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Abstract: In this thesis, we conduct a study on neural machine translation (NMT)
for an under-studied language, Indonesian, specifically for English-Indonesian
(EN-ID) and Indonesian-English (ID-EN) in a low-resource domain, TED talks.
Our goal is to implement domain adaptation methods to improve the low-resource
EN-ID and ID-EN NMT systems. First, we implement model fine-tuning method
for EN-ID and ID-EN NMT systems by leveraging a large parallel corpus con-
taining movie subtitles. Our analysis shows the benefit of this method for the
improvement of both systems. Second, we improve our ID-EN NMT system
by leveraging English monolingual corpora through back-translation. Our back-
translation experiments focus on how to incorporate the back-translated monolin-
gual corpora to the training set, in which we investigate various existing training
regimes and introduce a novel 4-way-concat training regime. We also analyze the
effect of fine-tuning our back-translation models with different scenarios. Exper-
imental results show that our method of implementing back-translation followed
by model fine-tuning makes an improvement in our ID-EN NMT systems by up
to 2.3 BLEU points over a system without back-translation. Our ID-EN NMT
systems show a comparable performance with Google Translate on WIT3 TED
talks tst2015-6 and tst2017plus test sets.
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Introduction
Neural machine translation (NMT) has been lately considered as the state-of-the-
art method in machine translation (MT) [Bojar et al., 2018]. As a data-driven
method, the size of the parallel data used to train an NMT system has a big
influence on its outstanding performance. This method performs well on the
high-resource language pairs (e.g. English-French, English-German), but still
struggles on the low-resource ones [Koehn and Knowles, 2017]. However, the
context of low-resource itself depends on the domain of the MT systems we build.
The translation generated by data-driven MT systems relies on the data used for
training them. While domain-specific corpora are usually scarce, there might
be large out-of-domain parallel corpora or monolingual corpora in the source or
target language. One can leverage those corpora to deal with in-domain data
scarcity through domain adaptation methods [Chu and Wang, 2018].

The languages we focus on are Indonesian (ID) and English (EN). Despite
the huge number of Indonesian speakers (more than 200 millions), research on
Indonesian NMT is still lack of interest, even towards the heavily researched
language like English. We suspect one of the reasons is the limited good-quality
resource (i.e. parallel data), as pointed by Trieu et al. [2017] and Adiputra and
Arase [2017] who build Indonesian-Vietnamese and Japanese-Indonesian NMTs,
respectively. While English-Indonesian (EN-ID) NMT has been implemented by
Lakew et al. [2018] for a study on language variety, we could not find any work
related to Indonesian-English (ID-EN) NMT, which motivates us to conduct this
study.

Our motivation to build an ID-EN NMT system is not only because of the
lack of works concerning this topic, but also two factors that give us a chance
to improve the low-resource ID-EN NMT. The first is the recent release of a
huge parallel corpus, OpenSubtitles2018, containing more than 9 million parallel
sentences in spoken language domain [Lison et al., 2018]. While the other ID-
EN parallel corpora have different domains and much smaller sizes, we think
of leveraging this huge dataset for some domain-specific NMT using a domain
adaptation method. The second factor is that we can take advantage of the
resource richness of English as the target language – there are a couple of large
English monolingual corpora available. Monolingual corpora have been shown
beneficial to improve NMT performance [Sennrich et al., 2016].

Thesis Statement
The main goal of this thesis is to improve the low-resource ID-EN NMT by lever-
aging the available out-of-domain parallel corpora and large target monolingual
corpora through domain adaptation methods. We focus on spoken language do-
mains because of the amount of available data we have. More specifically, we
build ID-EN NMT systems for speech-styled language, i.e. TED talk1 domain.

In order to reach our goal, we build our ID-EN NMT systems using the Trans-
former model [Vaswani et al., 2017], which is considered as the state-of-the-art

1https://www.ted.com/
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NMT model for many language pairs [Bojar et al., 2018], and conduct experi-
ments applying domain adaptation methods. The objective of our experiments
is to study the effect of the domain adaptation methods on the translation qual-
ity evaluated by automatic evaluation. The objective can be elaborated into the
following experiments:

1. We leverage a large out-of-domain parallel data using model fine-tuning
[Luong and Manning, 2015] to improve low-resource EN-ID and ID-EN
NMT systems.

2. We leverage English monolingual corpora to improve ID-EN NMT system
through back-translation method [Sennrich et al., 2016]. In this experiment,
we also:

• try different approaches to incorporate back-translated (synthetic)
data to train our ID-EN NMT and introduce a novel one, 4-way-concat.

• study the effect of fine-tuning for the pre-trained back-translation sys-
tems using the synthetic data.

Outline
The remainder of this thesis is organized as follows:

• Chapter 1 describes background knowledge needed to understand the ap-
proaches used in this thesis and related works.

• Chapter 2 describes the setups for experiments conducted within this the-
sis, consisting of data preparation, NMT model architecture and general
training setups.

• Chapter 3 describes the setups, results and analysis for domain adaptation
experiment using model fine-tuning.

• Chapter 4 describes the setups, results and analysis for domain adaptation
through back-translation.

• Chapter 5 describes the final evaluation of our NMT systems on unseen
data.

• Conclusion summarizes our work and presents the possibilities for future
research.

Published Work
This thesis is the revised version of the thesis that the author has submitted at
Charles University and defended on September 9th, 2019:

• Meisyarah Dwiastuti. 2019. Indonesian-English Neural Machine Transla-
tion. Univerzita Karlova, Matematicko-fyzikálnı́ fakulta. Prague, Czech
Republic.
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• Meisyarah Dwiastuti. 2019. English-Indonesian Neural Machine Transla-
tion for Spoken Language Domains. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics: Student Re-
search Workshop, Florence, Italy.
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1. Background and Related Work
In this chapter, we provide background information on Indonesian, methods in
machine translation, the Transformer model, as well as the domain adaptation
methods that will be used in our experiments.

1.1 Indonesian Language
Indonesian or Bahasa Indonesia belongs to the Austronesian language family.
While there are hundreds of languages spoken in Indonesia, Indonesian refers to
the official national language of Indonesia. Indonesian’s writing system uses the
Latin alphabet without any diacritics, similarly to English. While the typical
word order in Indonesian is Subject-Verb-Object, it also allows different orders.
Grammatically, the language does not make use of any case nor gender and the
tenses do not change the form of the verbs. Most of the word constructions
are derivational morphology, whose complexity includes affixation, clitics, and
reduplication.

The use of the vocabulary relates to the context when the speakers use the
language. It is more obvious in the spoken language, for example, the use of
honorifics or more formal terms when speaking to older people or in a formal
situation. In Indonesian, honorifics are simply found as pronouns, for either the
first, second, or third person. For example, ”I” in English can be translated to
”saya” (more formal) or ”aku” (less formal).

1.2 Machine Translation
Machine translation (MT) is an automatic system for translating sentences from
a natural language (source) to another one (target). In this section, we briefly
explain some MT methods and works related to the method, focusing on the most
prominent ones and the ones on ID-EN or EN-ID pairs.

1.2.1 Rule-based and statistical methods
Two common methods used for MT systems before the rise of NMT is rule-based
MT (RBMT) and statistical MT (SMT). RBMT makes use of sets of rules to
translate the source language into the target language. The rules involve linguistic
information of both source and target languages, such as lexicon, morphology, and
other syntactic and semantic analysis. The variety of RBMT is big. Some of the
well-known RBMT systems are Systran [Toma, 1977] and Apertium [Forcada
et al., 2011]. Related to EN-ID RBMT, Adji [2010] combines direct and transfer
approach using Annotated Disjunct based on Link Grammar formalism.

While RBMT focuses on the process of translation, such as how to represent
the word, how to translate it, and so on, SMT focuses on the output, meaning the
system directly tries to model what the most likely translation of a given sentence
is. It can be done by feeding the model with a lot of translation examples, i.e.
bilingual or parallel corpus. As it has seen a lot of examples many times, it
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will learn how to align the words between the two languages. This ability is
called a translation model. For fluency of the translation output, SMT also
contains a language model (LM) of the target language. While both translation
and language models may produce many possible target sentences, the SMT
selects the most probable one. In phrase-based SMT, those models along with
other features like phrase penalty, reordering, distortion, etc, are used as features
to train a log-linear model.

Phrase-based SMT was once the state-of-the-art method until NMT has shown
a promising result [Jean et al., 2015b, Luong and Manning, 2015]. Moses [Koehn
et al., 2007] is a popular framework for phrase-based SMT. Several works on
ID-EN and EN-ID SMT, also using Moses, tried to include some linguistic infor-
mation to improve the performance, such as morphological information [Larasati,
2012a], word-level similarity [Larasati, 2012b], or part-of-speech tag information
[Sujaini et al., 2014]. While neural networks were used in conjunction with EN-ID
SMT, e.g. to replace the statistical LM in SMT with neural LM [Hermanto et al.,
2015], NMT refers to learning method using a single end-to-end neural network
architecture.

1.2.2 Neural machine translation
The use of neural networks for MT has started decades ago [Castaño et al.,
1997, Neco and Forcada, 1997] before a temporary break until the computation
resources (i.e. GPUs) were capable of training larger models, i.e. deep neural
networks. Deep neural networks are known for their ability to learn continuous
representations from their input as a fixed-size vector, which came out to be
useful in MT [Kalchbrenner and Blunsom, 2013, Cho et al., 2014].

The architecture used for NMT is encoder-decoder which consists of an en-
coder and a decoder. The encoder transforms the input sentence into a vector,
which is usually also known as latent representation. The decoder makes use of
this representation to generate the target sentence. Recurrent neural network
(RNN) has been commonly used in this kind of architecture [Sutskever et al.,
2014, Bahdanau et al., 2015, Jean et al., 2015b, Luong and Manning, 2015] using
its gated cell variants, such as Long Short-term Memory (LSTM) units [Hochre-
iter and Schmidhuber, 1997] or Gated Recurrent Units (GRU) [Cho et al., 2014].
While convolutional based NMT has proven similar translation quality to RNN-
based NMT with much faster computation time [Gehring et al., 2017], the current
state-of-the-art model, the Transformer model [Vaswani et al., 2017] does not use
any of them and instead has shown a superior result using self-attention. Lakew
et al. [2018] use the Transformer model to build an EN-ID NMT for a study on
language variety. However, we are not aware of any works using the model for
ID-EN NMT prior to the beginning of this thesis.

In this thesis, we use the Transformer model. While we will briefly explain
the overview of NMT architecture and learning in the rest of this subsection, we
will present the general architecture of the Transformer model in Section 1.2.3.

Encoder-decoder architecture

NMT systems utilize an encoder-decoder architecture. The encoder receives the
input tokens from the source sentence and maps them into a latent representa-
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tion. The input tokens are usually represented as one-hot vectors which are then
associated with some continuous representation (embedding) using an embedding
weight matrix. More formally, if x = (x1, . . . , xn) contains one-hot vectors xi of
the input sentence with length n, then e = (e1, . . . , en) contains the continuous
representation of the tokens, in which ei = We · xi and We is the embedding
weight matrix. The continuous representations are then fed to a neural network
architecture, i.e. the encoder, which maps them into a latent representation
z = (z1, . . . , zk). This latent representation is considered to hold the information
from the input sentence.

Given the latent representation z, the task of the decoder is to generate the
target sentence y = (y1, . . . , ym) one element at a time. It also utilizes a neural
network architecture which works as a language model in an auto-regressive way.
It means that when generating the subsequent token, the model also takes the
output at the current time step as an input. However, during training, since we
have the gold reference of target sentence, at time step t the decoder takes the
gold output of time step t−1 instead of taking the predicted output by the model.
This approach is called teacher-forcing training.

The predicted token ŷt is obtained by, firstly, transforming the hidden repre-
sentation in the decoder st to a vector of the same size of the vocabulary using
some function g, as shown in Equation 1.1. This vector is supposed to represent
the scores of the similarity between st to the tokens in the vocabulary. Secondly,
one can represent it as a probability vector by applying softmax function over
the tokens in the vocabulary, as shown in Equation 1.2. The predicted token at
a time t is the one with the highest probability.

vt = g(st), vt ∈ R|V | (1.1)

ŷt = softmax(vt) (1.2)

softmax(vt)i = vti∑︁
j vtj

(1.3)

Attention mechanism

We know that the encoder needs to summarize all important information from
the source sentence in a latent representation. In the classic RNN-based encoder-
decoder architecture, this leads to an issue when the sentence is too long, espe-
cially when translating sentences that are longer than any sentence in the training
examples. The model struggles with a long-term dependency as it has to compress
all information from the whole source sequence in a fixed-size vector.

While the basic decoder makes use of the summary in that vector to generate
the output at each time step, Bahdanau et al. [2015] proposed to use the infor-
mation from some specific part of the source sentence. At each decoding time
step, the decoder is allowed to look at the encoding of the input tokens at each
time step and attend to some specific part of the input which the decoder thinks
is important based on some attention score. This approach is known as atten-
tion mechanism. Not only that it improves the performance of NMT systems on
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translating long sentences, but the way the attention score is computed makes it
also serve as a soft-alignment between the source and target sentences.

Suppose that the decoder wants to generate a text yi at time step i. The
attention mechanism works as follows:

• We compute eij = a(si−1, hj), which is the alignment score of the output at
position i with the input at any position j by using some scoring function
a on the hidden representation of the decoder s and the encoder h.

• We compute the attention weight αij = softmax(ei)j = exp(eij)∑︁
k exp(eik) , rep-

resenting how much the output at position i should attend to the input at
position j.

• We compute the context vector ci = ∑︁
j αijhj.

• The context vector is then used as additional input to the hidden represen-
tation at time step i, such that si = f(si−1, yi−1, ci).

Handling the Out-of-Vocabulary Problem

Conventional NMT systems use words as the tokens for the source and target
sentences. Since translation is an open-vocabulary problem, the words can be
variously many. However in practice the vocabulary size of NMT systems is
typically limited to 30,000 – 50,000 words [Sennrich et al., 2016] which leaves
the unseen words to be marked with the unknown symbol <unk>. There are
some solutions to handle this Out-of-Vocabulary (OOV) problem, such as to use
a dictionary look-up [Jean et al., 2015a, Luong et al., 2015], characters as tokens
[Ling et al., 2015], character to word representation [Lee et al., 2016], and a hybrid
of characters and word representations [Luong and Manning, 2016].

Today’s common practice is to use subword units (or just subwords) as the
tokens for NMT [Sennrich et al., 2016]. The advantage of using subwords is that
the vocabulary keeps the most frequent subwords in various length, so the rare
words can be represented as a sequence of subwords. The subword vocabulary is
trained on the training data using some word segmentation algorithm [Sennrich
et al., 2016, Macháček et al., 2018, Kudo, 2018].

Training

Since the whole architecture presents an end-to-end model, an NMT model can
be trained using backpropagation to optimize cross-entropy loss (also known as
negative log-likelihood loss) of the softmax layer on the decoder, which can be
formally written as follows:

NLL(y, ŷ) = −
|V |∑︂
j

yj log ŷj = − log ŷgold (1.4)

where y is the one-hot vector of the gold token, ŷ is the probability vector from
the softmax layer, and |V | is the size of the vocabulary. Since the element of
the one-hot vector is all zeros except one element with value of one whose index
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representing the token index, the summation is the same as only computing the
logarithm of the probability at the gold reference index.

The optimization can use any gradient-based method, in which it computes
the negative gradient of the loss function evaluated on a mini-batch and uses as
the direction of the optimization steps (training steps). As pointed by Shazeer
and Stern [2018], adaptive gradient-based methods have been empirically out-
performing conventional stochastic gradient descent across a variety of domains.
During their parameter updates, these methods divide the gradient by the square
root of a vector summarizing the history of squared gradients. They require more
memory capacity to hold the history vector whose length is equal to the number
of the model parameters. For example, one of the commonly used methods, Adam
[Kingma and Ba, 2015], has two additional values for each model parameter. It
means the memory requirement of Adam is three times as large as the number of
model parameters. Shazeer and Stern [2018] propose Adafactor, which they show
to produce similar quality results to Adam on a common machine translation task
but require less memory. The method is thus expected to allow training larger
models on the machine with equal memory capacity.

Inference

During inference, the decoder generates a sequence of token with length m by
selecting the sequence with the highest probability, which can be written as fol-
lows:

(y1, . . . , ym) = argmax
y

m∏︂
t=1

P (yt|x, y1, . . . , yt−1)

= argmax
y

m∑︂
t=1

log P (yt|x, y1, . . . , yt−1)

= argmax
y

log P (y|x)

(1.5)

One approach to select the sequence is by using greedy search, in which
at each time step t the decoder always picks the token resulted by the high-
est P (yt|x, y1, . . . , yt−1). It means that it keeps only one hypothesis at a time
step. On the other hand, beam search approach keeps k hypotheses at a time
step, in which k is referred to the beam size. We start the decoding by selecting k
best hypotheses, i.e. with the highest probability. For the next time step we will
have k.|V |, and again only select the k best ones. The advantage of beam search
over greedy search is that we have bigger search space to find the best sequence.
While a big k tends to yield a better approximation of the best sequence, the
computation also grows up in both time and space. Therefore, the selection of k
should consider the computation cost.

Since output length m is not necessarily the same as the input sentence length
n, in the training we preprocess the sentence to have a start of sentence symbol
(<sos>) and an end of sentence symbol (<eos>), at the beginning and the end of
the sentences. Thus, during inference the model should stop the decoding process
once it generates the <eos> symbol.

In Equation 1.5, the multiplication of the probability values (P (x) ∈ (0, 1))
will result smaller value when the sentence is longer (also valid for the summation
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of logarithm of probabilities). This property will make the search algorithms
(e.g. greedy search, beam search) tend to select shorter sentences. To handle this
length variance, we normalize the probability of the sequence. One can instead
use the formulas introduced by Wu et al. [2016] as follows:

s(y, x) = log(P (y|x))/lp(y) + cp(x; y)

lp(y) = (5 + |y|)α

(5 + 1)α

cp(x; y) = β ∗
|x|∑︂
i=1

log(min(
|y|∑︂
i=1

pi,j, 1.0))

(1.6)

where pi,j is the attention probability of the j-th target word yj on the i-th
source word xi. The formulas compute the score of the sequence y and x given
the trained model, s(y, x), by modifying the probability obtained from the beam
search algorithm as shown in Equation 1.5. The modifications involve a length
penalty (lp) and coverage penalty (cp) in which α and β are their parameters,
respectively.

1.2.3 Transformer
The architecture of the Transformer [Vaswani et al., 2017] is also based on the
encoder-decoder architecture. But instead of using RNN or convolutional neural
network, it relies on self-attention mechanisms to compute the latent represen-
tation in both of its encoder and decoder. It does not only outperform the
previously reported state-of-the-art models in terms of translation quality (re-
ported in BLEU score), but also trains significantly faster than the recurrent-
and convolution-based counterparts. In this subsection, we explain briefly the
main properties of the Transformer.

Self-attention

In Subsection 1.2.2, we have described the attention mechanism at the decoder
as an ability to look at the input representation at different position when pro-
cessing the output at a position (time step). Self-attention mechanism works
similarly. When encoding a token, it allows the model to look at the other to-
ken representations in the sentence in order to get a better representation of this
token.

The attention mechanism in the Transformer introduces 3 abstractions for a
token, namely query, key, and value. Each of them is a vector, in which query and
key vectors have length dk and value vector has length dv. The attention function
can be seen as a mapping of a query (from the token we are interested in) and
a key-value pairs (from other tokens in the sequence) to result an output vector,
which is the latent representation of the token at a position. The computation is
performed as follows:

• Let (x1, . . . , xn) be the embedding of the input sequence with length n. We
compute the query qt, key kt, and value vt of each xt by multiplying it with
the corresponding weight matrices W Q, W K , W V respectively.
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• Suppose i is the position of the token we are interested in. We compute the
alignment score eij as the dot product of the query qi and key kj divided
by a scaling factor

√
dk.

• We compute the attention weight αij = exp(eij)∑︁
l exp(eil)

• The output vector oi is the sum of the weighted value vector vj across any
position j: oi = ∑︁

j αijvj.

In practice, the computation is done as a matrix computation, such that the
queries, keys, and values are packed together as matrices Q, K, and V respec-
tively. Thus, the output matrix can be obtained as follows:

O = Attention(Q, K, V ) = softmax
(︄

QKT

√
dk

)︄
V (1.7)

Multi-head attention

Vaswani et al. [2017] found it beneficial to have multiple attention functions run
in parallel. This is done by having multiple sets of matrices Q, K, and V to project
the input embedding. Suppose that the number is h (the authors used h = 8 in the
original paper), thus the operation will result h output matrices. These matrices
are then concatenated in the dv axis and projected by a parameter matrix W O to
a matrix with the original attention output size. While the multi-head attention
is considered to be able to learn better different representations for a token, the
concatenation of the outputs summarize them in a single representation as the
output of the attention layer.

Positional encoding

In order to keep track of the word order in the sequence, the Transformer adds
a positional encoding to the input embedding of a token before feeding it to
the encoder or the decoder. The size of this encoding is the same as the input
embedding, denoted as dmodel. While any encoding can be used to represent the
position of the token in the sequence, the authors use sine and cosine functions
as follows:

PE(pos,2i) = sin

(︄
pos

10002i/dmodel

)︄

PE(pos,2i+1) = cos

(︄
pos

10002i/dmodel

)︄
where pos is the absolute position of the token in the sequence and i is the index
in the embedding.

Model architecture

The whole architecture is shown in Figure 1.1. The model consists of an encoder
and a decoder. The encoder is composed of a stack of N layers (N = 6). Each
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Self-attentionSelf-attention Self-attention

K V Q K V Q

K V Q

Figure 1.1: Model architecture of the Transformer, adopted from [Vaswani et al.,
2017] with modification.
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layer consists of 2 sublayers, namely a multi-head self-attention sublayer and a
position-wise fully-connected sublayer. Around each sublayer there is a residual
connection and a layer normalization. The model uses dmodel = 512.

While the decoder is also composed of a stack of N layers, there is an ad-
ditional sublayer in each layer. This sublayer is a multi-head attention over the
output of the encoder stack, which performs similarly to the attention mecha-
nism in the decoder of general NMT described in Subsection 1.2.2. In this case,
while the queries are the output of the self-attention sublayer, the keys and val-
ues come from the output of the encoder stack. Moreover, in order to keep the
auto-regressive property, the self-attention sublayer in the decoder is masked,
such that each position in the decoder can only attend to the tokens up to that
position. The stacks are followed by a linear projection and softmax layer, similar
to a general NMT architecture.

1.2.4 Evaluation
There are two types of evaluation for MT, namely manual evaluation and au-
tomatic evaluation. In this thesis, we only conduct the evaluation using the
automatic method. While there are many options for automatic metrics used for
MT evaluation, we use BLEU [Papineni et al., 2002] since it is widely used in MT
research.

The computation of BLEU score is based on two components, namely n-gram
precision and brevity penalty. A simple way to compute the precision of an
n-gram MT output candidate is to count up the number of overlapping n-grams
in the candidate with the reference and divide by the total number of occurrence
of all n-grams in the candidate (e.g. the number of words for unigrams). This
becomes problematic if the candidate contains overgenerated n-grams that match
the reference, which result a high precision but the sentence is not structurally
closer to the reference, as shown in Example 1. Therefore Papineni et al. [2002]
proposed the modified n-gram precision, in which one uses the clipped count of
the n-gram and divides it by the real count of the n-gram in the candidate. The
clipped count is obtained by, firstly, taking the maximum of the n-gram counts
in any single reference (assuming there are more than one reference). Then one
can take the minimum between this maximum reference count and the count in
the candidate.

Example 1
Candidate: the the the the the the the
Reference: the mug is on the table
Simple unigram precision: 7/7
Modified unigram precision: 2/7

Therefore the modified n-grams precision for all candidates in the test corpus
is computed as follows:

Pn =
∑︁

C∈{Candidates}
∑︁

n-gram∈C Countclip(n-gram)∑︁
C∈{Candidates}

∑︁
n-gram∈C Count(n-gram) (1.8)

While too long candidates get a penalty from the modified n-gram precision,
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BLEU metric applies a brevity penalty for candidates shorter than the reference
as follows:

BP =

⎧⎨⎩1, if c > r

exp(1 − r/c), if c ≤ r
(1.9)

where c is the length of the candidate and r is the effective reference corpus
length.

Then, the BLEU score is computed as follows:

BLEU = BP. exp(
N∑︂

n=1
wn log Pn) (1.10)

where usually N is set to 4 and the weights wn use uniform distribution 1/N .

1.3 Domain Adaptation
While NMT systems need a lot of data to result in a high-quality translation,
in-domain parallel corpora to train a domain-specific NMT system are usually
scarce. In such a case, one can leverage large out-of-domain parallel corpora or
monolingual corpora from either language side to train a good system, then adapt
it using the small in-domain corpora. This approach is called domain adaptation.

Chu and Wang [2018] classify various domain adaptation methods into 2
classes, namely model-centric methods and data-centric. While model-centric
methods utilize models trained on different domains, data-centric methods focus
on the selection or generation of the domain-related data, In this thesis, we apply
a model-centric method, namely model fine-tuning, and a data-centric method,
namely back-translation.

1.3.1 Model fine-tuning
Domain adaptation using model fine-tuning is inspired by transfer learning
method, where one can leverage a pre-trained model for the target task. The
pre-trained model has been usually trained on a larger data, thus it is supposed
to be able to give some general information for the translation. In the context of
domain-adaptation in NMT, the model is first trained on a large out-of-domain
parallel data, then it is fine-tuned on the in-domain data [Luong and Manning,
2015].

Since the in-domain data is usually small, the fine-tuning might result in a
model that overfits on the in-domain data. In order to reduce the performance
degradation on general-domain data after the model fine-tuning, a number of
solutions have been proposed. Freitag and Al-Onaizan [2016] use an ensemble of
the pre-trained and fine-tuned models. Chu et al. [2017] add a target domain tag
to the sentences in the corpora and, firstly, train the model on out-of-domain only,
then fine-tune it on the mix of out-of-domain and (upsampled) in-domain data.
[Dakwale and Monz, 2017], inspired by knowledge distillation, modify the method
such that they assume learning out-of-domain and in-domain are two different
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task, and either the training is set to optimize 2 objectives (multi-objective fine-
tuning) or they add two output layers on the fine-tuned model where each learns
general-domain or in-domain (multi-output fine-tuning).

1.3.2 Back-translation
Back-translation is one of the methods to leverage the target monolingual data
to improve the fluency of MT output. One can use a reverse MT system (target-
to-source) to translate the target monolingual data. The translation and the
target monolingual data, usually referred as synthetic data, are then added the
to the training set to train the original MT system (source-to-target). Figure 1.2
illustrates the process. Despite being referred as synthetic data, note that only
the source side of the data is actually synthetic.

Target monolingual
corpora Translate

Target-to-source MT

Synthetic source -
target

Source-to-target
NMT

Train

Authentic parallel
corpora

Figure 1.2: The flow of back-translation.

While back-translation method has been used since the era of phrase-based
SMT [Bertoldi and Federico, 2009, Bojar and Tamchyna, 2011], Sennrich et al.
[2016] have shown that it also improves the NMT translation quality. They
demonstrate that mixing the authentic and synthetic parallel data improve the
NMT performance in both low- and high-resource settings. In domain-adaptation
context they show that the method performs well on the model fine-tuned on a
synthetic data, whose target is in-domain but back-translated by a reverse system
without in-domain knowledge. However, as pointed by Poncelas et al. [2018] and
Fadaee and Monz [2018], it is unclear which factors actually contribute to the
NMT translation performance. Moreover, the effect of the factors can be different
for low- and high-resource settings [Edunov et al., 2018].

The quantity of synthetic data

Regarding the authentic-to-synthetic ratio in the training set, Sennrich et al.
[2016] experiment with 1:1 ratio on both high- and low-resource settings and
show the improvement caused by the back-translation. Garcı́a-Martı́nez et al.
[2017] find that adding more synthetic data is always beneficial in low-resource
setting, indicating the importance of the amount of the training data. Meanwhile
in high-resource setting, when the amount of the synthetic data is much larger
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than the authentic data, the performance of the NMT model is worse than the
model trained on the authentic data only since the model gets biased towards the
source sentences in the synthetic data [Poncelas et al., 2018, Fadaee and Monz,
2018].

The quality of synthetic data

Several works have tried to investigate the effect of the quality of the synthetic
source sentences. Sennrich et al. [2016] randomly sample the sentences from
the large monolingual corpora. Meanwhile Fadaee and Monz [2018] extend the
random sampling method to focus on increasing the occurrences of words that are
difficult to predict in the target language. Thus, the synthetic data containing
such words is expected to optimally benefit the translation quality. Imamura et al.
[2018] generate more than one synthetic source sentence from the target sentence
by using sampling instead of beam search. Both approaches are experimented
in high-resource settings. Furthermore, Edunov et al. [2018] show that using
sampling or noised beam outputs for generating the source sentence outperforms
beam search in high-resource setting, but not in low-resource setting. However,
Caswell et al. [2019] argue that the noise in the synthetic source generated by the
noised-beam does not diversify the source sentences but only to label the sentence
as synthetic. Thus, they propose the tagged back-translation in which they add
a synthetic tag as an additional token at the beginning of the synthetic source
sentences. This idea is similar to the use of tag in multi-domain NMT [Kobus
et al., 2016] in which one can consider the sentences with and without the tag
belong to 2 different domains.

Incorporating synthetic data

The simple way how to incorporate the synthetic data to the training set is by
combining it with the authentic data and shuffle the set. While not explicitly
described, we assume that all the previously mentioned works use this so-called
mixed (or shuffled) training regime Sennrich et al. [2017]. Another way the au-
thors have described is the fine-tuned training regime, in which the model is firstly
trained on the authentic data only, then is fine-tuned on the mixture of authentic
and synthetic.

Popel [2018] introduces concat training regime, in which the authentic and
synthetic data are combined with concatenation, instead of mixing them. He
shows that during the training, the evaluation on the development set shows that
the BLEU score is decreased when moving from authentic to synthetic data block,
but improved when moving from synthetic to authentic data block, even slightly
better than the mixed regime. The advantage of using the concat regime becomes
more apparent when the author leverages checkpoint averaging, a technique of
model ensemble by averaging the weights in the last N checkpoints element-wise
and yielding a single averaged model. When the optimal ratio of checkpoints
between authentic and synthetic data is found, the performance improvement in
the concat regime is higher, as illustrated in Figure 1.3. In his experiment he uses
8 checkpoints and the optimal authentic:synthetic ratio is 6:2.
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Figure 1.3: The curve of BLEU score on the dev set when training with back-
translation using concat regime, adopted from [Popel, 2018]. The checkpoint
average benefits the model as it improves the peaks caused by the transitions
from authentic to synthetic data block.
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2. Experiment Setup
To reach our objectives as described in the Introduction, we run two sets of experi-
ments, namely training EN-ID and ID-EN NMT systems using model fine-tuning
and training ID-EN NMT systems using back-translation. In this chapter, we
elaborate on the corpora we use to train and evaluate our NMT systems, the
NMT architecture we use, and the general training setup used in all experi-
ments. We explain more thoroughly the setup for more specific experiments in
the corresponding chapter, namely in Chapter 3 (model fine-tuning) and 4 (back-
translation).

2.1 English-Indonesian Datasets
In this section, we summarize the dataset we use for our experiments. We consider
the TED talks corpus as our in-domain data and OpenSubtitles2018 as our out-
of-domain data. Although both are spoken language corpora, in Section 2.1.1 we
describe the properties of the corpora and what makes them different, as well as
pre-processing we conduct on the corpora.

Generally, the datasets from different resources often have different format,
hence we need to process them in order to obtain the same format and ready-to-
use version for our experiments. The data used in our experiments are composed
of one source file and one target file. The file has one-sentence-per-line format,
in which each corresponding line of the two files is the translation of each other.

2.1.1 Parallel corpora
In this section, we describe the properties and the partition of the parallel corpora
we use for our experiments.

WIT3 TED talk

This corpus contains transcriptions of TED talks and their translations to dif-
ferent languages prepared by WIT3 for IWSLT2017 (International Workshop on
Spoken Language Translation) [Cettolo et al., 2012]. We use the EN-ID version
of the corpus as our in-domain dataset. Although we presume most of the talks in
the corpus are originally in English, the human translators consider more about
the meaning and the objective of the speakers instead of the literal translation.
Thus, we expect similar translation quality for both EN-ID and ID-EN in terms
of adequacy and fluency.

Table 2.1 shows the partitions of the corpus that we use for our experiments.
We notice that tst2017plus provided at the website1 contains a small part of the
train data. Thus, we remove the overlapping part from the original train data
and result in partition train-mod as shown in the table. We use the merge of
tst2013 and tst2014 as our in-domain dev set. The average number of words in a
sentence in the train set is around 14.6 for Indonesian and 16.8 for English.

1https://wit3.fbk.eu/mt.php?release=2017-01-more, accessed on 25th February 2019
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Partition Purpose #sentences #words
ID EN

train-mod in-domain train 106,916 1,558,693 1,793,422
tst2013 in-domain dev 1,034 16,279 18,623
tst2014 in-domain dev 878 13,331 14,515
tst2015-16 in-domain test 980 14,091 16,954
tst2017-plus in-domain test 1,448 18,986 22,912
Total 111,256 1,621,380 1,866,426

Table 2.1: The partitions of WIT3 TED talks parallel corpus

OpenSubtitles2018

OpenSubtitles parallel corpora contain subtitles of movies or TV episodes ob-
tained from OpenSubtitles website [Lison et al., 2018]. The 2018 version of the
corpora contains more than 9 millions EN-ID parallel sentences from 9827 movies,
which benefits us in tackling the lack of resource to train NMT. Unlike TED talks,
movie subtitles comprise conversations and thus can be used to analyse the di-
alogue phenomena and the property of colloquial language [Lison et al., 2018].
Moreover, the average number of words in a sentence is shorter than sentences
in TED talks, namely around 5.1 for Indonesian and 6 for English, as computed
from our train set.

Partition Purpose #sentences #words
ID EN

train out-of-domain train 9,268,870 47,044,960 54,976,466
dev A not used 1,221 6,954 8,371
test A not used 1,603 7,234 8,295
dev B out-of-domain dev 1,049 5,193 6,529
test B out-of-domain test 1,066 5,613 6,383
Total 9,273,809 47,069,954 55,006,044

Table 2.2: The partitions of OpenSubtitles2018 parallel corpus

Since OpenSubtitles2018 corpus does not have partition for train/dev/test
sets, we split the corpus into those three sets as follows:

1. We extract dev and test sets with two different schemes: document level
and sentence level.

• For document level (dev_A and test_A), we randomly select 2 tran-
scription documents for each set and append all sentence pairs in the
documents to the set.

• For sentence level (dev_B and test_B), we randomly select 5 docu-
ments for each set. We randomly select around 200 sentence pairs
from each document and append those to the development set (and
test set respectively).

20



2. We append the remaining sentence pairs to the train set.

Table 2.2 shows the statistics of the partitions for OpenSubtitles2018 corpus.
While we do not use partitions dev_A and test_A in this thesis, we expect they
can be used in future works to evaluate MT output quality in document level.

2.1.2 Monolingual data
In our back-translation experiments, we use English monolingual data to produce
synthetic Indonesian data by translating the English data with our trained EN-ID
NMT. The list of monolingual data used in our experiments is shown in Table
2.3.

Dataset #sentences #words
WIT3 TED talks 136,951 2,440,065
Crawled TED talks 8,202 136,679
news-discussion2013 (ori) 9,555,910 150,221,485
news-discussion2013 (sample) 3,750,000 57,458,781

Table 2.3: English monolingual corpora used in our back-translation experiments.
Only the light rows are back-translated. The dark row is reported only to inform
the readers about the original size of the corpus.

Besides the parallel corpora, WIT3 also has the monolingual collections of
the TED talks. Since there are more English transcriptions than the Indonesian
translations, we extract the English monolingual talks that are not contained in
the EN-ID parallel corpus using the processing scripts from WIT3. We obtain
136, 951 English sentences as shown in Table 2.3. In order to obtain more in-
domain data, we crawl all TED talks from 2018 until 13th May 2019 and extract
their English transcriptions. Since not all transcriptions are available, we can
only obtain 8, 202 English sentences.

In addition to TED talks monolingual data, we also use a subset of news-
discussion2013 from WMT website.2 Although the dataset consists of written
discussions in an online forum, the language used is more casual than common
written language corpora, e.g. News Crawl. Moreover, the average word in a
sentence of this dataset is around 15.3, which is close to the average word of
English sentences in our in-domain parallel corpus.

Since the corpus is noisy, we filter the sentences containing more than 400
characters and URLs from the original corpus using a simple regular expression,
because we think they are not useful for our training data. The expression is as
follows:

grep -Ev "https?:" | grep -v "www\." | grep -Ev "\.(com)|(org)|
(gov)|(co\..*)/+" | grep -Ev "̂@.* " | awk ’length<401’

2http://data.statmt.org/news-discussions/en/
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Note that the expression is too simple to cover all possible URLs, yet we minimize
the occurrence. Then we sample only 3,750K sentences for our back-translation
experiments, as we will further describe in Section 4.1.

2.2 General Setup
We run all experiments in this thesis using Tensor2tensor (T2T) version 1.11.0
[Vaswani et al., 2018] with TensorFlow 1.12.0 as the backend. We train our
models on one or four GeForce GTX Ti 1080 GPUs.

2.2.1 Terminology
For clarity, we define some practical terms used in this thesis as follows:

• Batch size or mini-batch size refers to the number of training examples
in one training step when using a gradient-based optimization method. In
T2T, the parameter batch_size indicates the approximate number of to-
kens (subwords) in one batch. The number of tokens in an example is
specified as the maximum of source and target subwords [Popel and Bojar,
2018]. The number is only an approximation since some padding is still
needed. The parameter is set for use in one GPU.

• Maximum sequence length specifies the maximum number of subwords
in a sentence, either in source or target language. Sentences that are longer
than the specified size are exempted from the training. Setting it to a
large value allows the model to learn understanding or generating longer
sentences. But it also takes more space in the batch. Such sentences might
not be too frequent. If they are in a batch in which other sentences are
much shorter, the batch is not used efficiently as the other sentences need
padding. However, setting it too low will discard many sentences from the
training data.

• Training epoch refers to one complete pass of the training data. As
pointed by Popel and Bojar [2018], it is not easy to measure the number of
training epochs in T2T since it only reports the training steps. It requires
a user-specified script to compute the training epoch.

• Training steps or iterations specify the number of weight updates the
optimizer does. This number is also equal to the number of mini-batches
processed during the training.

2.2.2 Model and training hyperparameters
We use the Transformer model with hyperparameter set transformer_base
[Vaswani et al., 2017]. To be more specific, some important hyperparameters in
this setting are:
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Number of encoder stacks (Nenc) = 6
Number of decoder stacks (Ndec) = 6
Embedding size (dmodel) = 512
Hidden units in fully-connected layers (dff ) = 2048
Number of heads in multi-head attention layers (h) = 8
Size of key/query vectors (dk) = 64
Size of value vectors (dv) = 64

For the vocabulary, we use the default subword units implemented in T2T,
SubwordTextEncoder, which is shared between source and target languages with
approximate size of 32,678 units. Our data is not tokenized.

We set the maximum sequence length to 150, following the suggestion of Popel
and Bojar [2018]. We set the learning rate to 0.2 (default setting in T2T) and
learning rate warm-up steps to 8000. This warm-up setup allows the learning rate
to grow linearly in the first 8000 steps and then decrease to the inverse square
root of the step number [Vaswani et al., 2017]. For the batch size, we use the size
of 2048 for the model fine-tuning experiments and larger sizes (6000 and 8000)
in the back-translation experiments. We optimize our model using the Adafactor
optimizer [Shazeer and Stern, 2018].

We evaluate our model on the development set during the training and the
test set after the model selection using case-insensitive BLEU score computed by
the built-in command t2t-bleu.

2.2.3 Decoding
During decoding, we use beam search algorithm implemented in T2T by default.
The implementation follows Equation 1.6 without the coverage penalty.3 We
initially set the hyperparameters to the default value from T2T, namely beam
size=4 and length penalty parameter (α)=0.6. These hyperparameters are then
optimized in our beam search experiment (see Section 3.2) and we use the opti-
mized values for all experiments.

We run a post-processing script using simple regular expressions, as shown in
Figure 2.1, to cut unnecessary repetitions in the end of the translations. These
repetitions often occur when we set the length penalty parameter too large. The
script deletes:

• the repetition of phrases that consecutively occur more than twice and keeps
the first instance (we assume the phrases consist of 1-4 words),

• over-reduplication on Indonesian sentences, marked by hyphens.

Example 2 below shows an example of the use of the post-processing script
in our EN-ID baseline. In the example, the over-duplicated phrases ”hal-hal-...”
are normalized to the correct form ”hal-hal”. The phrase ”menjadi sesuatu yang
berarti,” which occurs four times is reduced to once.

3https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/
utils/beam_search.py#L610
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1 #!/ usr/bin/env perl
2 use strict ;
3 use warnings ;
4 use utf8;
5 use open qw(: std :utf8);
6

7 while (<>){
8 s/( \S{2 ,}) \1{2 ,}/ $1/g;
9 s/(-\S{2 ,}) \1{2 ,}/ $1/g;

10 s/(-\S{2 ,}) \1{1 ,}/ $1/g;
11 s/( \S+ \S+) \1{2 ,}/ $1/g;
12 s/( \S+ \S+ \S+) \1{2 ,}/ $1/g;
13 s/( \S+ \S+ \S+ \S+) \1{2 ,}/ $1/g;
14 print;
15 }

Figure 2.1: Post-processing script for decoding.

Example 2
(Indonesian)
Before post-processing:
... untuk mengambil informasi bahwa hal-hal-hal yang tidak berarti, se-
hingga hal-hal yang tidak berarti dalam hal-hal-hal-hal-hal-hal yang tidak
berarti, menjadi sesuatu yang berarti, menjadi sesuatu yang berarti, men-
jadi sesuatu yang berarti, menjadi sesuatu yang berarti, menjadi sesuatu
yang berarti dalam arti
After post-processing:
... untuk mengambil informasi bahwa hal-hal yang tidak berarti, sehingga
hal-hal yang tidak berarti dalam hal-hal yang tidak berarti, menjadi sesu-
atu yang berarti, menjadi sesuatu yang berarti dalam arti
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3. Domain Adaptation with
Model Fine-tuning
In this chapter we explore the effectiveness of leveraging out-of-domain parallel
data for the low-resource EN-ID and ID-EN NMT systems through model fine-
tuning, as described in Section 1.3.1. Firstly, we introduce three scenarios to
train non-adapted NMT models: one with low-resource setting and two with
high-resource setting. Then we tune the beam search hyperparameters to obtain
a better-quality translation in terms of BLEU score. After that, we fine-tune the
high-resource models by continuing the training on the in-domain data. We report
the BLEU score on the development set and analyze the result of all scenarios.

3.1 Training EN-ID and ID-EN NMT
We use TED talks parallel corpus as our in-domain data and OpenSubtitles2018
as our out-of-domain data (see Section 2.1.1). For both EN-ID and ID-EN we
train 3 models with the following scenario:

1. IN (low-resource): trained on only the in-domain data.

2. OUT (high-resource): trained on only the out-of-domain data.

3. MIX (high-resource): trained on the mixture of in- and out-of-domain data.

We train the three models on a single GPU using the batch size of 2048 for
500,000 steps and save the checkpoint hourly. In the IN scenario, we stop the
training earlier since the model seems to overfit. We select the checkpoint with the
highest BLEU score, namely at step 137,603 for EN-ID and 191,022 for ID-EN.

Table 3.1 shows the performance of the models decoded using the default beam
search hyperparameters on the in-domain development set. For both EN-ID and
ID-EN systems, MIX models obtain the best BLEU score. Thus, we will use the
MIX models to tune the hyperparameters for beam search for both translation
directions. We leave further analysis on the final result in Section 3.3.

EN-ID ID-EN

IN 26.52 26.73
OUT 24.07 25.87
MIX 27.66 28.48

Table 3.1: Initial BLEU score for the non-adapted models

3.2 Tuning beam search hyperparameters
In this experiment, our goal is to select the beam search hyperparameters, i.e.
beam size and length penalty parameter that result in the highest BLEU score in
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α
EN-ID

bs=1 bs=4 bs=5 bs=6 bs=10 bs=20

0.2 25.74 27.47 27.46 27.45 27.18 26.88
0.4 25.74 27.56 27.60 27.58 27.36 27.06
0.6 25.74 27.66 27.71 27.71 27.59 27.26
0.8 25.74 27.76 27.86 27.87 27.95 27.72
1 25.74 27.92 28.05 28.09 28.14 27.93

1.2 25.74 28.00 28.12 28.22 28.29 28.11
1.5 25.74 28.08 28.05 28.11 28.24 27.29
2 25.74 17.93 15.83 15.19 13.27 11.90

α
ID-EN

bs=1 bs=4 bs=5 bs=6 bs=10 bs=20

0.2 28.24 28.19 27.91 27.96 27.67 27.39
0.4 28.24 28.36 28.09 28.10 27.86 27.57
0.6 28.24 28.48 28.25 28.28 28.14 27.93
0.8 28.24 28.61 28.53 28.57 28.44 28.34
1 28.24 28.70 28.68 28.71 28.62 28.62

1.2 28.24 28.87 28.84 28.94 28.86 28.80
1.5 28.24 28.92 28.84 29.01 28.70 27.87
2 28.24 16.54 14.74 14.32 13.20 12.96

Table 3.2: The BLEU scores of all beam size (bs) and length penalty (α) com-
binations for beam search experiment for EN-ID and ID-EN. The black border
marks the combinations fall under the time limit. The blue border marks the
best combination under the time limit. The blue cells are the actual best combi-
nations. The scores in bold are the best BLEU scores for each bs. The light gray
cells are the combinations improved by our post-processing script.

a reasonable time limit. We will then use the values for the decoding stage in the
rest of our experiments, including for translating the monolingual corpus for the
back-translation experiments. We set the time limit to 150 seconds for decoding
the whole in-domain development set (1912 sentences). For this experiment,
we use the last MIX model checkpoint (after 500k training steps). We try all
combinations of the following values:

• beam size (bs): 1 (greedy search), 4, 5, 6, 10, 20.

• length penalty parameter (α): 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.5, 2.0.
Table 3.2 shows the result of this experiment. While for EN-ID the best

combinations are bs=6 and α=1.2, for ID-EN we obtain bs=4 and α=1.2.
Although our chosen combinations have lower BLEU scores than the ac-

tual best combinations, the differences are less than 0.2. The result shows that
the model gains the best BLEU score when α > 1 complemented by the post-
processing script. However, too large α (=2) reduces the performance drastically.
The light gray cells when α is large in the tables indicate that our post-processing
script is useful to normalize too long sentences caused by repetitions.
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3.3 Fine-tuning NMT
We continue the training of our high-resource models, OUT and MIX, on the
in-domain data for 50,000 steps. We save the checkpoint every 20 minutes. This
continuation also means we use the same vocabulary and the learning rate is set
to the last value in the first training phase and continues to decay according to
the original schedule. Our models generate the translations using the tuned beam
size and length penalty values.

EN-ID ID-EN
in-domain out-of-domain in-domain out-of-domain

IN 26.77 14.59 27.03 19.87
OUT 24.03 27.10 26.22 34.12
MIX 28.22 27.83 28.87 34.70

OUT+FINE 32.31 (+8.29) 18.34 31.34 (+5.12) 30.27
MIX+FINE 33.93 (+5.71) 19.19 32.79 (+3.92) 31.08

Table 3.3: BLEU scores of our models on the in- and out-of-domain development
sets for the model fine-tuning experiment.

Table 3.3 shows our models’ performance evaluated on the development sets
and Figure 3.1 illustrates the effect of fine-tuning for in- and out-of-domain de-
velopment sets.

We describe the evaluation on the in-domain data as follows:

• For both EN-ID and ID-EN, the model trained on in-domain data only (IN)
works better than out-of-domain data only (OUT) although the training-
data sizes are significantly different (3:100 ratio for in- : out-of-domain on
word-level).

• Domain adaptation (fine-tuning) helps to improve our high-resource models,
OUT and MIX. We observe the fine-tuning method has a higher impact
on the out-of-domain model than on the mixture model. Nevertheless,
MIX+FINE shows the best performance for both EN-ID and ID-EN.

• The impact is also higher for EN-ID than ID-EN. We hypothesize the style
difference between the two spoken language corpora (TED talks and Open-
Subtitles) is more apparent in Indonesian than in English.

The evaluation on the out-of-domain data shows an unsurprising result,
namely the performance drops after the fine-tuning due to model overfit to the
in-domain data. However, the effect is different for EN-ID and ID-EN as shown
in Figure 3.1. The performance drop in EN-ID NMT is more significant than in
ID-EN NMT.

The effect of fine-tuning for EN-ID NMT shown in Figure 3.1a indicates, al-
though we can reduce the overfitting effect by setting a limit for the fine-tuning
duration, it does not really help since the performance has been decreased sig-
nificantly in the beginning. We have enumerated several existing solutions to
handle this overfitting issue in Section 1.3.1. Since in this thesis we focus on the
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improvement on the specific-domain (TED talks) we set from the beginning, we
do not perform any of the solutions. Thus, we leave the issue for a potential
future work.
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Figure 3.1: BLEU score on the dev sets during the training of OUT and MIX
models. The yellow area shows the fine-tuning phase. On each subfigure, the
upper plot shows the BLEU curves on TED talks dev set (in-domain), while the
lower on OpenSubtitles2018 dev B set (out-of-domain).
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4. Back-translation
In this chapter, we explore how to leverage English monolingual corpora to train
ID-EN NMT systems through back-translation. We focus on the method to
incorporate the synthetic data to the training set. First, we train an EN-ID
NMT system that is adapted to our target domain. Second, we use the trained
EN-ID system to translate the large English monolingual corpora to Indonesian.
Then, we use the translation as our synthetic data to train our ID-EN NMT.

We try two training regimes known from related work (see Section 1.3.2),
namely the shuffled and concat regimes. Moreover, we introduce a new training
regime, 4-way-concat, and investigate its performance. We compare the perfor-
mance of our back-translation models with a baseline that is only trained on au-
thentic data. We also try different scenarios for fine-tuning our back-translation
models. We report the performance of our ID-EN NMT systems on the develop-
ment sets.

4.1 Translating Monolingual Corpora

4.1.1 Sampling
As shown in Table 2.3, we use English monolingual data from three sources. For
our TED talks monolingual corpora, we translate all the sentences. This gives
us the ratio of authentic-to-synthetic in-domain data around 7:10 with respect
to the number of English words. Additionally, we sample randomly sentences
from the original news-discussion2013 corpus. We expect to have the authentic-
to-synthetic ratio nearly 1:1 with respect to the number of English words. Thus
we sample 3,750K sentences, which give us around 57M English words. It is
comparable to our out-of-domain parallel corpus containing around 55M English
words (see Table 2.2).

4.1.2 Training EN-ID NMT
As described in Section 2.1.2, our large monolingual corpus does not belong to
speech-styled spoken language. In order to generate synthetic data that is closer
to the style of our target domain, we train the EN-ID system using MIX+FINE
scenario from the previous chapter. The training uses 1 GPU with a batch size
of 8000. We train the model for 7 days (around 1,210K steps). We stop because
we think the performance has reached sufficient BLEU score on the in-domain
development set and the improvement is no longer substantial – the last 4 days of
training (around 27K steps) only gives us 1 BLEU point improvement, considering
we will fine-tune the model. Then we fine-tune the model on in-domain data until
convergence after around 4 hours of training. For decoding, we use the tuned
beam size of 6 and length penalty of 1.2, and apply the post-processing script.
The performance of the model evaluated on the development set using BLEU
score is shown in Table 4.1. Note that the result is better than the model we
have presented in the previous chapter (as shown in Table 3.3) because we train
it much longer using a four times larger batch size.

30



in-domain out-of-domain
MIX 31.27 28.89

MIX+FINE 36.33 21.47

Table 4.1: BLEU score of EN-ID NMT system on development sets

4.1.3 Additional filtering
Since the translation of the news-discussion2013 corpus contains noisy sentences
with repetitive HTML escapes (ca. 0.2%), we remove such sentences from the
corpus resulting in 3,742,009 sentences. We do not find such noise in TED talks
synthetic data so we do not filter those translations.

4.2 Training Data for ID-EN NMT
Our final training data for our ID-EN NMT systems are shown in Table 4.2. We
categorize our data into 4 data blocks based on their type (authentic, -AUTH,
or synthetic, -SYNTH) and domain (in-domain, IN-, or out-of-domain, OUT-).
Note that our in-domain data are TED talks transcription and our out-of-domain
data are from OpenSubtitles2018 and news-discussion2013.

Data Block Data Source #sent’s (K) #words (K)
ID EN

IN-AUTH WIT3 train mod 107 1,559 1,793
OUT-AUTH OpenSubtitles2018 train 9,269 47,045 54,976
IN-SYNTH WIT3 monolingual,

crawled TED talks
145 2,263 2,577

OUT-SYNTH news-discussion2013 3,742 50,808 57,311
Total 13,263 101,6745 116,657

Table 4.2: Our ID-EN NMT training data sizes (in thousands). The data sources
are described in Section 2.1.

4.3 Extended Concat Training Regime
In Section 1.3.2, we have mentioned several ways to incorporate synthetic data
to the training set. In this thesis we introduce a novel approach which we call
4-way-concat regime. Inspired by Popel [2018], we concatenate our data blocks
in the following order: OUT-AUTH, OUT-SYNTH, IN-AUTH, and IN-SYNTH.
We also try using the checkpoints average since it is found to be beneficial for
the concat regime [Popel, 2018], especially when the ratio of checkpoints from the
consecutive blocks is optimal.

While the order of -AUTH and -SYNTH blocks criss-crossing in the 4-way-
concat regime is similar to the setup in concat regime, we expect the duo IN-
AUTH and IN-SYNTH blocks in the end perform as an internal fine-tuning. We
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hypothesize the setup will take advantage of the checkpoint average to gain better
performance than the non-concat regimes. Moreover, although we call the back-
translated news-discussion2013 sentences as out-of-domain data, they have been
actually translated by a domain-adapted system, thus should have some kind
of in-domain knowledge. Since the in-domain data (IN-AUTH+IN-SYNTH) is
still much smaller than the out-of-domain one, we expect the internal fine-tuning
takes advantage of the domain-adapted OUT-SYNTH data block.

Additionally, we also try modifying the data blocks, in which we replace the
OUT-SYNTH data block with the shuffled mixture of OUT-SYNTH and OUT-
AUTH. We compare this 4-way-concat method with the standard one that we
introduce.

4.4 Experiment Setup
We conduct experiments by building ID-EN NMT systems with different training
regimes, as follows:

1. AUTHENTIC (baseline): trained on authentic parallel data only.

2. SHUFFLED: trained on the shuffled mixture of authentic and synthetic
parallel data, equal to the mixed regime by Sennrich et al. [2017]. We use
the name ”SHUFFLED” as not to confuse the reader with our existing
model MIX.

3. CONCAT: trained on the concatenation of authentic and synthetic data.
The sentences are shuffled internally inside each data block, but not across
the data block. The approach is equal to the concat regime by Popel [2018].

4. 4CONCAT: trained using our novel 4-way-concat method, as described in
the previous section.

5. 4CONCATMOD (additional): trained using the modified 4-way-concat
method, as described in the previous section.

Figure 4.1 illustrates the incorporation of the authentic and synthetic data in
our experiments. Note that the baseline system (AUTHENTIC) is trained on less
data, 4CONCATMOD is trained on more data in an epoch (containing upsampled
OUT-AUTH), while the other systems are trained on the same amount of data.

For each of the systems, we fine-tune the model on in-domain data, similarly
to the fine-tuning experiment we have performed in Chapter 3. We set 3 different
fine-tuning scenarios:

1. FINE-A: the model is fine-tuned on IN-AUTH data.

2. FINE-S: the model is fine-tuned on IN-SYNTH data.

3. FINE-AS: the model is fine-tuned on the mixture of IN-AUTH and IN-
SYNTH data (data are shuffled).
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Figure 4.1: Illustration of the training data blocks in our experiments for 1 epoch.

We train the models using 4 GPUs with batch size of 6000. We train the
four main systems (i.e. without fine-tuning) for around 60 hours and save the
checkpoints every 30 minutes. We fine-tune the models until convergence (up to
around 12 hours) and save the checkpoints every 10 minutes. For all experiments,
we use the vocabulary obtained from the joint subword units of the authentic
parallel data, similar to the setup used by Sennrich et al. [2016]. The reason is
that the subword units learned from that data are enough to handle unknown
words, as we have described in Section 1.2.2. We also use checkpoint average with
8 last checkpoints. We report the BLEU score on both in- and out-of-domain
development sets.

4.5 Experiment Result
In this section, we present the result of our back-translation experiments.

4.5.1 Summary
We summarize the performance of all ID-EN systems in our back-translation
experiments in this subsection, while we present the in-depth analysis in the
following subsections. From each experiment, we select the checkpoint with the
highest BLEU score with respect to the in-domain development set and report
the score in Table 4.3.1

1Some results shown are different from the one in the previous version of this thesis since
we found some technical errors. So we re-ran some experiments.
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System Checkpoint step Hour BLEU
In-domain Out-of-domain

AUTHENTIC 444261 60.5 32.09 36.26
+FINE-A 455409 1.5 35.11 34.30
+FINE-S 465734 3.2 33.44 32.93
+FINE-AS 495234 7.8 35.19 33.21
SHUFFLED 412531 61.0 32.43 35.42
+FINE-A 464634 6.5 35.63 31.50
+FINE-S 433128 2.5 33.51 32.17
+FINE-AS 504328 11.0 35.45 32.09
CONCAT 446491 62.2 32.91 35.06
+FINE-A 492698 5.8 35.68 30.82
+FINE-S 449137 0.3 33.53 32.62
+FINE-AS 509333 7.7 35.45 31.98
4CONCAT 396057 55.0 32.46 34.87
+FINE-A 429730 4.0 35.44 32.23
+FINE-S 404350 1.0 33.25 32.26
+FINE-AS 495899 12.2 35.30 31.67
4CONCATMOD 437043 60.0 32.88 35.56
+FINE-A 479265 5.2 35.84 32.33
+FINE-S 449407 1.5 33.64 33.21
+FINE-AS 491782 6.7 35.51 32.49

Table 4.3: BLEU score of our ID-EN NMT systems on the development sets.
Bold values represent the highest scores for some test set. Italic values represent
the highest scores for each system.

For the main systems without fine-tuning, CONCAT performs the best on
the in-domain data, obtaining around 0.5 and 0.03 BLEU point better than our
proposed 4CONCAT and 4CONCATMOD, respectively. However, among all,
our 4CONCATMOD+FINE-A system obtains the best score. As expected, the
system trained without additional synthetic data performs the worst in our ex-
periment, yet its score is only around 0.3 BLEU point lower than of SHUFFLED.
Fine-tuning with the authentic data only generally performs better than the other
two counterparts. For the evaluation on the out-of-domain data, AUTHENTIC
obtains the best BLEU score among all systems. Note that the models used
in the evaluation are the ones considered the best on the in-domain data, not
necessarily on the out-of-domain one.

Figure 4.2 illustrates the overall performance of the four main systems (exclud-
ing 4CONCATMOD) with respect to the BLEU score on the in-domain develop-
ment set. While AUTHENTIC and SHUFFLED form regular increase, CONCAT
and 4CONCAT show more dynamic performance during 60 hours of training.
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Figure 4.2: BLEU scores of the four main systems (without fine-tuning, 4CON-
CATMOD is considered as additional) on the in-domain development set.

4.5.2 The quality of the synthetic data
We measure the quality of the synthetic data relative to the authentic parallel
data by training a system on the synthetic data only, which we call SYNTHETIC.
The training setup is identical to the one used for training the other main systems.

We compare the performance to AUTHENTIC. Figure 4.3 shows their BLEU
score evaluation on the in- and out-of-domain development sets. On both sets,
AUTHENTIC obtains higher BLEU scores than SYNTHETIC during the training
time. The poorer performance of SYNTHETIC on the in-domain set (around 1.6
BLEU points less at the end of the training) shows that the quality of the synthetic
data is still lower than the authentic data. We hypothesize that the much lower
BLEU score of SYNTHETIC on the out-of-domain development set is because
the EN-ID NMT system, which is used to translate the synthetic Indonesian
sentences in the data, is fine-tuned to the TED Talks domain.

4.5.3 Training with shuffled regime
Figure 4.4 shows the BLEU scores of SHUFFLED and AUTHENTIC on both in-
and out-of-domain development sets during the training. Although both systems
are trained for the same training hours (comparable training steps), note that
the size of the training data of AUTHENTIC is half the size of the training data
of SHUFFLED. Thus, the numbers of their training epochs are not equal.

The figure shows that the performance of SHUFFLED is better than the
baseline on the in-domain development set, which indicates adding synthetic data
to the training set is beneficial for ID-EN NMT. While the improvement in early
training (the first 10 hours) is around 1.25 BLEU point, it is reduced to as small
as about 0.3 point after 60 hours of training. The BLEU scores on both systems
still seem to grow, thus we hypothesize if we train the systems longer, there is a
chance that their performances will get even closer.2 However, due to a limited
time for working on this thesis, we focus on the comparison of our systems in the

20.2 point after 84 hours. We continued the training after we had finished all experiments in
this chapter. Thus, we still report the result after 60-62 hours (our specified time constraint).
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Figure 4.3: Performance evaluation on the development sets of the ID-EN NMT
system trained on the authentic data only (AUTHENTIC) and the one trained
on the synthetic data only (SYNTHETIC).

same time constraint that we set.
On the other hand, the performance of SHUFFLED on the out-of-domain

set is poorer than of AUTHENTIC. This is expected because the training data
of AUTHENTIC is dominated by sentences from OpenSubtitles corpus. Adding
more sentences from TED Talks domain worsens the performance evaluation on
the hold-out set of the subtitles corpus.

4.5.4 Training with concat regime
Figure 4.5 shows a closer look of the performance of our CONCAT system during
training. The training loss forms a noticeable pattern, in which the loss is 1-2
units lower when training on the synthetic data than on the authentic data. This
corresponds to the performance evaluation on the development set, in which the
BLEU scores form peaks and valleys. The peaks can be up to 0.5 BLEU score
higher than the performance of SHUFFLED after an equal training hours. The
training stops at step 446K.

The pattern is in line with the finding of Popel [2018]. The performance
changes across the data blocks, showing the system performs better when trained
on the authentic block than the synthetic block. While this finding is expected
as it is in line with our analysis in Subsection 4.5.2, it is not easy to estimate
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Figure 4.4: Performance evaluation of SHUFFLED vs AUTHENTIC on the de-
velopment sets.

the data block spans in Figure 4.5 because, technically, T2T reports the training
steps instead of the epochs. To get more evidence that the higher BLEU score
checkpoints indeed belong to the authentic data block training, we run an experi-
ment in which we train a model on the concatenation of two sets of the authentic
training data and one set of the synthetic data (data not shown). Thus, the au-
thentic block is around two times larger than the synthetic data. The evaluation
curve on the development set shows similar performance changes to Figure 4.5,
but the spans with higher BLEU scores are longer than the lower ones. The result
indicates the spans with higher BLEU scores are when the model is trained on
the authentic data.

Regarding the use of checkpoint average, we find that using the average of
the last 8 checkpoints does not help the performance. The reason could be that
the data blocks are too small that the method cannot capture the optimal ratio
of the number of checkpoints from the authentic and synthetic blocks. Note that
our data is about ten times smaller compared to English-Czech data used by
Popel [2018], which contains about 122M sentences in the mixture of authentic
and synthetic data.

Thus, we run an experiment in which we triple the size of the data blocks and
save the checkpoint every 15 minutes (two times more often) so we can have more
checkpoints in a data block. We call the model from this experiment CONCAT3x.
We try different number of checkpoints: 4, 6, 8, 10. However, the result in Figure
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Figure 4.5: The performance of our CONCAT system during training shown by
the BLEU scores on the in-domain development set (top) and the training loss
(bottom). The training steps are relative to the CONCAT training. The light
blue spans represent the authentic data blocks. The red spans represent the
synthetic data blocks.

4.6 shows the averaged models do not perform better than the original (non-
averaged) one. Although the method may take more checkpoints from a data
block, they are actually trained on the same set of data, thus not guaranteed to
learn more new information. We conclude that the checkpoint average from the
last N checkpoints is not helpful for our CONCAT system.

4.5.5 Training with 4-way-concat regime
Similar to CONCAT, the evaluation of 4CONCAT on the in-domain development
set results in peaks and valleys on the BLEU score curve, as shown in Figure
4.7. While in the early training steps (10-18 hours) the peaks of 4CONCAT are
slightly higher than of CONCAT (0.2-0.6 BLEU score, see Figure 4.2), the peaks
of 4CONCAT are lower than of CONCAT after getting closer to the end of the
training time. Furthermore, the figure also shows that using checkpoint average
with N = 8 does not help the performance.
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Figure 4.6: The performance of the model trained with concat regime with tripled-
size data blocks and shorter checkpoint saving (CONCAT3x) and its checkpoint
averaged models with various N (-AVGN). The light blue spans represent the
authentic data blocks. The red spans represent the synthetic data blocks.

The sudden increases of the performance occur in the transition from OUT-
SYNTH data block. Our internal fine-tuning on IN- data blocks does not seem to
help due to the very small size of the blocks in comparison to OUT- data blocks,
as shown in Figure 4.7. Since the IN- data blocks are very small, there is only a
small chance that our checkpoints saved in every 30 minutes are obtained during
the training on these blocks. It is still not observable when we try to analyze it
from the training loss curve (data not shown) since the loss looks very similar
to of CONCAT and due to the small size of IN- data blocks. Thus, we cannot
conclude that the distinct increases in BLEU score are due to the information
the model learns from the IN- data blocks

We also try to upsample each data block three times larger and run similar
experiment to CONCAT3x to see whether enlarging the data blocks will help
us investigate the effect of the transition, especially into or out of the IN- data
blocks, or be beneficial for the checkpoint average. We call this experiment as
4CONCAT3x. Figure 4.9 shows there are sudden increases occuring at the end of
epochs. We argue the IN- data blocks play a role on these increases. However, the
model cannot preserve such performance as the BLEU scores drop regularly in
the OUT-AUTH blocks and drastically in the transitions to OUT-SYNTH. This
behavior shows that taking out the in-domain data leaves the model performs
worse in a longer period. Nevertheless, the peaks of 4CONCAT3x are higher
than of 4CONCAT (+0.5 BLEU point on the both highest peaks).

We also try using checkpoint average with N = {4, 6, 8, 10} on 4CONCAT3x.
In Figure 4.9, we can see that using N = 4 generally results in higher BLEU scores
than the non-averaged model, yet the peaks are not always significantly higher
than. Meanwhile, the other values of N do not seem to give better scores. We
hypothesize the way we design the data blocks does not allow the average method
to find a good ratio of ”higher score checkpoints” and ”lower score checkpoints”.
In Figure 1.3, Popel [2018] utilizes a small block of synthetic data between two
authentic data blocks. The size is enough to cause a sudden jump yet not too
large that a few checkpoints saved in that block (lower score checkpoints) can
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Figure 4.7: The performance of our 4CONCAT system during training shown by
the BLEU scores on the in-domain development set. The bottom figure shows
the closer look to an epoch in the 4CONCAT training. The light blue spans
represent OUT-AUTH data blocks. The red spans represent OUT-SYNTH data
blocks. The thick lines between the red and blue spans are IN-AUTH and IN-
SYNTH data blocks.

be averaged with the checkpoints from the authentic data blocks (larger score
checkpoints). However, we do not conduct such an experiment in this thesis and
we consider it as interesting future work.

The performance of our 4CONCATMOD system on the in-domain develop-
ment set, as shown in Figure 4.8, is generally better than 4CONCAT: the BLEU
scores that form peaks and valleys in the BLEU curve of 4CONCATMOD are
higher than of 4CONCAT. The figure shows that the peaks in the curve of 4CON-
CATMOD are less frequent and the valleys are longer. The latter is expected since
we include the authentic data into the second block of our training data blocks
(see Figure 4.1) which makes the block almost two times larger than of CONCAT.
Although there is no obvious increase in the BLEU score during the training in
those second blocks, we hypothesize the improvement (relative to 4CONCAT) is
obtained in the overall training. Overall, the BLEU score of the peaks of 4CON-
CATMOD are slightly higher than CONCAT. But the difference is very small
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Figure 4.8: The comparison of the BLEU scores of our concat-based systems on
the in-domain development set.

that we conclude that their performances are comparable.

4.5.6 Effects of fine-tuning
Figure 4.10 shows the effect of fine-tuning with different in-domain data, after
being trained using different training regimes. The best BLEU scores after the
fine-tuning approaches are shown in Table 4.3. We summarize the findings as
follows:

• According to Table 4.3, the best BLEU score on the in-domain development
set is obtained when fine-tuning 4CONCATMOD on the authentic data
(+FINE-A). It gives around 2.8 BLEU point improvement over 4CON-
CATMOD and is 0.4-2.8 BLEU points higher than the other +FINE-A
systems. The highest BLEU scores on the out-of-domain development sets
are obtained by the systems without fine-tuning. This is expected and in
line with our observation in Subsection 3.3

• Fine-tuning on different data results in different training time required until
convergence:

– fine-tuning on the authentic data only takes 1-7 hours
– fine-tuning on the synthetic data only takes 1-3.5 hours
– fine-tuning on the mixture of authentic and synthetic data takes 7.5 -

12 hours

• From the last four subfigures in Figure 4.10, we learn that there is no
obviously distinct behavior among the performance of the back-translation
systems (SHUFFLED, CONCAT, 4CONCAT, 4CONCATMOD) fine-tuned
with the same scenario after around 12 hours of fine-tuning. This suggests
that no matter which training regime is used for the training, the fine-tuning
always gives improvement. What differs is the effect of the data used for
the fine-tuning.
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Figure 4.9: The performance of the model trained with 4-way-concat regime with
tripled-size data blocks and shorter checkpoint saving (4CONCAT3x) and its
checkpoint averaged models with various N (-AVGN) on the in-domain dev set.
The colored spans are relative to 4CONCAT3x and not to 4CONCAT, so are the
training steps. The blue spans represent OUT-AUTH data blocks. The red spans
represent OUT-SYNTH data blocks. The thick lines between the red and blue
spans are IN-AUTH and IN-SYNTH data blocks.

• For all systems, fine-tuning on the synthetic data only (+FINE-S) gives
the lowest BLEU scores among the three approaches. Despite having com-
parable size to the in-domain authentic data and being translated by a
fine-tuned NMT system, our in-domain synthetic data does not give much
improvement for the fine-tuning. Our +FINE-S systems only obtain 0.6-1.3
BLEU points improvement over the non-fine-tuned ones.

• Table 4.3 shows that all of our back-translation systems obtain the highest
BLEU scores after being fine-tuned on the authentic data only (+FINE-
A). Those systems gain 1.6-2.3 BLEU points higher than their +FINE-
AS counterparts. Meanwhile, fine-tuning with mixed data (+FINE-AS)
on AUTHENTIC gives only <1 BLEU point over AUTHENTIC+FINE-
A. While fine-tuning on authentic data results in early convergence and
overfit, adding the synthetic data does not seem to give improvement. We
argue that it is due to the quality of our synthetic data. However, the
slower convergence of the +FINE-AS systems to the +FINE-A ones also
indicates that they are less prone to overfit to the in-domain set. The BLEU
scores on the out-of-domain development set (data not presented) support
our argument. It shows that the scores of the +FINE-A systems on the
out-of-domain data also decrease faster than of the +FINE-AS systems.
We hypothesize that if we have synthetic data with better quality, we can
gain higher BLEU scores for the +FINE-AS systems while keeping the
performance more general than the +FINE-A systems.
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Figure 4.10: Performance of fine-tuning different ID-EN NMT systems trained
using different training regime (in yellow span), evaluated on the in-domain de-
velopment set.
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5. Evaluation
We evaluate our EN-ID and ID-EN NMT systems on the unseen test sets, namely
our in-domain test sets (WIT3 TED talks tst2015-16 and tst2017plus) and our
hold-out OpenSubtitles2018 test set (test_B). Our EN-ID NMT systems are the
ones that we use to translate the monolingual corpora in Section 4.1, which also
represent the result of the model fine-tuning experiments in Chapter 3. Mean-
while, our ID-EN NMT systems are from the back-translation experiments in
Chapter 4.

We also compare the evaluation result of our NMT systems with the commer-
cial system, Google Translate. We translate the test sentences using their Web
API1. They claim the default model used in their system is an NMT model.

We compute the BLEU scores and the statistical significance with bootstrap
resampling [Koehn, 2004] using MT-ComparEval [Klejch et al., 2015], an interface
that is able to summarize the comparison of different MT systems based on some
metrics. While the computation of BLEU in MT-ComparEval uses international-
tokenization similar to t2t-bleu, we found out those two tools report slightly
different scores for some systems. In this chapter, we report the case-insensitive
scores computed by MT-ComparEval.

5.1 EN-ID NMT Evaluation on Test Sets
Table 5.1 shows the result for the evaluation of our EN-ID systems on the test sets.
Google Translate obtains the best scores on both TED talks test sets by around
2 BLEU points better than our MIX+FINE. The improvement of our MIX-FINE
system around +3 BLEU points over the non-adapted MIX system is statistically
significant (p < 0.05). For the evaluation on test_B, our MIX system obtains the
best BLEU score, similarly to the evaluation on the development set. Its better
performance than Google Translate might be because test_B is a hold-out set
of OpenSubtitles2018 and the training set of the MIX system is dominated by
OpenSubtitles2018 without further fine-tune to a certain domain.

System tst2015-6 tst2017-plus test B
Google Translate 35.15 34.67 30.55
MIX ↓ 30.74 ↓ 30.33 ↑ 39.92
MIX+FINE ↓ 33.17 ↑ ↓ 32.52 ↑ ↑ 35.24 ↓

Table 5.1: Evaluation of our EN-ID NMT systems on the test sets with BLEU
score. Bold texts represent the best scores on a given test set. The arrows mark
the statistical significance (p < 0.05) relative to Google Translate (left) and the
non-adapted system (right).

We conduct a manual analysis on the tst2017plus translations to see in
which situations the systems succeed or fail. For the comparison of MIX and
MIX+FINE translations, the analysis from MT-ComparEval on unigram shows

1https://cloud.google.com/translate/, as of 18th July 2019.
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Example 1
Source Because I know , and I know all of you know , this isn ’ t

Tuscany .
Reference Karena saya tahu , saya tahu Anda semua tahu , ini bukan

Tuscany .
MIX Karena aku tahu , dan aku tahu kalian semua tahu , ini bukan

Tuscany .
MIX+FINE Karena saya tahu , dan saya tahu Anda semua tahu , ini bukan

Tuscany .
Example 2
Source We ’ re not real people . We are there to inspire .
Reference Kami bukan orang betulan . Kami ada untuk menginspirasi .
MIX+FINE Kita bukan orang sungguhan . Kita ada di sana untuk men-

ginspirasi .
Google Kami bukan orang sungguhan . Kami ada untuk menginspi-

rasi .
Example 3
Source What my father could not give to my sisters and to his daugh-

ters , I thought I must change it .
Reference Apa yang ayah saya tidak dapat berikan kepada saudara -

saudara perempuan saya dan kepada anak - anak perempuan-
nya , saya pikir saya harus mengubahnya .

MIX+FINE Apa yang tidak bisa diberikan ayah saya kepada
saudara perempuan saya dan putrinya , saya pikir saya
harus mengubahnya .

Google Apa yang ayah saya tidak bisa berikan kepada saudara perem-
puan saya dan anak perempuannya , saya pikir saya harus
mengubahnya .

Figure 5.1: EN-ID translation examples of tst2017-plus from different systems.
The colors mark the related segments across the translations. The underline
marks the colored segments mismatched to the reference.

that MIX+FINE wins on sentences containing pronouns ”saya” (I ) and ”Anda”
(you). We observe such cases are dominated by the transformation from a
less formal pronouns generated by MIX (”aku”, ”kamu/kau/kalian”) to a more
formal one by MIX+FINE (”saya”, ”Anda”). Example 1 in Figure 5.1 illustrates
this case.

For the comparison of the translations from MIX+FINE and Google Trans-
late, in the figure, Example 2 illustrates a case when context is needed for word
selection. The pronouns ”we” in English can be translated as either an inclu-
sive pronouns (”kita”) or an exclusive one (”kami”). While the translation by
MIX+FINE is also acceptable, it does not match the single reference. This shows
the ineffectiveness of using a single reference.

Example 3 shows the translation of ”daughters” as ”anak perempuan” or ”pu-
tri” (synonyms) cannot be captured by a single reference. This example also
shows when MIX+FINE and Google Translate fail to translate plural words,
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which are usually marked by reduplication forms of Indonesian nouns.
In this section, we have shown how our EN-ID NMT systems perform on

unseen data. The domain-adapted system still performs worse than the commer-
cial system on TED talks data according to the automatic evaluation result. We
expect our domain-adapted EN-ID NMT can still be improved. One potential ap-
proach worth trying is to also leverage Indonesian monolingual corpora through
back-translation and run our an iterative back-translation [Hoang et al., 2018]
using our back-translation ID-EN NMT system.

5.2 ID-EN NMT Evaluation on Test Sets

No System tst2015-16 tst2017-plus test B
Google Translate 32.18 ↑ 32.01 ↓ 38.05
AUTHENTIC (baseline) 30.75 30.51 44.93

1 SHUFFLED 30.42 30.63 44.26
2 CONCAT 31.02 ↑ 30.78 44.03
2 4CONCAT 30.08 30.12 43.00
2* 4CONCATMOD 30.96 ↑ 31.08 ↑ 44.82
3* 2*+FINE-A (the best on dev set) ↑ 32.21 ↑ ↑ 32.13 ↓ 40.87 ↓
3* 2*+FINE-S 31.21 ↑ 31.38 ↓ 41.58 ↓
3* 2*+FINE-AS ↑ 32.24 ↑ ↑ 32.81 ↑ ↓ 41.13 ↓

Table 5.2: Evaluation of our ID-EN NMT systems on the test sets with BLEU
score. Bold texts represent the best scores on a given test set. ↑↓ mark statistical
significance (p < 0.05). The arrows on the left are relative to AUTHENTIC. The
arrows on the right are relative to the system on the previous number: {2,2*} to
1, 3* to 2*.

Table 5.2 shows the evaluation result of our ID-EN systems on unseen test sets.
Regarding the improvement after using back-translation based on the evaluation
on the in-domain test sets, our back-translation systems obtained higher BLEU
scores than AUTHENTIC, except for 4CONCAT. This reflects our finding of the
benefit of utilizing synthetic data. While 4CONCAT obtains the lowest BLEU
scores on both in-domain test sets, the other concat-based systems, CONCAT
and 4CONCATMOD, perform better than SHUFFLED with 0.1-0.6 BLEU point
improvement, where the scores of 4CONCATMOD are significantly better.

Regarding the effect of model fine-tuning, we compare only the fine-tuned
4CONCATMOD systems due to the overall better results on the development
set than the other back-translation systems. The improvement after model
fine-tuning relative to the baseline is around 0.5 to 2.3 BLEU points. From
the table, we can see that 4CONCATMOD+FINE-AS obtains the best BLEU
score on the-domain test sets, with statistically significant difference to the
scores of AUTHENTIC and the non-fine-tuned system 4CONCATMOD. While
4CONCATMOD+FINE-A is not the best system as what we observe from the
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evaluation on the development set, we find that the difference between its BLEU
scores and of 4CONCATMOD+FINE-AS are not statistically significant.

Relative to the commercial system, the BLEU scores of our 4CONCATMOD
+FINE-A and +FINE-AS systems surpass the scores of Google Translate on all
test sets. All of our trained systems show higher BLEU scores on the out-of-
domain test set than Google Translate. This finding is the same as what we
find from the evaluation of our EN-ID systems in the previous Subsection and
we hypothesize the reason is also the same. However, none of our fine-tuned
systems have significantly better nor worse result than Google Translate on both
in-domain test sets. We conclude that our ID-EN NMT systems are comparable
to Google Translate for TED talks domain.

The overall performance are 1-3 scores lower than the evaluation on the devel-
opment set.2 However, the evaluation results on the in-domain test sets still show
that our method of implementing back-translation followed by model fine-tuning
improves the performance of our ID-EN NMT systems by up to around 2.3 BLEU
points with respect to the baseline system.

2We also compute the BLEU scores using t2t-bleu to confirm this.
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Conclusion and Future Work
In this thesis, we build ID-EN and EN-ID NMT systems for the low-resource TED
talks domain using the state-of-the-art model, the Transformer. We implement
two domain-adaptation methods to improve their performance. Firstly, we have
shown how large out-of-domain parallel corpora can be leveraged to improve
low-resource EN-ID and ID-EN NMT systems through model fine-tuning. Our
experiments on spoken language domains leverage movie subtitles corpus to adapt
to the TED talks domain. Although the impact is slightly different for EN-ID
and ID-EN NMT systems, we have shown that the method has succeeded in
improving the performance of both systems.

Secondly, we have shown how to leverage large English monolingual corpora
to improve ID-EN NMT systems through back-translation. Our experiments
focus on different approaches for incorporating the back-translated monolingual
corpora to the training set of the ID-EN systems. We implement the existing
approaches, shuffled and concat training regimes, and introduce a new approach
called 4-way-concat regime. In this novel approach, we set the training data
as the concatenation of four different data blocks sequentially: out-of-domain
authentic, out-of-domain synthetic, in-domain authentic, and in-domain synthetic
data blocks. We also try another variant of concatenating the four data blocks.
Moreover, we try different fine-tuning scenarios for our back-translation systems.
Our back-translation experiment findings are as follows:

• The overall performance of the systems that incorporate monolingual cor-
pora is better than the system that does not.

• While we cannot confirm that the system trained using 4-way-concat regime
(4CONCATMOD) is better than the one using the original concat regime
(CONCAT), we have shown that on their best performance, both systems
are better than the system trained using shuffled regime.

• Averaging the model checkpoints in the concat-based training regimes does
not help improve the performance if the data blocks are small.

• Model fine-tuning is always helpful to adapt the model to a specific-domain,
regardless the training regime used for training the main model.

• Fine-tuning on in-domain authentic data results in overfitting. Leveraging
synthetic data in the fine-tuning seems to alleviate the issue.

Moreover, we have evaluated our systems and a commercial system, Google
Translate, on the unseen test sets. First, we have evaluated the EN-ID NMT
system that we use to translate English monolingual corpora. Although the
result confirms the improvement caused by model fine-tuning method, our best
EN-ID NMT system still performs worse than Google Translate on the TED
talks domain. Second, we have evaluated several ID-EN NMT systems that we
have from the back-translation experiments. The result does not only confirm our
findings, but it also shows that our best ID-EN NMT system performs comparably
to the commercial system on the TED talks domain. Our method of implementing
back-translation followed by model fine-tuning improves the performance of our
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ID-EN NMT systems by around 0.5-2.3 BLEU points. Our best system, trained
using 4-way-concat and then fine-tuned on the synthetic in-domain data, obtains
BLEU score of 32.24 and 32.81 on WIT3 TED talk tst2015-6 and tst2017plus,
respectively, which are insignificantly higher than the score of Google Translate.

There are many directions of future work to improve the current EN-ID and
ID-EN NMT systems. In this thesis, our focus on using use model fine-tuning is to
improve the system performance on the target-domain, regardless the degradation
of the performance on other domains. To build a more general EN-ID or ID-EN
NMT system, future works can experiment with the extended model fine-tuning
methods that deal with overfitting issues.

We have conducted back-translation experiments only on ID-EN NMT. The
potential future work is to improve our EN-ID NMT systems by leveraging In-
donesian monolingual corpora. We can also make use of our current best ID-EN
NMT system to translate the monolingual corpora, i.e. an experiment with itera-
tive back-translation to improve the performance of NMT systems on both direc-
tions. Moreover, in this thesis our exploration in the back-translation method for
ID-EN NMT focuses on the incorporation of the synthetic data to the training
data. It is also interesting to explore the effect of back-translation for the system
based on different factors, like the quantity or the quality of the synthetic data.
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