

large vienna hamburg, copen-
hagen, munich,
haarlem, amster-
dam

proximal, constituent, continue, lately, engineers, excretion, student,
screens, miller, vienna, petersburg, aim, popular, munich, addressed, du-
plicate, thank, bread, twenty-three, quadrilateral, hie, seated, sunset, wh,
ejected, clothed, wants, dm, tour, exactitude, constrained, replied

short percentages proportions,
weights, percent-
age, proportion,
volumes

volumes, indices, freezing, lighter, stature, percentages, speeds

short must cannot, may,
should, might,
can

which, may, will, must, could, should, shall, cannot

Table 13: Clusters from UnsupMono on 〈1860, 1890〉 with unusual features.

surprising, given that the structured SGNS embeddings are designed to capture syntactic

information; it is expected that within a word field of verbs, for example, the gerund

forms and the participle forms tend to form separate sub-fields. However, the clusters

are based on the changes of concepts and not on the concepts themselves. The tendency

of shift clusters to form along the lines of syntactic differences is an indicator for the

great non-semantic diachronic changes in the RSC (e.g., the development a scientific

style of writing, cf. Bizzoni et al., 2020).

The second observation is that many clusters have some of their members as labels.

As discussed with the example of the enquiries-cluster from 〈1740, 1770〉, this can be

interpreted as the concepts in the cluster becoming more established (mostly) in their

main meaning(s). The same is true of the nerves-cluster from 〈1860, 1890〉 (cf. Table

13), which has all of its labels as members. This leads to the assumption that the

overlap of a cluster’s labels with its members indicates to a certain extent whether a

group of words is enriched with a new meaning (like the enquiries-cluster with botanical)

or further establishes its conceptual core.

The third observation is that as expected, most of the shortest shift clusters mostly

consist of function words (e.g., articles, conjunctions), numerals, units of measurement,

and modal verbs. However, among these rather stable concepts, there are also content-

bearing words, for example the percentages-cluster from 〈1860, 1890〉 (cf. Table 13).

The fact that these usually non-functional words experience significantly little change

suggests that they are being used like functional words. Put differently, they are used

in scientific writing, but not to express specific concepts — rather, these stable content

words contribute to the lexical aspects of the emerging scientific language in the RSC.

Unsupervised Monolingual, 〈1860, 1890〉. Many of the shifts in this period which

cluster into large groups are numerals and particles, but some of them largely comprise
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Figure 21: Two of the largest shift clusters from UnsupMono on 〈1860, 1980〉.
Left : clusters of providing and investigating (blue/orange). Right : clusters of ilium and nerves (blue/orange).

either gerunds and participles or words related to anatomy. Two clusters of each kind are

visualized in Figure 21. The two pairs of clusters differ fundamentally. The providing-

and the investigating-cluster are difficult to visualize; the depicted shifts do not point

into similar directions and are overall shown as short. In contrary, the ilium- and the

nerves-clusters show clear systematic shifts into very similar directions, both within

and across clusters. All four clusters are of a similar size (21, 28, 24, and 24), so

it is unlikely that these differences in the visualizations can be attributed to t-SNE’s

sensitivity to point set size. These observations clearly demonstrate that the concepts

related to anatomy are under the influence of dynamics of conceptual change. I deem

this dynamic to be conceptual establishment because of the large overlap of cluster labels

with their members.

Indeed, the topic model of Bizzoni et al. (2020) (cf. Figure 20) shows that between

1825 and 1880, the ‘LifeScience2’ topic greatly increases in popularity. Furthermore, the

sub-topics ‘anatomy1’ and ‘nervous system’ experience a lot of growth. As for the pro-

viding- and the investigating-cluster, it is plausible that the gerund and participle forms

only change marginally given that the formation and consolidation of English scientific

writing happened before this time, between the 1750s and the 1850s (cf. Degaetano-

Ortlieb and Teich, 2016).

From a methodological point of view, the cluster with vienna as exemplar marks

a shortcoming of the proposed approach to finding appropriate labels systematic con-

ceptual shifts. This cluster appears to be made up of concepts which are often used in

the editorial parts of publications (cf. Table 13). These sections are mainly concerned

with the personal lives of renowned scientists and members of the Royal Society. As

the exemplar is the shift of vienna, which on its own does not shift significantly, it is
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Figure 22: The vienna-cluster from UnsupMono on 〈1860, 1890〉.

understandable that the cluster’s labels (i.e., the exemplars nearest neighbors) are all

names of cities. The issue here is that these labels are not representative of the whole

shift cluster, because the cluster itself contains the shifts of many other words which

themselves are likely experience slight shifts into many other directions. The t-SNE

visualization thus positions especially the shifts of city names in parallel to the labels,

but neglects almost all other members of the cluster (cf. Figure 22). This shows that

the proposed method for labeling the systematic shifts needs to be improved.

5.4 Supervised Experiment: Discourse Words vs. Technical

Terms

The third experiment builds on sets of words that have previously been found to behave

in specific ways in the RSC. These words of interest can be categorized as ‘discourse

terms’ and ‘technical terms’; Table 14 gives an overview and shows examples. The set of

discourse terms consists largely of adjectives occurring in constructions like it is possible.

Other types of discourse terms are words ending with -ing (often poly-functional words,

which can be used as gerunds, participles, or present continuous forms). Most of the

-ing verbs in the set occur before that to form phrases such as assuming that.... The

rest are two out of three groups of -ing verbs which have been characterized by cf.

Bizzoni et al., 2019a as ‘change of state’ and ‘motion’ verbs. The set of technical terms

contains the third group of -ing verbs, which are characterized as ‘academic’ words. The

main portion of this set, however, is a combination of two large topical clusters from

Bizzoni et al. (2019b), one consisting of chemistry-related words, the other one with

words related to galactic astronomy.

For the investigations with these words of interest, the main experiment is performed

78



Source Name Size at 0/10/15* Use Examples

G&M -ing verbs1 30 10 26 dis determining, establishing, studying, ascertaining
-ing verbs2 30 19 28 dis passing, extending, running, reaching, bending
-ing verbs3 30 13 21 tech purifying, warming, pouring, removing, plunging
-ing-that verbs 1613 200 234 dis producing, pouring, denoting, breaking, preventing

PhD it-adjectives 2796 434 684 dis adequate, larger, wrong, suspected, special

DWNet galaxy 234 30 54 tech magnitudes, nebula, methods, faint, polar
chemistry 681 78 163 tech zinc, carbonaceous, gramme, incandescence, potash

Table 14: Words of interest for the DisTech experiment. G&M: Bizzoni et al. (2019a).
PhD: Degaetano-Ortlieb (2015). DWNet: Bizzoni et al. (2019b). *Original size and
size with minimum 10/15 occurrences in 〈1740, 1770〉/〈1860, 1890〉.

twice, once with the discourse terms and once with the technical terms serving as T .

Both of these sets of words contain a small number of words which at first sight belong

to the other type. That is, there are -ing verbs in the set of technical terms and

science-related adjectives in the set of discourse words. This is because the distinction

between ‘discourse words’ and ‘technical terms’ is not clear-cut. For example, one of the

three smaller groups of -ing verbs is considered to belong to technical terms, because

it contains change-of-state verbs like purifying, discharging, or bending. As DisTech is

not performed on the two T simultaneously, these cross-over concepts can potentially

be informative for the qualitative analysis of the results.

The following sections will focus on the differences between these two groups of

words, first from a statistical (quantitative) and then from a qualitative perspective.

As an in-depth discussion of DisTech on all three space pairs would exceed the scope

of this thesis, most of the reported results stem from DisTech on the incrementally

trained 〈1860, 1890〉 only.

5.4.1 Quantitative Results

Table 10 in Section 5.3 shows the overall results on clustering. The imposed minimum

corpus occurrence of 10 leads to different numbers of words considered; for 〈1860, 1890〉,
the two sets contain |Tdis| = 1237 and |Ttech| = 252 words, which are grouped into

126 and 35 clusters, respectively. The difference in set size between discourse word and

technical terms could influence the results from AP clustering; this should be kept in

mind.

Considering differences in clustering, AP converged successfully at a criterion of 15

iterations for most runs of DisTech, irrespective of the T . The average size of the

clusters (discourse/technical) is 9.8/7.2 for APshift and 10.6/7.6 for APsource; the

approximated distributions are shown in Figure 23a. It shows a tendency for discourse

terms to form larger shift clusters in general and more very large clusters in specific.

The differences between clustering variants is negligible. These two facts in combination

indicate that technical terms are overall more specialized: they form smaller groups in

the source space already and when diachronic changes into a certain direction occur, they

apply to smaller groups of concepts when these are technical. However, the observed

differences could partly be due to the differing sizes of Tdis and Ttech, so this inference
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(a) cluster size (b) spread

(c) length (d) unevenness

Figure 23: Distributions of cluster sizes and lengths for DisTech on 〈1860, 1890〉.

should be taken with caution.

The approximated distributions of inner cluster distance depicted in Figure 23b show

that when clustered by similarity of diachronic shift, discourse terms do not behave

differently from technical terms. The two sets of words do however differ in the size

of their shifts; Figure 23c shows that the mean length of a shift cluster is greater for

discourse words than for technical terms (0.391/0.302); in other words: discourse words,

on average, change more than the technical terms selected for this experiment. Most of

these technical terms belong to one of two topics; galactic astronomy and chemistry. The

topic models in Figure 20 report that the presence of the general topics ‘Observation’

(for galactic astronomy) and ‘Chemistry’ are both on a slight decline, but still among

the more frequently treated topics. The relatively little change of technical shift clusters

thus does not lie in these words not being used. Rather, it is plausible that these

concepts established a stable meaning over the course of the the preceding decades so

that between the 1860s and the 1890s, they are used in a limited set of contexts; they

have undergone standardization.
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Figure 24: Average cosine distance of individual words (‘noalign’ = individually trained).

This difference between discourse words and technical terms in terms of the amount

of conceptual change is not clearly observable from individual diachronic shifts alone.

Figure 24 shows the average diachronic differences of single words w ∈ T , measured

by the cosine distance dcos(w) = dcos(Pxw, yw), for the DisTech experiments on all

3 space pairs. Across the space pairs, the average distances do differ. However, within

one and the same run of DisTech, e.g. on 〈1860, 1890〉 in the middle, the distances

of discourse words differ too little from those of technical words in order to conclude a

difference in shift behavior. This shows that the type of measure for conceptual shift

matters: the frequently used cosine distance is often employed successfully, but in some

cases like the present, other approaches such as measuring the length of difference vectors

might be more sensitive to changes.41

Lastly, Figure 23d shows differences in standard deviation of the clusters’ shifts’

lengths. While shift clusters of discourse terms vary widely in their ‘evenness’ (mean:

0.271), most shift clusters of technical terms show a relatively small standard deviation

(mean: 0.146); their shifts tend to have very similar lengths. The greater variety of

evenly and unevenly long shift clusters for discourse terms may be an effect of the larger

Tdis, which possibly comprises a wider range of concepts (compared to the mostly galaxy-

and chemistry-related technical terms). Accommodating all these concepts’ shifts into

clusters, it becomes more likely that the evenness of lengths of a cluster decreases.

To conclude the quantitative results of the DisTech experiments, there are certain

observable differences between the diachronic behavior of discourse words and technical

terms. The latter tend to cluster in smaller, shorter, and more evenly-sized groups. In

terms of spread of these shift clusters, there is no observable difference.

41Of course, the same is true in the opposite direction. Using both measures in a complementary way
at the same time would be the ideal solution, if this is feasible.
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Figure 25: The tightest and loosest clusters of technical
terms: oxygen (blue) and derived (orange).

Figure 26: Discourse term clusters of anterior (blue)
and inherent (orange).

5.4.2 Qualitative Results

Among the unusual clusters of the technical terms shifts, one of the tightest clusters is

the oxygen-cluster. Figure 25 visualizes this in contrast to the derived -cluster, which

is the loosest of technical clusters. Table 15 reports these two and the other clusters

mentioned in the following. Although many of the members of the derived -cluster can

be seen as the shifts of technical terms, their meaning is more general, because these

words express methodology (e.g. deduced, proved). Furthermore, they are mostly verbs

in past tense and could pass as discourse words. This is the first indicator that the two

groups devised for the DisTech experiment behave differently on the qualitative level.

Further insights of this kind are gained from the words potentially to belonging to

both groups, or even clearly belonging to the other group. A case of the latter is the

anterior -cluster formed by DisTech on discourse words. It is relatively (albeit not

significantly) tight and comprises mostly expressions of direction which are specific to

anatomy. Similarly to the ilium- and the nerves-cluster from UnsupMono, all of the

labels of the anterior -cluster are also present as members; it experiences conceptual

establishment. This cluster is another example for the development in the highly spe-

cialized field of (neuro-)anatomy, which apparently progresses without the influence of

other sciences. Figure 26 shows this cluster in comparison to the inherent-cluster of

discourse words which is equally large and relatively (but not significantly) loose. It

visualizes the movement of the anatomy-related concepts from the 1860s to the 1890s as

a collective shift from one small region in Y , namely the region onto where the x were

projected (upper-right part in the 2D image), to another small region in Y . In contrast

to this, the inherent-cluster is depicted as a collection of diachronic shifts for which the

82



Feature Exemplar Labels Members

D
is
c
o
u
r
se

long accepting assuming, finding, assign-
ing, classifying, granting

accepted, grouping, discovering, believing, adopting,
old, overcoming, accepting, asserting, many, rejecting,
mistaken

long spreading curving, shoots, slanting,
turning, shooting

paying, investing, curving, spreading, supplying, incon-
spicuous, floating, hard, swelling, ing

short seen found, observed, noticed,
disclosed, evident

seen, occurring, so, observable, obvious, less, noticed,
evident, noted, observed

short special especial, particular, exter-
nal, undue, valvular

new, particular, special, immediate, former, same

est. anterior posterior, lateral, dorsal,
ventral, mesial

upward, lateral, sacral, anterior, external, dorsal, ven-
tral, mesial, inferior, swimming, inhabiting, posterior

loose inherent exact, confers, injurious,
ciose, discriminate

incorrect, practical, sandy, illustrating, of, proved,
nearest, advantageous, inherent, bounding, small, am-
biguous, apparent

T
e
c
h
n
ic
a
l

tight oxygen c02, c03, air, nitrogen, car-
bon

substance, ozone, oxygen, executed, heat, cyanogen,
hydrogen

loose derived derivable, originated, de-
duced, arisen, eliminated

said, doubly, proved, derived, produced, methods,
derivable, deduced

large purifying refilling, sealing, regulat-
ing, tap, aspirating

sealing, closing, palladium, aspirator, purifying, dis-
charging, bending, baryta, transmitting, exploding

Table 15: Clusters from DisTech on 〈1860, 1890〉 with unusual features (est.: large
overlap of labels with members).

starting points (i.e., the Px) are not as close to each other and subsequently shift into

various directions; their diachronic development is less synchronized.

Among more ‘clear cases’ of discourse words, there is an observable difference between

-ing verbs and adjectives. Many of the shift clusters with the longest average shifts

comprise mainly -ing verbs, such as the clusters of accepting and spreading. The shortest

shift clusters of discourse words, in contrast, are often formed by adjectives, such as the

seen- and the special -cluster. This indicates that gerund and participle forms take a

prominent role in the developments of the style of scientific writing in the second half

of the 19th century. Further inquiries comparing these verb forms to other types of

discourse-related words such as the adjectives in the aforementioned shift clusters will

likely confirm this finding.

Besides showing greater changes in relation to other discourse-related words, -ing

verbs tend to form large shift clusters in general. Even among technical terms, one of the

largest shift clusters is purifying-cluster, containing many change-of-state verbs which

are likely used to report experimental setups and describe processes within experiments.

The fact that large groups of -ing verbs change in similar ways is explained by their

wide-spread usage across scientific disciplines which prevents them from forming smaller,

distinct groups of concepts which would likely continue to change independently from

each other.

5.5 Conclusions

The experiments and their evaluation paint a positive picture with respect to the ques-

tions at the beginning of the chapter:
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1. Is it useful to frame the detection of diachronic conceptual change as a

bilingual task? The assumption of bilinguality, originally taken to be able to account

for the most subtle shifts in a diachronic setup, is not necessary. The outcomes of the

bilingual and the monolingual variants of the experiments are similar to such an extent

that the efforts of optimizing a large coupling with GWOT can easily be avoided.

2. Does the proposed method for unsupervised detection of shifts work; is it

sensible and expressive? As it is tested on only two cases of diachronic comparison,

it cannot be said with certainty whether the proposed method can detect conceptual

changes reliably. Nonetheless, its results are promising. For example, the proposed

method correctly indicates previously identified diachronic developments like topical

changes such as the rise of botany in the second half of the 19th century. The nearest-

neighbor approach to expressing the direction of conceptual change in an interpretable

way has shown its strengths and weaknesses. With this approach, the proposed method

confirms the intuition that groups of highly specialized concepts retain their meaning;

however, it is not sensible enough to express the nuances of conceptual change happening

in larger and more diverse shift clusters.

3. Do the insights from the proposed method relate to previous findings?

There are multiple findings in accordance to previous research. Firstly, fact that scientific

language experiences specialization (cf. Bizzoni et al., 2019b) is expressed by concepts

from neurology and anatomy collectively experiencing ‘conceptual establishment’, i.e.

shifts in the direction of their own main conceptual components. Secondly, it is shown

via the size of collective conceptual shifts that language change in the RSC happens

at a greater rate between the 1740s and the 1770s than between the 1860s and the

1890s, which is in line with the results from Bizzoni et al. (2020). Thirdly, specialized,

technical terms change differently from words which are mainly used to communicate

about research, supporting the findings of Bizzoni et al. (2019a). The latter form larger

clusters, even when they have a specialized meaning. Contrary to Bizzoni et al. (2019a),

the experiments also show that between the 1860s and the 1890s, discourse words tend to

show greater shifts than specialized technical terms. This does not show in measures of

individual cosine distances; it is the clustering of shift vectors which makes the tendency

observable.

4. Can the proposed method uncover new (general and/or specific) dynam-

ics of language change within the RSC? The main insight about the relation-

ship between groups of concepts and their diachronic behavior relative to each other

is that similar concepts tend to shift in similar directions. This is closely connected

to the dynamic I call ‘conceptual establishment’ — concepts are confirmed in their

core components of meaning rather than changing connotations. There are many cases

of conceptual establishment observable in the experiment results. Indeed, conceptual

establishment is likely the default mode of change to be observed in diachronic inves-

tigations, as naturally, most of language is rather stable across time. In these cases,

the contexts in which a word is used do not change considerably; observing more text
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data means observing more of the context patterns already observed. When two similar

concepts (i.e. concepts with overlapping core components of meaning) both experience

this conceptual establishment, they likely experience amplification in the shared compo-

nents of meaning, which makes them shift into similar directions. Further investigations,

possibly with more sophisticated methods for describing a cluster’s main components of

change, may discover dynamics of language change still unknown.

6 Discussion

Characterizing conceptual shifts in word embeddings is no straightforward task. That

is, detecting and quantifying change can be as simple as comparing a concept’s nearest-

neighbors at different points in time (cf. Gonen et al., 2020). Rather than the question

of how much, it is the question of how a concept changes, and of how it changes relative

to other changing concepts, that makes this a challenging task. This is because the

answer to this question cannot be expressed in a single number (e.g., cosine distance,

number of shared neighbors, number of nearest neighbors); it is as multi-faceted as the

changing concept itself.

In the previous chapters, I have taken on the task of characterizing conceptual change

on the level of small groups of concepts. Each of the various techniques which I combined

to arrive at the results in Chapter 5 has certain limitations and thus introduces possible

weaknesses to my approach. In this chapter, I reflect upon these points as well as

upon potential methodological shortcomings, presenting ideas for improvement in future

research. The structure of the discussion follows the main components of the approach,

beginning in Section 6.1 with the discussion about the embedding models employed

for the task. It continues with the alignment via GWOT in Section 6.2 and the shift

detection in Section 6.3. This is followed by a discussion of the less intuitive findings in

Section 6.4. The chapter closes with directions for future research in Section 6.5.

6.1 Word Embedding Methods

The central requirement for the construction of reliable word embedding models is the

amount and quality of text data available. For diachronic and especially for domain-

specific studies of language, it is difficult to collect homogeneous and representative data

in quantities large enough to construct reliable word embeddings. As shown in Chapter

3, the first 200 years worth of text in the RSC do not provide enough information to

create reliable decade-wise embedding models by simply training each decade separately.

Training embedding spaces incrementally, i.e. initializing the training of one time span

with the embedding space from the previous time span (cf. Fankhauser and Kupietz,

2017; used in Bizzoni et al., 2019a and re-used in the present work) alleviates the sparsity

problems, but it leads to embedding spaces which are slightly skewed towards the past.

To illustrate this, consider the metaphor42 of a reader of the RSC consuming text

chronologically, and in contrast to this, two observers of two small and in themselves

42This metaphor was brought up by Yuri Bizzoni in a conversation.
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chronologically coherent sub-corpora of the RSC. Starting with the earliest texts, the

‘reader in time’ models their conceptual space according to these first contributions to

the Royal Society. As the reader progresses in time, the same words occur with new

meanings. In order to account for these changes, the reader in time has to modify

the old concept and re-position it in their conceptual space. The new position of the

concept is likely a trade-off between the positions of the old meaning (i.e. what the

reader already knows) and the new meaning (i.e., where the concept would fit best for

the current time). In contrast, each of the two independent observers is agnostic to

anything outside of their small sub-corpus, which includes any of the meanings that a

word might have had previous to the time span of their sub-corpus. Upon encountering

the word, the observer is free to place it in their conceptual space wherever it is best

suited to model the observed sub-corpus, without being required to take into account

the word’s position(s) in the conceptual space at earlier points in time.

This difference between the incremental (i.e., reader in time) and the individual

(observers of periods) training of embedding models shows in Chapter 5.3.4. Here,

the temporal interdependence of incremental embedding models results in smaller, less

harmonic shifts when compared to shift detection on individually trained models. It is

possible that incremental models are not as well-suited for the task. Despite this, the

main portion of experiments is carried out on such incremental models, for two reasons.

First, the results are better comparable to previous research (Bizzoni et al., 2019a, 2020)

that was carried out on the exact same embeddings. Second, the proposed method is

tested under the conditions at hand, i.e. the diachronic setting of the RSC, in order

to investigate possible future directions of research on this corpus. The experiments on

〈1740, 1770〉 yield informative results and would not have been possible with individually

trained embeddings, given that the sub-corpora of the 1740s and the 1770s each contain

less than 2M tokens.

That being said, the more recent parts of the RSC, starting with the 1850s, comprise

sub-corpora large enough to train reliable models individually, as shown in Chapter 3.2.3.

Research on these periods should not be restricted to using incremental embeddings and

may profit from applications of the proposed method for shift detection to individually

trained models.

Moreover, it would be interesting to apply the proposed method to embedding models

of larger diachronic corpora such as CCOHA (Alatrash et al., 2020) — which, however,

does not focus on the scientific domain.

6.2 Alignment with Gromov-Wasserstein Optimal Transport

The approach to alignment of embedding spaces for diachronic studies in this thesis

is subject to the assumption of bilinguality: in order to make sure that no subtleties

of language change are overlooked, I assume that embedding spaces built on corpora

from two different points in time should be treated as embedding spaces from two dif-

ferent languages (or, less extreme, as distinct language varieties). Furthermore, I do

not directly inspect the incremental (and therefore in principle comparable) embedding

spaces; instead, they are first aligned. This step promises to minimize the mostly spuri-
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ous diachronic differences of the most stable concepts while at the same time amplifying

the developments present in concepts which actually experience diachronic change.

Under the assumption of bilinguality, GWOT (Alvarez-Melis and Jaakkola, 2018) is

appealing as a method, because it does not require any information about the two em-

bedding spaces to be aligned; there is no initial ‘bilingual signal’ involved. Furthermore,

the alignment with GWOT is convenient for the diachronic scenario, because it is carried

out in two steps: the construction of a bilingual signal first, the actual alignment via

Procrustes (Schönemann, 1966) second. The bilingual signal from the first step allows

to relate pairs of vectors in the aligned spaces irrespective of how far they are apart.

Lastly, GWOT has previously shown reliable performance in real bilingual tasks (cf.

Alvarez-Melis and Jaakkola, 2018).

However, the insights gained from the application of GWOT to the incremental

embeddings of the RSC dampen the view on this method for alignment. The outcomes

vary a lot in quality and despite thorough investigations on the present embedding spaces

(cf. Chapter 4.3), the reasons for these mixed results — as well as for the numerical

errors which require to set the regularization parameter considerably higher than usual

— remain unclear. Further investigations on a greater variety of space pairs could paint

a clearer picture.

In any case, the difficulties encountered with GWOT do not hinder the alignment.

The evaluation of the bilingual signal obtained from a successful coupling with GWOT

suggests that the assumption of bilinguality is not necessary. This allows to avoid the

largest part of computation with GWOT, which is required under the assumption of

bilinguality to create the bilingual signal. GWOT as an unsupervised method remains

useful for the task of diachronic alignment as it can identify those concepts which change

the least over time and thus help to base the alignment of two spaces on their most stable

concepts.

Most criticism concerning unsupervised approaches to alignment (cf. Søgaard et al.,

2018; Vulić et al., 2019) is targeted at the limitations of these approaches when they

are confronted with alignment tasks involving embedding spaces of typologically distant

languages, different embedding methods, or different domains. Furthermore, the use of

orthogonal projections in many of these approaches has been shown to be inadequate

(cf. Patra et al., 2019; Glavaš and Vulić, 2020), because embedding spaces, especially

those of more distant languages, are not isometric to one another. This criticism is

justified and supported by evidence. However, the embedding spaces of the RSC are

clearly not from typologically distant languages, all alignments are carried out between

embedding models constructed with the same method, and the RSC is designed as a

domain-specific corpus. In other words: none of the identified and criticised weaknesses

applies to the alignment task in this thesis. Still, this does not mean that GWOT is

the only or best solution to alignment in this context. Other methods such as the ones

sketched out in Chapter 2.2 could be applied.

Lastly, I did not investigate shift detection on the incrementally trained embedding

spaces without aligning them. Determining the effect size of such alignments (i.e.,

minimization of shifts of stable words and amplification of other shifts) is left for further
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research.

6.3 Detection of Systematic Shifts

The proposed method for shift detection is relatively modular: it combines several tech-

niques to relate word embeddings and their changes to one another, but the combined

techniques operate mostly independently from each other. Therefore, it is possible to

alter single components of the shift detection pipeline without the need to make compro-

mises at other points. Considering the results in chapters 5.3 and 5.4, there are points

for improvement as well as alternatives for some of these components.

First, the difference vectors, which are at the center of the shift detection, may be

scaled more sensibly. They are not normalized, because differently to measurements

via cosine distance (i.e., angle between vectors), it is the shift vectors’ length which

expresses the magnitude of the conceptual shift. Nonetheless, the shift vectors need to

be scaled in order to take into account differences in corpus frequency. The method of

scaling used here (cf. Chapter 5.2), adopted from Cafagna et al. (2019), is a good start.

However, it is likely that there are more sensible and mathematically or algorithmically

more sound ways to mitigate frequency effects, and these alternatives, once identified,

can simply replace the present method.

Second, the number of concepts investigated for shifts is limited by the experimental

setup in the form of a minimum count requirement (i.e., only shifts of embeddings with

a minimum corpus count are considered). In the unsupervised experiments, this limita-

tion is partly due to hardware restrictions during nearest-neighbor search for individual

embeddings. Improvements of the memory management during these experiments will

allow to lift the requirement and investigate every concept for diachronic shifts.

The restriction by minimum count is also used to reduce the number of noisy shifts

(i.e., conceptual shifts into individual directions, not belonging to any tight cluster)

in further processing steps. The inspection of shift clusters (cf. chapters 5.3.5, 5.4.2)

reveals that there is still some noise present. A possible solution to both lifting the

minimum count restriction and mitigating noise is to introduce a preliminary clustering

step employing DBSCAN (Ester et al., 1996; Schubert et al., 2017). This clustering

algorithm can recognize and exclude outliers from the clusters. Applied to the identifi-

cation of noisy shift vectors, it could be used to indicate which vectors to consider for

further processing.

The third point for improvement is the method used to find ‘labels’ that best describe

the main components of a cluster’s collective shift. Before discussing this point, the

difficulty of the task should be put into perspective. The key property exploited to

obtain a shift vector is the compositionality of word embeddings (cf. Chapter 2.1.2): by

subtracting one concept from the other, the resulting vector expresses those components

of meaning which are different between two concepts (or: a concept at two points in

time). This shift vector is the result of a combination of two embedding models, one of

which additionally is rotated and scaled by a projection operation. As a comparison,

the word analogy task (e.g., find the x in ‘Rome is to Italy as Berlin is to x ’) tests the

quality as well as the degree of compositionality of an embedding space. Mikolov et al.
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(2013c), for example, report almost 40% correct answers with their best model in such

an analogy task – but this is in a syntactic variant of the task (cat:cats :: dog:x ), it

involves only one single model, and this model is trained on 320M tokens. Compared

to the circumstances under which these ‘almost 40%’ were achieved with the present

situation, it becomes clear that finding the correct label for a conceptual shift (i.e., for

certain components of a concept) is not at all an easy task.

Coming back to the third point for improvement, the qualitative investigations show

that the labels of a shift cluster, being defined as the nearest neighbors (in the target

space) of the cluster’s exemplar, sometimes fail to express the general tendency of shift.

This is especially likely when the cluster’s members take on multiple slightly different

directions. The reason is that the point of reference for nearest-neighbor search is

the exemplar shift, determined by the Affinity Propagation (AP) clustering algorithm

(cf. Chapter 5.2). As Dubossarsky et al. (2015) show, there can be an important

difference between distances computed with respect to a cluster’s exemplar and distances

computed to its mathematical center.43 In the proposed method for shift detection,

AP is the clustering algorithm of choice, because differently to DBSCAN or K-Means

clustering (Sculley, 2010), it can be applied without making assumptions about the shape

or layout of the shift vectors. The drawback in this context is that there is no notion of

(mathematical) center; AP is exemplar-based. A possible solution is demonstrated by

Bizzoni et al. (2019a) who first perform AP to inspect the vector space and then use the

gained information to set the parameters for K-Means. The centers of such K-Means

clusters might be better suited for the nearest-neighbor search for labels.

The last step of shift detection, after clustering and nearest-neighbor search, is the

selection of ‘interesting’ clusters. For this step, I rely on statistical significance and

inspect those clusters which show unusual measurements, e.g. especially long, tight,

or large clusters. In the qualitative analyses, I explore these outliers and identify that

certain types of words tend to shift in certain ways (e.g., -ing verbs tend to shift in

large clusters; numbers and numerals tend to shift in tight clusters). This method of

selection also retains shift clusters which express specific developments of language in

the RSC. Still, there are two aspects which could be improved. First, the selection

could combine and prioritize factors. For example, clusters of long shifts which at the

same time point into very similar directions might be of special interest and probably

more interesting than clusters which merely shift a lot. Second, the largest part of

conceptual shifts, namely those clusters which are not statistically significant in terms

of length, spread, size etc., is ignored, even though these measurements are not validated

to indicate whether a cluster of conceptual shifts is ‘interesting’ or not. Here, different

measures or a different criterion for the selection of shift clusters might be better suited

than the current method.

Indeed, there is no simple definition of what makes a (systematic) conceptual shift

‘interesting’; statistical significance is merely to be taken as a proxy. In general, the pro-

posed method for unsupervised shift detection is not designed to yield finalized results:

while no human intuition is involved in the alignment or the detection of systematic

43Dubossarsky et al. (2015) are interested in the correlation between a concept’s distance to its
cluster’s center and the concept’s rate of change.
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shifts, the final step, namely the interpretation of the shift clusters, is left to human

judgement.

6.4 Findings and Evaluation

I discuss most of the findings of the experiments directly in Chapters 5.3 and 5.4.

To recapitulate: similar words tend to change in similar ways; numbers and function

words, but also measurement-related content words, change very little; more change is

observable for 〈1740, 1770〉 than for 〈1860, 1890〉; in 〈1740, 1770〉, botanic studies are

on the rise; in 〈1860, 1890〉, the specialized nature of anatomy shows in the form of

conceptual establishment; -ing-verbs, whith respect to diachronic shift, tend to form

large clusters; discourse-related words change differently from technical terms. The

following points address the less straightforward and the controversial findings as well

as a remark on the visualization via t-SNE.

The first point is concerned with statistics of the UnsupMono experiment; more

precisely, the measurements of shift cluster length (maximum, mean, median length,

and the standard deviation). In Figure 16, both iterations, once each on 〈1740, 1770〉
and 〈1860, 1890〉, show unusual differences of statistics of the baseline to those of the

actual performance. The baseline was constructed on the exact same set of shift vectors

as the actual experiments. Thus, it is surprising that, for example, almost no cluster of

the 〈1740, 1770〉 baseline comprises a shift vector with length between 1.1 and 1.3, while

the experiments find that the majority of clusters contain a vector of this length.

A second controversy in the statistics relates to the differences between training

methods of embeddings (incremental vs. individual). Here I compare the amount of

shift measured in UnsupMono to that from DisTech (both for 〈1860, 1890〉). Figure

17c reports almost no differences in mean length of clusters, but Figure 24 shows a clear

difference when measured by pair-wise cosine distance (i.e., dcos(Pxu, yv) for (u, v) ∈ T ).

One reason for this is that clearly, the two measurements are not directly comparable

to each other; one measures averages of vector length, the other measures individual

angles. Recall also that the shift vectors need to be scaled in order to reduce frequency

effects which arise when a word occurs differently often in the two sub-corpora of a

space pair. It is likely that the two measurements react differently to the projection,

and it is possible that the vector scaling makes the size estimation via shift vector length

less reliable than cosine distance. Here, a more faceted approach to measuring vectors,

involving both measures of length and of angles, could help to make better use of the

full potential of the proposed method.

Another explanation lies in the different contents of TUnsupMono and TDisTech. One

experiment is performed for a large, unspecific set of words (|TUnsupMono| = 10233),

while the other is comprises a smaller set of specific words (|TDisTech| = 1489). It is

possible that the differences which show for the discourse words and technical terms

in DisTech also occur in UnsupMono, but are overshadowed by the large number

of additional clusters, which themselves might behave rather similarly across training

methods. If this is true, then a differentiation of groups of concepts like the one in

DisTech could help to make more precise judgements about which kinds of concepts

90



experience more change than others. Such distinctions may be syntactic (as in DisTech)

or topical (e.g., botany/anatomy/astronomy/chemistry).

Lastly, the visualization via t-SNE used throughout Chapters 5.3.5 and 5.4.2 shows

to be very much dependent on the number of points to be visualized. This is useful when

single clusters of shifts are to be investigated: t-SNE utilizes as much of the 2D space as

possible and brings out the differences in the direction of shift between the members of

the cluster (cf. Figure 18, §5.3.5). The visualization is also useful when comparing two

clusters of similar size, e.g. the anterior - and the inherent-clusters (Figure 26, §5.4.2).

However, with an increasing number of points to visualize, t-SNE naturally cannot

depict as many of the nuances as for single clusters or pairs thereof. Figure 31 in the

Appendix illustrates this issue with four relatively tight clusters: when visualized jointly,

the systematic changes are clearly visible, but this collective movement shows much less

when the clusters are visualized individually.

The visualization of diachronic shifts via t-SNE is not new; Hamilton et al. (2016b)

and Bizzoni et al. (2019a), for example, visualize conceptual change by projecting both

the concepts of interest together with their nearest neighbors onto the 2D space. The

reason for applying t-SNE in a different manner here is complexity: while Hamilton

et al. (2016b) and Bizzoni et al. (2019a) are interested in the shift of single concepts,

the visualization in the context of systematic changes involves groups of concepts. As

the expressiveness of t-SNE projections reduces with an increasing number of points,

the joint visualization of a shift cluster and the nearest neighbors of all points involved

(all start points, all end points) would likely lead to cluttered images with little expres-

siveness. This increased complexity, however, should not be seen as a limitation. It is

rather to be seen as a challenge to improve the usability and reliability of t-SNE for the

visualization of shift clusters.

These points underline that despite the various promising findings, it is a challenging

task to not only quantify, but also to characterize conceptual change. It is important to

have a realistic picture of the potential and the limitations of methods like the one pro-

posed in this thesis. A major challenge with respect to this is to distinguish artefacts of

vector space processing (projection, subtraction, reduction etc.) from actual conceptual

shifts.

6.5 Future Work

An important future direction is validation. It is clear that the experiments carried out

in chapters 4 and 5 are only some of the first steps towards embedding-centered research

on language change in the RSC. The results, while partly promising, do not have a strong

statistical foundation; they are at times carried out on only a small number of samples.

In order to validate the findings as well as the methods, the experiments should be

replicated. This is especially necessary for the experiments on shift detection (Chapter

5), which should be replicated both on the 〈1740, 1770〉 and 〈1860, 1860〉 space pairs as

well as other combinations of embedding spaces. Also, the proposed method of shift

detection is only evaluated manually. A more statistically sound method for evaluation,

e.g. the use of synthetic data (cf. Rosenfeld and Erk, 2018), may help to untangle the
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effects of embedding models, alignment, and of the processing of shift vectors on the

results.

In addition to this, I provided several suggestions for improvement of the proposed

method of shift detection and its evaluation in the previous sections (e.g., the use of

clustering for noise filtering; different clustering of shift vectors; better label approxi-

mation via centroids; more sensitive quantification of shifts; more elaborate filtering of

interesting shifts; more reliable visualization). Future applications may refine some of

its components and make it more reliable and expressive.

Apart from embedding-based research on the development of scientific English, the

proposed method could be applied to comparative studies of conceptual spaces of differ-

ent language resources and/or along different axes. For example, Cafagna et al. (2019)

show conceptual differences of words between the language varieties used in two newspa-

pers; the axis of distinction is the political dimension (left vs. right). On another note,

the proposed method might be applied to compare how the world is conceptualized by

humans across different cultures, and whether differences in conceptualization are cap-

tured or even amplified by embedding models. Systematic shifts, potentially expressing

human or machine bias, might be uncovered in this way.

7 Conclusion

In this thesis, I investigated diachronic conceptual change with methods from Distribu-

tional Semantics. The investigations were carried out on word embeddings of the Royal

Society Corpus, a collection of English texts from the scientific domain dating from 1665

to 1929 (Fischer et al., 2020). Following the intuition that diachronic conceptual changes

are often very subtle, I approached the topic assuming bilinguality; that is, not taking

for granted that the vocabulary is mostly persistent over time and instead treating any

two points in time as distinct varieties of language. With respect to the detection of

conceptual shifts, I did not make assumptions about which changes should or should

not be observed.

The starting point for comparative research with word embeddings is the knowl-

edge about how reliable and expressive these vector representations are. To this end,

I evaluated the embedding models (taken from Bizzoni and Teich, 2019) in a semantic

similarity test (§3.2.3). This confirmed their adequacy for the task at hand, showing at

the same time that not all training methods are well-suited for the diachronic scenario

which often cannot provide large amounts of text data.

In order to make the word embeddings comparable to each other, I used Optimal

Transport with Gromov-Wasserstein Distance (GWOT, Alvarez-Melis and Jaakkola,

2018), a method that relates points across embedding spaces purely by how similar

their spatial roles within their respective spaces are (§4.1). GWOT had been shown to

be effective in a true bilingual scenario. I thoroughly inspected GWOT and showed that

it can be adapted to the diachronic scenario (§4.3), but that it does not work reliably

for the embedding spaces at hand. This is problematic if working under the assumption

of bilinguality; at the same time, the investigations also show that it is not necessary
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to make this strong assumption of bilingualiy in the diachronic context (§4.3.7, §5.3.1).

GWOT still proved to be useful in the (conventional monolingual) diachronic scenario to

align embedding spaces while preserving conceptual shifts. In addition to this, GWOT

can generally inform about the divergence of embedding spaces, which is useful to survey

the overall development of language.

For the detection of systematic conceptual shifts, I proposed a novel method which

is based on clustering and nearest-neighbor search (§5.2). Crucially, it operates directly

on the shifts, which, being high-dimensional vectors themselves, allows to observe di-

rections of shifts in addition to magnitudes. The proposed method then approximates

the meaning of these directions with nearest-neighbor search in order to make them

human-interpretable. In the conducted experiments (§5.3, §5.4), the proposed method

showed to be an effective tool for exploratory studies of conceptual change. Most results

are in line with previous research. In addition to this, the proposed method yielded new

insights about language change in the RSC. For example, from the 1860s to the 1890s,

discourse-related words tend to shift more than technical terms (§5.5). The proposed

method also uncovered general dynamics such as conceptual establishment – the am-

plification of a concept’s core components of meaning. Many groups of concepts with

systematic shifts experience conceptual establishment, irrespective of how much they

change. It is likely the default dynamic of change, present in concepts which become

conceptually stronger in their core semantics rather than taking on new or different

meanings. The limitations of the proposed method which showed during the inspection

of the results can be attributed to weaknesses in specific processing steps. These issues

can be addressed with modifications and extensions, which are straightforward to im-

plement, given that the proposed method is modular and follows simple principles of

Distributional Semantics.

In the introduction, I stated five main questions to be answered by the thesis. I found

and gave answers to all of them in detail in chapters 4 and 5. In short, the answers to

these questions are as follows:

1. Is it useful to frame the detection of diachronic conceptual change as

bilingual task? There is no consistent benefit in assuming that one language at

two points in time should be treated as two distinct varieties. This was shown for

a temporal distance of 30 years. It is possible that the assumption of bilinguality

is more useful to larger intervals of time.

2. How well does the method for unsupervised alignment work with re-

spect to the RSC; is it reliable and feasible? The results are mixed; there is

no clear tendency to why and when the alignment via GWOT works and when it

does not. Thorough investigations point to algorithmic issues and idiosyncrasies

of the underlying data. That being said, GWOT does yield good results reliably

in certain cases.

3. Does the proposed method for the unsupervised detection of shifts

work; is it sensible and expressive? Yes, the proposed method works; it
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detects shifts and allows to inspect them from the qualitative aspect in an intu-

itive way. In terms of sensibility and expressiveness, the results are promising.

Modifications to the method are straightforward to implement because of its sim-

plicity.

4. Do the insights from the proposed method relate to previous findings?

Yes, most of the findings confirm previous research on the development of the

language in the RSC.

5. Can the proposed method uncover new (general and/or specific) dy-

namics of language change within the RSC? Yes, it expresses the tendency

of similar words to change in similar ways. The proposed method also confirms

the intuition that most concepts continue to become established in their main

meaning(s) rather than becoming more faceted. This tendency to conceptual es-

tablishment is present in the scientific language of the RSC, which developed under

the need for precise and conceptually stable expressions for a clear form of com-

munication. It remains to be shown whether other varieties of language show

conceptual establishment to a similar degree.

The thesis aims to contribute to research in two ways; in addition to gaining new in-

sights on the RSC and confirming previous findings, it aims to provide a basis of knowl-

edge about the investigation of conceptual change via word embeddings to researchers

from varying fields. To this end, I gave descriptions of the technical background and a

variety of related research, outlining the possibilities and applications of the field (§2.

The goal of providing entry points for further research is also reflected in the discussion

of my findings (§6): I discussed controversial findings, identified points for improvement,

and suggested alternatives and solutions to these points, drawing from the previously

established background of applications.

Future work includes, but is not limited to: validation and improvement of the

method; further application of the method for research on the RSC; and application

of the method to different fields of comparative research. With the work presented

in this thesis, I hope to have provided a solid basis for these future directions and

to have inspired research on conceptual change via distributional models of semantics,

irrespective of language or resource.
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Appendix

size PC per 1K cluster per 1K
1K 1:30 1:30 0:50 0:50
2K 4:50 2:25 3:20 1:40
3K 14:45 4:55 12:36 4:12
5K 40:45 8:09 33:40 6:44

10K — — 196:28 19:39
20K — — 1278:20 63:54

Table 16: Times taken for GWOT on different sizes of sub-spaces, carried out on a PC
and a CPU cluster (cf. Chapter 3.3 for details). Maximum number of iterations for
optimization: 300. Time in minutes.
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(a) 1740, 1750 (b) 1750, 1760 (c) 1680, 1710

(d) 1710, 1740 (e) 1740, 1770 (f) 1770, 1800

(g) 1800, 1830 (h) 1830, 1860 (i) 1860, 1890

(j) 1700, 1800 (k) 1800, 1900 (l) 1700, 1900

Figure 27: Distributions of string-matching mutual translation pairs by translation like-
lihood (range: [0, 0.5e−3]). Optimal coupling computed for the 2K most frequent words
in a pair’s spaces (not necessarily mutual) with log-flattened relative frequencies pro-
vided for optimization. Matches in blue, mismatches in orange. Note that the range was
clipped at 0.5e−3 for better comparability with other figures while scores reach values
of up to 1.0e−3.
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(a) 1740, 1750 (b) 1750, 1760 (c) 1680, 1710

(d) 1710, 1740 (e) 1740, 1770 (f) 1770, 1800

(g) 1800, 1830 (h) 1830, 1860 (i) 1860, 1890

(j) 1700, 1800 (k) 1800, 1900 (l) 1700, 1900

Figure 28: Distributions of string-matching mutual translation pairs by translation like-
lihood (range: [0, 0.5e−3]). Optimal coupling computed for the 2K most frequent words
in a pair’s spaces (not necessarily mutual) with raw relative frequencies provided for
optimization. Matches in blue, mismatches in orange.
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Figure 29: Distribution of translation pairs by different scoring techniques. Couplings
optimized for k=2K sub-spaces, once initialized with uniform p/q and once with fre-
quency information. Ranges of x-axes calculated from the scores: [0, µ+ 2σ] per set of
scores. Matches in blue, mismatches in orange. Top-10-entropy H10(Γij): arithmetic
mean of the entropy values of the 10 highest scores in row i and column j. Top-10-mean
M10(Γij): analogous to H10; arithmetic mean instead of entropy.

Mutual translation pairs are defined as those word pairs which are the most likely translation
of each other, i.e. those 〈ui, vj〉 for which Γij is the maximum value in row i and column j.
The intuition behind re-scoring translation pairs is that taking the maximum does not express
entirely how confident a translation is: on one side, equally likely secondary translations are
not taken into account; on the other side, a translation pair with a clearly dominant coupling
score are not treated as “more confident” translations than uncertain ones. I investigated
several re-scoring techniques that aim to enable a clear partition of good translation pairs
from incorrect ones. The techniques were applied to couplings optimized on two k=2000 sub-
spaces of 〈1800,1900〉 and 〈1850,1900〉, once with and once without frequency information for
initialization. I evaluated with the same string-match heuristic as before, assuming that false
positives (i.e, translation errors) are mostly found among the mismatching pairs.

Out of several proposed methods, the above presents Entropy and Distance to Mean. Both
measures operate only on the 10 highest scores; lower scores are negligible. From the above,
there is no clear positive or negative effect observable with respect to the partitioning of string-
matching and mismatching translation pairs. Further and more thorough investigations might
be needed to establish a reliable re-scoring method. Furthermore, the match-mismatch ap-
proach to evaluation and visualization of this experiment might not be expressive enough.
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Figure 30: Length measures and inner distances of unsupervised experiments.
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Figure 31: Four similar clusters from UnsupMono on 〈1860, 1890〉 (top right, counter-clockwise):
117 (red), tweve (yellow), 28th (green), 1829 (blue).

Left : t-SNE for each individual cluster. Right : t-SNE for all clusters combined.

Note that the shifts on the right appear as directed towards the origin, rather than away from it (as would be
expected, given that space expands over time, cf. Bizzoni et al., 2020, p.20). A likely explanation is the following
trade-off of similarities: the label vectors z ∈ Y (lines from the origin) are relatively similar to each other. Coming
from the same model, they are likely more similar to each other than a Px of one cluster to a z of another cluster.
As a trade-off, t-SNE decides to position all Px farther away from the origin than the y or the z. They are literally
treated as outsiders, coming from a different space, and the large number of points forces t-SNE to depict these
shifts in a partly counter-intuitive manner.
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