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Chapter 1

Introduction

A ubiquitous problem in computational linguistics is that of ambiguity reso-
lution. In my research I consider a specific type of ambiguity in which words
or phrases which represent entities on the semantic level are used to stand in
for events. For example, the following two sentences are generally interpreted
as being synonymous:

(1) Bill finished the book.

(2) Bill finished reading the book.

(as opposed to the second sentence being interpreted to mean throwing the
book, sleeping on it, or any of the other infinite range of actions involving the
book.) Despite the apparent simplicity of sentence (1), designing a system to
recover the missing verb automatically is not a simple endeavor. The problem
is further compounded by the fact that the interpretation can change with
additional context. For example, the following sentences are both likely to
trigger the interpretation of eating the book rather than reading it.

(3) My pet goat Bill enjoyed the book.

(4) Bill enjoyed the delicious book made of chocolate.

Successful automated resolution of this type of ambiguity is, for a variety
of reasons, a difficult task. Nonetheless, it is a task worth attempting be-
cause of the potential benefits. A system with the ability to automatically
disambiguate sentences of this nature would be a useful component in tasks
such as paraphrase generation and recognizing textual entailment, as well as
indirectly providing a wealth of lexical semantic information.
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1.1 Research Question

At the most basic level, my research is concerned with a very limited prob-
lem. Namely, how to optimally disambiguate sentences which are known to
contain this phenomenon in which an entity stands in for an event. However,
a number of other considerations naturally came into play in solving this
problem. Chief among these considerations is that I wanted to choose a dis-
ambiguator design which directly incorporated the lexical semantics inherent
in the theoretical approaches to this phenomenon. Further complicating the
matter was the initial lack of a real-world training/test set. Therefore, a ma-
jor component of my work was orchestrating the creation of a gold-standard
corpus of disambiguated sentences. (This corpus, of course, is now available
for any other researchers wishing to improve on my results.)

1.2 Thesis Outline

The remainder of this document is organized as follows: Chapter 2 con-
tains a review of the literature relevant to this topic. In Chapter 3 I discuss
the process of creating the gold standard corpus, including both a detailed
refinement of the sentences being considered and the instructions given to
human annotators. Chapters 4 through 7 cover the specifications of a base-
line disambiguation architecture and three refinements to that architecture:
the inclusion of context dependence in Chapter 5, the addition of matching
of hand-generated lexical semantic patterns in Chapter 6, and maximum-
entropy classification in Chapter 7. Chapter 8 covers two additional minor
refinements to the disambiguation architecture. Evaluation of these systems
is detailed in Chapter 9. Finally, Chapters 10 and 11 provide conclusions
and a discussion of future work.
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Chapter 2

Literature Review

2.1 Theory of the Generative Lexicon

The theoretical framework under which my research takes place is Puste-
jovsky’s theory of the generative lexicon [Pustejovsky, 1991], a proposal by
Pustejovsky that it is computationally useful to store a variety of semantic
and syntactic information together with each entry in a lexicon. To under-
stand how this theory fits in with my research question, it is necessary to
first consider more generally the motivations and findings of the theory of
the generative lexicon.

A key motivation for this theory is the apparent ability of words to have a
variety of semantically related meanings. Consider, for example, the meaning
of the word bake in the following sentences:

(1) Mary baked the cake.

(2) Mary baked the potato.

In the first sentence, bake seems to mean create via the process of baking
whereas in the latter sentence it means change via the process of baking.
One way to explain the difference between the two sentences is to posit
two different lexical entries for bake, bake1 and bake2, corresponding to the
two meanings we have seen. Such a solution is undesirable firstly because
it ignores the fact that the two meanings of bake are closely related, and
secondly because it would quickly lead to very large numbers of lexical entries
for a single word.

The issue is further complicated by the ability of some verbs to combine
with arguments of different syntactic types, as exemplified below:

(3) Peter enjoyed the sandwich.
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(4) Peter enjoyed eating the sandwich.

In the former sentence, enjoy combines with an NP; in the latter, a
VP. If the goal is to be able to provide a compositional means of obtaining
the truth conditions of a sentence, this example suggests we may need two
different forms of enjoy: one which combines with an NP and a second which
combines with a VP.

Pustejovsky’s contribution is to suggest that rather than multiplying lex-
ical entries for verbs, we keep a minimal number of lexical entries and instead
provide a means to convert a component from one syntactic or semantic type
to another. He suggests, for example, that enjoy should only be allowed to
combine with event-denoting arguments. In the case of sentence (3), this re-
quires a means of converting the sandwich to the event consisting of eating
the sandwich.

Pustejovsky names this conversion process type coercion, and defines
it as “A semantic operation that converts an argument to the type that is
expected by a function, where it would otherwise result in a type error”
[Pustejovsky, 1991].

This definition of coercion immediately poses several problems. Firstly,
there is the bookkeeping issue of formally defining the coercion function in
such a way that logical compositionality is maintained. (As my research
does not touch on truth-conditional logical interpretations of sentences, we
will simply note this feature of the coercion operation rather than exploring
it in detail.) More interestingly, there is the question of where the coercion
operation derives its semantics from. For example, in sentence (3), we would
like the sandwich to be coerced to eating the sandwich rather than, say,
throwing the sandwich or sitting on the sandwich.

So how does the coercion operation get access to the correct verb? Puste-
jovksy’s answer is that the necessary information is stored in the lexical entry
of the noun. Each word’s lexical entry, he suggests, should be equipped with
a qualia structure consisting of four basic qualia roles, each of which con-
tains a different kind of information about the concept represented by the
word. The four types of qualia roles he proposes, along with their meanings,
are reproduced below: (directly quoted from [Pustejovsky, 1991])

Constitutive Role: the relation between an object and its constituents, or
proper parts.

Formal Role: that which distinguishes the object within a larger domain.

Telic Role: purpose and function of the object.
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Agentive Role: factors involved in the origin or “bringing about” of an
object.

For example, the word novel should probably have a telic role of read

and an agentive role of write. In contrast, the word dictionary might
have telic role reference and agentive role compile. In a Pustejovskian
framework, it is because of this additional semantic information stored in the
qualia structure that the coercion operation is able to supply the semantic
information which is not explicitly stated in the sentence.

2.2 A Proposed Extension for Exception Han-

dling

[Lascarides and Copestake, 1995] rightly note a number of oversights in Puste-
jovsky’s theory. Most notably, they point out that interpretations which arise
as a result of type coercion appear to be overrideable default interpretations.
They cite as an example the fact that (5a) means (5b) and not (5c):

(5a) My goat eats anything. He really enjoyed your book.

(5b) The goat enjoyed eating your book.

(5c) The goat enjoyed reading your book.

As a solution to this problem, Lascarides and Copestake propose an exten-
sion to Pustejovkian type coercion in which type coercion provides a default
interpretation which can then be overridden by pragmatic cues taken from
context. They suggest that the ability to override the default coercions be
implemented with a combination of discourse representation theory and a
wide-domain knowledge base of commonsense entailment relations.

With respect to sentence (5a), they propose that discourse representation
theory could tell us that he refers to a goat whose propensity for eating is in
focus. This, in combination with a fact in the knowledge base that goats are
unable to read, would allow the default interpretation (5c) to be overridden
by the interpretation in (5b) which is not contradicted by the knowledge
base.

2.3 Automated Qualia Structure Acquisition

The ability to intelligently disambiguate sentences in this generative lexical
framework requires that we have access to at least partial qualia structures for
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nouns. As there is no existing large-scale database of words’ qualia structures,
such structures must be automatically extracted from data. Recent attempts
have been made towards automated qualia structure acquisition both from
parsed corpus data [Yamada et al., 2007] and from targeted queries on the
world wide web [Cimiano and Wenderoth, 2007].

2.3.1 Acquisition from Corpus Data

Given a noun and a list of qualia role candidates, [Yamada et al., 2007] de-
scribe two methods for ranking the candidates in order of suitability for the
noun’s telic and agentive roles. The first method is a maximum entropy learn-
ing method. This method involves establishing a small set of known qualia
structures and then scanning a parsed corpus on the basis of this training
data to learn which syntactic relations are most indicative of a noun’s telic
and agentive roles. The second method uses hand-generated templates which
are thought to be indicative of qualia roles rather than templates obtained
by machine learning. These hand generated templates include, for example,

N be V[+en]

(as in “This book was written by Chaucer”) as a representative template for
the agentive role.

A notable aspect of the hand-generated templates Yamada et al. use is
the underlying assumption that the target noun occurs as the deep object of
a transitive verb. That is, they have no problem determining that the telic
role for book should be read because book commonly occurs as the object
of read. Conversely, this assumption makes them unable to determine that
the telic role for knife should be cut because knife commonly occurs as
the subject for cut, not the object.

Furthermore, it should be emphasized that the goal of Yamada et al. is
to rank the suitability of a given list of verbs for a noun’s qualia structure.
They do not address the question of where the verb list should come from in
practice; for the purposes of evaluation, they hand-generate a list of 50 verbs
for each of 30 nouns. They report results that the one top-ranked role-filler
extracted from corpus data was judged to be correct at best 60% of the time.

2.3.2 Acquisition from Web Data

In contrast to the parsed corpus-driven approach of Yamada et al.,
[Cimiano and Wenderoth, 2007] propose a method for extracting qualia struc-
tures on the basis of targeted search engine queries on the world wide web.
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Rather than assuming that a list of verbs is given as input, they begin by ex-
tracting a list of verbs (or verb phrases) from search engine results. For each
qualia role of each noun, several queries are constructed to obtain suitable
verb candidates. Query templates include, for example,

to * a(x) new x

in which “x” represents the target noun, “a(x)” represents the indefinite
article used with x, and “*” represents the extracted verb or verb phrase.
The list of query results are then input to one of a number of information-
theoretic ranking methods to determine a ranking.

Cimiano and Wenderoth perform an a posteriori evaluation of the quality
of their qualia structures. Using the same list of 30 nouns developed by
Yamada et al., they asked volunteers to give the quality of the top-ranked
verb for a qualia role on a three-point scale. (The scale they use is one
in which 0 represents ‘wrong’, 1 ‘not totally wrong’, 2 ‘acceptable’, and 3
‘totally correct’ .) They report that their best ranking method was judged
to have an average rating of 2.10 on the top-ranked agentive role and 2.16
on the top-ranked telic role [Cimiano and Wenderoth, 2007].

2.4 Probabilistic Treatment of Logical Meto-

nymy

Previous work has been done towards the probabilistic disambiguation of
entity/event coercion ambiguities in [Lapata and Lascarides, 2003]. They
suggest an elegantly simple method of disambiguation which works only on
the basis of counting various verb/object and subject/verb collocations in
the British National Corpus. Despite their relatively shallow methods, they
achieve good results on an automated paraphrasing task very similar to our
automated disambiguation task.

My research addresses two perceived shortcomings with their technique.
Firstly, I make an effort to “deepen” the processing by introducing techniques
which incorporate patterns targeted towards semantically meaningful telic
and agentive relations. Secondly, whereas their evaluation was performed
on sentences specifically hand-generated for research in this field, I develop
a corpus of such sentences extracted from real-world data and perform my
testing on that corpus.
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Chapter 3

Data Preparation

3.1 Raw Data and Parsing

The raw data set I use in my research is comprised of a collection of doc-
uments taken from Wikipedia and parsed with the Stanford parser.1 The
collection contains a total of approximately 430 million words and represents
80% of the August 2007 Wikipedia dump. [Bouma, 2010]

3.1.1 The Stanford Parser

The Stanford parser is a probabilistic natural language parser implemented
in Java. Given an English sentence as input, the Stanford parser provides
both a CFG-style parse tree and a typed dependency tree as output. The
core architecture was developed by Klein and Manning. More information
about the Stanford parser is available in [Klein and Manning, 2003a] and
[Klein and Manning, 2003b].

3.2 Identifying Potentially Ambiguous Sen-

tences

I chose to limit my research question to that of being able to provide inter-
pretations for sentences which are known to exhibit an entity/event coercion
ambiguity. As I know of no pre-existing collection of such sentences taken
from natural language data, it was necessary to first create such a collection
by identifying potentially ambiguous sentences within the Wikipedia corpus.

1This corpus was provided to me, pre-parsed, by Dr. Gosse Bouma of the University
of Groningen.
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3.2.1 Selecting a Template for Ambiguity

As mentioned previously, the particular ambiguity I chose to look into was
one in which an entity-type noun is coerced into having an event type. Such
an ambiguity is known to occur with a variety of verbs, as demonstrated in
the examples below, all of which involve a coercion from book to the meaning
reading a book.

(1) I loved your book.

(2) I started your book last night.

(3) That was a very enjoyable book.

Although the first two sentences are syntactically very similar, the third
demonstrates that this ambiguity is not restricted purely to sentences in
which an entity-NP is in a direct object position.

Thus, it was necessary to isolate a template with which to recognize poten-
tially ambiguous sentences. I chose to restrict myself to sentences in which a
verb form of begin, enjoy, or finish is accompanied by a direct object. This
choice was made because coercions fitting this template have been particu-
larly well studied in the literature. (See, for example, [Briscoe et al., 1990],
[Lascarides and Copestake, 1995], and [Pustejovsky, 1991].)

3.2.2 Extracting Potentially Ambiguous Sentences from
the Corpus

Since the Stanford parser gives a typed dependency structure as its output, it
is a simple task to isolate those sentences in which begin, enjoy, or finish
takes a direct object. The procedure simply consists of scanning the parsed
corpus for those sentences containing a dependency of type dobj in which
the head element is a morphological variant of begin, enjoy, or finish.

However, although sentences extracted in this manner are likely to have
the entity/event coercion ambiguity, not all of them do. Prior to using this
pattern to extract sentences from the full corpus, I conducted a small-scale
feasibility study on 160 extracted sentences which indicated that approxi-
mately 20% of corpus sentences matching this pattern contain the desired
ambiguity. One common source of undesirable sentences was those in which
the direct object already denoted an event. Thus, I put several heuristic mea-
sures into place to eliminate the most obvious event-denoting nouns. These
measures include the following: disallowing nouns ending in “ion”, which are
likely to be event-denoting deverbal nouns (e.g. construction, education),
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disallowing nouns ending in “ing”, which are likely to represent misparsed
verbs rather than nouns, and removing other common event-denoting nouns
not covered by these patterns (e.g. career).

In total, this process resulted in the identification of 47,877 candidates
for ambiguous sentences

3.3 Human Annotation

Having extracted potentially ambiguous sentences from the corpus, I then
asked volunteers to help me annotate those sentences. The volunteers per-
formed two tasks. Firstly, they determined whether a given sentence in fact
exhibited the desired ambiguity. Secondly, for those sentences which they
deemed to be ambiguous, they provided a verb or verb phrase which, in
their opinion, best indicated the correct semantic interpretation for the sen-
tence. These sentences, along with their human-annotated interpretations
are taken to be the gold standard for the evaluation of my disambiguation
systems. Of the 47,877 candidate sentences, volunteers annotated a total of
6,897 sentences, finding 2,102 ambiguous sentences.

3.3.1 Volunteer Profile

The volunteers who provided annotations were adult, native speakers of
American English or adult, proficient non-native English speakers who were
studying computational linguistics.

3.3.2 Interface Design

In order to facilitate the annotation task for my volunteers, I implemented an
online annotation environment. This environment was coded using HTML,
PHP, and JavaScript, and was accessible via the world-wide web

The Annotation Environment

After selecting a file to annotate, volunteers were presented with one ambigu-
ous sentence at a time, as demonstrated in the screenshot in figure 3.1. For
added clarity to aid in annotation, each target sentence was accompanied by
the two sentences which appear immediately before and after it in the cor-
pus. Volunteers were instructed to select between several annotation options
(explained in the following section) and were prompted to supply the “miss-
ing” verb for sentences they designated as being ambiguous. Furthermore,
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the verb-object pair was presented in boldface both to allow identification of
misparsed sentences and to facilitate annotation. This same boldface con-
vention is used in the examples in the following section.

Figure 3.1: Screenshot of the Online Annotation Environment

3.3.3 Instructions to Annotators

Deciding on how best to instruct the volunteer annotators was a non-trivial
task. The overarching issue was how to provide a clear, concise set of in-
structions while still warning the annotators of the most common pitfalls
they were likely to encounter. For the purposes of my research, I only truly
needed sentences to be divided into two categories: those which contain the
desired ambiguity and those which don’t. However, in the interest of prepar-
ing my annotators to recognize various ways in which a sentence could fail
to be ambiguous, I subdivided the “unambiguous sentence” category into
four different classes. Reproduced below is the category system into which
annotators were requested to place each sentence, as well as several example
sentences they were given for each category.

Ambiguous Sentences

Volunteers were instructed to select this option “if the sentence seems to be
missing information about precisely what action happens to the object.” Ex-
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amples below include my analysis of the correct interpretation in parentheses
after each sentence.

• MTV has confirmed that rapper T-Pain has been asked to produce a
few songs for the new album and that Sean Garrett has finished three
tracks . (recording)

• He decides to help himself to some , not knowing that Peg-Leg Pete is
trying to enjoy lunch . (eating)

• You may NOT finish the beer for your teammate . (drinking)

Misparsed Sentences

In my opinion, it was neither necessary nor feasible to have volunteers deter-
mine whether each target sentence was parsed completely correctly. However,
it was important to ascertain that the parser had at least correctly identified
a verb/object pair. Volunteers were instructed to select this option if the
boldfaced words were not a verb and its direct object. Example sentences
receiving this analysis include:

• State-of-the-art Jacquard looms , finishing equipment , and cut-and-
sew operations were installed .

• New Beginnings (2006) .

• Before the summer commences , the two-test series against the Zim-
babweans at home and then a triangular one-day tournament in India
also involving New Zealand is covered , all in which Ponting and his
men enjoyed great success .

Wrong Meaning of “Enjoy”

This option was presented to volunteers only when annotating sentences with
enjoy. Quite often in the Wikipedia corpus, enjoy means have the benefit
of rather than get pleasure from. Sentences using the former definition do
not contain the desired ambiguity, so annotators were requested to note the
meaning of enjoy in each sentence. Example sentences receiving this analysis
include:

• So not only do you enjoy the benefits of advertising with Clicapic ,
but you can also make a profit on your ad .

• Al Waseeta famously enjoyed only 400 days of independence before
the assassination of its first and last Amir , Qasim Abdul Rahman .
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• Anecdotes of al-Lami ’s brutality have spread rapidly throughout Bagh-
dad , and he enjoys increasing support among Shiite poor .

“Finish” used to report sports results

This option occurs only in sentences with finish. In the domain of Wikipedia,
finish is often used unambiguously and somewhat idiomatically to report
sporting results. Example sentences receiving this analysis include:

• In the 2004 Summer Olympics , Komrskov finished 32nd in the all-
around qualification and was the second alternate for the final as the
number of the finalists was reduced from 32 to 24 between 2000 and
2004 Olympic Games .

• Jefferies returned to England for 1988 , playing for Hampshire , who
finished third-bottom of the 1988 County Championship , the year
’s highlight being another of Jefferies ’ career total of four ten-wicket
match hauls .

• In both the following season the Crusaders finish runners-up .

Unambiguous

Finally, I presented volunteers with a catchall option for nouns which denote
events or sentences which for any other reason don’t contain the desired
ambiguity. A literature search turned up no established linguistic tests for
determining whether a noun denotes an event. As a general guideline, I
instructed my annotators that if the object noun appears to represent an
event or is a deverbal noun, or if the correct interpretation seems to be given
by a semantically empty verb like “doing”, then they should classify the
sentence as unambiguous. Example sentences receiving this analysis include:

• In northern Alberta , the Dominion Government began a drilling pro-
gram to help define the region s resources .

• Deciding to spend New Year in Azure City , Elan spent quite a while
out on the town , which he enjoyed immensely .

• Bhyrappa completed his primary education in Channarayapatna taluk
before moving to Mysore where he finished the rest of his education .
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Chapter 4

Baseline Disambiguation
Method

4.1 Technique

Recall that our goal is to disambiguate sentences with a very specific form—
namely, those sentences in which some form of begin, enjoy, or finish

occurs with a direct object and for which a human annotator has judged
the sentence to contain an entity/event coercion ambiguity. Because the
theory predicts that the missing semantic information in these sentences is
tied to the direct object, a sensible (although not entirely näıve) baseline is
to obtain a ranked list of guesses for the “missing verb” by counting verb
co-occurrences with the direct object in a training corpus.

More explicitly, the following two-stage process was used to determine a
list of guessed interpretations for a given sentence. First we index the corpus
and then from that index we extract a list of interpretations.

4.1.1 Corpus Indexing

The goal of this step is to create an index detailing for each noun in a training
corpus all the verbs that noun co-occurs with and the absolute frequencies
of those co-occurrences. To create this index we look through a Stanford-
parsed training corpus for all occurrences of dependencies of type dobj. A
further restriction is made that the token at the head of the dependency be
a verb (i.e. the token must have a Penn Treebank tag beginning with VB)
and the child of the dependency must be a noun (i.e. have a part of speech
tag beginning with NN). For each dobj relation found, we lemmatize the verb
using the MorphAdorner lemmatizer (discussed in section 4.2.1). Then we
add this noun-verb pair to the accumulating index.
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4.1.2 Suggesting Interpretations

In this step, each ambiguous sentence receives a ranked list of guesses for
its “missing verb”. Recall that the ambiguous sentences were all selected on
the basis of having begin, enjoy, or finish in a dobj relation. To obtain a
ranked list for each sentence, we simply take the child from that dobj relation
and look it up in the index. The corresponding verbs are then ranked on the
basis of relative frequency of co-occurrence with that object.

In practice, common nouns generally occur in the corpus with a number
of different verbs which is on the order of hundreds. For instance, the noun
novel occurs in the training corpus as the object of 408 distinct verb types.
The most frequent among these verbs are write (∼27%), publish (∼12%),
read (∼3%), complete (∼3%), and adapt (∼2%).

4.2 Tools

4.2.1 The MorphAdorner Lemmatizer

As mentioned above, the MorphAdorner lemmatizer is used in the base-
line disambiguation method to convert verbs to their lemma forms. Morph-
Adorner is a free, open source tool implemented in Java for performing a
variety of morphological annotations on text. These annotations include the
ability to adorn a text with standardized spellings, stemmed words, and lem-
mata [Northwestern University Academic and Research Technologies, 2009].
We make use only of the lemmatizer module which returns lemmatized ver-
sions of words.

4.3 Qualitative Error Analysis

After running the baseline disambiguation method, I conducted a qualitative
analysis of the errors made by this method on 146 example sentences from
pseudo-test data. Specifically, I compared the single top-ranked interpreta-
tion output by the baseline disambiguator against the human annotation for
the same sentence. I attempted to determine meaningful categories for the
types of errors made to highlight different areas with possibilities for im-
provement over this baseline result. What follows is the classification scheme
I devised and the frequency of each type of error.

Full matches (no error) (21.9% of sentences.) These are the sentences
in which the top-ranked result from the baseline disambiguation sys-
tem matches the human-supplied gold-standard result for the same
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sentence. The verbs need not occur in the same inflection form to be
counted as a full match; reading and read, for example, are considered
a match.

Near matches (12.3% of sentences.) Often the gold-standard interpreta-
tion is not the only correct way to lexicalize the interpretation of the
sentence. If I judged the gold-standard verb and the system-output
verb to be semantically equivalent, I classified the sentence as a near
match. One example from the data was the sentence “Pan Am ... be-
gan service to New Zealand on July 12, 1940”, which received a human
annotation of offer whereas the baseline system proposed provide.

Annotation is a multi-word expression (11.6% of sentences.) The base-
line method is only able to provide one-word interpretations. If the
gold-standard annotation was more than one word, this meant an au-
tomatic non-match for the baseline system. For example, the sentence
“Asimov was a claustrophile; he enjoyed small, enclosed spaces” re-
ceived a gold-standard analysis of be in whereas the baseline system
suggests have.

Word sense issues (9.6% of sentences.) This was an issue when the ob-
ject was the less-common sense of a polysemous noun. For example,
“Before that, analog TV had no true ‘pixels’ to measure horizontal res-
olution, and vertical scan-line count included off-screen scan lines with
no picture information while the CRT beam returned to the top of the
screen to begin another field.” Here the baseline system suggests an
interpretation of have, likely in response to the more common physical
meaning of field.

Telic/Agentive transposition (8.2% of sentences.) These are sentences in
which the baseline system suggests a response which is a correct telic
interpretation for the object when the true interpretation in context
should be agentive or vice versa. For example, as mentioned above, the
top-ranked verb for novel is write. However, this will give an incorrect
interpretation whenever novel appears in a telic context. (e.g. “Bill
loves to read. He really enjoyed your novel.”)

Suggested verb is not a telic or agentive verb (7.5% of sentences.) The-
oretically, the missing interpretation should be a telic or agentive role
of the object. Sometimes the verb suggested by the baseline system
doesn’t appear to represent either the use of the object or how it was
created. In this category were verb guesses like join for the object
tour and continue for the object study.
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Object is not a noun (6.8% of sentences.) Recall that we only indexed
cases in which the child of the dobj relation was a noun. This excludes
cases where the object is a pronoun (“He enjoyed it.”), a predeter-
miner (“He enjoyed all the books.”), or a relative pronoun (“the book
which he enjoyed”).

Correct telic/agentive role, but missing contextual cues (6.8% of sen-
tences.) Oftentimes a noun may have different telic or agentive roles
depending on who is doing the using or creating. For example, a writer
finishes a book by writing it; an editor finishes a book by editing it.
These are cases where I judged the top-ranked verb to be a correct
telic/agentive role for the object, but not the correct one for the con-
text.

Top suggestion is begin/enjoy/finish (4.1% of sentences.) The baseline
system doesn’t exclude the verbs begin, enjoy, and finish from con-
sideration, leading to some redundant annotations when one of those
three verbs is the most frequent co-occurrent verb. For example, the
top-ranked verb for pleasures is enjoy, leading to interpretations like
“He enjoyed enjoying the pleasures of life.” While this is perhaps a
meaningful interpretation of the sentence, it is extremely unlikely to be
an interpretation suggested by annotators because of its redundancy.

Named entity issues (3.4% of sentences.) An entertaining example: For
the noun beauty, we would expect a telic role like appreciate and a
generic agentive role like create. However, the baseline system sug-
gests sleep, an idiosyncrasy which is almost certainly due to the rela-
tively high frequency of references to Sleeping Beauty in the training
corpus. Primarily, issues arose from cases where the Stanford parser
failed to distinguish between a common noun and a named entity.

Miscellaneous errors (8.2% of sentences.) This category includes typos,
parse errors that slipped through, errors caused by improperly index-
ing Wikipedia templates, and sentences which volunteers incorrectly
annotated as being ambiguous.
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Chapter 5

Extension to Integrate Context
Dependence

A tempting first addition to the baseline system is to add some weak form
of context dependence. The baseline system defined in the previous chapter
makes the simplifying assumption that the only information relevant to an
ambiguity comes from the object noun. In reality this seems to be a vast
oversimplification, so we implement a system which looks at other parts of
the sentence as well.

5.1 Motivation

Consider the following three sentences:

(1) The author finished the screenplay.

(2) The reader finished the screenplay.

(3) The editor finished the screenplay.

The interpretations of these three sentences are most likely to be writing
the screenplay, reading the screenplay, and editing the screenplay respectively.
The fact that this variation is able to occur when the only change to the
sentence is in the subject suggests that at the very least it would be helpful
to look at the subject of a sentence when disambiguating. In addition to
the subject, adjectival modifiers of both the subject and the object may be
helpful, at least in theory. Consider:

(4) The man enjoyed the delicious spätzle.
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(5) The thirsty man enjoyed the glühwein.

Even if you have never heard of spätzle or glühwein before, you will likely
have correctly guessed that spätzle is something you eat and glühwein is
something you drink. These interpretations are strongly suggested by the
adjectives modifying the object and subject of the sentences.

Given that a sentence’s subject and adjectival modifiers may influence its
interpretation, the question is then how best to integrate this information
into the list of interpretations.

5.2 Technique

The method we use to integrate this additional contextual information is
architecturally quite similar to the baseline technique. As before, the process
is split into an indexing phase which is only executed once and a suggestion
phase which is repeated for each individual sentence.

5.2.1 Corpus Indexing

Previously we had described a system for indexing noun/direct object co-
occurrences. Now we simply extend that process to index other types of co-
occurrences as well. On the basis of the motivating examples above, we now
look at subject/verb co-occurrences as well as verb/adjective pairs. The case
of looking at subject/verb co-occurrences should be clear as it is completely
analogous with the verb/object indexing technique in the baseline system.

The case of adjectival modifiers is only slightly more complicated. Whereas
before we could look within the corpus for all single dependencies of the form

verb→dobj noun

or
verb→nsubj noun

we now must look for two step dependency paths. Specifically, we look for
all occurrences in the corpus of

verb→dobj noun→amod adj

and
verb→nsubj noun→amod adj

We ignore the token-level nouns in these latter patterns and only make an
index of the verb/adjective pairs in the two different types of patterns.

As before, indexed words are lemmatized using the MorphAdorner lem-
matizer (discussed in section 4.2.1).
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5.2.2 Suggesting Interpretations

Now we have described four different types of evidence, outlined in figure 5.1.
For convenience, we will label these patterns 1 through 4. Further, to clarify
the process by which interpretations get ranked, we will introduce some new
notation. A ranked list of verbs for a sentence is obtained by assigning a score
to each verb and then simply listing the verbs in decreasing order of score.
Thus, for a given sentence the task is really coming up with a list of scores sv.
However, with the inclusion of four distinct types of evidence, it makes sense
to talk about subscores calculated from each different pattern. We call these
subscores sv,i. First we will discuss the technique used to calculate subscores
and then the technique for combining them into an overall score.

Pattern Label
verb→dobj noun 1
verb→nsubj noun 2
verb→dobj noun→amod adj 3
verb→nsubj noun→amod adj 4

Figure 5.1: Patterns Representing Different Types of Evidence Indexed

In the case of pattern 1, the subscore calculation is completely equivalent
to the ranking technique used in the baseline method. That is, we look in
the given sentence for the direct object of begin, enjoy, or finish and then
assign scores sv,1 as the normalized frequency with which the object co-occurs
with verb v in the corpus. This, of course, can be looked up directly from
the index.

Assigning subscores for the other patterns proceeds in the same fashion.
For example, sv,2 is calculated by finding the normalized frequency with
which the sentence’s subject co-occurs with verb v.

There are, however, some caveats. Because of the way we constructed our
example sentences, each ambiguous sentence is guaranteed to have a direct
object. However, there is no guarantee that the sentence will have a subject
or any adjectives. In the case that the sentence has no subject, sv,2 is set at
0 for all verbs (and we do the same with patterns 3 and 4 in the cases where
no adjectives modify the subject or object.) It may also be the case that
more than one adjective modifies the subject or object. If this is the case,
we simply sum the subscores obtained by looking up the different adjectives
in the index.

Finally, now that we have calculated subscores on the basis of the four
types of evidence, we must combine them in some way. The formula we use
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to compute the final score is

sv =
4∑

i=1

λisv,i

The weights λi are chosen on the basis of training data so as to achieve
optimal results, as described in the following section.

5.2.3 Finding Optimal Weights

At this point, training data comes into play. For training, we use approx-
imately the first third of the gold-standard corpus—some 700 sentences.
Given a numerical metric which describes how well a particular set of weights
performs on this training data, the question of finding optimal weights is sim-
ply a numerical optimization problem. I chose to use a mean inverse rank
metric and a Nelder-Mead optimization technique. The motivation for these
choices and brief specifications are given in the following section.

Finally, although I have presented this problem as one with four param-
eters to optimize (λ1 through λ4), there are in fact only three degrees of
freedom. Simple calculations will show that for any positive constant c the
weights {λ1, λ2, λ3, λ4} and {cλ1, cλ2, cλ3, cλ4} will give the same rankings.
In practice this allowed me to fix λ1 = 1 and reduce the dimensionality of
the optimization task by 1.

5.3 Tools

5.3.1 Mean Inverse Rank Metric

The metric I chose to optimize over was the mean inverse rank of the gold
standard annotations. It is calculated as follows: For each disambiguated
sentence, look up the position of the gold standard annotation on the ranked
list of suggested interpretations. Take the inverse of this number. (For
example, if the gold standard annotation is read and read appears fourth
on the list, the inverse rank is 1/4.) The one exception is the case in which
the gold standard annotation does not appear on the list of suggestions. In
this case, assign the sentence an inverse rank of 0. Averaging these inverse
ranks across all sentences gives the mean inverse rank.

Admittedly, this is not the most intuitive way to assign a number to
the performance of the disambiguator. A much simpler metric, for example,
might just measure the frequency with which the gold-standard annotation
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appears as the top-ranked interpretation (or among the top n interpreta-
tions.) Such a suggestion does indeed provide a meaningful measure of the
system’s performance, and will be discussed in the evaluation chapter. How-
ever, mean inverse rank is preferable for purposes of optimization because it
is much more fine-grained. Small changes to the weights tend to produce at
least some change in the calculated mean inverse rank whereas they may not
with a simpler metric. That is to say, although the function from weights to
mean inverse rank is a discrete step function it is approximately continuous.
This is preferable for the optimization technique I chose.

5.3.2 The Nelder-Mead Optimization Technique

The Nelder-Mead algorithm is a technique for finding a local maximum of
an objective function. It is a so-called “amoeba” method, which works by
calculating the value of the objective function at the vertices of a simplex and
then moving one or more vertices of the simplex, eventually contracting onto
a local maximum point of the function [Nelder and Mead, 1965]. I selected
it because of a number of advantages:

• The algorithm makes no requirements about smoothness or differentia-
bility of the function, which is a nice since we are maximizing a discrete
step function.

• At most two function evaluations are required at each step of the algo-
rithm, which is advantageous for us because calculation of our objective
function is relatively computationally expensive.

• The algorithm was readily available in a free (for non-commercial use)
Java implementation.

The particular implementation used was part of Michael Thomas Flana-
gan’s Java Scientific Library [Flanagan, 2010], a scientific computing package
which is offered freely for non-commercial purposes.

5.4 Analysis

[Lapata and Lascarides, 2003] implement a system very similar to this one
which takes subject data into account for disambiguation of coercion ambi-
guities. They report that such a system gives significant improvement over a
baseline which only looks at object/verb co-occurrences. Thus, we might ex-
pect to find a similar improvement over baseline in our system’s performance.
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In fact, on development data this refinement offered only an extremely slight
improvement over baseline and was subsequently abandoned. It would be
wise to ask why they found an improvement while I did not.

Our systems, although based on the same linguistic motivation, use slightly
different calculations and it is of course possible that this is one source of the
difference in results. However, I believe the majority of the discrepancy is
caused by the data being used for evaluation. Their evaluation was performed
by checking system output against a gold standard comprised of paraphrase
data for hand-generated sentences. These sentences had been generated by
[McElree et al., 2001] for a paraphrasing study. Sample sentences include:

(6) The writer finished the novel.

(7) The soldier attempted the mountain.

(8) The teenager finished the novel.

Note that the subjects of these sentences share some common features.
For one thing, they are all relatively common nouns. More importantly,
they have been selected specifically because they have some bearing on the
interpretation of the sentence. This is in stark contrast to the Wikipedia
corpus data against which I evaluate. In my corpus it is extremely common
for sentence subjects to be either pronouns or named entities. In the case of
pronominal subjects, almost nothing can be inferred about the interpretation
of the overall sentence by looking at the pronoun. On the other hand, when
the subject is a named entity, the number of references to that entity in the
corpus used for indexing is likely to be extremely small. This means the
evidence coming from the subject pattern is often noisy or insufficient.

In any case, I expect that my technique would achieve similar results
to Lapata and Lascarides’ system on their test set (although I have not
confirmed this.) However, as mentioned before, since this technique failed to
produce a significant numerical improvement on my own development set, it
was abandoned in favor of other techniques.
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Chapter 6

Extension to Target Telic and
Agentive Verbs

We saw in the previous chapter that it turned out to be unhelpful on our
data set to directly integrate simple evidence from parts of the sentence other
than the object noun. However, even if the object noun is the only facet
of the sentence we look at, there may be more productive ways to extract
information from that object noun than simply counting collocations. Here
we introduce a method that makes use of the Pustejovskian theory that
the interpretations for these ambiguous sentences should be tied in with the
semantics of the object nouns.

6.1 Motivation

If, theoretically, the interpretations of an ambiguous sentence should corre-
spond to telic or agentive roles of the sentence’s object, then we could improve
our disambiguation results by attempting to automatically determine partial
qualia structures for nouns. Ideally we would also try to classify sentences
with respect to whether they should take a telic or agentive interpretation.
However, as a first approximation, we leave off the classification and simply
look for verbs which are either representative of a noun’s telic or agentive
role. If successful, this should improve results despite the lack of classifica-
tion because it would de-emphasize those verbs which are neither telic nor
agentive.
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Pattern Example sentence
V[+ing] N I like reading books.
N (worth|deserving|meriting) V[+ing] Jane Eyre is a book worth reading.
N to V This is an entertaining book to read.
N used to V A dagger is a weapon used to stab.
N be used to V A knife is used to cut.

Figure 6.1: Telic Patterns

Pattern Example sentence
N be V[+en] The book was written by Kim.
to V a new N He started to write a new book.
to V a complete N He wanted to compile a complete dictionary.
new N have been V[+ed] A new book has been written.
complete N have been V[+ed] A complete dictionary has been compiled.

Figure 6.2: Agentive Patterns

6.2 Technique

The architecture of this system is nearly identical to that described in the
previous section. As before, there is an indexing stage during which we index
all occurrences of certain patterns within the corpus. The evidence discovered
from these patterns is still combined using weights which are chosen to be
optimal on training data. The only difference is the patterns which are being
indexed.

Recall that [Yamada et al., 2007] and [Cimiano and Wenderoth, 2007]
both describe techniques for automated acquisition of partial qualia struc-
tures. Both teams’ techniques revolve around searching for hand-generated
patterns which are selected because they are intuitively indicative of nouns’
telic and agentive roles. From the list of patterns they describe, I chose
10 and indexed the occurrences of those patterns in the corpus. There were
more than 10 patterns presented by these two teams, but some patterns were
excluded when preliminary implementations showed them to be extremely in-
frequent in the Wikipedia corpus. These new patterns are shown in figures
6.1 and 6.2. Taken together with the baseline pattern, this gave a combined
total of 11 types of evidence to combine for each sentence and 10 weights to
learn. These weights were again learned by numerical optimization with the
Nelder-Mead simplex method described in the previous chapter.
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6.3 Analysis

Upon finding optimized weights for development data, I discovered that of
the ten weights assigned to these patterns, six were negative and two more
were very close to 0. The two patterns with significantly positive weights were
[V[+ing] N] and [N be V[+en]]; perhaps not coincidentally, these patterns oc-
curred much more frequently in the corpus than the others being considered.
This could, of course, indicate that the patterns with low or negative weights
are truly counterindicative of correct interpretations and should therefore
continue to be considered despite their low or negative weights. However,
given the fact that all patterns were selected by hand precisely because they
should be meaningful patterns in this context, this explanation seems un-
likely. More likely these patterns are given negative weights because of sta-
tistical noise or a fluke in the optimization process. (e.g. If the co-occurrence
data contained in Pattern A’s index is very highly correlated with that of
Pattern B’s, then a negative weight assigned to Pattern A could simply be
compensation for an overly high weight for Pattern B or vice versa.)

Whatever the cause of the negative and near-zero weights, I tested on
development data whether those pattern which were initially assigned low
weights could be safely removed without an adverse impact on performance.
Removing those eight patterns and retraining with only two of the ten pat-
terns produced a change in mean inverse rank of less than 0.001, indicating
a certain amount of redundancy of patterns in this context. Thus, the fi-
nal version of this extension only extends the system with two of the ten
patterns—[V[+ing] N] and [N be V[+en]].
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Chapter 7

Extension to Incorporate
Telic/Agentive Classification

7.1 Motivation

In the previous chapter we equipped our system with the ability to incorpo-
rate data from patterns which are representative of nouns’ telic and agentive
roles. However, there was no strategy in place to distinguish between the
two. For example, any time the disambiguator encountered a sentence where
begin, enjoy, or finish takes a direct object of book, the list of suggested
interpretations would be precisely the same. To illustrate why this is a prob-
lem, consider the sentences below:

(1) John Doe is a prolific author. In one year he finished three books.

(2) Jim Smith is a rather slow reader. In one year he finished three books.

These sentences illustrate that it is plausible that two identical sentences
can produce different interpretations depending entirely on their context. In
example (1), the context makes reference to an author, a noun whose mere
presence suggests agentivity. In contrast, the presence of reader in the latter
example suggests telicity.

On the basis of examples like this, we might hypothesize that performance
could be improved by classifying contexts with respect to whether they are
indicative of a telic or agentive interpretation. Post-classification, we could
then determine interpretations for a sentence using a system like the one in
the previous chapter but with a doubled set of weights—one set of weights
for sentences classified as being telic and another for agentive sentences.
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7.2 Technique

Although the technique is largely analogous to that used in the previous
chapters, we lay out all the steps again for the sake of clarity.

7.2.1 Corpus Indexing

The corpus is indexed in precisely the same manner as the previous chapter.
One index is created corresponding to the baseline pattern (all verb/direct
object co-occurrences in the corpus) and 10 more indices corresponding to
the five telic and five agentive patterns from Chapter 6.

7.2.2 Telic/Agentive Classification

In this phase, our goal is to look at a sentence and its immediate context and
attempt to determine whether that context is more likely to correspond to a
telic or agentive interpretation. In fact, strict classification is neither desired
nor necessary. For each sentence in context we obtain a pair of probabilities
(e.g. 61% telic, 39% agentive). These probabilities are determined from
a maximum-entropy classifier whose parameter values are obtained using
TADM, described below.

The classification process is relatively simple. An event, for the purposes
of training and classification, is assumed to consist of a sentence containing
an ambiguity as well as a two-sentence context window on either side of the
target sentence. Each context window is treated as a bucket of words, with
tokens being treated as classification features. Half of the training data (ap-
proximately 350 sentences) was set aside to train the classifier, while the other
half was used to determine patterns’ weights. Because the initial volunteer
annotations of sentences don’t directly contain information about whether
the correct interpretation is telic or agentive in nature, this smaller, 350-
sentence training set had to be sorted by hand to include this information.

7.2.3 Suggesting Interpretations

Recall from Chapter 5 that the formula we use to calculate a verb’s score as
the interpretation for a give sentence has the general form

sv =
k∑

i=1

λisv,i

31



where sv is the overall score assigned to verb v for a given sentence, i ranges
over the pattern labels, and sv,i is the score assigned to verb v solely on the
basis of evidence from pattern i.

The main difference now is that we essentially have two disambiguators
running in parallel: one telic disambiguator and one agentive. We use now
a single baseline pattern (to which we assign the index 0), five telic patterns
(indexed 1-5), and five agentive patterns (indexed 6-10). For each input
sentence, telic and agentive classification probabilities are also calculated;
these we will call pt and pa. Finally, the formula we use to calculate a verb’s
overall score is:

sv = sv,0 + pt

10∑
i=1

λi,tsv,i + pa

10∑
i=1

λi,asv,i

The first term in the sum represents the standard baseline disambiguator.
The second term represents a specifically telic modification to the disam-
biguator, weighted by the classifier’s probability estimate of the sentence’s
telicity. Similarly, the final term specifies an agentive modification to the
disambiguator. Note in particular that the set of weights has doubled. Each
pattern (other than the baseline pattern) now receives separate weights de-
scribing how strong a predictor that pattern is for telic versus agentive in-
terpretations.

7.2.4 Finding Optimal Weights

As before, the λ-values are learned via numerical optimization. However,
there are now 20 values to learn rather than 10 and we only use half the
training data for this process, the first half having already been used to train
the classifier.

7.3 Tools

7.3.1 TADM

TADM, the Toolkit for Advanced Discriminative Modeling [Malouf, 2005], is
a C++ toolkit for parameter estimation in a variety of discriminative models,
including maximum entropy modeling, for which we use it. It was written
by Rob Malouf and is available under the Lesser GNU Public License.
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Chapter 8

Minor Refinements

In section 4.3 we discussed a variety of errors made by the baseline classi-
fier. A number of these errors went unaddressed by any of the extensions
presented in the chapters that followed. To handle the most egregious and
easily-surmounted of these errors, I implemented two small refinements to
my disambiguators.

8.1 Lightweight Pronoun Resolution

One of the errors we discussed was the failure to handle pronominal objects
(or indeed objects of any type other than NN, NNS, or NNP). To ameliorate
this shortcoming, I implemented an extremely lightweight form of pronoun
resolution. Whenever the object is a pronoun, we simply look backwards
through the sentence for the closest preceding word tagged with NN, NNS, or
NNP. If it is known whether the object is singular or plural, we also enforce
the requirement that the preceding noun agree with the object in number.
Once a nominal object is found, all index lookups occur on the basis of that
noun rather than the true syntactic object of begin, enjoy, or finish.

Unsurprisingly, this pronoun resolver chooses an incorrect noun a substan-
tial amount of the time. Nevertheless, this is still guaranteed to provide an
improvement over baseline. Since only nouns and proper nouns were included
in the indexing stage, any sentence with a non-nominal object automatically
received an empty list of interpretations from the baseline system.

8.2 Handling “a variety of X”

One relatively common and easy to handle issue revealed in developmental
testing was how to handle objects where the object NP has the form “a
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variety of X” or “a series of X”. In these cases it was obvious that the lexical
semantics we are interested in comes primarily from the lower-level NP and
rather than from variety or series. From development data I identified
a small number of words exhibiting this phenomenon, including variety,
series, number, sequence, and first. Thus, we make the refinement that
whenever the sentential object is of the form “a variety/series/... of X” we
proceed as if the head noun of X were the direct object of begin, enjoy, or
finish.
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Chapter 9

Evaluation

Now that we have laid out the various techniques used to suggest interpre-
tations for our ambiguous sentences, we evaluate their performance using
several different measures.

9.1 Gold-Standard Evaluation

I set aside a collection of 708 sentences from the gold standard corpus to serve
as a test set. Using this collection I compared performance of my various
systems under two different measures: the now-familiar mean inverse rank
metric and also a metric in which I look for the presence of the gold standard
interpretation in the top n suggestions for each sentence.

9.1.1 Evaluation with the Mean Inverse Rank Metric

In Figure 9.1 we present the mean inverse rank performance of four different
systems on our test set. The so-called “Realistic Baseline” uses the technique
described in Chapter 4. The system called “T/A Extension” extends that
baseline with two additional patterns which target telic/agentive verbs, as
described in Chapter 6, as well as adding the minor refinements outlined in
Chapter 8. The “Classification Extension” is the system described in Chapter
7, again with Chapter 8’s refinements.

One further system is also presented in this table to illustrate the per-
formance level of a baseline system with a different approach. This “Näıve
Baseline” is the result of considering the disambiguation purely as a classifi-
cation problem in the simplest possible way. I first compiled a complete list
of the gold standard interpretations on the training set. Then, for each sen-
tence, the näıve baseline system suggests precisely the interpretations from
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System MIR
Näıve Baseline 0.094
Realistic Baseline 0.344
T/A Extension 0.393
Classification Extension 0.364

Figure 9.1: Mean Inverse Rank Performance Across Systems

this known list of words, shuffled proportionally to their frequency on the
list. (e.g. If 6% of the sentences in the training set had an interpretation of
write, then write would have a 6% chance of occurring first in the list of
suggestions.) This is essentially equivalent to treating the disambiguation as
a classification problem with no features at all.

As expected, the näıve baseline performs quite poorly compared to the
other systems, all of which use co-occurrence data learned from the Wikipedia
corpus.

The only real surprise in these results is that the inclusion of a telic/agentive
classification component decreases the performance of the system. Several
weaknesses caused by the introduction of the classification process stand out
as possible reasons for this decrease in performance.

Firstly, by including telic/agentive classification we now must both train
a classifier and find optimal pattern weights on the basis of the same train-
ing data. In practice, this meant splitting my training data in half, using
approximately 350 sentences for each of the two training tasks. (This dou-
bled training could be accomplished instead with a leaving-one-out approach
without overtaxing the data so badly, but time constraints restricted me from
doing so.)

Secondly, manual inspection of the classifier output suggests that the
classifier we use is rather unreliable. Testing on development data in which
we artificially substitute a perfect classifier into the process suggests that
perfect classification would add an improvement of approximately 0.03 to the
mean inverse rank. This demonstrates that classification of contexts into telic
or agentive categories is a potentially useful component of the disambiguator
if classification can be performed reliably enough. The fact that we get no
such boost can be seen as indirect evidence of the weakness of our classifier.

9.1.2 Evaluation with a Top-n Metric

The mean inverse rank metric, although it works well as a fine-grained met-
ric for optimization purposes, is a rather unintuitive measure of a system’s
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n Realistic Baseline T/A Extension Classification Extension
1 0.253 0.278 0.250
3 0.393 0.465 0.434
10 0.530 0.606 0.583
50 0.695 0.756 0.751

Figure 9.2: Top-n Performance for Various Values of n

Figure 9.3: Frequency of Gold Standard Evaluations Occurring Precisely at
Rank n for the Realistic Baseline and T/A Extension Systems

performance. We might instead ask simply how often the gold standard an-
notation occurs within the top n suggested interpretations for each system.
The table in figure 9.2 answers this question for several values of n.

The good news here is that my best-performing system seems to do quite
a good job of concentrating the gold standard interpretations toward the top
of its suggestion list. This suggests that my disambiguation system would
at the very least be useful in a semi-automated environment, as annotators
universally reported that judging whether a given annotation was correct was
an easier task than fabricating a correct interpretation from whole cloth.

Looking at the frequency with which the gold standard interpretation
occurs precisely at position n gives an even more detailed picture of where
exactly we make gains over the baseline system. Such an analysis is graphed
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in figure 9.3, in which we compare the Realistic Baseline system with the
Telic/Agentive Extension. We see, in particular, that the increase in perfor-
mance over the baseline system is not spread uniformly over all positions in
the list, but occurs disproportionately in the top two positions. This is likely
to be advantageous for any applications of this system, as bumping up the
gold standard annotation from, say, position 12 to position 10 is likely to be
much less visible than a bump from position 4 to position 2.

9.2 Qualitative Evaluation

Finally, it is worth noting that the gold standard annotation does not always
represent the correct lexicalization of an ambiguous sentence’s event verb. On
the contrary, there are often several lexemes which seem to express correct
interpretations for the sentence. Consider, for example, the sentences below:

(1) The scientist began the experiment.

(2a) The scientist began conducting the experiment.

(2b) The scientist began performing the experiment.

(2c) The scientist began doing the experiment.

I personally would judge sentences (2a), (2b), and (2c) to all be acceptable
paraphrases of (1). The implication of this is that the evaluations in the
previous section in which we only compare results against the gold standard
may be underrepresenting the quality of my systems’ output, as the gold
standard is often just one of several acceptable responses.

In order eliminate the impact of this effect on my evaluation results, I
conducted an a posteriori evaluation. I gave a collection of 101 sentences
from the test set to a single subject. Each sentence was accompanied by
the gold standard annotation and the single top-ranked guess from three of
my disambiguation architectures. The evaluator was instructed to rate the
quality of these four different interpretations on a scale from 0 to 3. The
values on the scale were specified as follows: 0 means “wrong”, 1 “not totally
wrong”, 2 “acceptable”, and 3 “totally correct”. (The scale is the same as
that used by [Cimiano and Wenderoth, 2007], who use it for evaluation of
qualia structures.) The results of this evaluation are shown in figure 9.4.

We should point out two notable aspects of this graph. Firstly, compar-
isons against the gold standard data do indeed appear to be underreporting
the quality of our results. According to this a posteriori evaluation, the
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Figure 9.4: Qualitative Evaluation of 101 Sentences on a Three-point Scale

top-ranked verb output by our best performing system is at least acceptable
55.4% of the time. This is considerably better than the 27.8% of the time the
same top-ranked verb was identical to the gold standard annotation. Sec-
ondly, the gold standard itself appears to be quite reliable. Out of the 101
sentences evaluated, only twice did the gold standard annotation receive a
score below 2 (acceptable). This suggests that although volunteer annota-
tors reported the annotation task to be a difficult one, they performed it
admirably.
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Chapter 10

Conclusions

Motivated by Pustejovsky’s generative lexical theory, I set out to perform
a targeted disambiguation task—providing the “missing verb” for sentences
in which an entity is coerced to an event. In attempting this task, I de-
liberately chose techniques targeting the lexical semantics of these entity
nouns. The techniques included searching a corpus for patterns which were
hand-generated to be representative of telic and agentive roles as well as de-
veloping a classifier to separate out those sentences with telic interpretations
from those with agentive interpretations. Along the way, with cooperation
from volunteers, I developed a corpus of disambiguated sentences taken from
real-world data. This 2,102-sentence corpus will be made publicly available
for use in future research.

The disambiguation system I developed over the course of this research
was moderately successful. At best I managed to place the gold standard
annotation within the top 10 suggestions for 60.6% of the test set. Perhaps
more promisingly, the single top-ranked guess of my best performing system
was judged to be “acceptable” or “totally correct” for 55.4% of sentences.
These results suggest that I have developed a system with potential to be
integrated as a component into tasks like paraphrase generation and recog-
nizing textual entailment.

What is less clear is whether taking an approach driven by lexical seman-
tic considerations brought quantitative improvements over the techniques
presented by [Lapata and Lascarides, 2003]. Certainly one advantage of my
approach is that it could easily be modified to serve as a partial qualia struc-
ture generator, although this application of my techniques will have to be
left to future research. Whether the techniques presented herein can be gen-
eralized to processing other forms of logical metonymy is left to the readers
to consider.
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Chapter 11

Future Work

As always seems to be the case with research, I was left with quite a number
of statements of the form “If only I had had more time, I would have liked
to ...” Here are a some of the most prominent aspects of my research that I
consider deserving of future attention.

Firstly, the disambiguator results seem to leave room for improvement.
I chose not to focus entirely on techniques which maximize the quantita-
tive results of disambiguation, which means some low-hanging fruit was left
unpicked. Examples include, but are not limited to:

Better pronoun resolution: The pronoun resolution component I imple-
mented was extremely crude. For better results, an existing pronoun
resolution tool could be used in its place.

Improved telic/agentive classifier: One weak link in the chain was the
classifier I put into place to sort contexts with respect to whether the
missing verb should be telic or agentive. In fact, I am uncertain whether
the telicity or agentivity of a context truly is a kind of discourse phe-
nomenon or merely wishful thinking. Theoretical research into that
point would be interesting, as well as having implications to this clas-
sification component.

Named entity recognition: Objects which are named entities proved to
be a persistent cause of error. To correctly disambiguate a sentence
like “He finished The Lord of the Rings”, we would likely need a way
of discovering that The Lord of the Rings is a novel. This in itself
is by no means an easy task.

In short, my quantitative results, being the first results reported on this
test set, can almost certainly be improved upon.
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Secondly, although I focused primarily on approaches which were driven
by the idea of targeting telic and agentive qualia roles, I never got to evaluate
my techniques’ success in isolating these roles. The final technique I present
in Chapter 7 comes temptingly close to offering a fully automated method
for telic and agentive role extraction. However, I simply did not have the
time to perform the tweaks required to turn my disambiguator into a qualia
structure generator. That change could be a first step into new data-driven
techniques in automated qualia structure acquisition.
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