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1. Introduction
According to Wikipedia definition of the word1, a treebank is a parsed text corpus,
which annotates syntactic or semantic structure. Built usually (but not always)
on top of a POS-annotated corpus, a treebank might seek to include phrase
structure (Example- PennTreebank [Marcus et al., 1994]), dependency structure
(Example- Prague Dependency Treebank [Böhmová et al., 2003]) or semantic
information (Example- FrameNet [Baker et al., 1998]).

A treebank can be constructed manually, by linguists spending a consider-
able time developing the treebank; or semi-automatically, wherein the data is
automatically annotated, and then checked for consistency. Regardless of the
method used for its creation, a treebank is an essential element in the field of
computational linguistics. A treebank can be used to study linguistic structures,
find out features associated with a language, or to understand the constructional
peculiarities within a language, among others.

In this work, our main focus is on syntactic treebanks and especially depen-
dency treebanks, rather than semantic ones. Therefore, the term ‘treebank’ shall
be used to refer to a syntactic (dependency) treebank henceforth, unless specified
otherwise.

1.1 Inter-conversion of Treebanks
There exist a multitude of treebanks for different languages as they can be seen
on Wikipedia2, for example. As noted by Kakkonen [2006], there exist a variety
of formats and annotation schemes even for the treebanks for the same language.
A well known example to this is the case of distinctive POS tagging schemes for
PennTreebank3 and for British National Corpus4, both of which are meant for
annotation of English language. Kakkonen, in his work also notices that there
exist tools which are meant to work for a particular tagset, or for a particular an-
notation scheme. Given enough similarities in annotation schemes, a (automatic)
conversion process can be drafted from one annotation schema to another.

This conversion process of a treebank from one annotation scheme to another
can be either 1:1 (one-to-one mapping) or n:m (many-to-many mapping). As in
Machine Translation, the approach can also be pivot-based, i.e. conversion to an
intermediate set, and then from the intermediate set to the desired set. For exam-
ple, Interset [Zeman, 2008] uses the pivot-based approach, implemented in form
of a Perl library. More often than not, the conversion between different schemes
can be applied deterministically, making use of rule-based approach whenever
needed.

It is important to note that not all the conversions are deterministic. If we
consider an example of a dependency treebank where the dependency structure
is changed from function-word head to content-word head structure, the entire
dependency structures need to be modified. An attempt to approach such in-

1https://en.wikipedia.org/wiki/Treebank
2https://en.wikipedia.org/wiki/Treebank#Syntactic_treebanks
3https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
4http://www.natcorp.ox.ac.uk/docs/c5spec.html
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deterministic conversion in a deterministic manner would introduce problems in
the resulting annotation. Such problems can be characterized by loss of infor-
mation, loss of language-specific patterns, induced inconsistencies in the data,
among others.

Knowing the downside of fully-automatic conversion techniques, one can ar-
gue that we could do the task of treebank conversion manually, rather than
automatically. This is not an ideal proposition because of multiple reasons as
listed:

1. The treebanks differ in size, ranging from thousands to millions of tokens.
An example would be WikiText-2 dataset [Merity et al., 2017], which con-
tains around 2 million words, extracted from Wikipedia articles. The man-
ual annotation on data as large as this requires time, money and significant
human effort.

2. In case of multiple annotators for a given data, the different annotators may
not always agree on the annotation principles for the same amount of data.
This is especially the case when the guidelines are not specific enough, or
in cases where the local grammatical tradition differs from the guidelines.

3. In case of low-resource languages, it might be difficult to find a knowledge-
able annotator for the language, thus rendering the process to be painfully
slow, and in some cases inaccurate.

To combat this problem, an approach of semi-automatic conversion is pre-
ferred over manual or fully-automatic conversion. The semi-automated conver-
sion procedure can be done by converting the data from one annotation style to
another automatically, followed by a human annotator verifying the results and
correcting them if needed. A trade-off between the fully-automatic and manual
techniques, the semi-automatic approach is considerably faster than its manual
counterpart, and allows the conversion process to be controlled for a higher de-
gree of quality-check as compared to a fully-automatic approach (cf. Fort and
Sagot [2010]). In practice, there can be a significant number of iterations (or
revisions) of the treebanks that might be needed before the converted data is
again available at par with or better than the data quality in the original scheme.
Since the research breakthroughs and improvements don’t wait for the data to
be perfect, the task of checking for consistency, and/or quality of the treebanks
has gained momentum in recent years as a research problem.

1.2 Universal Dependencies (UD) Project
A rather more detailed history of UD Project can be accessed online5. This
section deals with a shorter version thereof.

As elaborated in the previous section, there are multiple and (possibly) con-
flicting annotation styles, even for the treebanks for the same language. Like any
other measurement criteria where the standardized unit (in form of SI unit, or
ISO standards) was needed to be defined, the different annotation styles required
a similar form of standardization.

5https://universaldependencies.org/introduction.html#history
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Although there already existed annotation schemes that were used as de facto
standards, with the example of The Stanford dependencies [de Marneffe et al.,
2013], Google universal tagset [Petrov et al., 2012], HamleDT [Zeman et al.,
2014a], among others. However, there was still the problem of which annotation
style to go for. McDonald et al. [2013] in their Universal Dependency Treebank
(UDT) Project tried to provide with a universal annotation language, covering 6
languages in 2013, and expanding to 11 languages the following year.

With the modifications resulting in development of HamleDT 2.0 [Zeman
et al., 2014b], and Universal Stanford Dependencies (USD) [de Marneffe et al.,
2014], the Universal Dependencies (UD) Project was thus born in 2014 as a means
of unifying all the novel features of different annotation formats as a universal
annotation scheme consistent among different languages.

The version 1.0 of UD (also referred to as UDv1.0) [Nivre et al., 2015] was
launched in January 2015, and covered 10 treebanks in 10 different languages.
With the iterative methodology, the project evolved to contain 146 treebanks in
83 languages in UDv2.4 [Nivre et al., 2019], and 157 treebanks in 90 languages in
UDv2.5 [Zeman et al., 2019]. It is worth noting that not all the treebanks were
manually annotated directly in the UD style. Rather, most treebanks are semi-
automatically converted from the original source to the UD format according to
a set of guidelines6.

1.3 Motivation for the Problem
Since the introduction of UD, it has fast become a standard reference to com-
pare scores relating to parser performance (Che et al. [2018], Alonso et al. [2017]),
study of language-specific features [Alzetta et al., 2018], and for dependency pars-
ing shared tasks on UD [Zeman et al., 2018]. Given how different UD treebanks
are being considered as benchmarks for comparison of different scores, it only
makes sense to be considered them as Gold Standard (GS) data.

We discussed earlier how many of the UD treebanks are generated through
a semi-automatic process, and thus are liable to contain a significant amount of
errors. Such errors are detrimental in a GS, because of multiple reasons. Some
of the reasons are listed as follows:

1. In the case of parser evaluation, the parser learns errors from the data as
well, replicating them when used on test data. While this affects parser
evaluation scores, it also means that the parser does not learn the features
of the language correctly, thus causing increasingly more errors on unseen
data.

2. Since semi-automatic conversion is also likely to introduce more errors,
this can result in inflating already known errors, and/or deflating known
features. These patterns can become a nuisance on the treebank-level or
might disappear altogether. Consider the case of a language-feature F
which is a rare phenomenon in language L, with the relative occurrence of
x0% in the original data. Due to conversion process, it is possible that the
relative occurrence might change to x1%, where x1 ̸= x0.

6https://universaldependencies.org/guidelines.html
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• In case of the inflation of error (x1 > x0), the data which otherwise
did not exhibit F suddenly starts displaying the pattern, thus affecting
the quality of the data.

• In case of the deflation of pattern (x1 < x0), the data might not exhibit
F at all, increasing its rarity. Considering the case of parser evaluation
as above, the parser might decide to overlook this feature in entirety,
thus losing out on essential data.

3. With respect to identification of language-specific features, it is very pos-
sible that a lot of features might start getting wrongly associated with a
language (the case of inflation as above) or they might be deemed a rare
status (the case of deflation as above). Such instances, while seemingly
harmless for high or medium resource languages, can pose serious prob-
lems with respect to low-resource languages, impacting the way the given
language is studied.

The problems as mentioned above are but a subset of multiple problems asso-
ciated with an erroneous GS, and how they affect UD and the research around it.
As such, these problems need to be minimized as much as possible, with attempts
at their elimination in an ideal case. However, doing the task (of correcting the
GS) manually is again a difficult one and the automatic methods are not always
100% reliable and/or effective. While the methods often work well for individual
languages or a language family, they often fail to generalize in a language-neutral
sense. This is because of the different properties of languages, different language
families, among others.

1.4 Formal Problem Statement
Having learned about the UD project, problems concerning semi-automatic con-
versions, and possible effects of these problems within the scope of UD, we can
now formulate our problem statement for the scope of the thesis as follows:

Given the different treebanks in UD, the thesis aims to identify errors and in-
consistencies in treebanks, and provide corresponding automated correction tools
for them. The inconsistencies might be related to linguistic annotation, improper
adherence to guidelines, lack of guidelines related to an observed phenomenon,
annotator caused error, among others. The proposed methods and tools should
ideally not require a human annotator for verification, and should be as language-
neutral as possible. The tools can be adapted with language specific methods but
that is out of the scope of this thesis.

1.5 Data Source
When the work on the present thesis document was started in February 2019,
UDv2.3 [Nivre et al., 2018] was the latest release. Most of the experiments con-
tained within this document were first developed for UDv2.3. However, with the
release of UDv2.4 and subsequently UDv2.5, the experiments were carried for-
ward to the newer dataset. The results throughout the length of the document
are reported over UDv2.4 and UDv2.5 data.
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There are some experiments that work well for UDv2.4 and UDv2.5 through-
out, and there are some that work better for only one of the releases, mainly
owing to the error instance being fixed in iterative format, and/or continuously
evolving guidelines. To facilitate the understanding of individual experiments
better, each experiment shall contain a note specifying the dataset (which also
mentions the release version of UD) on which the experiment was conducted.

1.6 Organizational Layout of the Document
We first continue the preface of the document by very quickly noting a few con-
ventions that are used throughout this document. In Chapter 2, we take a look at
the different categorisation of errors, and then the typology of different problems
identified in UD treebanks. We continue the document with Chapter 3, contain-
ing the background on the research pertaining to the problems from Chapter 2.
In the subsequent chapters (Chapters 4 - 7), we layout the individual problems,
and elaborate on the method/approach undertaken to solve the problem(s). In
Chapter 8, we discuss on some of the open problems as identified by other au-
thors, which were not undertaken in the current work. We officially conclude the
document with a chapter on Conclusions.

Attached to the document are also a series of Appendices. The appendices
contain the data meant to help the reader understand some of the terms used
through out the document, with an example being a list of ISO language codes
used throughout.

1.7 A Brief Overview of Conventions Used
This section is an overview on some of the important conventions used throughout
the length of the document.

1. The following conventions hold with respect to the UD terminology. A
short introduction to different terms associated with UD can be accessed
in Appendix A.1.

• Unless otherwise mentioned, part-of-speech (POS) refers to ‘UPOS’
field in the CoNLL-U format (Appendix A.1.1). The two terms are
used interchangeably, unless mentioned otherwise.

• Syntactic Relations in UD can be referred to by either of ‘relation(s)’,
‘deprel’, or ‘dependency relation’. Unless otherwise mentioned, the
instances refer to the ‘DEPREL’ field in CoNLL-U format (Appendix
A.1.1).

2. The POS tags, as well as dependency relations are formatted in the same
formatting style, with one essential difference. Both the categories are
marked typographically using a separate tag in LATEX. We refer to this
formatting style as ‘Tag’ category, shown in the example below.
Example 1. VERB is a POS tag, while nmod is a deprel.
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3. The POS tags are always capitalized (written in upper-case), while the
deprels are always non-capitalized (written in lower-case).

4. The use of ‘Tag’ category is also reserved for nomenclature of problems.
Thus, a problem identified as ProblemX will act as the unique identifier for
the problem across the length of the document.

5. The languages are referred to by their language-identification codes when-
ever possible.

• A complete list of languages in UDv2.5, with their identification codes
can be seen in Appendix A.2.

• The language codes are also formatted using ‘Tag’ category as defined
above. Given the nature of the dependency relations, it should be
easily possible to disambiguate the language code from the former.

• In case of an unclear distinction, the language name corresponding to
the language-code shall follow in parentheses.

6. The name of the different treebanks are written in the format of
LanguageCode-treebank_name. The truecasing in the name of the treebank
is optional.
For example, the SynTagRus treebank for ru can be referred to by either
of ru-syntagrus or ru-SynTagRus.

7. The tokens taken from a language other than en follow a pattern when
mentioned inline:

• For the tokens with Latin based orthography, the token is marked in
bold, followed by a literal translation in parenthesis. Consider the
following example from nl, written inline in text with en.
Example 2. Lorem ipsum text hier (here).

• For the tokens with non-Latin based orthography, the token is again
marked in bold, followed by the transliteration of the token in italics,
and the literal translation of the token in regular case, separated by a
semi-colon. The transliteration, and the translation are mentioned in
the parenthesis following the token. Consider the following example
from ru, written inline in text with en.
Example 3. да (da; yes), this is Lorem ipsum text here.

• For the case where LTR (Left-To-Right) languages are mentioned
inline with RTL (Right-To-Left) languages, the transliteration and
translation are written for the tokens in the order of utterance. Con-
sider the following example, assuming A, B and C is written in RTL
as C and B ,A. The example would be written inline with en in the
following way:
Example 4. This is the Lorem Ipsum for RTL language- C and B ,A
(A, B and C ; A, B and C)
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2. Problems Identified in UD
Treebanks
Ever since the UD project was introduced in 2014, and since the revision of
guidelines in UDv2, there have been multiple publications that highlight the
problems in UD treebanks. Some of the problems highlighted in these publications
have been found to be global in nature (i.e. they occur in almost all treebanks,
regardless of the language), while the others are related to a specific group of
languages. Before we start discussing the problems, we shall specify the general
kind of errors.

Agrawal et al. [2013] define different kinds of errors that can be found in a
treebank. The first kind are the random errors, characterised by the inconsis-
tencies introduced by the annotators owing to the distractions while undertaking
the annotation procedure. The systematic and recurrent errors are introduced
not in isolated scenarios as random errors, but can be found across the treebank
in a consistent manner. These errors are usually related to the guidelines of the
treebank, in either of two ways. The guidelines could be misunderstood by the
annotator(s), and/or the guidelines might themselves be unclear (or not appro-
priate to handle some cases), leaving the annotator(s) in a jeopardy. Alzetta
et al. [2017] extend the definition of systemic and recurrent errors to also include
the cases of conversion errors, caused by improper mapping of original annota-
tion scheme to a new scheme. Throughout the length of this document, we focus
on the errors of the second kind (systemic and recurrent errors), and propose
corrective measures.

It is worth pointing out why the experiments listed in this thesis were chosen
to work on, and not others. As we will see, apart from the first problem listed
in next few sections, almost all of the error typologies were pointed out from
a common source [Alzetta et al., 2017]. The authors of the paper note that
the mined patterns were found to be common across different sections of the it
treebank, and across different languages as well. We therefore work on the set of
error types as identified by Alzetta et al. [2017], and work on them, given that
the error types are common across different treebanks.

2.1 Annotation Consistency in Different Tree-
banks

UDv2.5 [Zeman et al., 2019], as mentioned earlier, contains 157 treebanks in 90
languages. As such, there are multiple languages with more than one treebank,
with some containing up to 6 treebanks. A list of languages in UDv2.5 such that
they contain more than one treebank is listed in Appendix A.3. Regardless of the
differences in genre or the teams involved for building the treebank, the different
treebanks for a language should be consistent with respect to the annotation
guideline(s), both intra and inter treebanks. However, this is often not the case,
primarily because of the different sources of origin of the individual treebanks.

The problem of determining the degree to which the different treebanks differ
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from each other has been studied in some detail over multiple years, but is not yet
entirely solved. We discuss the different solutions proposed over time regarding
this problem in Sections 3.1.1 and 3.1.2.

We return to this problem in Chapter 4, when we try to devise a metric to
compare the different treebanks on basis of their POS annotation.

2.2 Problems Caused by Change of Guidelines
in UDv2

A summarized version of changed guidelines from UDv1 to UDv2 can be accessed
online1. Most of the changes in guidelines could be processed in an automatic
manner. For example the renaming of particular POS tags or dependency re-
lations could be implemented across the different treebanks in a deterministic
manner. However, there were some changes that could not be applied determin-
istically, and those form the majority of the problems in this section.

It is important to note that the changes had to be applied to 64 treebanks in
47 languages as they moved from UDv1.4 to UDv2.0, and so the analysis might
be limited to these 64 treebanks only in this case. However, it is worth scouting
for these patterns in the newer treebanks, given how some (if not all) of them
might be a cause of concern therein.

The dependency tree structures shown throughout the length of this document
are generated as per Parsito format [Straka et al., 2015].

2.2.1 Conversion Errors in Conjunctions
In the changed guidelines, there were two changes with respect to conjunction
tags CCONJ and SCONJ; and the dependency relations, cc and conj. The changes
are listed as follows:

1. The POS tag CONJ in UDv1 was changed to CCONJ in UDv2, to make it
more parallel to SCONJ.

2. The conjunctions are attached to the immediately succeeding conjunct in
UDv2, as opposed to UDv1 where they were attached to the first conjunct.

Of the two changes in guidelines, the first one (renaming of tag) can be applied
deterministically, and automatically throughout the treebank(s). The second
change, however, can be classified as head identification error. The pattern in
question (referred to as conj_head henceforth) was also identified by Alzetta
et al. [2017] in their paper, where they note that it contributes to 24.65 % of
total discovered error instances and is major error category. Keeping this in
consideration, we take a look at this error type in Chapter 5 in detail.

2.2.2 AUX and VERB Distinctions
The following is a list of changes for the category of auxiliaries from UDv1.4 to
UDv2:

1https://universaldependencies.org/v2/summary.html
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1. The definition of AUX was extended to include copula verbs, and non-verbal
TAME (Time, Aspect, Mood, Evidentiality. Might/might not include Voice
and Polarity) particles.

2. The aux relation was also expanded to include non-verbal TAME particles,
as in the case of AUX.

3. The relation auxpass was removed from UDv2.0, making it as a subcategory
of the larger aux relation, in the form of aux:pass. Essentially speaking,
auxpass was demoted to a sub-category of aux relation.

Considering the changes that the auxiliaries went under with the change in
guidelines, the line of distinction between the POS VERB and AUX became fuzzier.
At the time of writing this document, the distinction between the two is not
always explicit. For a given language, this is also governed by the definition of
the terms in UD, and how those definitions agree with the traditional language-
grammar. This is noted in part in the guidelines for UDv2 as well, where the
following point is noted, with reference to the definition2 of AUX:

[AUX] is often a verb (which may have non-auxiliary uses as
well) but many languages have nonverbal TAME markers and
these should also be tagged AUX.

One of the proposed change in guidelines was to get rid of AUX altogether3.
However, as per findings of de Lhoneux and Nivre [2016], a parser is not able to
learn the distinction between the two categories, when they are merged together.
The authors observe a decrease in parsing scores when the two categories are not
explicitly separated. This was the principal motivation behind keeping the two
separate. However, there still exist problems with respect to the differentiation
between the two categories, as can be seen in the list of open issues on the subject4.

In UDv2.4, it was proposed to limit the AUX of each language by a list. The list
would essentially identify all auxiliaries by a common definition, and thus would
be able to create a better distinction between the two conflicting categories of
AUX and VERB. This could be realized just in part though, principally because of
the conflicts between traditional grammar-based definitions of the two categories,
and the definitions as per UD.

With respect to this particular error type, we tried to segregate the classes of
AUX and VERB in our experiments in Chapter 7, without using the aforementioned
list.

2.3 Non-projective Structures
While non-projectivity is not tackled as an issue in the scope of the current
research, it is nonetheless an important linguistic phenomenon that warrants
attention. In this section, we cover the concept as a primer, such that the reader

2https://universaldependencies.org/u/pos/all.html#aux-auxiliary
3https://github.com/UniversalDependencies/docs/issues/275
4https://github.com/universaldependencies/docs/issues?utf8=%E2%9C%93&q=is%

3Aopen+aux
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is not lost about the topic when it is referred to in future chapters. We discuss
an open problem about non-projective structures later in Section 8.3.

Let us understand non-projectivity through the following example from LinES
treebank in en data, and the tree structure as shown in Figure 2.1.

Figure 2.1: Sample Non-projective Tree
Note: that should be tagged as PRON, and not as SCONJ

In the graph, notice the edge going from see to that. We can see that the edge
crosses over another edge in order to link the two tokens. Informally, presence of
such crossing edges in a tree makes it non-projective in nature.

2.3.1 Related Terms and Formal Definition
To define the concept of non-projective structures in a formal manner, we need
to define a few notations. We use the same notations as used by Mambrini and
Passarotti [2013].

If a node j depends on a node i, we call node j as a child node of i (also, i
is parent node of j), represented as i −→ j. We use i < j to denote the node i
precedes node j in the word-order in tree T . A node v lying in between the nodes
i and j in the tree can be represented as v ∈ (i, j). Also, we use the notation
v ∈ Subtreei if node v is part of the subtree rooted at node i.

From Havelka [2007], we can define the condition of projectivity of a tree as
follows:

Definition 1. A given tree T is projective in nature iff

i −→ j & v ∈ (i, j) =⇒ v ∈ Subtreei ∀i, j, v ∈ T (2.1)

If a given tree does not satisfy the above condition, it is said to be non-
projective in nature. Furthermore, in case of non-projectivity, node v is said to
be in gap, represented as v ∈ Gapi↔j. The double headed arrow signifies the
nodes being considered irrelevant of their order of occurrence in the tree.

Mambrini and Passarotti [2013], in their work on grc, highlight that the dis-
tribution of non-projective structures might be affected by genre distribution. In
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particular, poetic style is liable to contain more non-projective structures than
prose. The claim about genre distribution affecting projectivity is also supported
by Yadav et al. [2017], where they look at different genres (news and conversa-
tions) using different parameters to account for lack of non-projective structures
in the conversational genre, than in news genre.

2.3.2 Punctuation Induced Non-Projectivity
A punctuation node can induce non-projectivity in either of the two ways as
mentioned below:

1. Non-projective attachment of a punctuation node.

2. Non-projectivity caused by only punctuation node(s) in gap.

According to UD guidelines, a punctuation node should be attached to the
surrounding dependent unit. However, it is not always possible to identify the
correct dependent where the node should be attached. Consider the following
example from en-lines UD v2.5 treebank, and the associated dependency tree in
Figure 2.2, with specific reference to the punctuation mark immediately following
the token marked in bold. While the punctuation token could have been correctly
marked to either of right or said, it is attached to ’s causing non-projectivity.
Example 5. That’s right, said Quinn.

Figure 2.2: Punctuation Node Attached Non-Projectively

Similarly, the punctuation node(s) can induce non-projectivity, by attaching
itself to the wrong node. Consider the following example from en-EWT UDv2.5
treebank, and the associated dependency tree in Figure 2.3, with specific refer-
ence to the punctuation mark immediately following the token in bold. A faulty
association of this punctuation induces non-projectivity in another node.
Example 6. Analyst Team 1 : Coach : Lisa Gilette
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Figure 2.3: Punctuation Node Causing Non-Projectivity

To summarise, we can say that a non-projective edge i → j is a case of
Punctuation Induced non-projectivty if any of the following conditions are met:

1. Either of head (node i), or dependent (node j) is a punctuation node.

2. The nodes in Gap(i, j) consist of only punctuation node(s).

Projectivity in itself is a strict constraint for a multitude of natural languages.
Therefore, there have been multiple relaxations that have been suggested over
time on the strict constraint of projectivity. Appendix A.5 discusses some of
these relaxations, and then lists in tabular form the statistics related to non-
projectivity in different treebanks in UDv2.5 data.
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3. Related Work on Solutions to
Identified Problems
In this chapter, we discuss some of the solutions that have been proposed or
used by the different researchers. The solutions discussed here are limited in the
scope of the problems identified in the last chapter. It is important to note that
there have been numerous papers studying the different treebanks in UD, and the
set of problems encountered while changing the annotation from the guidelines
for UDv1 to UDv2. While such research is helpful in pointing out cases where
the annotating teams had difficulties during the conversion procedure, we do not
discuss those references here, unless needed.

Before proceeding further, it is imperative to understand a subtle difference
between error detection and inconsistency detection. If the errors are consistent
in their distribution across the data, an inconsistency detection tool would fail
in the discovery of such errors. In such case, the non erroneous part of the an-
notation would be the inconsistency and might be flagged as a false negative,
provided the tool is biased towards the erroneous annotation. Any tool that tries
to discover inconsistencies need not find such consistent error patterns. This is
the major difference between error detection and inconsistency detection. Er-
ror mining methods are primarily based on detecting deviations from a standard
clean reference (usually gold or platinum standard), and should be able to pro-
vide an analysis of the error patterns regardless of whether or not the error is
present consistently. In this chapter, we use error mining and error detection
interchangeably.

The rest of the chapter is organised as follows. We first discuss existing
literature on inconsistency detection in Section 3.1, and the relevance of the
literature to the problem identified in Section 2.1 on Annotation Consistency in
Different Treebanks. We then focus on the literature relevant to error detection
in Section 3.2.

3.1 Annotation Consistency across Treebanks
Owing to different annotation schemes for the different treebanks of a given lan-
guage, there is no standard evaluation metric to compare the consistency of tree-
banks’ annotation to each other to the best of our knowledge.

One of the most commonly used approaches to find the inconsistencies in
the annotation is to train a high quality parser or a tagger model on a given
training data, and evaluating the cases where the prediction from the trained
model differs from the annotation of the test data. This approach can also be
extended by bootstrapping different trained models, with the majority consensus
being compared against the available annotation. While this approach can point
to individual inconsistencies, it does not say anything about the errors in the
treebank. Furthermore, the different treebanks of the same language can have
different annotation inconsistencies with the errors being consistent in their pres-
ence throughout. Additionally, the consistent errors in the different treebanks
can be vastly different from each other as well.
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To ascertain annotation quality of one or more treebanks, both inconsistency
detection and error detection should be used. In case of individual treebanks, UD
website1 shows against each treebank a metric score that is an approximation of
the quality of the treebank. The metric is calculated heuristically2, depending on
multiple factors like the number of genres present in the treebank, the score as
provided by official UD validator3, among others. When it comes to comparing
annotation quality among multiple treebanks, there exist no metrics or tools to
the best of our knowledge. However, some techniques have been used more often
than others for such comparisons.

3.1.1 Consistency in POS Annotation
Dickinson and Meurers [2003a,b] are the most well known pieces of work in de-
tecting inconsistency in POS annotation, essentially forming the base of majority
of inconsistency detection. The work focuses on finding a n-gram of tokens in
the corpus that occurs in the same context (referred to as a variation nucleus)
such that the different occurrences of the variation nucleus are annotated differ-
ently. Originally coined for continuous annotation4, the method was eventually
adapted to look for inconsistencies in discontinuous annotation as well [Dickinson
and Meurers, 2005].

Chun et al. [2018] compare the POS annotation consistency for different tree-
banks in ko by using the relative frequency of the individual POS tags. The
authors also briefly mention the cause of the variation in distribution of the in-
dividual POS tags. While such analysis is slightly helpful in terms of drawing a
comparison, it does not consider the interaction of different POS tags with each
other. To illustrate such interactions, a n-gram based approach might be utilised.
Even so, absence of SCONJ tag in one treebank prevents the analysis with respect
to other treebanks.

3.1.2 Consistency in Dependency Annotation
The original method of using variation nuclei for continuous annotation as pro-
posed by Dickinson and Meurers [2003a,b] was extended for discontinuous anno-
tation in Dickinson and Meurers [2005], as mentioned earlier. By extending the
method to discontinuous annotations, Dickinson and Meurers were able to look
at more patterns in TIGER corpus. Moreover, this meant that instead of looking
at plain POS tags and identifying the variations therein, the words could now be
looked at in order to generalize the context.

Alonso and Zeman [2016] compared the treebanks for es in UDv1.3 [Nivre
et al., 2016]. They assess the similarity of the different treebanks using depen-

1universaldependencies.org
2For more details on the associated heuristics, refer to https://github.com/

UniversalDependencies/tools/blob/master/evaluate_treebank.pl
3refer to https://github.com/UniversalDependencies/tools/blob/master/validate.

py
4The annotation of the current token is based on the annotation of a contiguous token in

word order. Discontinuous annotation implies the annotation of current token is dependent on
another token that might not be contiguous in the word order, as in the case of dependency
parsing.
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dency parsing. A high-efficiency parser was trained on one of the treebanks, and
then tested on another. The idea was to notice the drop in LAS scores, and if
the difference in scores was more than what was intuitive, the treebanks were
marked as not similar enough. The same technique of evaluating the different
treebanks for ru against each other was also used in Droganova et al. [2018].
In their work spanning the different ru treebanks in UD, Droganova et al. also
point out problems with individual treebanks. The problems pointed out therein
can be used as a starting point to scout for patterns that are present across the
different treebanks for the language.

Nivre and Fang [2017] proposed an evaluation metric called CLAS (Content-
based LAS) score that disregard the punctuation and other functional nodes,
evaluating LAS based on content words only. The change of evaluation metric
from LAS to CLAS was meant as a way to give equal treatment to the languages
with weak morphology and languages with strong morphology. For example, a
single inconsistency in fi will affect the parsing score more than a single incon-
sistency in en owing to the differences in the extent of morphology used by the
languages. The metric was evaluated as a secondary measure in CoNLL 2017
Shared Task [Zeman et al., 2017]. The primary metric for the Shared Task was
macro-averaged LAS score for the different languages. It was reported that there
is no significant performance difference in parser performances when the evalua-
tion metric was changed from macro-averaged LAS score to CLAS score.

An important point to note here is that the metrics LAS and CLAS are asso-
ciated with the performance of parsers. The metric scores would be lower in case
even when the parser is able to parse the data better than the manual annotation.
The two metrics (and also unlabelled attached score or UAS) therefore cannot be
relied upon for detection of the inconsistencies.

Chun et al. [2018] compare the dependency annotation consistency among
different treebanks in ko by again focusing on the relative frequency of the de-
pendency labels, offering reasons for the variation in distribution of the individual
label. A dependency label is determined by the choice of the parent label as well,
and thus the method of Chun et al. is of little help in flagging any inconsistencies.

3.1.3 LISCA
Dell’Orletta et al. [2013] used an unsupervised algorithm which attempts to find
the inconsistencies in dependency annotation by building a statistical model on
the data from a given reference corpus (ideally, a gold standard). This algorithm,
called LISCA, creates a language model for the given dependency arcs, learning
for each arc its probability of occurrence based on a subset of local and global
attributes associated with the arc. The eventually created language model can
then be used to rank the dependency arcs in another parsed corpus by their
probability of occurrence. Figure 3.1 shows graphically some of the features used
by LISCA to calculate score for an arc.
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Figure 3.1: Features Used by LISCA to Calculate Plausibility Score for an Arc
(marked in bold). Figure borrowed from Alzetta et al. [2017]

Local Feature: Distance in terms of tokens between d and h
Local Feature: Associative strength linking grammatical categories POSd and
POSh

Local Feature: POS of the head governor and type of syntactic dependency
connecting it to h
Global Feature: Distance of d from the root of the tree
Global Feature: Distance of d from the closest or the most distant leaf node
Global Feature: Number of siblings to the right of node d in the linear order of
the sentence
Global Feature: Number of children to the left of node d in the linear order of
the sentence

LISCA was used to identify the errors in newspaper section of Italian UD
Treebank in Alzetta et al. [2017]. In their work, they narrow the search space
for the errors by binning the arcs according to the scores into 10 bins of equal
size and an extra bin to include the extra cases. The bins were then manually
inspected for errors, while concentrating on the last two (and the extra) bins
containing the arcs with lowest scores. Analysing the data, 36% of the arcs in the
low ranking bins consisted of random errors, while the remaining ones were found
to be systemic and recurrent errors (even in treebanks of different languages).

While the algorithm mentioned above successfully points out the arcs that
are inconsistent in their annotation in the different datasets, it is sensitive to
the genre of the data. The authors note that the data should ideally belong to
the same register or genre for the algorithm to function at its best. While this
is problematic because in some treebanks it is not possible to separate the data
from different genres, there is also a possibility of unavailability of enough data
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in a particular genre (i.e. a single genre contributing in a very small manner to
the size of the treebank).

Added to these difficulties is the difficulty of training the algorithm. The
algorithm essentially needs to be trained on a gold standard data, from which
it builds a statistical model that is used to generate the probability scores of a
dependency arc. In case of languages with no high-quality parsers available or
for low-resource languages, this poses a cold-start problem where we do not have
the data to train the algorithm, and so the algorithm cannot be used at all.

We tried solving this problem of cold-start by using the method of k-fold cross
validation (with varying values of k) in training the algorithm. We discuss the
experiment in more detail in Chapter 6.

3.2 Error Mining Methods
Error mining in treebanks can be done in multiple ways. There is a possibility of
using hand-written rules, and scouting for the patterns in the relevant treebank.
This manual approach works well for finding error typologies that are known
beforehand. The other approach is to combine the statistical approach, with
the manually defined rules [Ambati et al., 2011]. This method is referred to as
heuristics-based search since it identifies a lot of patterns, which can then be used
to look for errors in the data (in some cases, this can be done automatically).
The last approach is automatic scouting for error patterns within the scope of
the treebank, also known as automatic error mining.

3.2.1 Automatic Error Mining Based on n-gram Approach
Boyd et al. [2008] first introduced the idea of error mining methods in dependency
treebanks using variation nuclei, expanding on the idea of using n-grams based
variation nuclei for discontinuous annotations from Dickinson and Meurers [2005].
This is often referred to as the first automatic error mining method in dependency
treebanks.

de Marneffe et al. [2017] extended and evaluated the method proposed by Boyd
et al., in context of UD Treebanks for three languages (en, fi, fr). The authors
further extended the method to use word lemmas instead of simply using word
forms, and also evaluate on the automatically annotated treebanks to identify
more inconsistencies. The first extension of using lemmas works well for languages
that are not too morphologically-rich (en, fr), but fails otherwise. The second
extension is done at the cost of a drop in precision, but without a significant gain
in recall.

The method proposed by Boyd et al. has an inherent problem instance of data
sparseness. de Kok et al. [2009] implemented an algorithm based on n-grams and
suspicion sharing across the n-grams by extending the methods of Sagot and
de la Clergerie [2006] and van Noord [2004]. Their approach however, relies on
classifying each sentence within the results of a parsed corpus as a parsable or
unparsable sentence. This classification of individual sentence needs to be done
manually, and is therefore not optimal for large treebanks.
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4. Estimating POS Annotation
Consistency of Different
Treebanks in a Language
(Experiment 1)
We introduced the problem of inter treebank POS annotation quality in Section
2.1 earlier, followed by a discussion of the literature relevant to the problem in
Section 3.1.1.

In this chapter, we propose a metric to estimate the POS annotation consis-
tency of treebanks. The metric is based on KLcpos3 metric [Rosa and Žabokrtský,
2015], which in turn is based upon Kullback-Liebler Divergence (KL Divergence).

We start by a short introduction to KLcpos3 metric and a definition of the
proposed metric in Section 4.1. We define our dataset for the experiments in
this chapter in Section 4.2, followed by the metric values being listed for different
treebanks in UDv2.5 [Zeman et al., 2019] in Section 4.3. The experiments are
detailed in Section 4.4 and Section 4.5, with their results summarised in Section
4.6. We mark the treebanks as consistent or inconsistent in their POS annotation
in Section 4.7. The chapter concludes with a discussion on the metric in Section
4.8.

4.1 KLcpos3 and Metric Definition
In a delexicalised cross-language model transfer scenario, Rosa and Žabokrtský
[2015] show that KL-Divergence score of POS trigrams can be effectively used
for source selection for POS Tagging . In their approach, they are able to select
effectively not just a single source, but are also able to rank multiple sources
by specifying weights to individual source in a multi-source transfer scenario.
Computing the KL-Divergence on POS trigrams, they call the measure KLcpos3 ,
defined as follows:

Definition 2.

KLcpos3(tgt, src) =
∑

∀cpos3∈tgt

ftgt(cpos3) log ftgt(cpos3)
fsrc(cpos3)

(4.1)

where cpos3 is a coarse POS tag trigram, and

f(cpos3) = f(cposi−1, cposi, cposi+1)

= count(cposi−1, cposi, cposi+1)∑
∀cposa,b,c

count(cposa, cposb, cposc)
(4.2)

with countsrc(cpos3) = 1 for each unseen trigram.
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Intuitively, treebanks of the same language (despite the differences in the
genres covered) should be better fit for single-source transfer than a treebank from
another language. This is the primary motivation for using KLcpos3 (as defined
for a single-source transfer scenario) to assess the annotation consistency among
the treebanks of a language. However, KLcpos3 is a variant of KL-Divergence,
and thus asymmetric, making it unfit in its original form for assessing annotation
consistency symmetrically. We refer to the symmetric variant of the metric as
θpos defined for the treebanks A and B as follows:

θpos(A, B) = KLcpos3(A, B) + KLcpos3(B, A) (4.3)

where KLcpos3(P, Q) indicates KLcpos3 score of Q as an estimator for P .
Since KLcpos3 is a non-negative divergence metric, so is θpos. While either

metric is numeric in nature, the KLcpos3 scores can be used as an estimator
of quality in presence of an absolute gold standard. However, in absence of an
absolute gold standard, the scores for the metric in different treebanks can not be
compared directly. In such case (of lack of absolute gold standard), there should
be an upper bound that needs to be placed on the θpos scores. As long as the θpos

scores are lower than this upper bound, the considered pair of treebanks can be
considered as harmonious in terms of their POS annotation. We call this upper
bound as Θpos. The metrics θpos and Θpos are linked together in the following
definition.

Definition 3. Given two treebanks A and B, we say the treebanks are in har-
mony with (or, are harmonious to) each other in terms of POS annotation, if
the symmetric measure of their mutual divergence (given by θpos) is less than or
equal to a threshold (given by Θpos).
Formally, it can be represented as:

θpos(A, B) = KLcpos3(A, B) + KLcpos3(B, A)

≤ Θpos(A, B) (4.4)

where KLcpos3(P, Q) indicates KLcpos3 score of Q as an estimator for P .

Even though Θpos is a bound on the θpos metric, the former is essentially a
property of the latter. For a given set of guidelines, and a given set of data,
the upper bound value would need to be estimated often, albeit using the same
technique. In the remaining chapter, we try to estimate the upper bound in a
language-independent manner by looking at the influence of size of data, and the
POS distribution in individual genres on θpos metric. While the methods that we
shall discuss shortly can be applied for estimations across different guidelines and
different set of data, care must be taken while estimating the upper bound for a
new guideline (or even on different iterations of UD data). If the estimated value
of Θpos is too large, we run the risk of saying the treebanks are harmonious even
when they might not be. Also, if the value is too small, we could be overlooking
at the effect of domain change and dataset size, to mistakenly announce the pair
of treebanks as being non-harmonious to each other.

23



4.2 Dataset
UDv2.5 [Zeman et al., 2019] contains 157 treebanks in 90 languages. There are
multiple languages with more than one treebank, with some containing up to
6 treebanks. A list of all such languages, with the associated treebanks can be
seen in Appendix A.3. We list θpos scores of the different treebanks in different
languages in the next section. In the listing of scores, small treebanks where the
total number of sentences is 1000 or less are not included.

As mentioned earlier, the treebanks in UD are assigned a score based on a
variety of factors, including the errors identified by the official UD validator,
among others. The score rating of a treebank can be loosely understood as an
evaluation of how well the treebank adheres to the UD guidelines. While it is
possible to have a high score without the treebank being internally consistent,
it is logical to assume that a treebank that adheres better to the guidelines will
contain fewer inconsistency errors.

We want to estimate the Θpos scores to the best of our ability, and so, working
with a pair of low quality treebanks would be the worst approach that can be
undertaken. To that effect, we estimate the bounding score on treebanks with
the ratings of at least 3.5 stars (out of 5 stars). The treebanks selected in this
manner can be considered to be of high quality. The selection of treebanks in
this manner also enforces an important assumption, that there is a considerably
lower number of annotation inconsistencies within the data in a treebank. The
assumption would also imply that in a pair of considered treebanks, while the
treebanks might not be annotated consistently with respect to each other, the
individual treebanks are assumed to be internally consistent with respect to their
annotation.

The assumption as mentioned above is a strict constraint, and might not
always hold. An alternative assumption can be used in cases where the stricter
version is not expected to hold. The relaxed version of the assumption assumes
that the data belonging to one particular genre in a treebank would be annotated
consistently throughout. This is a relaxation in the sense that given multiple
genres in a treebank, the entire treebank might not be annotated consistently.
However, the data in individual genres is annotated consistently. The experiments
listed in this chapter work within the bound of these assumptions.
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4.3 θpos Scores for UDv2.5
Languages with 2 Treebanks

Treebank1 Treebank2 θpos

ar-NYUAD ar-PADT 2.497
es-AnCora es-GSD 0.352
et-EDT et-EWT 0.413
fi-FTB fi-TDT 1.195
gl-CTG gl-TreeGal 0.714
grc-Perseus grc-PROIEL 4.641
ja-GSD ja-BCCWJ 0.951
ko-GSD ko-Kaist 2.56
nl-Alpino nl-LassySmall 0.664
pl-LFG pl-PDB 0.623
pt-Bosque pt-GSD 0.678
ro-Nonstandard ro-RRT 1.233
sl-SSJ sl-SST 2.405
sv-LinES sv-Talbanken 0.443
tr-GB tr-IMST 1.477
zh-GSD zh-HK 1.958

Languages with 3+ Tree-
banks

cs CAC CLTT FicTree
CLTT 1.453 - -
FicTree 1.138 2.657 -
PDT 0.373 1.935 1.006

Languages with 3 Treebanks

de GSD HDT
HDT 0.49 -
LIT 1.383 1.1

la ITTB Perseus
Perseus 1.106 -
PROIEL 3.763 3.901

no Bokmaal Nynorsk
Nynorsk 0.095 -
NynorskLIA 2.291 2.375

ru GSD SynTagRus
SynTagRus 0.567 -
Taiga 1.027 0.631

en EWT GUM LinES ParTUT
GUM 0.26 - - -
LinES 0.407 0.455 - -
ParTUT 0.62 0.432 0.581 -
ESL 0.592 0.799 0.564 0.823

fr FQB GSD ParTUT Sequoia Spoken
GSD 1.582 - - - -
ParTUT 1.942 0.683 - - -
Sequoia 1.693 0.248 0.524 - -
Spoken 3.644 3.089 2.599 2.732 -
FTB 2.226 0.379 0.7 0.272 3.507

it ISDT ParTUT VIT PoSTWITA
ParTUT 0.133 - - -
VIT 0.121 0.194 - -
PoSTWITA 1.67 1.478 1.764 -
TWITTIRO 1.501 1.376 1.594 0.347
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4.4 Dataset Size and θpos

KLcpos3(tgt, src) is defined on distributions of trigrams found in tgt and src. The
calculated metric scores should therefore be affected by the presence or absence of
the POS trigrams. The presence or absence of POS trigrams can similarly affect
the calculations of θpos metric scores. In this part of the experiment, we use k-
fold cross validation to check the effect of presence or absence of POS trigrams
in the data. We use k-fold cross validation here as it allows us to check how the
calculated scores are affected based on the size of the data alone, and also to
frame an association of the scores with the presence or absence of POS trigrams,
if any.

The presence or absence of data from different genres can affect the calculation
of θpos scores. In order to discount such effect, the entire data used for the analysis
should belong to the same genre. For this experiment, we used cs-PDT (rated
4.5/5 stars) and et-EDT (rated 4/5 stars) treebanks. The motivation behind
the selection of languages is primarily the difference in their language families.
Additionally, the two treebanks contain a large number of sentences belonging to
the news genre, making it easier for the data to be studied across multiple k-fold
runs with different k-values. Table 4.1 lists the sentences counts associated to the
considered genres in either treebank.

Language Genre Sentences
cs News 53 075
et News 13 557

Table 4.1: Sentence Counts in cs-PDT and et-EDT Treebanks

To check the effect of data size on θpos metric, we ran k-fold cross validation
on the data from the aforementioned treebank in the following manner:

1. Concatenate the different splits of the treebank together before downsam-
pling the concatenated data to a fixed number of instances.

2. For different predetermined k-values, the downsampled data is split into k
folds. In each fold, the θpos scores are calculated between the fold’s splits.

3. In each fold, we try to estimate the projection of trigram distribution from
the test set for the fold, onto the training set for the fold. Considering
that the larger training set will contain more trigrams, we estimate the
projection from the smaller test set. Essentially, the training set in a fold
corresponds to src, while the test set corresponds to tgt. We calculate
coverage of different POS trigrams in each fold. The coverage is calculated
by counting the number of trigrams common to both src and tgt, expressed
as a percentage of the total number of trigrams in tgt.

The methodology as stated above is listed for a single repetition over a single
treebank. To get a better estimation of the values, the method was repeated
100 times each for both the treebanks. In each repetition, the seed values were
uniquely selected so as to get different downsamples every time. Table 4.2 lists
the number of instances the treebank was downsampled to, and the considered k
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values for the downsampled data. The table also lists the θpos scores and coverage
scores for each fold. The scores are averaged over the 100 repetitions for each
k-value, with the standard deviation (sd) also mentioned therein.

Language Downsample k value θpos Score Coverage (in %)

cs 50000

5 0.021 ± 0.001 83.904 ± 0.563
10 0.037 ± 0.001 75.457 ± 0.602
20 0.069 ± 0.002 66.138 ± 0.656
50 0.161 ± 0.005 52.754 ± 0.832
100 0.304 ± 0.011 42.368 ± 0.843
250 0.663 ± 0.03 29.353 ± 0.864
500 1.092 ± 0.063 20.802 ± 1.021

et 12000

4 0.064 ± 0.002 76.15 ± 0.807
6 0.087 ± 0.003 69.739 ± 0.957
8 0.109 ± 0.004 65.237 ± 0.83
12 0.155 ± 0.006 58.667 ± 1.032
16 0.2 ± 0.007 54.124 ± 1.029
24 0.286 ± 0.012 47.77 ± 1.046
48 0.52 ± 0.02 37.096 ± 0.947
120 1.038 ± 0.053 24.485 ± 1.151

Table 4.2: θpos and Coverage of POS Trigram Scores (± sd) Averaged over 100
Different Runs to Highlight the Effect of Size Disparity. The values in the θpos

and Coverage columns are the representative scores for the k-value, selected from
the scores of individual runs such that the score is statistically equal to scores of
more than 50% of the runs in the fold. The statistical value is calculated at 95%
confidence using One Sampled t-test.

Looking at the scores for the two languages, there is a clear negative corre-
lation between coverage and θpos score. Coverage of different POS trigrams is,
however, dependent upon the size of the datasets being compared. In case of
a really small dataset, the number of different POS trigrams or even the total
number of POS trigrams is not comparable.

Figures 4.1 and 4.2 consist of two graphs each. The graphs show how the
number of (i) distinct POS trigrams, and (ii) total number of POS trigrams is
affected by a change in the dataset size. While the first graph in each figure
shows the variability across the entire downsampled data (50000 sentences in cs
in Figure 4.1, and 12000 sentences in et in Figure 4.2); the second graph zooms
in on the progression over 2000 sentences.
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Figure 4.1: Growth of POS Trigrams in PDT with Increase in Dataset Size

Figure 4.2: Growth of POS Trigrams in EDT with Increase in Dataset Size

As can be seen from the figures, the growth pattern is similar across both the
languages. We can see that in case of a considerably small dataset size, the POS
trigrams can not be considered as representative of those present in the entire
dataset. We claim that for a proper estimation of the annotation consistency in
two datasets belonging to the same genre, either dataset requires at least 400
sentences (≈ 40% of unique POS trigrams) for the estimation to be reliable. The

28



minimum limitation on the size of the datasets ensures that the distribution of
POS trigrams in either dataset is not skewed because of a small size.

Claim 1. Data across two datasets A, B can be compared iff

size(A) ≥ 400 & size(B) ≥ 400

where size(X) refers to the size of dataset X in terms of the number of
sentences

Table 4.3 shows the average sentence length of sentences in different treebanks
for ar. If we consider equal number of sentences from either of ar-NYUAD or
ar-PADT treebanks and compare the POS annotation consistency with ar-PUD
treebanks, the total number of syntactic words differ by a factor of almost 2.

Counts ar-NYUAD ar-PADT ar-PUD
Syntactic Words 738889 282384 20751
Sentences 19738 7664 1000
Average 37.434 36.845 20.751

Table 4.3: Average Sentence Lengths in ar Treebanks. In es, the token vámonos
(Let’s go) is split into 2 syntactic words vamos (go-1P-Pl.) and nos (1P.-Pl.)
for annotation.

When calculating the θpos scores for a set of treebanks, the average sentence
length in either treebank should also be taken into account. It makes sense to
limit the size of the datasets in consideration not in absolute terms, but also in
reference to each other. Keeping this in mind, we update Claim 1 to account for
the average sentence length in Claim 2.

Claim 2. Data across two datasets A, B can be compared iff

size(A) ≥ 400 & Avg(A) ≥ Avg(B) =⇒ size(B) · Avg(B)
Avg(A)

≥ 400 (4.5)

where

1. Avg(X) = T otalSyntacticW ords(X)
size(X) is the average sentence length in dataset X

2. size(X) refers to the number of sentences in dataset X

From the results of the data in Table 4.2, when the test split is composed of
500 instances (k = 100 for cs; k = 24 for et), the θpos metric is ≈ 0.3. Considering
that the larger k-values in either dataset do not satisfy the condition in Equation
4.5, we use the values as per the aforementioned k-values to estimate the maximal
value for θpos when there is a size variance in the datasets.

As mentioned earlier, the treebanks in the consideration are ranked high in
their quality check. Considering that some treebanks might not have such high
quality of annotation, we allow some room for the change in θpos metric.
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If the datasets A, B contain data from the same genre, and the size of the
datasets is comparable (as per Equation 4.5), the upper limit on the θpos score
can be specified as per Equation 4.6.

θpos(A, B) ≤ Θpos(A, B) = 0.5 (4.6)

4.5 Genre Distribution and θpos

There can be significant difference(s) between genres in terms of syntactic anno-
tations that are typical of the genre. While this difference is best exhibited across
treebanks containing data from different genres, it can also be exhibited within
a given treebank. The problem of music genre classification in speech data has
been studied in detail, with different audio similarity metrics being proposed as
well (cf. Kalapatap et al. [2017], Pampalk et al. [2005], among others). In the
written data, while there has been some research on the study of inter-genre vari-
ations for language acquisition [Casañ-Pitarch, 2017], the classification of genres
in textual corpus is identified mainly by the source of data.

4.5.1 Relevant Literature on Textual Genres and Their
Similarity

In Biber [1989], a line of distinction is drawn between text type and genre as the
basis of classification of texts. While the former is ‘defined and distinguished on
the basis of systematic nonlinguistic criteria’, the latter is ‘defined on the basis of
strictly linguistic criteria (similarities in the use of cooccuring linguistic features)’
[Biber, 1989, p. 39]. In Biber [1991], the different genres in en are studied in
different dimensions, focusing on one dimension at a time. The dimensions are
a group of factors that associate the different features of a discourse, and are
as listed in Table 4.4. In the same work, the author notes that a given genre
can contain multiple sub-genres which may or may not be internally coherent to
each other [Biber, 1991, p. 170], and that no dimension in itself can attribute
to the similarity or dissimilarity of the genres. In a later study that seeked to
understand the variations of the genres based on these identified dimensions across
4 languages, the author notes that ‘even when defined at a high level of generality,
parallel registers are more similar cross-linguistically than are disparate registers
within a single language’ [Biber, 1995, p. 279].
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S.No. Dimension Name Characteristic of Dimension
1. Involved vs Informational Production interactional, affective, involved

purposes, associated with
strict real-time production and
comprehension constraints

2. Narrative vs Non-Narrative Concerns primary narrative purpose
3. Explicit vs Situation-Dependent identifies referents fully and

Reference explicitly through relativization
4. Overt Expression of Persuasion speaker’s expression of own

point of view or with
argumentative styles
to persuade the addressee

5. Abstract vs Non-Abstract Information highly abstract and technical
informational focus

6. On-Line Information Elaboration production under highly
constrained conditions where
information is presented
in relatively loose, fragmented
manner

Table 4.4: Identified Dimensions for Comparison of Genres. The characteristic
of individual dimensions is as found in [Biber, 1991, p. 115]. Dimension 5 on
‘Abstract vs Non-Abstract Information’ is noted to be not universal across all
languages [Biber, 1995, p. 278]

The dimensions marked in bold in Table 4.4 can be summarised under the
notion of deep formality, as coined in Heylighen and Dewaele [1999]. Heylighen
and Dewaele are able to classify linguistic constructions into different genres ac-
cording to the measurement of their formality, based on a numerical measure of
formality. The numerical measure, however doesn’t account for all the dimensions
marked in bold, but mainly to the first dimension on ‘Involved vs Informational
Production’. The formality of a construction was numerically calculated in terms
of F-measure (formality measure), as defined in Equation 4.7. Mosquera and
Pozo [2011] discovered that a numerical I-measure (informality measure, needed
for working with Web2.0 data, given in Equation 4.8) combined with F-measure
worked better in identification of formality levels in data than when either of the
measure was used on its own.

F-measure = fnoun+fadjective+fpreposition+farticle−fpronoun−fverb−fadverb−finterjection+100
2

(4.7)
I-measure = (fmistyped + finterjection + femoticon) ∗ 100 (4.8)

where fA represents frequency of A.
In our experiment, we tried to experiment with a combination of F-measure

and I-measure, as well as with the measures by themselves. Considering that the
absolute frequency would be dependent on the size of the database, the measure
scores were computed in terms of relative frequencies. However, we found no
correlation between θpos scores between two genres, with their F-measure or I-
measure scores or a combination of the two.
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4.5.2 Inter-Genre Similarity
pl-LFG treebank in UDv2.5 (rated 4 stars on a scale of 5 stars) contains data from
8 different genres1. The sentence counts of different genres are shown in Table 4.5.
We club together the different kind of data in spoken genre, as one. We remove
academic, blog and legal data from our consideration owing to a considerably
low number of sentences. Table 4.6 shows the genre distribution in UDv2.5 fi-
TDT data. In this case, the data with source as europarl and university articles
(uni_articles) is kept separate from other categories. The genres we work with
are marked in bold in the table.

Genre Sentence Count Avg()
fiction 7 252 7.124
news 6 744 8.401
nonfiction 1 273 7.719
social 526 6.977
spoken 1253 6.047
academic 51 8.118
blog 136 7.772
legal 11 9.273

Table 4.5: Genre Distribution in UDv2.5 pl-LFG treebank

Genre Sentence Count Avg()
fiction 2739 11.981
wiki 2269 14.049
grammar 2002 8.48
blog 1781 12.533
legal 1141 20.968
news 3064 13.026
europarl 1082 18.441
uni_articles 1058 13.261

Table 4.6: Genre Distribution in UDv2.5 fi-TDT treebank

In order to establish that the different genres are annotated consistently within
themselves, we downsample the dataset for each genre in fi-TDT treebank to
900 sentences. On this downsampled data, we perform 2-fold cross validation
split, and calculate the θpos score for the splits. We repeat this calculation 100
times, such that the data is downsampled differently each time, as per a different
seed value. Table 4.7 shows the calculated θpos scores averaged over 100 different
runs.

1For understanding of what genre category involves exactly what kind of data, refer
to the github page of the treebank at https://github.com/UniversalDependencies/UD_
Polish-LFG
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Genres θpos (± sd) Θpos

fiction 0.316 ± 0.015 0.5
wiki 0.3 ± 0.017 0.5
grammar 0.427 ± 0.021 0.5
blog 0.332 ± 0.017 0.5
legal 0.216 ± 0.035 0.5
news 0.286 ± 0.015 0.5
europarl 0.233 ± 0.017 0.5
uni_articles 0.3 ± 0.014 0.5

Table 4.7: θpos (± sd) Scores Averaged Over 100 Different Runs for Different Gen-
res in UDv2.5 fi-TDT Treebank To Show Intra-Genre Annotation Consistency

As can be seen from Table 4.7, the different genres in the treebank are inter-
nally consistent in their annotation, as per the constraint in Equation 4.5.

We start the inter-genre analysis by downsampling the datasets for different
genres in the dataset. Table 4.8 shows the count of sentences in the downsampled
data from each genre. Each genre is downsampled to the number of instances
such that the condition as specified in Equation 4.5 is satisfied.

Language Genre (X) Downsampled To size(X) · Avg(X)
Avg(A)

fiction 500 424
news 500 500

pl nonfiction 500 459
social 500 415
spoken 600 432
fiction 1000 571
wiki 1000 670

fi grammar 1000 404
blog 1000 598
legal 1000 1000
news 1000 621

Table 4.8: Counts of Sentences for Different Genres in Downsampled Data from
UDv2.5 fi-TDT and pl-LFG Treebanks. A in Avg(A) in the third column refers
to the genre with the highest number of average words per sentence in each
language, marked in bold.

For downsampled data from each genre, we compute the θpos scores. We
present the scores for pl data in Table 4.9 and for fi data in Table 4.10. It is
worth noting that for most genres, the Θpos constraint as employed in Equation
4.5 isn’t enough, as θpos frequently surpasses the imposed limit of 0.5.
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Genres news nonfiction social spoken
fiction 0.754 ± 0.047 0.556 ± 0.028 0.726 ± 0.032 1.059 ± 0.047
news - 0.55 ± 0.032 0.906 ± 0.044 1.53 ± 0.071
nonfiction - - 0.624 ± 0.027 1.285 ± 0.046
social - - - 1.178 ± 0.033

Table 4.9: θpos Scores (± sd) Averaged over 100 runs for Inter-Genre Analysis in
Downsampled UDv2.5 pl-LFG Data

Genres blog grammar wiki legal news
fiction 0.356 ± 0.014 0.47 ± 0.019 1.552 ± 0.041 1.559 ± 0.04 1.323 ± 0.044
blog - 0.504 ± 0.018 1.307 ± 0.042 1.328 ± 0.026 1.113 ± 0.043
grammar - - 1.166 ± 0.041 1.554 ± 0.036 0.888 ± 0.035
wiki - - - 1.229 ± 0.032 0.473 ± 0.021
legal - - - - 1.078 ± 0.026

Table 4.10: θpos Scores (± sd) Averaged over 100 runs for Inter-Genre Analysis
in Downsampled UDv2.5 fi-TDT Data

We attempted to associate the θpos scores across two genres based on if the
genre belonged to spoken discourse, or from textual medium. However, as can be
seen from the tables above, the scores can not be estimated on the basis of such
distinction.

Looking at the data in the tables above, the maximal θpos score of 1.559 is
computed between legal and fiction categories. We hypothesise that a combina-
tion of F-score metric with a metric on ‘Narrative vs Non-Narrative Concerns’
can be used to explain such high score. However, there exists no numeric metric
to compute a genre’s score on its ‘Narrative vs Non-Narrative Concerns’ to the
best of our knowledge. We therefore, are unable to associate the upper limit on
θpos scores with respect to individual genres.

However, we can estimate a general upper bound. We allow some room for
change in θpos score owing to high quality of annotation as while accounting for
variability of dataset size change. With that in mind, we frame the general upper
bound on θpos scores between genre x in dataset A (written as Ax) and genre y
in dataset B (written as By) as in Equation 4.9, given below:

θpos(Ax, By) ≤ Θpos(Ax, By) = 2.0 (4.9)
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4.5.3 Combination of Genres
In the previous section, we looked at how the θpos score changes when data from
one genre is compared against another. In this subsection, we study how the
different genres in combination with each other affect the θpos scores.

We denoted the set of genres in treebank X as GX . Given two treebanks A
and B with at least one different genre, the different genres in the two treebanks
GA and GB can be either of the three cases as shown in Figure 4.3.

GA

GB

(a) Case 1: GA ⊆ GB

GA GB

(b) Case 2: GA ̸⊆ GB; GA ∩GB ̸= ϕ

GA GB

(c) Case 3: GA ̸⊆ GB; GA ∩GB = ϕ

Figure 4.3: Interaction of Genres in Treebanks A and B, such that |GA| ≤ |GB|

To see how the θpos scores are affected in either of the cases, we perform the
following experiment on UDv2.5 pl-LFG data.

1. Downsample the number of sentences in fiction and news genres to 2000
sentences each. Using 2-fold cross-validation, split the downsampled into 2
halves. We refer to one half as base set for the genre, and the other as the
test set for the genre, each containing 1000 sentences.

2. Downsample the number of sentences in spoken genre to 1000 sentences.

3. Concatenate the downsampled spoken data and the test set from the other
genres. Refer to this dataset as all_genres.

all_genres = spoken + fiction_test + news_test

4. Combine the test sets to result in news_fiction_test set.

news_fiction_test = news_test + fiction_test
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5. Combine the base sets to result in news_fiction_base set.

news_fiction_base = news_base + fiction_base

6. Combine the downsampled spoken data with either test set to result in
spoken_genre_test data, where genre is a placeholder for either of fiction
or news.

spoken_news_test = spoken + news_test
spoken_fiction_test = spoken + fiction_test

7. For Case 1, we study the change in θpos score when the data as mentioned
in Table 4.11 are compared against each other.

GA GB

Gnews_base = {news} Gnews_fiction_test = {news, fiction}
Gnews_base = {news} Gspoken_news_test = {spoken, news}
Gnews_base = {news} Gall_genres = {news, fiction, spoken}

Gfiction_base = {fiction} Gnews_fiction_test = {news, fiction}
Gfiction_base = {fiction} Gspoken_fiction_test = {spoken, fiction}
Gfiction_base = {fiction} Gall_genres = {news, fiction, spoken}

Gnews_fiction_base = {news, fiction} Gall_genres = {news, fiction, spoken}

Table 4.11: Datasets Compared when GA ⊂ GB and |GA| < |GB|

8. For Case 2, we study the change in θpos score when the data as mentioned
in Table 4.12 are compared against each other.

GA GB

Gnews_fiction_base = {news, fiction} Gspoken_news_test = {spoken, news}
Gnews_fiction_base = {news, fiction} Gspoken_fiction_test = {spoken, fiction}

Table 4.12: Datasets Compared when GA ̸⊆ GB; GA ∩GB ̸= ϕ and |GA| ≤ |GB|

9. For Case 3, we study the combinations as listed in Table 4.13.

GA GB

Gnews_base = {news} Gspoken_fiction_test = {spoken, fiction}
Gfiction_base = {fiction} Gspoken_news_test = {spoken, news}

Gspoken = {spoken} Gnews_fiction_test = {news, fiction}

Table 4.13: Datasets Compared when GA ̸⊆ GB; GA ∩GB = ϕ and |GA| ≤ |GB|

10. We also calculate θpos scores for each base and test sets with each other,
and with spoken data, to better know how the scores are being impacted.
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11. We repeat all the above steps 100 times, each with a different seed value to
result in differently downsampled data. We present the calculated scores
averaged over 100 runs for different cases in Tables 4.14 - 4.16. In the tables,
the ‘Average’ column contains the average of means from the preceding
columns.

news_test fiction_test Average news_fiction_test
news_base 0.257 ± 0.01 0.646 ± 0.034 0.452 0.304 ± 0.016

fiction_base 0.64 ± 0.034 0.278 ± 0.013 0.46 0.348 ± 0.019

news_test spoken Average spoken_news_test
news_base 0.257 ± 0.01 1.503 ± 0.049 0.88 0.489 ± 0.022

fiction_test spoken Average spoken_fiction_test
fiction_base 0.278 ± 0.013 0.99 ± 0.036 0.63 0.41 ± 0.018

news_test fiction_test spoken Average all_genres
news_base 0.257 ± 0.01 0.646 ± 0.034 1.503 ± 0.049 0.802 0.463 ± 0.022

fiction_base 0.64 ± 0.034 0.278 ± 0.013 0.99 ± 0.036 0.64 0.351 ± 0.014
news_fiction_base 0.3 ± 0.015 0.351 ± 0.021 1.144 ± 0.035 0.6 0.247 ± 0.011

Table 4.14: θpos (± sd) Scores Averaged over 100 Runs, Reported for Case When
GA ⊂ GB and |GA| < |GB|

spoken news_test Average spoken_news_test
news_base 1.503 ± 0.049 0.257 ± 0.01 0.88 0.489 ± 0.022

fiction_base 0.99 ± 0.036 0.64 ± 0.034 0.81 0.499 ± 0.02
news_fiction_base 1.144 ± 0.035 0.3 ± 0.015 0.7 0.498 ± 0.023

spoken fiction_test Average spoken_fiction_test
news_base 1.503 ± 0.049 0.646 ± 0.034 1.075 0.854 ± 0.036

fiction_base 0.99 ± 0.036 0.278 ± 0.013 0.63 0.41 ± 0.018
news_fiction_base 1.144 ± 0.035 0.351 ± 0.021 0.747 0.498 ± 0.023

Table 4.15: θpos (± sd) Scores Averaged over 100 Runs, Reported for Case When
GA ̸⊆ GB; GA ∩GB ̸= ϕ and |GA| ≤ |GB|

spoken fiction_test Average spoken_fiction_test
news_base 1.503 ± 0.049 0.646 ± 0.034 1.075 0.854 ± 0.036

spoken news_test Average spoken_news_test
fiction_base 0.99 ± 0.036 0.64 ± 0.034 0.81 0.499 ± 0.02

news_test fiction_test Average news_fiction_test
spoken 1.493 ± 0.048 0.987 ± 0.034 1.24 1.138 ± 0.03

Table 4.16: θpos (± sd) Scores Averaged over 100 Runs, Reported for Case When
GA ̸⊆ GB; GA ∩GB = ϕ and |GA| ≤ |GB|
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From the tables, it can be observed that the decomposition of a treebank into
its constituent genres forms the first basis for the combination of the different
genres. Once the individual genres have been identified and checked for the
inter-generic θpos scores, the overall metric score is less than the average of the
metric scores calculated for individual pair of genres in the treebank(s). Upon a
closer inspection, it was discovered that when there are multiple genres present
in the treebank, the θpos metric score is dominated by the POS trigrams that are
typical of the language, and the genre-specific POS trigrams become more and
more obscure.

Assuming treebanks A and B can be split into their constituent genres such
that GA = {A1, A2, ..., Ai} and GB = {B1, B2, ..., Bj}, the overall limit on the
θpos(A, B) score can be specified as in Equation 4.10.

θpos(A, B) ≤ Θpos(A, B) = Average(θpos(Ax, By)) ∀[Ax ∈ GA; By ∈ GB]
(4.10)

4.5.4 Adulterant Genres in Dataset
In our analysis so far, we have restricted ourselves to instances when the data in
the different genres could be reliably compared as per Equation 4.5 reproduced
below:

size(A) ≥ 400 & Avg(A) ≥ Avg(B) =⇒ size(B) · Avg(B)
Avg(A)

≥ 400 (4.5)

where

1. Avg(X) = T otalSyntacticW ords(X)
size(X) is the average sentence length in dataset X

2. size(X) refers to the number of sentences in dataset X

We define a genre as an adulterant genre in the dataset if the number of
instances in the genre does not satisfy Equation 4.5. In this subsection, we take
a look at how the presence of adulterant genres affect the θpos scores.

From Table 4.9, the maximal θpos score of 1.53 was computed between news
and spoken genres in data from pl-LFG treebank. We calculate the effect of the
adulterant genres in the following manner:

1. Downsample data from fiction, news and spoken genres in pl-LFG treebank
to 500, 500 and 600 sentences respectively.

2. Concatenate data from each of academic, blog and legal genres with the
downsampled fiction dataset to result in fiction-academic, fiction-blog, and
fiction-legal datasets.

3. Repeat Step2 above after replacing downsampled fiction dataset with the
downsampled news dataset to result in news-academic, news-blog, and news-
legal datasets.
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4. Concatenate the downsampled datasets from fiction and news genre to re-
sult in fiction_news dataset.

5. Concatenate data from each of academic, blog, legal genres with the fic-
tion_news dataset to result in fiction_news-academic, fiction_news-blog
and fiction_news-legal datasets.

6. Concatenate academic, blog and legal datasets to result in a others dataset.

7. Concatenate downsampled fiction dataset with the others dataset to result
in fiction-others dataset.

8. Repeat Step7 above after replacing downsampled fiction dataset with down-
sampled news dataset to result in news-others dataset.

9. Concatenate downsampled fiction and news datasets with the others dataset
to result in a all-genres dataset.

10. Calculate θpos score of downsampled spoken dataset with each of the created
datasets.

spoken
fiction 1.059 ± 0.047
fiction-academic 1.072 ± 0.046
fiction-blog 1.09 ± 0.044
fiction-legal 1.065 ± 0.047
fiction-others 2.413 ± 0.384

spoken
news 1.53 ± 0.071
news-academic 1.552 ± 0.069
news-blog 1.54 ± 0.065
news-legal 1.547 ± 0.071
news-others 2.63 ± 0.334

spoken
fiction 1.059 ± 0.047
news 1.53 ± 0.071
fiction_news 1.196 ± 0.048
fiction_news-academic 1.215 ± 0.048
fiction_news-blog 1.223 ± 0.046
fiction_news-legal 1.206 ± 0.048
all-genres 2.309 ± 0.358

Table 4.17: θpos Scores (± sd) Averaged over 100 Different Runs With Adulterant
Genres are Present in pl-LFG Data

We observe that a lower number of adulterant genres in the data don’t affect
the θpos scores heavily. However, the presence of multiple adulterant genres pushes
the θpos scores by almost 1.5 as compared to when there are no adulterants present.
Taking into account also the standard deviation score, and the high annotation
quality of the treebank, we can add a headroom of ±2 if adulterant genres are
present.

Assuming treebanks A and B can be split into their constituent genres such
that GA = {A1, A2, ..., An1} and GB = {B1, B2, ..., Bn2}. Of these constituent
genres, at least k genres in GA ∪GB are adulterant genres, represented by set of
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adulterant genres Gadulterant. The overall limit on the θpos(A, B) score, as specified
in Equation 4.10, can be updated as in Equation 4.11.

θpos(A, B) ≤ Θpos(A, B) =


Average(θpos(Ax, By)) + 2.0 if Gadulterant ̸= ϕ

Average(θpos(Ax, By)) if Gadulterant = ϕ

(4.11)
∀[Ax, By ∈ (GA ∪GB)−Gadulterant]

4.6 Framing Overall Θpos Limit
We studied the effects of size and genre variation in treebanks in the previous
sections. It was stated earlier that in order for two datasets to be compared, they
should satisfy the condition as mentioned in Equation 4.5 (restated below).

size(A) ≥ 400 & Avg(A) ≥ Avg(B) =⇒ size(B) · Avg(B)
Avg(A)

≥ 400 (4.5)

where

1. Avg(X) = T otalSyntacticW ords(X)
size(X) is the average sentence length in dataset X

2. size(X) refers to the number of sentences in dataset X

For given datasets of the same genre such that the datasets satisfy the con-
dition in Equation 4.5 above, the upper limit on the θpos metric score for the
datasets to be deemed as consistent in their annotation is specified in Equation
4.6 (restated below).

θpos(A, B) ≤ Θpos(A, B) = 0.5 (4.6)

For the different genres that are present in two treebanks, if the number of
instances in the genre do not satisfy Equation 4.5, we call it as an adulterant genre.
In case of multiple genres being present in either treebank under consideration,
the upper limit on θpos scores is determined on basis of whether or not there is
an adulterant genre present as per Equation 4.11 reproduced below:

θpos(A, B) ≤ Θpos(A, B) =


Average(θpos(Ax, By)) + 2.0 if Gadulterant ̸= ϕ

Average(θpos(Ax, By)) if Gadulterant = ϕ

(4.11)
∀[Ax, By ∈ (GA ∪GB)−Gadulterant]

where θpos(Ax, By) refers to the calculated θpos score calculated between genre
x present in treebank A and genre y present in treebank B. The upper limit on
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individual θpos value between two genres Ax and By for the genres to be declared
consistent with each other is given by Equation 4.9 as stated below:

θpos(Ax, By) ≤ Θpos(Ax, By) = 2.0 (4.9)
Regardless of the genre composition of the treebanks under consideration, the

treebanks with θpos score ≤ 0.5 are termed as consistent with respect to their
POS annotation. Similarly, the treebanks with θpos score ≥ 4.0 are termed as
inconsistent with respect to their POS annotation. If both the treebanks under
consideration contain a singular genre each (i.e. |GA| = |GB| = 1), they would
be termed as inconsistent in their POS annotation if their θpos ≥ 2. For all
other treebanks, a crude estimate on whether the POS annotation of a treebank
is consistent with other treebank(s) or not can be made if just the percentage
composition of different genres in the treebanks is known, regardless of whether
it is possible to split the treebank into the constituent genres. However, for a
fine-tuned estimation, it is imperative to be able to split the treebank into its
constituent genres.

For estimating the annotation consistency of a given pair of treebanks, we
proceed as follows:

1. If the θpos score of the pair of the treebanks is less than or equal to 0.5,
the treebanks are pronounced as consistent in their POS annotation with
respect to each other.

2. If the θpos score of the pair of the treebanks is greater than or equal to 4.0,
the treebanks are pronounced as inconsistent in their POS annotation with
respect to each other.

3. If possible, split the treebanks into the constituent genres.

4. Isolate the adulterant genres, if any, and calculate θpos scores taking one
genre from the remaining genres in either treebank and average the resultant
scores. The Θpos value is calculated as per Equation 4.11.

5. In case the split into constituent genres is not possible but the percentage
composition of the constituent genres is known, estimate the upper limit of
the pair of genres from either treebank as per Equations 4.6 and 4.9. The
Θpos limit is the calculated on the average of these estimated values.

6. In case the percentage composition of different genres is not known either,
we cannot estimate the Θpos limit.

7. Based on the calculated Θpos limit and the θpos value of the pair of treebanks,
the treebanks can be pronounced as consistent or inconsistent, as the case
may be.

4.7 θpos Scores for UDv2.5, Annotated To Mark
Consistent And Inconsistent Treebanks

This section lists the θpos scores in UDv2.5 data [Zeman et al., 2019], as listed
earlier in Section 4.3. Instead of just listing the scores, the scores are color coded
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as per Table 4.18 below.

Color Significance
Red Inconsistent in POS Annotation
Green Consistent in POS Annotation
Gray Could Not Be Estimated

Table 4.18: Color Codes Used to Mark Consistent or Inconsistent Treebanks
based on θpos Scores in Table 4.19

Treebank1 Treebank2 θpos

ar-NYUAD ar-PADT 2.497
es-AnCora es-GSD 0.352
et-EDT et-EWT 0.413
fi-FTB fi-TDT 1.195
gl-CTG gl-TreeGal 0.714
grc-Perseus grc-PROIEL 4.641
ja-BCCWJ ja-GSD∗ 0.951
ko-GSD∗ ko-Kaist 2.56
nl-Alpino nl-LassySmall 0.664
pl-LFG pl-PDB∗ 0.623
pt-Bosque pt-GSD∗ 0.678
ro-Nonstandard ro-RRT 1.233
sl-SSJ+ sl-SST 2.405
sv-LinES sv-Talbanken 0.443
tr-GB tr-IMST 1.477
zh-GSD zh-HK 1.958

cs CAC CLTT FicTree
CLTT 1.453 - -
FicTree 1.138 2.657 -
PDT 0.373 1.935 1.006

de GSD∗ HDT∗

HDT∗ 0.49 -
LIT 1.383 1.1

la ITTB Perseus+

Perseus+ 1.106 -
PROIEL 3.763 3.901

no Bokmaal Nynorsk
Nynorsk 0.095 -
NynorskLIA 2.291 2.375

ru GSD∗ Taiga+

Taiga+ 1.027 -
SynTagRus 0.567 0.631

en EWT GUM LinES ParTUT
GUM 0.26 - - -
LinES 0.407 0.455 - -
ParTUT 0.62 0.432 0.581 -
ESL 0.592 0.799 0.564 0.823

fr FQB+ GSD∗ ParTUT+ Sequoia Spoken
GSD∗ 1.582 - - - -
ParTUT+ 1.942 0.683 - - -
Sequoia 1.693 0.248 0.524 - -
Spoken 3.644 3.089 2.599 2.732 -
FTB 2.226 0.379 0.7 0.272 3.507
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it ISDT ParTUT VIT∗ PoSTWITA
ParTUT 0.133 - - -
VIT∗ 0.121 0.194 - -
PoSTWITA 1.67 1.478 1.764 -
TWITTIRO 1.501 1.376 1.594 0.347

Table 4.19: θpos Scores in UDv2.5 Marked for Consistency or Inconsistency in
POS Annotation. Note that treebanks with at least one adulterant genres are
marked with superscript plus sign (+). Additionally, if a treebank cannot be
split into constituent genres, it is marked with superscript asterisk sign (∗) in the
table.

Table 4.20 marks the Θpos limit for treebanks that were marked as inconsistent
in the table above. We omit the Θpos limit for grc treebanks, since the reported
θpos score for the treebanks in the language exceed the hard limit of 4.0.

Treebank Pair θpos Θpos Comments
ar-NYUAD & ar-PADT 2.497 0.5 Same Genre

Violation of Equation 4.6
cs-CAC & cs-CLTT 1.453 1.388 No Adulterant Genre

Violation of Equations 4.6, 4.11
cs-CLTT & cs-FicTree 2.657 2.0 One Genre Each

Violation of Equation 4.9
cs-CLTT & cs-PDT 1.935 1.688 No Adulterant Genre

Violation of Equation 4.11
fi-FTB & fi-TDT 1.195 1.187 No Adulterant Genre

Violation of Equations 4.6, 4.11
fr-FTB & fr-Spoken 3.507 2.0 One Genre Each

Violation of Equation 4.9
fr-Sequoia & fr-Spoken 2.732 2.0 No Adulterant Genre

Violation of Equations 4.9, 4.11
la-ITTB & la-PROIEL 3.763 2.0 No Adulterant Genre

Violation of Equations 4.6, 4.9, 4.11

Table 4.20: Comparison of θpos Score and Θpos Limit for Pairs of Treebanks
Marked as Inconsistent in Table 4.19

There are two important points that need to be specified here:

1. The affiliation of individual sentences in any given treebank is optional
and not standardized. If the README.md file associated with a treebank in
question does not specify how to split the treebank into the constituent
genres, the information can be queried through the data providers of the
treebank in question. The following treebanks could not be assessed for
the annotation consistency with other treebanks in the language as the
information on their genre split could not be fetched through either of the
treebank’s README.md file or through the treebank’s data providers:

• gl-CTG
• no-Bokmaal
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• no-Nynorsk
• tr-IMST

2. For treebanks with adulterant genres, the higher Θpos limit on the θpos

scores can be problematic. Even though the θpos scores for the treebanks
with adulterant genre(s) have also been marked as consistent in Table 4.19,
it is recommended to check the annotation consistency of the treebank
without the adulterant genre(s) as well.

4.8 Discussion And Conclusion
4.8.1 Out of Vocabulary Words
The metric θpos uses POS trigrams to compute the divergence of the annotation.
Since the metric is delexicalised, the concept of out-of-vocabulary (OOV) words
does not make sense in the calculation of the metric score. In case of either
treebank being annotated (semi-)automatically by a POS tagger, the improper
annotation of OOV words can affect the scores negatively.

In UD tagset, X tag is reserved for words such that they can not be categorised
under any of the other POS. While it is recommended to be used in a restricted
manner2, the tag can exhibit itself abundantly depending on the origin source of
the data, with the genres containing Web2.0 data being especially susceptible.

For most treebanks, the influence of OOV words should be minimal. Nonethe-
less, care must be taken when the X tag is present in the trigrams of either of the
treebanks.

4.8.2 Using θpos Scores To Localise Inconsistency
While the θpos metric is primarily meant to identify if the given treebanks under
consideration are consistent in their POS annotation, the metric can also be
employed to localise points of inconsistency, if required.

Consider the example of UDv2.5 fi-FTB and fi-TDT treebanks in UDv2.5.
While the data in fi-FTB is composed of grammar-examples genres, the data in
fi-TDT treebank is composed of multiple genres, including grammar-examples.
While calculating the θpos scores to estimate annotation-consistency for different
genres across the two treebanks, it was noted that

θpos(fi-TDTgrammar−examples, fi-FTBgrammar−examples) = 0.707 > 0.5

which is a clear violation of the condition as specified in Equation 4.6. We
believe that the inconsistency in the annotation can be localised to the genre
in fi-TDT treebank. Consequently, concentrating simply on the instances from
grammar-examples genre in fi-TDT treebank should be enough to bring the
overall θpos score between the two treebanks under the Θpos limit for the treebanks
to be marked as inconsistent.

2https://universaldependencies.org/u/pos/X.html
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4.8.3 Split Into Constituent Genres As Requirement
The estimation of the upper limit on θpos scores, viz. Θpos, is primarily based
on the requirement that the composition of different genres in the treebanks
is known. While the limit is best estimated when the instances from different
genres can be split into individual datasets and the adulterant genres identified,
it is possible to get a crude estimate of the limit. For example, one can estimate
all the common genres with θpos scores of 0.5, and the different genres have a θpos

score of 2.0. An average of these estimates should give a crude estimate on the
Θpos limit without accounting for an adulterant genre.

In practice, however, it might not always be possible to split a treebank into
constituent genres or even identify the percentage composition of each genre in
the data. The Θpos, in this case, can not be estimated reliably. It is therefore
recommended to use the metric on the treebanks which can be split into their
constituent genres, to attain best results.

4.8.4 Conclusion
In this experiment, we proposed a numeric measure based off KLcpos3 measure
[Rosa and Žabokrtský, 2015] to identify if two treebanks are consistent in their
POS annotation. The upper limit on the measure was also estimated using tree-
banks with a high annotation quality, belonging to different language families.

In addition to knowing if the treebanks are annotated consistently with respect
to each other, the measure can also be used intra-treebank as well as to localize
the genre(s) that cause an inconsistency among the treebank pair. We also eval-
uated different treebanks in UDv2.5 data [Zeman et al., 2019] and identified the
consistent and inconsistent treebank pairs based on the proposed measure.
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5. conj_head: Head Identification
Error in Coordinating
Conjunctions (Experiment 2)
As discussed in Section 2.2.1, conj_head refers to the head identification error for
a given coordinating conjunction. This error is characterized by the coordinating
conjunction being linked to the previous conjunct (in UDv1), rather than by
the next conjunct (in UDv2). We define the problem statement as identification
of correct head for a given coordinating conjunction. In our treatment of the
problem in this section, we start with a glance through some of the observations
on the problem in Section 5.1, allowing us to define our effective dataset in Section
5.2. We elaborate on our proposed solution to the problem, and the explanation
of the algorithm used in the experiment in Section 5.3 and 5.4 respectively. We
finally evaluate the experiment in Section 5.5.

5.1 Observations About Problem Statement
Identification of coordinating conjunctions, and separating them from subordi-
nating conjunctions is a problem in itself and warrants a separate discussion of
its own. Combined with the possible association of multiple deprels to a particu-
lar POS tag (cf. Section 8.4), it is necessary to explicitly put a constraint on the
instances to be considered during the scope of this experiment. To that effect, we
identify coordinating conjunctions with their POS tag marked as CCONJ, and the
deprel as cc. We disregard other deprels associated with the POS CCONJ in the
current context, effectively limiting the number of instances to be considered. In
other words, we assume that any token that is POS tagged as CCONJ and with
deprel as cc is a coordinating conjunction and that every coordinating conjunc-
tion is tagged in this manner, without exceptions. While the assumption is not
fool proof and is not guaranteed to always hold, a deviation from this assumption
would be an error in labeling rather than in dependency structure, i.e., an error
type that is outside of the scope of the present experiment.

In the following subsections, we take a look at some of the quirks associated
with the problem. Through these quirks, we seek to (i) discover triggers that
can help us in identification of problematic instances; and (ii) identify possible
problems that we can run into while handling the aforementioned problematic
instances. Throughout the rest of the experiment, we shall employ the following
terminology:

1. The terms “coordinating conjunction”, and “conjunction” are used inter-
changeably.

2. The term “coordination” refers to the entire construction that consists of
conjuncts, and (typically one) conjunction.

3. In the following example, the coordination (Jack and Jill) is marked in
bold, while the conjunction (and) is marked in italic.
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Example 7. Jack and Jill went up the hill to fetch a pail of water.

5.1.1 Direction of Dependency
Owing to the change in associated dependency from right-headed to left-headed1,
the intuitive approach to the problem at hand is to first look for the direction of
dependency for a given coordinating conjunction token, identifying the instances
where the attachment is right-headed. However, the identification of the correct
direction can be non-trivial if worked in a language-independent manner. Con-
sider the case of sa, and how it differs from en, as in Example 8. In en, the
coordinating conjunction occurs in between the different conjuncts. In the given
example for sa, the conjunction is linked with the last conjunct in a form that is
typical of the language. The word of interest in the example is marked explicitly
in bold. Referred to as monosyndentic postposing by Stassen [2000], he observes
that the phenomenon is relatively common in languages around the world. In
the same article, the author also observes that the case of syndentic preposition
(as opposed to postposition in the given example) is unattested for the the first
conjunct. A brief typology of monosyndetic coordinations is listed in Table 5.1.
We do not discuss other types of coordination like polysyndetic, asyndetic, or co-
ordination by juxtaposition in the table. While polysyndetic coordination would
essentially require the same treatment as monosyndetic coordination, the others
are not relevant to the problem owing to the lack of a defined conjunction.
Example 8.
Text (sa): तस्य त्रयः पुत्राः परमदुर्मेधसः वसुशक्ितः उग्रशक्ितः अनन्तशक्ितश्च इित
बभूवुः ।
Translit: tasya trayaḥ putrah paramadurmedhasah vasushakti ugrashaktih anan-
tashaktishca iti babhuvuh .
Lit.: His three sons extremely-stupid Vasushakti Ugrashakti Anantashakti-
and known-by-these-names there-were .
Translated: There were his three extremely stupid sons, called Vasushakti,
Ugrashakti, and Anantashakti.

Syndetion Type Structure Variations Rarity
Coordination as a token A co B Common
Postposing on Conjunct 1 A-co B Common
Postposing on Conjunct 2 A B-co Common
Postposing on Conjuncts A-co B-co Common
Preposing on Conjunct 1 co-A B Unattested
Preposing on Conjunct 2 A co-B Common
Preposing on Conjuncts co-A co-B Rare

Table 5.1: Possible Syndetion Typologies across Languages
A, B- conjuncts
co- conjunction

Z-co, co-Z- conjunction attached to Z
1https://universaldependencies.org/v2/coordination.html#

left--vs-right-headed-coordination
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In the example, note that the coordinating conjunction च (ca; and) appears
postposed on the last conjunct, unlike in English. It is also worth pointing out
that a given language can exhibit multiple kind of syndetion typologies as listed
in Table 5.1, without restricting itself to just one. For example, a conjunction
can also appear as a separate token in sa. Similarly in he, the conjunctions can
occur in preposed form on the second conjunct, or as a separate token on its own.
However, given the possibility of inflectional affixes, a singular word can have
multiple prefixes which may or may not imply a case of coordination.

The above cases exhibit two problematic instances. Nonetheless, they can
easily be handled similarly as follows:

1. A conjunction may be conventionally written as an affix of the neighboring
word (as in case of he and sa as above). We rely on the word segmentation
of the CoNLL-U file2 (assuming it is correct), so we only work with con-
junctions that are either written separately or have been separated during
word segmentation.

2. The directions “left” and “right” in left-headedness (right-headedness) are
to be understood logically, disregarding the right-to-left writing systems
of languages like he. Therefore, the head is said to be to the left of the
dependent, if its numeric position (ID in the CoNLL-U file) is lower than
the position of the dependent.

3. For a language that showcases only left-headed conjunctions3, a right-
headed conjunction is an erroneous annotation, and vice-versa for languages
showing only right-headed conjunctions. This reversed direction of depen-
dency (or reversed headedness of the conjunction head) forms the basis for
mining of the problematic instance.

Table 5.3 shows the total count of instances of coordinating conjunctions
(tokens with CCONJ as POS tag, and cc as deprel), along with the number of in-
stances that have reverse direction of dependency in different treebanks of UDv2.4
[Nivre et al., 2019]. The different PUD treebanks4 contain the same sentences,
translated into the corresponding language from en. Keeping this in mind, PUD
treebanks are analysed separately in Table 5.2. The tables also show the number
of instances where a case of misdirected dependency of conjunction head causes
a non-projectivity in the sentence.

It must be stressed here that the problem at hand is not about detecting the
cases of misdirected dependencies, but rather the selection of a more relevant head
for the dependency. However, the identification of misdirected dependencies can
be the first step towards detection of such cases, as discussed earlier. Notice that
the notion of misdirected dependency can be defined only for languages such that
the conjunctions in the language are either of left-headed or right-headed, but not
both (as in the case of sa from before). In our work, we focus on languages where
the conjunctions are only right-headed, i.e. the correct head should be located

2For details on CoNLL-U format, refer Appendix A.1.1
3The language’s characteristic of whether it showcases conjunctions as left-headed, or right-

headed, or both should be included in the language-specific documentation.
4Appendix A.4 mentions in detail about how the different PUD treebanks were created, and

how they are recommended to be used.
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towards the logical right of the conjunction. Tables 5.2 and 5.3 mark languages
that show either of left-headed conjunctions or a mix of left and right-headed
conjunctions with an asterisk superscript. However, the marking should not be
considered exhaustive.

Treebank Total Misdirected Non-Proj
(% Total)

ar-pud 651 5 (0.768) 2
cs-pud 626 5 (0.799) -
de-pud 733 8 (1.091) -
en-pud 575 - -
es-pud 553 - -
fi-pud 596 1 (0.168) -
fr-pud 537 - -
hi-pud 789 25 (3.169) -
id-pud 545 3 (0.550) -
it-pud 576 1 (0.174) -
ja-pud - - -
ko-pud 79 - -
pl-pud 571 5 (0.876) -
pt-pud 533 2 (0.375) -
ru-pud 588 - -
sv-pud 593 6 (1.012) -
th-pud 588 3 (0.510) -
tr-pud 490 2 (0.408) -
zh-pud 283 3 (1.060) -

Table 5.2: Misdirected Coordinating Conjunctions in UDv2.4 PUD Treebanks

The PUD treebanks contain the same set of sentences, therefore allowing for
a parallel comparison. From Table 5.2, notice that while the en-PUD treebank
contains 575 instances of coordinating conjunctions, PUD treebanks for ja, and
ko have less than 100 instances each. Similarly, there are other treebanks with
700+, as well as those with less than 300 instances of coordinating conjunctions.
It is also interesting to note that the number of misdirected dependencies ex-
pressed as a percentage of total number of coordinating conjunctions also ranges
widely from 0% (en, es, fr, ko, ru) to 3.169% (hi).
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Treebank Total Misdirected Non-Proj
af-afribooms 1832 1829 130
aii-as 25 8 -
akk-pisandub 100 - -
am-att 80 73 1
ar-nyuad 48768 1532 -
ar-padt 13855 1411 80
be-hse 590 1 -
bg-btb 4794 6 -
bm-crb 64 - -
br-keb 204 6 -
bxr-bdt 70 61 13
ca-ancora 14067 19 -
cop-scriptorium 675 7 -
cs-cac 21798 509 8
cs-cltt 1805 20 -
cs-fictree 7410 108 3
cs-pdt 49302 1372 9
cu-proiel 4865 3263 124
cy-ccg 305 - -
da-ddt 3097 177 61
de-gsd 8675 169 4
de-hdt 68917 1 -
de-lit 1686 17 -
el-gdt 2017 24 -
en-esl 3189 2 -
en-ewt 8197 8 -
en-gum 3212 26 4
en-lines 2510 10 -
en-partut 1647 6 1
es-ancora 14233 36 -
es-gsd 12784 226 9
et-edt 15957 37 -
et-ewt 1120 1 -
eu-bdt 4620 318 56
fa-seraji 7653 101 5
fi-ftb 4726 32 -
fi-tdt 8284 12 -
fo-oft 296 1 -
fr-fqb 97 - -
fr-ftb 11605 45 5
fr-gsd 10068 2 -
fr-partut 853 4 -
fr-sequoia 1621 - -
fr-spoken 1042 - -
fro-srcmf 10075 13 -
ga-idt 640 1 -
gl-ctg 4261 4127 -
gl-treegal 700 - -
∗got-proiel 5017 3084 125
grc-perseus 5316 5098 780
grc-proiel 13980 10704 771
gun-dooley 24 3 -
gun-thomas 26 1 -
he-htb 4724 21 2
hi-hdtb 6426 9 3
hr-set 7236 78 -
hsb-ufal 419 5 -
hu-szeged 1809 390 2
hy-armtdp 1561 8 -
id-gsd 3549 215 18
it-isdt 8131 2 -
it-partut 1680 6 -
it-postwita 2801 14 -
it-vit 8120 284 2

Treebank Total Misdirected Non-Proj
ja-bccwj 16120 11574 -
ja-gsd - - -
ja-modern 479 271 -
kk-ktb 180 6 -
kmr-mg 355 41 1
ko-gsd 223 52 4
ko-kaist 5136 2 -
kpv-ikdp 48 1 -
kpv-lattice 56 2 -
krl-kkpp 156 - -
∗la-ittb 16789 673 6
∗la-perseus 1255 960 65
∗la-proiel 14575 10311 638
lt-alksnis 1648 40 -
lt-hse 287 - -
lv-lvtb 8043 9 -
lzh-kyoto 923 - -
mr-ufal 62 1 -
mt-mudt 1514 4 -
myv-jr 314 3 -
nl-alpino 3853 7 -
nl-lassysmall 2501 6 -
no-bokmaal 10709 - -
no-nynorsk 10847 4 -
no-nynorsklia 2421 188 1
orv-rnc 1460 - -
orv-torot 13640 6683 453
pcm-nsc 135 - -
pl-lfg 3227 - -
pl-pdb 10670 138 -
pt-bosque 5153 57 9
pt-gsd 7717 82 -
qhe-hiencs 493 3 -
ro-nonstandard 14953 12 -
ro-rrt 6275 155 8
ru-gsd 2952 44 2
ru-syntagrus 38914 86 1
ru-taiga 1712 - -
∗sa-ufal 32 17 -
sk-snk 3162 29 -
sl-ssj 4665 - -
sl-sst 1082 26 1
sme-giella 984 891 60
sr-set 2900 18 -
sv-lines 2941 11 1
sv-talbanken 3510 112 -
swl-sslc 5 - -
∗ta-ttb 46 1 -
te-mtg 11 4 -
tl-trg - - -
tr-gb 160 6 -
tr-imst 825 69 10
ug-udt 462 2 -
uk-iu 4753 - -
ur-udtb 3248 10 1
vi-vtb 1177 340 -
wbp-ufal - - -
wo-wtb 1365 1 -
yo-ytb 148 - -
yue-hk 76 3 -
zh-cfl 92 - -
zh-gsd 1739 21 1
zh-hk 71 2 -

Table 5.3: Misdirected Coordinating Conjunctions in UDv2.4 Treebanks
Values in bold indicate treebanks with misdirected dependencies forming 10%+
of the total coordinating conjunctions
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5.1.2 Identifying Correct Conjunct for Misdirected De-
pendencies

For a given token in a tree, we define the level of the token as the minimum
number of dependency edges from the root of the tree to the token itself. For
example, the node connected directly to the root of the tree is at level 1, since
there is a single dependency link. Any token directly connected to this node
would therefore be at level 2, and is referred to at a lower level than the node.

At this point, we shall also overtly state some of the assumptions that we work
with during the course of the experiment. First, we assume that the conjuncts are
attached correctly but only the conjunction is wrongly attached. For the exper-
iment, we do not attempt to correct the cases where the wrong token is marked
as a conjunct or where the conjuncts are wrongly attached to their corresponding
heads. It is very likely that if there is an error in the annotation of conjuncts, the
correction of the associated conjunction would not be the intended one. Second,
we assume that the current head of a misdirected conjunction may/may not be
a conjunct. Even when the conjunction is attached to a conjunct, the trivial
solution of finding the next conjunct towards the logical right might not work
as intended. This is best exhibited in cases where there are multiple coordina-
tion structures within a single sentence. Even if the conjunction is marked to a
conjunct, it is possible for the conjunct to belong to a different coordination and
therefore the conjunction in question would be falsely attached in the wrong co-
ordination (as mentioned later in this section). In the event that the conjunction
is attached not to the conjunct, but to a random node, the search for the correct
conjunct that should be the head of the conjunction becomes more complex.

For conjunctions with misdirected dependencies, we distinguish between two
kinds of attachments. Depending on whether or not the attachment (to the wrong
conjunct) is projective in nature, we use different strategies for the identification
of the correct head for the conjunction.

Conjunction Attached Projectively

For the misdirect conjunctions such that they are attached projectively, we limit
our search for the more relevant head to a maximum of one level from the current
head. If the difference in levels of the wrong head and the more relevant head
differs by more than 1, we hypothesize that the annotation for the sentence is
erroneous and therefore it cannot be corrected automatically. To limit the level
change by 1, we try to find the correct conjunct from within the current head’s
siblings, parent or the children nodes. We do not look for a candidate node in the
current head’s extended family to accommodate for multiple coordination within
a sentence wherein a search on similar level across the tree could have disastrous
consequences. To that effect, we limit our search for a candidate head such that
it is on the same level as the current head (Figure 5.1), or is within the subtree
of this head, implying a search at a lower level (Figure 5.2a). This works only for
the cases where the current head is a conjunct itself. In cases where the current
head is located within the subtree of the conjunct, we need to first climb to a
higher level to locate the intended conjunct, and then locate a relevant head to
the logical right (Figure 5.2b).
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Figure 5.1: Possible Wrong Attachments of a Coordinating Conjunction: Correct
Head as Wrong Head’s Sibling

Note: D is the common ancestor of nodes A, B and C
Note: C is the more relevant head that conjunction B should be attached to,
instead of the current misdirected attachment with node A
Note: A, C and D might be the head of their own subtrees

(a) Correct Head as Conjunction’s Sib-
ling (b) Correct Head as Conjunction’s Grand-

parent

Figure 5.2: Possible Wrong Attachments of a Coordinating Conjunction
Note: D is the common ancestor of nodes A, B and C
Note: C is the more relevant head that conjunction B should be attached to,
instead of the current misdirected attachment with node A
Note: A, C and D might be the head of their own subtrees

Notice that while the 3 cases as mentioned in Figures 5.1 and 5.2 are separate,
there is no deterministic way of knowing what case an identified problematic
instance might refer to. As such, we handle the 3 cases in decreasing order of
priority, i.e. we try to handle the case as in Figure 5.1 first. In case the attempt
fails, owing to multitude of reasons as explained later in Section 5.4 (no siblings
to attach to, lack of a candidate head in the siblings, for example), we try to
solve it with respect to the case as in Figure 5.2a, and in case of a failure therein
as well, eventually as in Figure 5.2b. If a particular instance is still not corrected
after the consideration of the last case, we leave it unchanged.
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Conjunction Attached Non-Projectively

In case of misdirected conjunctions that are attached non-projectively, the pre-
vious approach of limiting the level change with respect to the wrong head does
not function well. The approach fails mainly because if the attachment is non-
projective in nature, it is very likely that the conjunction is attached to a head
in a different coordination. Consider the part of a sentence taken from UDv2.4
hi-hdtb treebank in Example 9 and the tree for the corresponding example in
Figure 5.3. The token in bold is attached non-projectively because its current
head is not a part of the same coordination structure as the conjunction itself.
Example 9.
Text (hi): वे सांसद या िवधायक बनने के बाद लाभ के पद पर आसीन हैं या उससे पहले से
हैं ।
Translit: ve saamsad yaa vidhaayaka banane ke baada laabha ke pada para aasiin
hain yaa usase pahale se hain .
Lit.: they senator or legislator become-Inf. Acc. after power Poss. position on
situated are or therefrom before Dat. are .
Translated: They have been in a position of power from before they became
senator or legislator, or after.

Figure 5.3: Original Annotation for Example 9
Note: First या (yaa, or) should be attached to िवधायक (vidhaayaka; legislator),

and not to हैं (hain; are)
Note: Second या (yaa, or) should be attached to उससे (usase; therefrom), and

not to िवधायक (vidhaayaka; legislator)

Since the conjunction is associated to a conjunct in the different coordination
structure, the trivial approach to the problem is to look at the next available
conjunct in the tree such that it satisfies the right-headedness criteria, and asso-
ciate the conjunction to the said conjunct. In the previous example, the problem
can simply be solved by associating the conjunction to the next available con-
junct, marked by the deprel conj. However, this might not be always possible if
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the next conjunct is not explicitly marked by the deprel. Consider the following
example from UDv2.4 en-EWT treebank and the associated dependency tree in
Figure 5.4. The token of interest is marked in bold.
Example 10.
But other people do like the way they think he will vote, and the ones who favor
him seem to outnumber the ones who oppose him .

Figure 5.4: Dependency Tree for Example 10
Note: But should be connected to like, and not to seem

In the example, the correct conjunct is not marked explicitly by the deprel
conj. Likewise in certain cases, the correct conjunct for the conjunction can not
be found by the search for the deprel alone. However, based on the position of
the content word token(s) that precede the conjunction in the word order, the
correct conjunct can be determined to some extent. In the UDv2 guidelines,
the dependencies that have a functional word as the head should be avoided
(content-head dependency vs. function-head dependencies). Nonetheless, in some
cases, the function words do form head of dependencies (when an auxiliary verb
forms the root of a tree, for example). We treat the cases where the function
word forms the head of a dependency as exceptional cases. As such, the correct
conjunct position can be determined on the basis of the preceding content word
token(s), including pronouns. The addition of pronouns is attributed to the fact
that different pronouns can act as conjuncts in a sentence.

As can be seen in the last column in Tables 5.2 and 5.3, the misdirected depen-
dencies such that they introduce non-projectivities are relatively uncommon. In
our treatment of instances of the kind, we attempt to look for the next conjunct
(if marked explicitly by the deprel) in the word order, such that the candidate
conjunct follows the conjunction. In case the conjunct is not explicitly marked,
we attempt to associate the conjunction to the immediately preceding content
word in the word order. This ensures that the misdirection is not resolved, but
the conjunction is now closer to the actual conjuncts and thus can be found in a
process similar to the level-based analysis as done in previous subsection.
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5.1.3 Conjunction Sandwich
We have so far discussed only the cases where the problem can be identified by
the wrong direction of dependency. However, when the direction of dependency is
correct, mining for the problematic instances becomes troublesome. In Figure 5.3
reproduced below, notice that the first conjunction token या (yaa; or) is linked
in the correct direction, but to the wrong head. This instance of the correct
direction of attachment, albeit to wrong head, can be present in the original
annotation, or might be introduced after the tree has been corrected for the
misdirected dependency. We refer to such cases as a Conjunction Sandwich, since
the conjunction is sandwich-ed in between the conjuncts, with a wrong choice of
head but with the direction of attachment being as expected (right-headed in
our case). The problem of not being able to identify the correct conjunct as
elaborated earlier in Example 10 can manifest itself in such cases as well, making
this problem significantly harder to detect.

Figure 5.3: Original Annotation for Example 9
Note: First या (yaa; or) should be attached to िवधायक (vidhaayaka; legislator),

and not to हैं (hain; are)
Note: Second या (yaa; or) should be attached to उससे (usase; therefrom), and

not to िवधायक (vidhaayaka; legislator)

In a given dependency tree, we can express node A being followed by node
B in top-down ordering of tokens as A < B. To establish node A is linked to
node B, such that A is the head of the relation, and B is the dependent, we can
write A → B. In case where the direction of the relation is not important, we
can express it by using double headed arrows as A↔ B.

In a dependency tree, given two undirected edges i1 ↔ j1 and i2 ↔ j2, the
edges are said to be overlapping if i1 < i2 < j1 < j2 or i1 > i2 > j1 > j2. In the
example figure above, we can see that one of the ways in which a case of con-
junction sandwich manifests itself is in the form of overlapping edges. However,
this might not always be the case. The edges can overlap also because of the
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faulty annotation of other tokens in the tree, and that renders this check unreli-
able. In the example figure above, the edge containing the first conjunction also
overlaps with the edge containing second conjunction, attached non-projectively.
The constraint (of overlapping edges) was also tightened to look for a conjunction
being the sole node in the gap of a non-projective attachment, but the number
of cases that were flagged in the process remained very low (mostly less than
1% of total number of conjunctions across different languages, depending on the
language as some languages allow less number of non-projective structures than
others). Of the total number of cases that were flagged by the tighter constraint,
the majority were false positives.

Consider the following example from UDv2.4 en-lines treebank, and the asso-
ciated dependency tree in Figure 5.5. In this case, the edges do not overlap, but
the conjunction is still attached to the wrong head.
Example 11.
That was also mentioned by Mrs Oomen-Ruitjen and Mrs Glase.

Figure 5.5: Dependency Tree for Example 11
Note: by should be attached to Oomen-Ruitjen, and not to Glase

Note: and should be attached to Glase, and not to Mrs

The trivial approach in the case of a Conjunction Sandwich would be to
look for a conjunct explicitly marked by the conj deprel, such that the said
conjunct follows the conjunction in question. For example, in Figure 5.3, the
attachment for the first conjunction can be corrected by looking for the first
explicitly marked conjunct that follows the current parent. This is an unreliable
approach nonetheless, because (i) the conjunct needs to be explicitly marked by
the deprel, which is not always the case; and (ii) the approach cannot work in
the case of nested coordination, often picking up on a conjunct from another
coordination structure.

Since none of the cases discussed in this section could be reliably scouted for,
we do not deal with identification and/or correction of Conjunction Sandwich in
the current research.
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5.2 Dataset
The experiment was initially started on UDv2.3 [Nivre et al., 2018], but owing
to the release of UDv2.4 [Nivre et al., 2019] in May 2019, the experiment was
transported entirely to UDv2.4. It is worth noting that there were far more cases
of this problem being identified in UDv2.3, rather than in UDv2.4. Nonetheless,
there exist significant cases of the problem (attachment of a conjunction to an
incorrect head, and in wrong direction) in UDv2.4 as well.

We limit our treatment of the problem to af, and ar. As can be seen from
Table 5.3, the languages contain treebanks such that (i) they do not display
any postposed variant of conjunctions as denoted by asterisk superscript in the
table; (ii) the number of misdirected dependencies in the treebank is more than
10% of the total number of conjunctions; and (iii) the languages do not have
non-projectivity as a major characteristic, and yet the number of misdirected
non-projective attachments is high in the treebank (unlike grc and la which
have non-projectivity as a characteristic feature). Additionally, the languages
belong to different language families viz. Germanic Indo-European and Semitic
Afro-Asiatic, thus ensuring that the results of the experiment are not specific to
a limited set of languages.

The number of instances of misdirected dependencies in different treebanks
of UDv2.4 was highlighted in Table 5.2 and 5.3. The count of instances for af-
afribooms and ar-padt are highlighted again in Table 5.4 for reference.

Treebank Total Misdirected % Total Non-Proj
af-afribooms 1 832 1 829 99.836 130
ar-padt 13 855 1 411 10.184 80

Table 5.4: Misdirected Coordinating Conjunctions in UDv2.4 Treebanks for af
and ar

5.3 Experimental Setup
At the end of Section 5.1.3, we mentioned how we would not deal with the cases
where the direction of attachment is already correct. Thus, in the experiments,
our treatment is limited to the instances with misdirected dependencies. To that
resort, we start by identification of conjunctions such that they are associated in
the wrong direction. Upon identification of such tokens, if they are attached non-
projectively, we associate the token (still in the wrong direction) to the nearest
content word that precedes the said token. In case the new attachment is now
projective, we can terminate dealing with this case here. In the case of the new
attachment being non-projective again, we try finding a content word (including
pronouns) that is closest to the conjunction in word-order, and try attachment
with this found word. If the new attachment is projective, we have dealt with the
problem of non-projectivity for now, and the node in question can be associated
to a more relevant head as other nodes that were originally projectively attached.

The problem with this approach (of reducing a case of non-projective attach-
ment artificially to that of a projective attachment) is twofold. Primarily, the
algorithm, as mentioned in Section 5.1.2, looks for the candidate conjunct at a
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level that is determined by the attachment to the wrong conjunct. In principle,
the choice of a wrong parent while solving non-projectivity could eventually lead
to the corrected attachment with the wrong parent, resulting in a conjunction
sandwich. Secondly, the approach does not take into account the cases when the
attachment needs to be made to a function word, rather than a content word.
The same issue can be raised for even the way the projective attachments are
handled in general.

5.4 Algorithm
We start with defining some wrapper functions in Algorithm 1 and 2. While
the first one checks for the coordinating conjunctions that are attached in wrong
direction, the second one tries to change the parent of the given node x to a new
parent z. In case the new attachment would be non-projective, the function rolls
back to the previous parent. If projectivity is preserved, the function returns a
true value, which allows us to terminate the function whenever the function call
is made inside another function. The function also checks against making the
node attached directly to the root of the tree, thereby making sure there is just
one root node at any instance.

Algorithm 1 misdirectedDependency()
Input: Node x

1: if x.upos == “CCONJ” and x.udeprel == “cc” and x.parent.id < x.id
then

2: return true
3: end if
4: return false

Algorithm 2 setParent()
Input: Node x, Original Parent y, New Parent Candidate z

1: x.parent← z
2: if isnonprojective(x) == true or z.id == 0 then
3: x.parent← y
4: return false
5: else
6: return true
7: end if

Having defined our wrapper functions, we start by trying to projectivize the
conjunctions attached non-projectively in the wrong direction. We start by first
looking for the next explicitly marked conjunct, and try to attach the conjunction
to the said conjunct. We define this procedure in Algorithm 3.
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Algorithm 3 nextConjHead()
Input: Node x such that misdirectedDependency(x) == true and

isnonprojective(x) == true, Original Parent y
1: List L← containing nodes arranged in the increasing order of their id
2: {i.e. i < j =⇒ L[i].id < L[j].id ∀L[i], L[j] ∈ L}
3: for node z in L do
4: {Process nodes in increasing order of their id}
5: if z.id > x.id then
6: if z.udeprel == “conj” then
7: return setParent(x, y, z)
8: end if
9: end if

10: end for
11: return false

In case of scenarios like in Example 9 (figure reproduced again below) with
respect to the second conjunction, the non-projective attachment is made pro-
jective, and rectified with respect to the correct head automatically. However,
there are cases when this approach may fail, owing to the next marked conjunct
being located far away (and thus new attachment being non-projective again) or
the next conjunct not being marked explicitly. In such cases, we move to the
next step, and try to associate the current conjunction to the content word or
pronoun that immediately precedes the given token. To look for the immediately
preceding content word or pronoun, we look for the following POS tags- ADJ, ADV,
NOUN, PROPN, VERB, and PRON. As with previous approach, we rollback the changes
in case the attachment to new candidate head is non-projective in nature, going
back to the original parent. The procedure is elaborated in Algorithm 4.
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Figure 5.3: Original Annotation for Example 9
Note: First या (yaa; or) should be attached to िवधायक (vidhaayaka; legislator),

and not to हैं (hain; are)
Note: Second या (yaa; or) should be attached to उससे (usase; therefrom), and

not to िवधायक (vidhaayaka; legislator)

Algorithm 4 projTempFix()
Input: Node x such that misdirectedDependency(x) == true and

isnonprojective(x) == true, Original Parent y
1: candidates = []
2: {Empty List}
3: for all z such that z.id < x.id do
4: if z.upos in [“ADJ”, “ADV ”, “NOUN”, “PROPN”, “V ERB”, “PRON”]

then
5: candidates.append(z)
6: {Add z to candidates list}
7: end if
8: end for
9: {The content nodes are organised in the list, in word-order. We need to work

with only the last candidate.}
10: if candidates == [] then
11: return false
12: else
13: candidate = candidates[−1]
14: {Pick up the last element from candidates list, and try changing it to head}

15: return setParent(x, y, candidate)
16: end if

Using the above algorithm, we are able to find better candidates for the orig-
inally misdirected non-projective dependency. Consider the following sentence,
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as taken from UDv2.4 af treebank in Example 12, and the corresponding origi-
nal and modified annotations in Figure 5.6, with the token of interest marked in
bold. We can see that the original annotation contains the conjunction attached
non-projectively. However, following the correction, the non-projectivity is solved
and the new attachment is closer to the correct annotation. It is worth noting
that the non-projectivity related to the punctuation marks can be solved easily
(cf. Section 2.3.2).
Example 12.
Text (af): Ons onderwysteikens is eenvoudig , maar van kritiese belang.
Lit: Our educational-target-Pl. is simple , but of critical significance .
Translated: Our educational targets are simple, but of critical significance.

(a) Original Annotation

(b) Modified Annotation

Figure 5.6: Change in Annotation for Example 12
Note: maar (but) should be attached to belang (significance)

At this point, we have exhausted our treatment of non-projective misdirected
dependencies. A misdirected non-projective attachment of conjunction is either
projective after this step, or is unaffected. We discuss the second case in Section
5.5 when we discuss the results of the experiment in more detail. For the first
case of non-projective attachments, we have now removed the non-projectivity
from the attachment, making sure they can be handled in the same manner as
the other originally projective attachments, as elaborated earlier.
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For the common treatment of the attachments independent of their projec-
tivity status, we look for the conjunctions such that they are attached in wrong
direction. As a first step in search for a candidate conjunct, we look for the con-
tent words at the same level as the current node. We start by checking if there
is a single remaining sibling that does not have a POS tag of X, PUNCT, or SYM
since we want to avoid the linking of the conjunction to these POS tags. In case
of the condition being satisfied, and thus the availability of a single sibling as a
candidate head, the token of interest is tried to be attached to this candidate
head, and a true value is returned, indicating the success in search for the can-
didate. The effectiveness of case when a single sibling is present is demonstrated
in Figure 5.7 containing an extension of the Example 12, after the modification
from Figure 5.6.

Figure 5.7: attachToSibling(): Single Sibling Available

In case there are multiple siblings, we try to find the nearest sibling that has
the deprel as conj, and try attaching the conjunction to this marked conjunct.
Essentially, this check would ensure that there is no need to search for another
candidate, as the nearest sibling is the one that should be the head. In case the
attachment to the marked conjunct will be non-projective in nature, the candidate
would be located further away, and is not fit to being the head. However, this
approach might fail owing to the conjunct not being explicitly marked. In the
final search for the candidate conjunct in the siblings, we try to find the candidate
by restricting the deprels to obl, xcomp, nmod, and nsubj amongst the siblings,
attaching therein if such a case is found.

The choice of the deprels is not arbitrary, but is based on an elimination proce-
dure whereby we discarded most deprels. For selection of the candidate deprels,
we restricted ourself to the core arguments, non-core dependents and nominal
dependents that correspond to nominal and clausal structural categories5. Of
these relations, dislocated, expl, nummod, vocative can be outright discarded
from the consideration. For appos, the documentations marks explicitly the case
where the deprel is chained in presence of a coordination6, marking the subse-
quent tokens as conj, rather than as appos. The deprels acl and advcl function

5The first two columns, and the entries against the structural categories as indicated in
https://universaldependencies.org/u/dep/all.html

6https://universaldependencies.org/u/dep/appos.html
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as clausal modifiers in form of an adjective7, or an adverb8 respectively. Since
the dependents are explicitly clausal, we can very well discard them from consid-
eration of conjuncts, alongwith appos.

The documentations for the deprels obj9 and iobj10 states that in presence
of more than one proto-patients, the primary is to be labelled as obj, and the
rest as iobj. However, even in presence of multiple objects (tri-transitive verbs
are rare, but nonetheless present in Caucasian languages like Georgian, and Svan
for example), the objects to the verb are often associated in form of causatives
(cf. [Chirikba, 2003, p. 39], [Boeder, 2005, p. 43]). This can be further extrapo-
lated into a lack of conjunction between such objects of the tri-transitive verbs,
thereby ensuring that we can safely discard the deprels obj and iobj from our
consideration as well.

The documentation11 for deprel csubj states that the deprel is used when the
subject itself is a clause. The guideline would ensure that there are very few cases
when the deprels might be chained together by coordination, and even more so
while they are at the same level in the tree. We therefore remove the deprel from
consideration.

Comparing the documentations of ccomp12 and xcomp13, there is no way to
say if either deprel is a better fit for the candidate head. In our experiments, the
experiment performance went down when ccomp was included in the final list of
head deprels. Keeping that in mind, we only include xcomp and discard ccomp
from our consideration of candidate head deprels.

We could not find a strong reason for discarding the remaining deprels, viz.
obl, nmod, and nsubj, and thus included them with xcomp in the list of deprels
that can be searched for, while looking for a candidate conjunct.

The restriction with respect to deprels is necessary to make sure we don’t
over-generate and rehang the conjunction to a wrong head. As demonstrated
earlier, a non-first conjunct may or may not be labelled by the conj deprel. The
deprels associated with the core arguments, non-core dependents and nominal
dependents are governed (non-deterministically) by the POS tag of a token and
the head of this token, whereas the conj deprel is not limited by the POS tag of
either the token or its head. Therefore, we can rely upon the other deprels to be
annotated better than the conj relation. However, if the deprel is not restricted,
the token of interest might associate itself to the wrong sibling, but in the correct
direction, making it as a case of a conjunction sandwich (which as we mentioned
earlier, is significantly harder to detect).

We formally define the constraints and the processing in Algorithm 5. Notice
how we decide on whether or not the algorithm terminates by continuously check-
ing the condition of projectivity, and returning a value from the function only if
the condition of projectivity with respect to the new parent is maintained. It is
also important to note that we always limit our search for a suitable candidate
to cases where the candidate occurs later than the conjunction we are trying to

7https://universaldependencies.org/u/dep/acl.html
8https://universaldependencies.org/u/dep/advcl.html
9https://universaldependencies.org/u/dep/obj.html

10https://universaldependencies.org/u/dep/iobj.html
11https://universaldependencies.org/u/dep/csubj.html
12https://universaldependencies.org/u/dep/ccomp.html
13https://universaldependencies.org/u/dep/xcomp.html
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rehang.

Algorithm 5 attachToSibling()
Input: node such that misdirectedDependency(node) == true

1: {Try to attach to a sibling node}
2: count← 0
3: origParent← node.parent
4: for all siblings of node do
5: if siblings.upos not in [“X”, “PUNCT”, “SY M”] and siblings.id >

node.id then
6: TargetSibling ← siblings
7: count← count + 1
8: end if
9: end for

10: if count == 1 then
11: {Just one sibling, attach to this sibling}
12: if setParent(node, origParent, TargetSibling) then
13: return true
14: end if
15: end if
16: {More than one siblings, narrow search by deprels}
17: for sibling of node do
18: if sibling.udeprel == “conj” and sibling.id > node.id then
19: if setParent(node, origParent, sibling) then
20: return true
21: end if
22: end if
23: end for
24: for sibling of node do
25: if sibling.udeprel in [“obl”, “xcomp”, “nmod”, “nsubj”] and node.id <

sibling.id then
26: if setParent(node, origParent, sibling) then
27: return true
28: end if
29: end if
30: end for
31: return false

If there is no suitable candidate in the same level as the current level of the
conjunction, we try to ascend one level and try to attach the node to the next
aunt (parent’s sibling) in Algorithm 6. The condition may arise owing to not
finding a suitable candidate in siblings, or in case where there are no siblings to
search for. We do not set any checks with respect to deprels, but still keep a check
on the condition of projectivity and the node order. Consider the following part
of sentence from af treebank in Example 13 with the corresponding annotations
in Figure 5.8, with the token of interest marked in bold. Figure 5.8b shows the
part where the algorithm connects the conjunction to the parent’s sibling, after
having failed trying to find an attachment amongst the siblings.
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Algorithm 6 attachToAunt()
Input: node such that misdirectedDependency(node) == true

1: {Try to attach to the first relevant aunt node}
2: origParent← node.parent
3: aunts = []
4: for sibling of origParent do
5: if sibling.id > node.id then
6: aunts.append(sibling)
7: end if
8: end for
9: {The candidate aunts would be arranged in word-order in the aunts list}

10: if aunts is not empty then
11: setParent(node, origParent, aunts[0])
12: end if
13: return false

Example 13.
Text (af): Indien die laaste dag vir betaling op ’n openbare vakansiedag of oor
die naweek val, ...
Lit: In-the-event-that the last day for pay on a public holiday or over the weekend
fall, ...
Translated: If the last day for payment falls on a public holiday or over the
weekend, ...

In the event that a suitable candidate is not found, a false value is returned.
This implies that our search for a suitable candidate has failed even after trying
to ascend one level. As last resort, we try to attach the conjunction to the
grandparent, while preserving projectivity in Algorithm 7. An example of case
where this function is needed is elaborated in Example 14 containing the sentence
from af treebank, with the corresponding annotations in Figure 5.9.

Algorithm 7 attachToGrandparent()
Input: node such that misdirectedDependency(node) == true

1: {Try to attach to the grandparent node}
2: origParent← node.parent
3: grandparent← origParent.parent
4: if setParent(node, origParent, grandparent) then
5: return true
6: end if
7: return false

Example 14.
Text (af): Ons onderwys- en vaardigheidsprogramme sal ons produktiwiteit en
mededingendheid verhoog .
Lit: Our education- and skills-program-Pl. shall our productivity and competi-
tiveness increase .
Translated: Our education and skills programs will increase our productivity
and competitiveness.
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(a) Original Annotation

(b) Modified Annotation after attachToAunt()

Figure 5.8: Change in Annotation for Example 13
Note: Z is used to denote the position of original root of the sentence

Note: of (or) should be attached to naweek (weekend)
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(a) Original Annotation

(b) Modified Annotation after attachToGrandparent()

Figure 5.9: Change in Annotation for Example 14
Note: en (and) should be attached to vaardigheidsprogramme

(skills-program)

Having established all the possible cases, we can wrap them all in a nice
function that takes care of all the cases, in priority order. Algorithm 8 shows the
complete algorithm, in order of execution of the functions defined throughout the
section.
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Algorithm 8 fixconjhead()
Input: node such that misdirectedDependency(node) == true

1: if isnonprojective(node) == true then
2: if not nextConjHead(node, node.parent) then
3: if not projTempFix(node, node.parent) then
4: Do Nothing
5: end if
6: end if
7: end if
8: {Made non-projective attachments projective}
9: if attachToSibling(node) then

10: return
11: else if attachToAunt(node) then
12: return
13: else if attachToGrandparent(node) then
14: return
15: else
16: return
17: end if

5.5 Evaluation and Results
We implement the algorithm in form of a Udapi-python [Popel et al., 2017]
block14. The runtime of the block for the data is as mentioned in Table 5.5,
as run on Ubuntu 18.04 (64-bit) on a 4-core Intel i5-6300 HQ processor.

Language Time (in ms)
af 81.33± 7.094
ar 317.05± 23.996

Table 5.5: Average Runtime (± sd) for Udapy Python Block Implementation
Note: Does Not include time taken to read the original CoNLL-U file

In this section, we would first evaluate the treatment of originally nonpro-
jective attachments with respect to the individual segments of the algorithm,
followed by a discussion of the instances not handled by the algorithm dealing
specifically with nonprojective attachments. The instances were manually anno-
tated for the direction of dependency, as well as for the choice of the correct head.
Next, we would look at the part of the algorithm that is common to all tokens,
irrespective of their projectivity status. Our focus would be on the nodes that
were affected at major steps, and the nodes that were unaffected by the end of the
algorithm. We then look at the overall evaluation of the algorithm, as manually
annotated for the correct attachment to the parent node, on limited subsamples.

14Code alongwith manually annotated data available at https://github.com/Akshayanti/
Masters-Thesis-CUNI-2020/tree/master/conj_head
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5.5.1 Originally Non-Projective Attachments
The number of originally nonprojective nodes affected by the first part of the
algorithm, where they were associated with either the next marked conjunct, or
where their attachment was temporarily made projective is as listed in Table 5.6.
We discuss on the effect of individual functions in the following subsections.

Lang. Total nextConjHead() projTempFix() Unaffected
af 130 20 106 5
ar 80 - 44 36

Table 5.6: Nodes Affected: Non Projective Attachment

Effect of nextConjHead()

Of all the nodes affected by nextConjHead() algorithm (cf. Algorithm 3), 85%
of the nodes were associated to the right parent. Of the remaining 15%, we
found annotation errors which resulted in a failure in identification of the more
relevant head. The annotation errors in these case were primarily associated with
the wrong token being marked as a conjunct, or an explicitly marked conjunct
of another coordination structure being selected as candidate (the conjunct in
current coordination structure was not explicitly marked). While the modified
annotation in these cases corrected the direction of dependency, there was a failure
in determination of the correct head of attachment. This is a case of conjunction
sandwich, as discussed earlier, and introduced in this context owing to a faulty
correction. An example of such case is shown in Example 15, with the associated
annotations in Figure 5.10. As before, the token of interest is marked in bold.
Example 15.
Text (af): ... in hulle huise, op straat en op die pad in voortdurende angs
verkeer ...
Lit: ... in 3Pl-Poss. house, on street and on the path-Sg. in continuous anxiety
find-Pres. ...
Translated: ... in their house, on street and on the road in continuous anxiety
...

69



(a) Original Annotation (b) Final Annotation

Figure 5.10: Annotation Error in Example 15
Note: Z is used as a placeholder for omitted text
Note: , should be attached to huise (house) or to the immediately succeeding
op (on)
Note: straat (street) and its children should be attached to verkeer (find-Pres.)
Note: en (and) should be attached to pad (path-Sg.)
Note: pad (path-Sg.) and its children should be attached to verkeer (find-Pres.)
Note: verkeer (find-Pres.) is wrongly marked as conj

Effect of projTempFix()

Table 5.7 shows the number of instances that were forced into a projective at-
tachment when projTempFix() algorithm (cf. Algorithm 4) was used on them.
The total count of such instances is listed in the second column. The values in
third column onward refer to the results of the manual verification, verified with
respect to the direction of new attachment and the relevancy of the choice of
head for the new attachment. The manual verification was done after the pro-
jectivised token was subjected to the overall algorithm. The third column refers
specifically to the cases where the direction was corrected, but the choice of head
of attachment was not correct, thereby resulting in a conjunction sandwich. The
value in the fourth column refers to the count of tokens that had no change what-
soever in their attachment, before and after the algorithm. The value in the last
column represents the count of tokens such that the attachment to new parent
was correct in both the aspects.
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Lang. Total Conj. Sand. Unfixed Correct
af 106 12 91 3
ar 44 - 42 2

Table 5.7: Evaluation: projTempFix()

While the results for the forced projectivisation are primarily negative, there
seems to be a pattern to the results. In the analysis of the instances marked
as unfixed for either language, it was found that the correct attachment was not
possible because the relevant part of the dependency tree had the original annota-
tion wrong and non-projective while the correct annotation would be projective.
Consider one such instance in Example 16, and the associated dependency trees
in Figure 5.11, with the token of interest marked in bold. Notice the adposition
van (of) being shared wrongly with kultuur (culture) token in Figures 5.11a,
5.11b. The overall corrected annotation is reflected in Figure 5.11c.
Example 16.
Text (af): “deure van geleerdheid en van kultuur”
Lit: “ doors of learning and of culture ”
Translated: “doors of learning and of culture”
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(a) Original Annotation (b) Final Annotation

(c) Overall Corrected Annotation

Figure 5.11: Dependency Trees for Example 16
Note: Z is used to denote the node where the subtree is attached in the original
sentence

The problem of the false annotations with respect to non-projectivity is an
open problem that is not handled in the current work. The problem is discussed
in brief in Section 8.3. In the current context, the cases of conjunction sandwich
are also attributed to such wrong annotations. Consider the sentence from af
treebank in Example 17 and the associated dependency trees in Figure 5.12, with
the token of interest marked in bold. Note that the adposition vir (for) is shared
wrongly by besending (consignment), bringing false non-projectivity into the
sentence structure.
Example 17.
Text (af): Hierdie permit is vir ’n beperkte tydperk en vir slegs een besending
geldig .
Lit: this permit is for a limited period and for only one consignment valid .
Translated: This permit is valid for a limited period and for only one consign-
ment.
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(a) Original Annotation

(b) Final Annotation

Figure 5.12: Dependency Trees for Example 17
Note: besending (consignment) should be linked to geldig (valid)
Note: en (and) should be linked to besending (consignment)
Note: . should be linked to geldig (valid)

Non-Projective Attachments Not Handled

All the cases that were unprocessed after the attempt at projectivisation of non-
projective attachments were processed by the overall algorithm. We do not discuss
here the statistics on the correction procedure of such cases, but leave it for the
next section when we evaluate the overall algorithm.

5.5.2 Processing Pipeline Independent of Projectivity of
Attachment

As can be seen from Table 5.8, the manual evaluation if done on a randomly
chosen sample of the affected nodes would be very heavily biased on the results
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from attachToSibling() algorithm. To counter this effect, we decided to separately
evaluate the algorithms, and so a random sample of 100 affected nodes was chosen
containing the nodes affected by attachToSibling() algorithm only. To measure
the efficiency of attachToAunt() and attachToGrandparent() algorithms, another
sample containing 100 randomly sampled instances was chosen. All the sampled
instances were then manually annotated for the correctness in their attachment
to the correct conjunct, as well as the direction of the attachment.

Lang. Total attachToSibling() attachToAunt() attachToGrandparent() Unaffected
af 1809 1665 8 124 12
ar 1411 952 58 178 223

Table 5.8: Nodes Affected: Overall

Overall Evaluation

We estimated the effect of projTempFix() earlier, and so to estimate the effects
of the different algorithms in an overall manner, such tokens were not included in
either sample. Furthermore, the difference between the total count of instances
and the listed instances identified as either of correct or as a case of conjunc-
tion sandwich marks the number of instances that were still misdirected in their
attachment. Table 5.9 lists the results of the manual evaluation.

Algo. → attachToSibling() Others
Lang. ↓ Total Conj. Sand. Correct Total Conj. Sand. Correct
af 100 1 99 32 1 22
ar 100 2 98 100 4 28

Table 5.9: Overall Evaluation of Affected Nodes on Randomly Sampled Instances

We based attachToSibling() algorithm based on the assumption that we would
not need to descend the tree level in the search for the correct conjunct and that
we need to only ascend the level in the tree. In the analysis of instances with
an introduced conjunction sandwich in ar, the correct conjunct could have been
found by descending the tree level. Example 18 shows the relevant part of one such
example, with the corresponding dependency trees before and after the correction
procedure in Figures 5.13a and 5.13b respectively. In the example, Z is used to
denote the omitted part of the tree, while Root is used to donate the root of the
tree. The token of interest is marked in bold.
Example 18.
Text (ar in RTL): ... Z بات ، المعارضة مع معركتها من فصلاً بدا ما انتهاء فمع . Z ...
Translit (Top-down): Z . f-mae aintiha’ ma bada fslaan min maerakat-ha mae
almuearadat , bat Z
Lit. (Top-down): ... . And-with finishing what appear-Perf.-3P. chapter from
battle-it-3P.-Sing. with opposition , become-Perf.-3P. Z
Translated: ... . With the end of what appeared to be a chapter in the battle
against the opposition, it became ...
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(a) Original Annotation

(b) Final Annotation

Figure 5.13: Introduced Conjunction Sandwich in ar
Note: Z is used as a placeholder for omitted text
Note: Root is used as a placeholder for root of the tree
Note: ف (f ; And) should be attached to انتهاء (aintiha’; finishing) and not to بات
(bat; become-Perf.-3P)

In case of af, the actual conjunct could not be discovered because of the
improper annotation of the subtree. The modification as done by attachToSi-
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bling() algorithm attached the conjunction to where the conjunct should have
been. Attachment to the right conjunct in this case was not possible because (i)
the change of levels in present annotation would bypass the enforced limit of one
level; and (ii) the new attachment would have been non-projective in nature, and
was therefore not allowed. Example 19 and the associated dependency trees in
Figure 5.14 demonstrate this with a part of the actual sentence. As in previous
example, Z is used to denote the omitted part of the tree, while also showcasing
the relative position of the root of the tree. The token of interest is marked in
bold.
Example 19.
Text (af): Deur bewusmakingsveldtogte en inderdaad as gevolg van die ven-
nootskappe Z
Lit: Through awareness-campaigns and indeed as consequence of the partner-
ships ...
Translated: Through awareness campaigns and indeed because of the partner-
ships ...

(a) Original Annotation (b) Final Annotation

Figure 5.14: Introduced Conjunction Sandwich in af
Note: Z is used as a placeholder for omitted text, and also to mark the position
of the root of the tree
Note: gevolg (consequence) should be the head of the subtree, with as (as)
attached to it
Note: inderdaad (indeed) should be attached to gevolg (consequence) after the
change of subtree head
Note: en (and) should be attached to gevolg (consequence) after the change of
subtree head

The instances of misdirected dependency in conjunctions that escaped pro-
cessing by attachToSibling() algorithm were then processed by algorithms attach-
ToAunt() and attachToGrandparent() in that order. We found that the majority
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of these cases were still misdirected even after being processed by the overall algo-
rithm. We discuss such cases in the next section where we discuss some insights
into the processing of the algorithm step by step. Of the instances that led to a
case of conjunction sandwich, the majority of the cases were caused by an anno-
tation error, caused due to improper selection of the head of the relevant subtree.
The example from af treebank in Example 20, and the associated dependency
tree in Figure 5.15 demonstrates this. In the example, the conjunction sandwich
is caused because of the improper annotation in the tree. The conjunction of
interest is marked in bold.
Example 20.
Text (af): Die derde taal kan ’n amptelike of ’n vreemde taal wees.
Lit: The third language can a official or a alien language be .
Translated: The third language may be an official or a foreign language .

(a) Original Annotation

(b) Modified Annotation

Figure 5.15: Change in Annotation for Example 20
Note: of (and) should be attached to vreemde (alien) and not to ’n (a)

Unaffected Nodes

By unaffected nodes, we refer to the instances of misdirected dependency which
were not at all touched by the entire algorithm. We hypothesized earlier that
if the rehanging of the node requires a change in more than one level (of the
level of wrong conjunct), it is likely to be an annotation error that needs manual
correction. We found that to be true for more than 50% of the cases in either

77



treebank with respect to all the unaffected cases. For the remaining cases, the
major reason why the node could not be rehung was associated with the limit of
deprels in attachToSibling() algorithm. Since that was also the case for a majority
of cases where the misdirected dependency persisted, we discuss the unaffected
nodes with them in the final discussion.

5.6 Discussion and Conclusion
We started by identifying the cases of conjunctions that were attached non-
projectively to the parent, and employed algorithms nextConjHead() and pro-
jTempFix() to find a better candidate. We got mixed results in all analyzed cases
in both treebanks. From our understanding of the patterns exhibited in the two
languages, the first algorithm works only if there exists an explicitly marked con-
junct. This was true in case of af where the conjuncts are explicitly marked with
conj deprel, but when the conjuncts are not explicitly marked (as in case of ar),
the algorithm doesn’t work as intended.

The force projectivisation in projTempFix() algorithm did not have the desired
effect. In the analysis of the instances, we found that this was mainly due to falsely
annotated non-projectivities. In general, if the conjunction was in gap of another
non-projective attachment to the same parent, the algorithm didn’t work. The
inefficiency of the algorithm in such cases could be exhibited in the form of node
not being affected at all, or the new attachment eventually leading to a case of
conjunction sandwich. If the conjunction (and any punctuation nodes attached
to this token) is the only non-projective attachment to the parent, the algorithm
would be able to make the correction effectively, and without an error.

Given the aforementioned concerns about the algorithms, it would be recom-
mended to not use the algorithms in case of a language that displays high amount
of non-projectivity in sentence structures (for example, grc) and/or on a tree-
bank has not been checked for the annotation consistency of the non-projective
structures (as in the scope of the current experiment). Furthermore, in a case
where the algorithms are used, it would be advised to have an annotator look at
the corrections for higher reliability.

The common part of the pipeline started with attachToSibling() algorithm
that seeks to associate a misdirected conjunction to a sibling token, attached
to the same parent. The number of cases that were found to introduce a case
of conjunction sandwich could have been caused due to multiple reasons. We
limited the search of a candidate head by the candidate’s UPOS (more specifically,
blacklisting a few UPOS) in case of a single available candidate, as mentioned
earlier in the definition of the algorithm. In the event of the candidate being
marked by the blacklisted UPOS, no matter the choice of deprels (except conj),
the candidate was discarded from consideration. In the algorithm, we looked for
the candidate sibling within the same subtree, and not at the same level in the
next subtree. This was the reason why some of the conjuncts that were located
in the following subtree were discarded by the algorithm, and rather their parent
(the conjunction’s aunt node) was selected as the new candidate, thus introducing
conjunction sandwich. The third and the final cause of conjunction sandwiches
was rooted in our assumption. In the search for a candidate head, the choice was
limited by the current level of attachment. We looked for a candidate at the same
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or at a higher level of the current attachment, thereby missing a few cases when
the candidate was located at a lower level.

While the aforementioned reasons did bring about the cases of a conjunction
sandwich, a relaxation of the choice of UPOS, deprels would have catastrophic
effects whereby the conjunction would be rehanged to any available node. The
search for a candidate at the same level, but in the following subtree is a promis-
ing approach, but it does warrant caution in the case of the suitable candidate
being the aunt, and not the new candidate thus discovered. This selection of the
candidate head would be non-deterministic in nature, and also depends on the
annotation consistency of the given tree. Since the number of cases that were
ignored, or generated conjunction sandwich into the annotation were significantly
low, the problem of descending down a level to search for a candidate node can be
safely ignored. In experiments where the approach was tried, the selection of the
candidate node became non-deterministic, and generated a lot of false positives
and introduced plethora of conjunction sandwiches.

In the evaluation, attachToSibling() algorithms performs very well, even after
accounting for sampling error. For the instances that are not processed by the
algorithm, attachToAunt() and attachToGrandparent() algorithms don’t perform
as well. Upon analysis of instances that are passed to the latter algorithms, we
observe a pattern. In general, if a conjunction occurs at a position such that it
can change the level at which it is associated with, it will further be processed by
the algorithms attachToAunt() and attachToGrandparent(), or would remain a
case of misdirected dependency. The position of an instance in a dependency tree
can be more often than not given by Equation 5.1, where co is the conjunction
of interest in dependency tree T , attached to the node u.

co : u→ co & ̸ ∃(x)[u→ x & co ̸= x] co, u ∈ T (5.1)

A conjunction that satisfies above property can move around the tree, and can
be associated to an aunt, to a grandparent, or the root of the tree, as relevant.
In case the token does not satisfy the above property, and also is not affected
by attachToSibling() algorithm, it will continue being a misdirected dependency.
Table 5.10 shows the total number of instances with misdirected dependency,
before and after the pipeline.

Lang. Total Before (in %) After (in %)
af 1832 1829 (99.84) 106 (5.79)
ar 13855 1411 (10.18) 398 (2.87)

Table 5.10: Misdirected Dependencies: Before and After
Note: % is calculated against the total number of conjunctions, in the second

column

The algorithm attachToGrandparent() processes more instances than attach-
ToAunt() algorithm, as evident from Table 5.8. however, this processing is with-
out any observable effect. A major reason for this is that the algorithm does not
seek to find a conjunct in the grandparent’s sibling, and thus just changes the
level of attachment without changing the direction explicitly. This is helpful only
in very limited number of cases as shown in Example 14 earlier.
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The number of false positives and true positives is quite low for the joint
evaluation of attachToAunt() and attachToGrandparent() algorithms. This pre-
vents discussion of the efficiency of algorithms, as most of the instances that were
passed on to these algorithms had no choice of candidates to attach themselves
to.

In conclusion, even though the individual algorithms of the entire pipeline
vary in their results and efficiency, the approach is promising. We analysed the
cases where the automation can go wrong, and the factors that would prevent
automation in certain cases, and in certain language typologies.
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6. Mining Errors in
Low-Resource Languages by
Combining LISCA And
Cross-Validation (Experiment 3)
While discussing the available tools for detecting annotation consistency, we dis-
cussed about LISCA [Dell’Orletta et al., 2013] in Section 3.1.3. To briefly sum-
marise the contents of the aforementioned section, LISCA (LInguistically-driven
Selection of Correct Arcs) takes as input a reference corpus, and assigns to each
arc a plausibility score based on the occurrence of similar arcs. For calculation
of the plausibility scores, the algorithm relies on global, as well as local features
of each arc. Figure 3.1 reproduced below, shows the features as used by LISCA
to model the given training data.

Figure 3.1: Features Used by LISCA to Calculate Plausibility Score for an Arc
(marked in bold). Figure borrowed from Alzetta et al. [2017].

Local Feature: Distance in terms of tokens between d and h
Local Feature: Associative strength linking grammatical categories POSd and
POSh

Local Feature: POS of the head governor and type of syntactic dependency
connecting it to h
Global Feature: Distance of d from the root of the tree
Global Feature: Distance of d from the closest or the most distant leaf node
Global Feature: Number of siblings to the right of node d in the linear order of
the sentence
Global Feature: Number of children to the left of node d in the linear order of
the sentence
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There are two goals of the experiment in this chapter. For the low-resource
languages, when there is no reference corpus, LISCA cannot be used directly.
A common approach used in the case of low-resource languages, k-fold cross-
validation is explored in this experiment. However, just using cross-validation is
not enough, as the choice of the number of folds can affect the results significantly.
In this experiment, we therefore (i) evaluate if k-fold cross-validation is an optimal
strategy against the approach of keeping the test and train data separated, and
(ii) try to map the behaviour of the algorithm to the choice of the number of
folds in k-fold cross-validation approach.

In the following subsections, we shall elaborate on the experiment with LISCA.
We start with the specification of the dataset to be used for the experiment in
section 6.1, followed by the elaboration on experimental setup in section 6.2.
Section 6.3 specifies the manner of investigation for the analysis of arcs. We
report the preliminary statistics on different runs in section 6.4, before diving
into an analysis of the results in section 6.5. Section 6.6 deals with the typologies
of errors discovered over the complete experiment. The chapter concludes with a
discussion on the findings of the experiment in section 6.7.

6.1 Dataset
The experiment was conducted entirely on data from hi-HDTB treebank from
UDv2.41 [Nivre et al., 2019]. The motivation behind the limiting of the dataset
to a particular language is threefold. Firstly, the treebank in question is limited
to news genre. The lack of variability in the genre in the treebank can be used
to frame a better statistical model than when there would be different genres
present. Secondly, the treebank is medium sized (16,000+ sentences containing
around 350k tokens) as can be seen in Table 6.1. The medium sized treebank
is optimal in the manner that a variety of values (of the number of folds in k-
fold cross validation procedure) can be experimented with. Furthermore, the
different values of the parameter can be used to ascertain the performance of the
algorithm in both large-sized and small-sized treebanks. Lastly, the author has
hi as their native language, making it easier for them to analyse the given data,
thus reducing the source of ambiguity during the process of manual annotation
and verification of results from the results of the algorithm.

Split Sentences Tokens
dev 1 659 35 217
test 1 684 35 430
train 13 304 281 057
Total 16 647 351 704

Table 6.1: Size of hi-HDTB treebank
1Code alongwith manually annotated data is available at https://github.com/

Akshayanti/Masters-Thesis-CUNI-2020/tree/master/lisca_cv
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6.2 Experimental Setup
For the remainder of the experiment, we adapt the usage of iteration and run as
follows. The results of one run would be analysed together. For a given k value
in k-fold cross validation, the experimental data is split into k different folds,
running k iterations for one run.

For the different runs of the current experiment, the total number of sentences
poses a problem in the terms of how many folds the data can be split into2. To
combat this problem, we first concatenate the different splits of the treebank
into one. The concatenated split is then downsampled to 16,000 sentences. This
downsampled data becomes our functional dataset for the experiment. The down-
sampling is needed to allow for the different values of k to work. While the data
if downsampled to 16,640 instances would have also worked, we chose to set the
count to 16,000 sentences for empirical reasons. The number of sentences from
the original splits that feature in the downsampled version are as listed in Table
6.2.

Split Name Sentences Tokens
Before After Before After

dev 1 659 1 601 35 217 33 964
test 1 684 1 614 35 430 33 981
train 13 304 12 785 281 057 270 249
Total 16 647 16 000 351 704 338 194

Table 6.2: Counts of Sentences and Tokens from Individual Splits, Before and
After Downsampling

Setup for Baseline Run

We call an arc as belonging to downsampled train data if (i) the arc was part of
the train set in the original data, and (ii) the arc is present in the downsampled
data as well. The arcs belonging to downsampled dev data and downsampled
test data are also defined similarly.

For establishing a baseline, we train the algorithm on downsampled dev and
downsampled train sets, concatenated together. The trained algorithm is then run
against the downsampled test data to get the plausibility score of the individual
arcs present therein.

Setup for Experimental Runs

The experiments were conducted on 3 different values of k. The chosen values
were k = {2, 4, 8}. When the values of k ≥ 10 were considered, the resulting data
folds became smaller enough to not yield satisfactory results.

For each value of k, the cross-validation procedure was applied to get the
plausibility scores for the arcs in the entire downsampled dataset. The LISCA
algorithm for each iteration was run by Alzetta et al. separately. Algorithm 9
summarises the procedure involved so far.

216,647 can be factorised as 3 x 31 x 179, which allows limited manipulation in the number
of folds that can be worked with for equal distribution of instances.
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Algorithm 9 Experimental Setup for k-fold Cross Validation
Input: Downsampled hi-HDTB Treebank T

1: for all k in {2, 4, 8} do
2: T.folds← {T.1, ..., T.k} subject to conditions:
3: T = ∪{T.1, ..., T.k} {Condition 1}
4: sentences(T.i) = sentences(T )/k ∀T.i ∈ T {Condition 2}
5:

∩{T.x1, T.x2} = ϕ ∀{T.x1, T.x2} ∈ T.folds {Condition 3}
6: for iteration in 1, ..., k do
7: fold.test← T.iteration
8: fold.training ← T − T.iteration
9: lisca.iteration← trained LISCA model on fold.training

10: lisca.iteration is used to assign plausibility score to arcs in fold.test
11: end for
12: end for

6.3 Arcs in Focus
The evaluation of a trained LISCA model on a given test data generates several
types of statistics. In addition, the individual arcs in the results of the LISCA
algorithm are split into 10 equal bins in descending order of their plausibility
scores, with an additional bin for the remnants. The statistics are presented on a
per-bin basis and include POS distribution, deprel distribution, POS and deprel
distribution, syntactic link length distribution, among others. While the per-bin
statistics are a useful feature, the cross validation process in the context of current
experiment does not need such per-bin statistics. Instead we focus on individual
arcs and their plausibility scores in the current experiment.

Henceforth, we call a particular arc as flagged in a particular run if its plau-
sibility score in the run is designated as 0, i.e. the arc is deemed as improbable
by the run. While Alzetta et al. [2017] looked at all the instances in the last
two bins (and the extra remnant bin), the current setup narrows down the search
scope. The last two (and the extra remnant) bins in question are the only ones
containing arcs with 0-score or with scores that are very close to 0. As we would
show later (in section 6.4.2), the scores for non-zero scored arcs would fluctuate
with different datasets of the same language, or even based on the number of folds
in cross validation. This can be extrapolated to state that the non-zero scored
arcs in the bins in question can also vary in their scores, making the bin-specific
treatment incomparable across different runs. In contrast, looking at zero-scored
arcs gives us a uniform base for analysis throughout, considering that the arc was
marked as improbable, and not probable with a low score.

6.4 Statistics
6.4.1 Baseline Run
The baseline run tried to find the low-probability arcs in the downsampled test
data. Table 6.3 shows the basic statistics of the run.
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Statistic Count / Value
Min Score 0.00
Max Score 1.82 E-07
Flagged Arcs (in %) 221 (0.7 %)
Total Arcs 33 739

Table 6.3: Statistics for Arc Scores in Baseline Run. The percentage score of
Flagged Arcs is calculated against the Total Arcs count.

Once the plausibility scores are assigned for the arcs, the flagged arcs were
manually checked to see if they are erroneous or not. Of the 221 flagged arcs
in the run, 110 arcs were found to be erroneous. The complete typology of the
errors is reserved for later. However, Table 6.4 shows the classification of errors
from the run into Random or Systemic Errors.

Statistic Count (% Total Arcs)
No Error 111 (49.3 %)
Systemic Errors 96 (43.4 %)
Random Errors 14 (6.3 %)
Total Flagged Arcs 221

Table 6.4: Classification of Errors in Baseline Run

6.4.2 Experimental Runs
Table 6.5 shows the number of arcs that were flagged across different experimental
runs. As mentioned earlier, the maximum plausibility score of arcs in a given run
fluctuates with the different k-values across different runs, even when the overall
experimental data remains the same.

k-value Min Score Max Score 0-score arcs Total arcs
2 0.00 1.96 E-07 3 487 336 079
4 0.00 1.93 E-07 2 620 336 079
8 0.00 1.91 E-07 2 319 336 079

Table 6.5: Statistics for Arc Scores in Experimental Runs

The number of 0-scored arcs went down with an increasing k-value. In ad-
dition, all the arcs flagged in a particular run were also present in a run with
a lower k-value, i.e. the arcs flagged in run with k = 4 were also present in
k = 2. Similarly, the arcs flagged in run with k = 8 were present in the run with
k = 4 as well as one with k = 2. We compare the performance of the different
experimental runs against each other in section 6.5.2.

6.5 Analysis
In this section, we analyse the experiment in two parts. In the first part of
the analysis (Section 6.5.1), we check the usefulness of k-fold cross validation
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against the arcs from only the downsampled test data, comparing them at the
same time. The primary motive of this analysis is to understand how the cross
validation technique performs in relation to the baseline approach at identifying
erroneous instances in a low-resource setting.

In the second part of the analysis (Section 6.5.2), we look at all the arcs that
are flagged in different cross validation runs, regardless of them belonging to the
downsampled test, dev or train data. The motive of this analysis is to understand
how the difference in number of folds during cross validation affects the flagged
instances.

6.5.1 Baseline vs Cross Validation: Who did it better?
Table 6.6 shows the number of test arcs that were flagged across different cross
validation runs. The values in the last column represent the count of instances
that were flagged by the experimental run as well as the baseline run.

k-value # Flagged # Also Flagged by Baseline
(% # Flagged)

2 333 211 (63.36%)
4 254 205 (80.71%)
8 226 205 (90.71%)

Table 6.6: Commonly Flagged Instances from Downsampled Test Data in Base-
line and Experimental Runs

Table 6.7 shows the counts of arcs in downsampled test data that were flagged
across different runs, and the count of flagged arcs that were erroneous.

Run # Flagged # Errors Error Precision (in %)
(TP+FP) TP TP*100/(TP+FP)

Baseline 221 109 49.32 %
Experimental (k = 2) 333 160 48.05 %
Experimental (k = 4) 254 127 50.00 %
Experimental (k = 8) 226 114 50.44 %

Table 6.7: Error Counts in Downsampled Test Data across Different Runs
Note: TP = True Positives
Note: FP = False Positives

Table 6.7 can be analysed in two different ways. The first analysis would focus
on the error precision for each run. We notice that an increase in k-value in cross-
validation approach results in an increasing precision. While the experimental
run with k = 2 had a precision lower than the precision of the baseline run (∆ =
−1.27%), the other experimental runs had a higher precision than the baseline
run (∆ = 0.68% for k = 4 and ∆ = 1.12% for k = 8). In this aspect, cross-
validation technique still outperforms the trivial technique used in the baseline
task. However, the choice of k-value in this case needs to be monitored for a
higher precision.

86



The second analysis of data in Table 6.7 would essentially focus on the number
of identified erroneous arcs in the individual run. Considering that we are inter-
ested in a higher number of error arcs, either of the experimental runs outperform
the baseline task in that aspect as well.

We therefore are able to establish that the cross-validation technique is a
better choice than the trivial approach. Table 6.8 shows the typology of different
errors as identified in the different runs. We discuss the most relevant error
typologies in Section 6.6.

Error Typology Baseline k = 2 k = 4 k = 8
advcl4advmod 2 (0.9%) 2 (0.6%) 2 (0.8%) 2 (0.9%)
advcl4det - 2 (0.6%) - -
amod4acl 2 (0.9%) 3 (0.9%) 2 (0.8%) 2 (0.8%)
amod4xcomp 2 (0.9%) 3 (0.9%) 3 (1.2%) 2 (0.9%)
compound4det - 2 (0.6%) 1 (0.4%) 1 (0.4%)
compound4obj 1 (0.5%) 2 (0.6%) 2 (0.8%) 2 (0.9%)
nmod4obl - 4 (1.2%) 2 (0.8%) 1 (0.4%)
obl4advcl|acl 1 (0.5%) 2 (0.6%) 2 (0.8%) 1 (0.4%)
obl4discourse|mark - 3 (0.9%) 1 (0.4%) -
Case Error 5 (2.3%) 6 (1.8%) 5 (2.0%) 5 (2.2%)
MWE Error 5 (2.3%) 5 (1.5%) 5 (2.0%) 5 (2.2%)
Naming Error 9 (4.1%) 11 (3.3%) 9 (3.5%) 8 (3.5%)
POS Error 5 (2.3%) 5 (1.5%) 3 (1.2%) 3 (1.3%)
Reported Speech 4 (1.8%) 2 (0.6%) 2 (0.8%) 2 (0.9%)
Tree Error 20 (9.0%) 29 (8.7%) 25 (9.8%) 22 (9.7%)
Wrong Head 38 (17.2%) 54 (16.2%) 42 (16.5%) 40 (17.7%)
Random Errors 15 (6.8%) 25 (7.5%) 21 (8.3%) 18 (8.0%)
No Error 112 (50.7%) 173 (50.0%) 127 (50.0%) 112 (49.6%)
Total Flagged Arcs 221 333 254 226

Table 6.8: Typology of Errors in Downsampled Test Data across Different Runs.
Percentages are calculated against the Total number of Flagged Arcs in the Run.
Error Typologies marked in bold have been previously pointed out by Alzetta
et al. [2017]

6.5.2 Comparing Different Experimental Runs
For the analysis of the different cross-validation runs, we noticed that the count
of flagged instances decreased with the increase in the number of folds. We
hypothesise that as we increase the number of folds, the detection of rare errors
improves while the detection of frequent errors deteriorates. having noted this, we
analysed the effect of each k-value in the following manner. For the 0-scored arcs
that were common to all the runs, 200 randomly chosen arcs (out of 2319) were
evaluated manually. Out of the arcs common only to the runs corresponding to
k = {2, 4}, 100 were randomly chosen for manual evaluation. Finally, 100 of the
arcs that are local only to the run corresponding to k = 2 were chosen randomly
for manual evaluation. The manual evaluation on a flagged instance was meant
to classify if the flagged instance is indeed an error, and if so, of what kind.

The manual annotation on limited subsamples as above does not offer a com-
parative viewpoint of the performance of the different runs. To combat this, we
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estimate the normalized frequency of each error type over 1000 instances in Table
6.9. The values are calculated as per the equation given below. The equation nor-
malizes the frequency of an error over 1000 flagged arcs, based on the distribution
of the error in the annotated samples.

ferror =



k2,4,8 · 5 for k = 8

[
k2,4,8·2319

200 + k2,4·301
100

]
· 1000

2620 for k = 4

[
k2,4,8·2319

200 + k2,4·301
100 + k2·867

100

]
· 1000

3487 for k = 2

where

• ferror represents the normalised frequency of error

• k2,4,8 represents the counts of error in the annotated sample of arcs com-
monly flagged by all the experimental runs

• k2,4 represents the counts of error in the annotated sample of arcs commonly
flagged by runs with k = 2 or k = 4, but not flagged by run with k = 8

• k2 represents the counts of error in the annotated sample of arcs flagged
only by the run with k = 2, but not flagged by runs with k = 4 or k = 8

Error Typology k = 2 k = 4 k = 8
advmod4amod 7 9 10
dep4det 6 8 5
dep4discourse|mark 7 6 5
nsubj4obj 8 7 5
obl4advcl|acl 6 8 5
Case Error 16 8 5
MWE Error 15 13 15
Naming Error 43 51 50
POS Error 10 13 15
Reported Speech 12 13 15
Tree Error 48 61 60
Wrong Head 163 167 180
Random Errors 141 116 115
No Error 518 520 515
Total Errors 482 480 485

Table 6.9: Error Frequencies for Experimental Runs, Normalized Over 1000
Flagged Arcs. Error Typologies marked in bold have been previously pointed
out by Alzetta et al. [2017]

Perhaps the most striking result from Table 6.9 is how the different experi-
mental runs are almost similar in their performance. Notice that in Table 6.7,
an increase in number of folds was accompanied by an increase in the calculated
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error precision. The analysis in the two cases is different. While in Table 6.7 we
checked if using the cross-validation to train the algorithm has any significant
performance gain; the results in Table 6.9 analyzes if the number of folds has any
correlation with error-detection rate when there is no reference corpus, and the
algorithm is trained and tested on the same data.

Since the number of folds in cases when the algorithm is trained and tested
using cross-validation has little to no effect in performance gain, the only point
of differentiation between different runs is with respect to the number of flagged
arcs. While it is lucrative to use less number of folds (or a lower k value), the
approach would be bottle-necked by the size of the dataset.

An error type is considered significant if its normalized frequency is more than
1% (frequency > 10) in Table 6.9. We discuss the significant error types in the
next section.

6.6 Error Typologies
In this section, we elaborate on the error typologies discovered throughout the
scope of the experiment such that the discovered error type is present in more
than 1% of the arcs flagged in any run, baseline or experimental. The focused
errors in this section include: Case Error, MWE Error, Naming Error, Reported
Speech, Tree Error and Wrong Head. Since ‘Random Errors’ are not systemic
in nature, we do not elaborate on them. Additionally, POS Error corresponds to
an error in the POS annotation label, and is not elaborated upon any further in
this section.

6.6.1 Case Error: Identification Error of Case-Marker
In hi, the different grammatical cases are more often than not marked by case-
marker tokens. This error corresponds to such case-markers being marked by
deprels other than case. Additionally, the deprel is the preferred choice for
constructions that involve possessions as well. In the event that the used deprel
is other than case, we call it as Case Error.

Part of sentence from UDv2.4 hi-HDTB treebank in Example 21, and the
associated dependency tree in Figure 6.1 highlights the error type. The token of
interest is marked in bold.
Example 21.
Text (hi): मार्क्र्सवादी कम्युिनस्ट पार्टी ( माकपा ) के दस सांसदों
Translit: Marx-vaadi Communist Party ( MaCPa ) ke das saansadon
Lit.: Marxist Communist Party (MaCPa) Poss. ten senator-Acc.-Pl.
Translated: Ten senators of Marxist Communist Party (MaCPa)
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Figure 6.1: Case Error in Example 21
Note: Root is used as a placeholder for root of the tree

Note: Typo in मार्क्र्सवादी (Marx-vaadi; Marxist). Corrected token should be
मार्क्सवादी (Marx-vaadi; Marxist)

Note: मार्क्र्सवादी (Marx-vaadi; Marxist) should be attached to पार्टी (Party;
Party) using deprel flat, and not with compound

Note: कम्युिनस्ट (Communist; Communist) should be attached to पार्टी (Party;
Party) using deprel flat, and not with compound

Note: माकपा (MaCPa; abbreviation of Marxist Communist Party) should be
attached to पार्टी (Party; Party) using deprel appos, and not with nmod

Note: के (ke; Poss.) should be attached to पार्टी (Party; Party) using deprel
case, and not with dislocated

6.6.2 MWE Error: Annotation Error in Multi-Word Expres-
sion (MWE)

The different tokens in a Multi-Word Expression (MWE) are combined by either
of the deprels in UDv2: fixed, compound or flat. Of these, fixed is used for
completely fixed grammaticized (function word-like) MWEs (like ‘in spite of’),
and compound applies to endocentric (headed) MWEs (like ‘apple pie’).

The usage of fixed deprel is covered separately in Naming Error. For in-
stances when a MWE should be annotated as either of compound or fixed de-
prels, but is annotated otherwise, we refer to the error as MWE Error. Example
22 shows the error type in a sentence from UDv2.4 hi-HDTB treebank, with the
associated dependency tree in Figure 6.2. The MWE is marked in bold.
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Example 22.
Text (hi): इसकी सबसे बड़ी िवशेषता यह है िक सामान्य कार्य चलता रहेगा और िकसी
चीज की प्रोसेिसंग भी अपने आप होती रहेगी ।
Translit: iski sabse badi visheshta yeh hai ki saamaanya kaarya chaltaa rahegaa
aur kisi cheej ki processing bhi apne aap hoti rahegi.
Lit.: 3P.Poss. Superlative big feature this is that normal work run-Imp. Fin.
and some thing Poss. processing also by-itself happen will .
Translated: Its biggest quality is that the processing can take place by itself
while the normal task is being taken care of.

Figure 6.2: MWE Error in Example 22
Note: अपने (apne; -Refl.) should be connected to आप (aap; 2P-Formal) using

deprel fixed, and not dep

6.6.3 Reported Speech: Annotation Error in Construction
With Reported Speech

According to UDv2 guidelines for treatment of reported speech3, the reported
speech is connected to the main clause by using either of the deprel ccomp or
parataxis.

The error Reported Speech corresponds to case when the reported speech
and main clause are not connected by proper deprels, as in the example from
UDv2.4 hi-HDTB treebank.
Example 23.
Text (hi): सिमित ने कहा था िक सभी संस्थान मौजूदा आईआईटी के स्तर की तुलना में
काफी पीछे हैं ।

3https://universaldependencies.org/u/dep/parataxis.html#
treatment-of-reported-speech
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Translit: samiti ne kahaa thaa ki sabhi sansthaan maujoodaa IIT ke star ki
tulnaa mei kaafi peeche hain.
Lit.: Committee Erg. say be-Perf. that all institutes present IIT Poss. level
in-comparison-with quite behind is-Pl. .
Translated: Committee had said that all institutes are far behind the level of
the current IITs.

Figure 6.3: Reported Speech Error in Example 23
Note: पीछे (peeche; behind) should be attached to कहा (kaha; say) using the

deprel ccomp

6.6.4 Wrong Head: Head Identification Error
The error refers to the cases when the dependent in the flagged arc is attached to a
wrong head. This is the umbrella error type for all the cases of head identification
error that cannot be categorised more specifically into other error types.

While Alzetta et al. [2017] mention head labelling error as a sub-type of the
error patterns discussed therein, we identify this error in a category on its own.
We separate this error type because multiple parsers/taggers determine the deprel
of a dependent in an arc based on the head of the said dependent. Keeping this
in mind, Wrong Head is very likely to result in a faulty deprel annotation as well.
However, attachment to the correct head in this case should essentially result in
a correction of the annotated deprel as well.

Consider Example 24 and the associated dependency tree in Figure 6.4. The
example is part of a sentence taken from the UDv2.4 hi-HDTB treebank, and
shows the token of interest (marked in bold) attached to a wrong head.
Example 24.
Text (hi): िजनकी मदद से वह आवाज को पहचान व समझ सकता है
Translit: jinki madad se vah aavaaz ko pehchaan va samajh saktaa hai
Lit.: whose help with it sound Acc. recognise and understand can is
Translated: With help of which, it can recognise and understand sound.
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Figure 6.4: Head Identification Error in Example 24
Note: मदद (madad; help) should be attached to पहचान (pehchaan; recognise)

and not to है (hai; is)
Note: वह (vah; it) should be attached to पहचान (pehchaan; recognise) and not

to है (hai; is)
Note: आवाज (aavaz; sound) should be attached to पहचान (pehchaan; recognise)

and not to है (hai; is)
Note: सकता (sakta; can) should be labelled as aux and not as conj

Note: है (hai; is) should be labelled as aux and not as conj
Note: है (hai; is) should be attached to पहचान (pehchaan; recognise) and not to

सकता (sakta; can)

6.6.5 Naming Error: Annotation Error in Proper Nouns
Naming Error is often accompanied with a head-identification error. Annotation
Errors in Proper Nouns can be of three kinds, and all of these are commonly
grouped under Naming Error. The following are the possible cases of error in
annotation:

1. Proper Noun as Appositional Modifier (4appos): The deprel appos4 is
used when the proper noun defines, modifies, names or describes a preceding
nominal. It also includes parenthesized examples, and the abbreviations.
This error is characterized by an attempt to connect the two nominals by
relations such as nmod, when the actual deprel should be appos.

2. Names/Dates without Syntactic Structure (4flat): The different
parts of a single name, or of a date should be attached to the head with the
deprel flat5. The deprel is also used in cases of a honorofic or a title. This
error type is characterized by usage of other deprels when flat should be
the deprel of choice.

4https://universaldependencies.org/u/dep/appos.html
5https://universaldependencies.org/u/dep/flat.html
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3. Names with Syntactic Structure: Names that follow a syntactic struc-
ture (like ‘A Tale of Two Cities’) should not be annotated with flat deprel,
but with regular syntactic relations. In this case, the error is characterized
by a name with syntactic structure being analysed in the same way as a
name without syntactic structure.

Consider the part of a sentence from UDv2.4 hi-HDTB treebank showcasing
all the above cases in Example 25 and the associated dependency tree in Figure
6.5
Example 25.
Text (hi): आरसी िमश्रा की पुस्तक 'मानवािधकार संरक्षण िवशेष संदर्भ, अपरािधयों का
िनरोध एवं उपचार'
Translit: Aarsi Mishra ki pustak ‘ Maanavadhikar sanrakshan vishesh sandarbh
, apraadhiyon ka nirodh evam upchaar ’
Lit.: Aarsi Mishra Poss. book ‘ Human-Rights Protection Special Reference ,
criminal-Pl. Acc. prevention and cure ’
Translated: Aarsi Mishra’s book, ‘Maanavadhikar sanrakshan vishesh sandarbh
, apraadhiyon ka nirodh evam upchaar’

Figure 6.5: Naming Error in Example 25
Note: Root is used as a placeholder for root of the tree

Note: आरसी (Aarsi; Aarsi) should be attached to िमश्रा (Mishra; Mishra) using
deprel flat, and not with compound

Note: The title of the book (limited by quotes) should be attached to पुस्तक
(pustak; book) with the deprel appos

Note: The title of the book (limited by quotes) should be annotated with
regular syntactic relations

6.6.6 Tree Error: Dependency Head Located in Subtree
A special case of Wrong Head error, this error type is used for the cases when the
actual head of a dependency is located inside the subtree rooted at the dependent.
In order to correct the dependency, it should be essentially inverted. Essentially
speaking, a tree marked with this error type requires re-annotation before any
analysis can be performed on it.

Example 26 shows an instance of this error in UDv2.4 hi-HDTB treebank,
with the associated dependency tree in Figure 6.6. The dependent of interest is
marked in bold, and the corrected instance is as shown in Figure 6.7.
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Example 26.
Text (hi): आतंिकयों द्वारा िकसी िवमान के अपहरण या आत्मघाती हमले को अंजाम देने
की कोिशश िकए जाने की खुिफया जानकारी
Translit: aatankiyon dwara kisi vimaan ke apharan ya aatmghaati hamle ko
anjaam dene ki koshish kiye jaane ki khufiya jaankaari
Lit.: Terrorists by some plane Poss. kidnap or self-harm attack Dat. fruition
give Dat. attempt do-Pass. to-be confidential information
Translated: The confidential information of attempt at some plane hijacking or
suicide bombing by terrorists ...

Figure 6.6: Subtree Error in Example 26
Note: Root is used as a placeholder for root of the tree
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Figure 6.7: Correction of Subtree Error in Example 26
Note: Root is used as a placeholder for root of the tree

6.7 Results and Discussion
6.7.1 0-scored Arcs as Search Criteria
In their work, Alzetta et al. [2017] focused on a total of 39.7k arcs in their an-
notation process and were finally able to manually revised 789 arcs, giving an
estimated error detection rate of 2% from the flagged instances. In our base-
line run, a focus on 221 0-scored arcs led to an estimated error detection of 109
instances (49.32 %). We must stress here that the results across the two experi-
ments are NOT directly comparable since the treebanks used in the cited authors’
experiment was of far superior quality than the one used in the current experi-
ment. A lower quality treebank would imply a higher distribution of errors, and
that could be the sole reason why the focus on a smaller subset gave a satisfactory
error detection rate. Additionally, the size difference in the cited authors’ work
and the baseline task is another reason why the two approaches cannot be com-
pared. We must also stress here that in our baseline approach, the search scope
was lowered significantly (as compared to the experimental runs). To establish
any significant difference between either approach, more experiments should be
conducted with the same treebank (ensuring the quality of experimental data is a
controlled variable) to establish the probability distribution of errors in 0-scored
arcs and in the approach as utilised by Alzetta et al..

6.7.2 Cross Validation as Strategy
Considering that the different runs perform almost similarly (Table 6.9), we argue
that the size of dataset used is the determining factor in selection of the number
of folds in k-fold cross validation.

For less number of folds (or a lower k value), the number of flagged arcs is
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high, which eventually results in more errors detected. However, in case of a small
dataset, the algorithm might be trained poorly if the number of folds is small.
Thus, a higher number of folds (or a higher k value) is closer to optimum when
the dataset is small in size. As the reference dataset size grows, lesser number of
folds can be tried given that the algorithm can be trained well.

6.7.3 Error Typologies and Annotation
The annotations throughout the experiment were done by a single annotator.
Even though inter-annotation inconsistency is a constant problem, the annota-
tions done by a single author are even more prone to errors. While the annota-
tions were checked multiple times, the possibility of annotation inconsistencies in
manual annotation for error labelling cannot be discounted.

It is very likely for a single dependency arc to have an error that is defined
separately under different labels. In such an event, the primary source of error
was labelled as the error type. For example, if a dependency arc has Case Error
as well as Wrong Head error, the former is very likely being caused by the latter.
Therefore, the manual annotation for this instance would list it as a case of Wrong
Head.

Under the different head identification errors, the annotation was in the fol-
lowing order of priority, arranged in descending order:

1. MWE Error or Naming Error

2. Tree Error

3. Wrong Head

In essence, if the head identification error could not be localised to a specific
error type, it was labelled under the umbrella error label of Wrong Head.

6.7.4 Conclusion
In the experiment, we narrowed the search scope from the bins as used by Alzetta
et al. [2017] to focus on the arcs that were considered as improbable by the algo-
rithm. Additionally, we found that using cross-validation to train the algorithm
has no significant performance gain.

For low-resource languages with little to no reference corpus data, we tried
cross-validation approach for finding the errors. We discovered that the choice of
folds in cross-validation strategy is determined by the size of the reference corpus;
and in case of unavailability of one, the strategy can be used on the data itself
without a significant loss in the error-detection rate.
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7. AUX vs. VERB: Attempt at
Separation of Verbs and
Auxiliary Verbs (Experiment 4)
We earlier mentioned in Section 2.2.2 how the line of distinction between verbs
(POS tag VERB) and auxiliary verbs (POS tag AUX) is not well-defined. We shall
treat this problem in this section, with a glance through some of the observations
on the problem in Section 7.1, followed by the definition of the working dataset
in Section 7.2. We elaborate on the proposed solution to the problem, and the
results of the experiment in Section 7.3 and 7.4 respectively. We finally conclude
this section with a discussion of the results in 7.5.

7.1 Observations About Problem Statement
According to the definition in UD1, AUX is used as a common POS tag for verbal
auxiliaries, as well as non-verbal TAME markers. The class of copulas are also
included in this list.

This definition of auxiliaries is a bit different from Shopen [2007] which sepa-
rates the two classes of auxiliaries and copulas in different categories. The work
also points out the correlation between the position of an inflected auxiliary in
relation to the verb, and other word properties of the language, as first pointed by
Greenberg [1963]. In his work, Greenberg notes that the position of an inflected
auxiliary in relation to the verb is generally the same as the position of verb in
relation to an object. It is important to note that this generalization only holds
for the inflected auxiliaries, and thus languages where the auxiliaries are not in-
flected are automatically ruled out from the consideration. Shopen points out
the well-known exception to this generalization in case of verb-second languages
like those of de.

While the generalization made by Greenberg is a very good marker for pos-
sible identification of inflected auxiliaries, the requirement of identification of
auxiliaries in noninflected form still remains as a problem. This problem can
however, be mitigated in part by the usage of the list of tokens identified as aux-
iliary in a given language, as was started in UDv2.4 [Nivre et al., 2019] with the
help of a validator (cf. Level 5 checks in validate.py2 file). It must also be
pointed out that since Greenberg did not extend this generalization to SVO lan-
guages, the generalization only holds for languages with VSO and SOV dominant
word-order. Combining that with verb-second languages, the generalization can
not be used globally across all the languages.

When the copulas are included in the definition of AUX, the already difficult
problem of separating AUX and VERB becomes even harder. In many languages,
auxiliaries are a subset of verbs, with respect to specific usages. In other words,
the same token can act as a verb or an auxiliary, depending upon the usage. The

1https://universaldependencies.org/kpv/pos/AUX_.html
2https://github.com/UniversalDependencies/tools
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list of copula in many languages is also a subset of verbs, called as copulative
verbs. However, as Shopen notes, there are cases of languages where the copula
are not verbal in nature. The function of a copula can be realized by other
means as well. The most common of these, viz. juxtaposition (example language-
Ilocano), and use of predicators (example language- Bambara) are listed in the
work, where they may be combined with existing copulative verbs in the grammar
of the language.

In essence, while the class AUX in UD includes the copulative verbs, predica-
tors, and other non-verbal TAME markers, the class VERB is composed of open
class categories of verbs.

7.2 Dataset Definition
This experiment uses hi-HDTB treebank from UDv2.4 [Nivre et al., 2019].

There are a few reasons for the choice of the language for the experiment. In
hi, we can more often than not draw a clear line of distinction between auxiliary
as defined by UD, and the verbs. While the auxiliaries undergo inflection, and
also include predicators and other TAME markers, they are restricted to a few
tokens which rarely, if at all, are used as independent verbs. The factors as listed
above, combined with the author’s native fluency in the language makes it an
ideal candidate for this experiment.

7.3 Experiment
We approach the problem at hand as a classification problem. In the experiment,
we create a classifier that tags the data in categories of whether a particular token
is an instance of AUX, VERB or neither of the two. Since the training data needs
to contain the information on what instances to mark in either category and
also differentiate tokens not marked as either UPOS tag, we label the data using
Named-Entity Recognition (NER) task tag format. The classifier we described
above is available as off-the-shelf tool for NER task, and that is the reason the
data was labelled using NER task tags. As the classifier predicts the output label
for each token, it also outputs a confidence score associated with each predicted
label. By analysing the confidence score of each prediction and comparing it with
the already annotated data, we should be able to point out the anomalies.

If we consider the gold-standard (GS) as erroneous as in present case, we need
some data in a higher quality of annotation. A platinum standard is considered
as a super-refined gold standard from which even the GS can be evaluated and
verified. However, given a lack of such platinum standard, we restrict to a manual
evaluation of the output of the classifier, using k-fold cross validation technique
to test and train the classifier on the same data. We first split the data into 10
folds, and then proceed to label the data using NER format.

Between the two tagsets available for NER labelling, we choose IOBES format
for the classification of the data in the following manner: All the instances marked
as AUX are labelled as “S-aux”, and all the instances marked as VERB are labelled
as “S-verb”. The rest of the tokens are labelled with ‘O’ tag. We do not consider
contiguous tokens as a continuous chain, and thus not use either of ‘I’, ‘B’ or ‘E’
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tags at all. This is also done so as to have better control over each token that
the model learns to tag, thereby increasing the granularity of the data.

For the task of POS Tagging, Flair embeddings [Akbik et al., 2018] were the
state-of-the-art (SOTA) at the time of performing this experiment. The embed-
dings were shown to be outperform several models available at the time, across
multiple NLP tasks, and therefore were the natural choice for this experiment.
However, there are several hyper-parameters that can be tuned with respect to
the models. We decided to tune the hyper-parameters with their corresponding
choices as listed in Table 7.1. The best choice for the hyper-parameter are also
listed in the same table.

Hyper-Parameter Choices Tuned Value

Embeddings Stack1: Forward and Backward
Flair Embedding trained on hi-
newswire

Stack2

Stack2: Word Embedding for
hi, Forward and Backward
Flair Embedding trained on
hi-newswire

Use CRF? True, False True
Use RNN? True, False True
RNN Layers 1, 2, 4 2
Size of Hidden Layer 32, 64, 128, 256 256
Dropout Uniform Distribution in [0.0, 0.5] 0.25
Learning Rate 0.05, 0.1, 0.15, 0.2, 0.25 0.1

Table 7.1: Hyper-Parameters for Neural Network

With the optimized parameters, we train the model on each fold of the data,
and test the trained model on the fold’s test data. As mentioned earlier, the
predicted output labels are accompanied with an associated confidence score that
demonstrates the model’s confidence in the predicted label. We here identify 6
categories of error patterns, based on the predicted label and the original label
for the data, as listed in Table 7.2.

Category Original Prediction
aux_TP S-aux S-aux
O_TP O O
verb_TP S-verb S-verb

aux-O O S-aux
S-aux O

aux-verb S-aux S-verb
S-verb S-aux

verb-O O S-verb
S-verb O

Table 7.2: Categories of Error Patterns

The associated confidence scores for each prediction can be used to detect
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the anomaly from what is labelled as per the original annotation, and what the
classifier thinks should be the annotation label. For the cases where the original
annotation is same as the classifier’s prediction, we focus on the subset of the
predictions where the confidence score is lower than 0.67. The idea is that since
there are 3 categories, a prediction with the associated confidence lower than 2

3
might be erroneous. For the instances where there is a mismatch between the
predicted label and the originally annotated label, we focus on instances with
the confidence in prediction higher than 0.995. The idea in this case is that
if the model is really sure about the prediction, the original annotation might
be erroneous, and is worth looking into. Figure 7.1 shows the distribution of
confidence scores for instances where the predicted label matches the original
label, with the associated confidence value lower than 0.80.

Figure 7.1: Rug plot with Distribution of Predictions with low confidence score

Having identified instances within each category that have confidence scores
within the relevant bound, these instances were manually annotated to see which
one of the original annotation or the predicted annotation is correct. We can
summarize the entire experiment in the form of algorithm as defined in Algorithm
10.
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Algorithm 10 Experiment to Identify Mislabelled AUX and VERB tags
Input: data← UDv2.4 treebank

1: Convert data.train, data.test and data.dev to IOBES format
2: model.config ← SOTA Classifier Configuration
3: data.complete← data.train + data.dev + data.test
4: {The different splits of the data concatenated together}
5: iter.id← fold of data.complete, numbered as id
6: {Performed 10-fold cross-validation to split data.complete}
7: model← Classifier with configuration as per model.config
8: for id in {1, ... , 10} do
9: model.id← model trained on iter.id.train data

10: model.id.test← Prediction of model.id on iter.id.test data
11: end for
12: identified.pure← Original Annotation matches Prediction such that Confi-

dence score ≤ 0.6700
13: identified.cross ← Original Annotation differs from Prediction such that

Confidence score ≥ 0.9950
14: Manual Annotation of identified.pure and identified.cross

7.4 Results
Given that the experiment is a case of a multi-class classification, the model
performance is expressed in form of confusion metrics for each class AUX, VERB
along with the metrics like Precision, Recall, Accuracy, F1 Score.

The metrics corresponding to the best performing model on the entire tree-
bank are listed in Table 7.3. The best performing model was trained on training
set of UDv2.4 hi-HDTB data, and tuned over the dev set, and tested over the
test set. The evaluation presented in the table corresponds to the automatic
evaluation over test set.

Label Precision Recall Accuracy F1 Score
AUX 98.89 99.50 98.40 99.19
VERB 99.32 98.87 98.20 99.09

Table 7.3: Metrics of Best Model trained over UDv2.4 hi-HDTB Treebank. The
metrics are reported for automatic evaluation over test data in the treebank.

When the models were trained on each of the folds, keeping the architecture
of the best model, there was no loss in performance (metric considered- micro
averaged F1 score). This essentially means that the instances corresponding to
AUX and VERB are annotated consistently within the treebank. As mentioned in
previous section, we focused on the instances of the tagged data with confidence
scores in particular bounds, and manually annotated them3. Table 7.4 lists the
number of instances that were focused on in each category (as defined in Ta-
ble 7.2). The table also lists the number of instances that were identified as
mislabelled, following the manual annotation procedure.

3Associated Code and annotated data can be accessed at https://github.com/
Akshayanti/Masters-Thesis-CUNI-2020/tree/master/AUX-vs-VERB-UDv2.4
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Category Focused Mislabelled Percentage
aux_TP 83 3 3.61
O_TP 25 5 20.00

verb_TP 45 10 22.22
aux-O 10 9 90.00

aux-verb 42 23 54.76
verb-O 20 11 55.00
Overall 225 61 27.11

Table 7.4: Results of Manual Annotation
Note: *_TP is the identifier for instances for which the prediction matches the

label. The values in the ‘Focused’ column refer to count of instances with
Confidence Score ≤ 0.6700

Note: X-Y is the identifier for instances which were labelled as X but predicted
as Y, or labelled as Y but predicted as X. The values in the ‘Focused’ column

refer to count of instances with Confidence Score ≥ 0.9950

7.5 Discussion of the Results

Metric Count
Sentences 16 647
Words 351 704
Tagged AUX 26 030
Tagged VERB 33 753

Table 7.5: Statistics for hi-HDTB Treebank

Table 7.5 lists the counts of sentences and the number of AUX and VERB tags
in the entire hi-HDTB treebank. Of the total number of tags listed in either
category, we are able to focus on just 225 instances where we might be able to
identify the problems. Even out of those 225 identified instances, just a bit over
25% are actually erroneous.

While hypertuning the best configuration of the classifier, the parameters
correspond to the F1 score on how well it fits to the original data. Essentially,
the best performing model is biased in the way that it would always try to find a
prediction that matches the original annotation. While there is no other way on
how to hypertune the model, the experimental results are therefore liable to find
comparatively less instances where the confidence score is within the bounds as
considered in the experiment.

Further, the lack of a definable baseline for the attempted solution of the
given problem makes it difficult for the current approach to be compared against
a benchmark. Considering the lack of benchmark, we can crudely estimate the
performance of the experiment by the ratio of the number of errors that were
found in the focused cases to the number of instances that were focused on.

While certain patterns are more reliable than others (the case where predicted
output doesn’t match the original annotation), the overall performance for the
experiment is low as can be attributed to different factors mentioned above. Given

103



the low scout-ability of the error cases in the experiment, the approach used in
the experiment is not reliable enough for the process to be automated.
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8. Future Work
Recommendations
This chapter discusses in brief the other problems that have been recognised
within the scope of UD. None of these works mentioned in this chapter have
been discussed in the present version of the document. For future researchers
interested in tackling more problems with respect to UD, this chapter could be a
good point of reference.

8.1 Enhanced Dependencies
Enhanced Dependencies can be understood as an additional layer of annotation
of dependencies in UD, which essentially marks added dependencies. Consid-
ering some of the restrictions imposed by the regular annotation scheme like a
singular head constraint where each node can have only one head, the Enhanced
Dependencies aim to cover aspects which can be missed by the regular annotation
scheme. However, not all of the languages, or their treebanks have been anno-
tated with the Enhanced Dependencies so far. While the enhanced dependencies
have been deemed to be useful in multiple cases (like that of ellipsis, cf. Section
8.2), their full potential might not have been realized so far.

In our experiment on conj_head (cf. Chapter 5), we did not work with the
problem of conjunction sandwiches. It is very likely that such problems which are
difficult to be recognized by the regular dependencies can be searched for rather
easily with the Enhanced Dependencies. For example, if Enhanced Dependencies
mark all the conjuncts by the conj deprel, regardless of whether they are labelled
by the deprel in the regular annotation or not, it would allow searching for the
available conjuncts rather easily.

We leave it as an open problem for future research to identify cases which are
more difficult to handle with regular dependencies, while trying to use Enhanced
Dependencies. As an add-on to the task, it can also be tested if some algorithms
mentioned in the research can be improved upon or discarded when Enhanced
Dependencies are used.

8.2 Ellipsis
The problem with annotation of Elliptical Structures is big enough to warrant a
discussion of its own in UD Annotation Guidelines1,2.

Droganova and Zeman [2017] analyzed the elliptical constructions in UDv2.0
treebanks [Nivre et al., 2017] by principally using orphan relations3 as a way to
identify the cases of non-promoted dependents with promoted dependents. While
this helps in identifying only a certain number of cases, it fails to identify the cases
where the dependents are promoted.

1https://universaldependencies.org/u/overview/enhanced-syntax.html#ellipsis
2https://universaldependencies.org/u/overview/specific-syntax.html#ellipsis
3https://universaldependencies.org/u/dep/orphan.html
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In Enhanced Dependencies, orphan is replaced by placing a null node to indi-
cate the elided token. However, as discussed earlier, Enhanced Dependencies are
not available for all languages or even all treebanks in the same language. Thus,
the identification and correction of erroneous elliptical constructions remains a
problem that needs to be solved within the scope of basic dependency graphs in
UD.

8.3 FalseNonProjective: Introduction of False
Non-Projectivity into the Annotation

While non-projectivity is a characteristic of some languages, and especially more
so of certain genres (poetry, for example); the increasing count of non-projective
trees has been shown to affect dependency parsing in a negative way. Owing
to semi-automatic conversion scheme, a lot of non-projectivities might also be
introduced artificially. Thus, it becomes important to not only identify such
cases of false non-projectivities (i.e. the cases which should have been marked as
projective, but were annotated as non-projective), but also to remove them as it
affects the treebank quality in general.

Note that projectivisation or the act of making a non-projective tree as projec-
tive is a different research problem. While projectivisation is primarily aimed at
trying to create parsers that can parse non-projective trees efficiently (cf. [Nivre
and Nilsson, 2005], [Gómez-Rodríguez et al., 2009], [Hall and Novák, 2005], [Nivre,
2007], among others) and is therefore a parsing problem; FalseNonProjective
is an erroneous non-projectivity introduced in the annotation where the tree is
projective, and has no non-projective variants possible.

8.4 Function Words and Associated deprels
Conjunctions are identified by two POS tags, viz. SCONJ, CCONJ. The associated
dependency relations for the two POS tags are mark, and cc respectively. While
these are the usually associated dependency relations, the boundary between the
two is fuzzy. In the sense, it is possible for a token to be marked by SCONJ, and
have a cc dependency relation (similarly for CCONJ and mark). Added to this are
the cases where the tokens marked by another POS tag can act as conjunctions.
Consider the following example from en-ParTUT (UDv2.3) and the associated
tree in Figure 8.1, where PART (to) acts as a conjunction, and thus the mark deprel
associated to it.
Example 27. Ukraine’s constitutional structure is for Ukraine’s citizens alone to
decide.

Furthermore, both the POS tags in question (SCONJ, CCONJ) can have other
dependency relations attached to them as well. As such, it is difficult (and non-
sensical) to limit the deprels for a particular POS tag to occur with a particular
deprel (especially in this case). However, there might still be some processes we
can observe (and correct). For example, if a particular token occurs more with
the mark deprel, but is consistently labelled as CCONJ, the annotation should be
taken a closer look at, and a possible disparity identified.
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Figure 8.1: Dependency Tree for Example 27 showcasing association of PART with
mark deprel

8.5 auxHead: Auxiliary as Head of Dependency
In the discussion of this problem, we refer to the case when an auxiliary (marked
by either of AUX or aux) is treated as the head of a dependency relation. Although
allowed in certain cases, the auxiliary should not be marked as the dependency
head in general sense. Consider the following example in Figure 8.2, taken directly
from Alzetta et al. [2017]. The token of interest is marked in bold.
Example 28.
Text (it): Per noi è stato sufficiente che andassero via
Lit.: For us it-has been enough that they-went away
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(a) Original (Incorrect) Annotation

(b) Corrected Annotation

Figure 8.2: Example tree from Alzetta et al. [2017] showcasing auxHead error
type. In the original example, noi (us) was annotated as a dependent of both
Per (for), and è (has-been). Under UD representation, there can not be more
than one head for any given node in regular annotation. As such, we believe it
was a typo in the publication and not in their data. In this figure, we show the
corrected dependencies.

In the figure, notice how the originally incorrect annotation has è (has-been)
with POS AUX serving as a dependency head. Alzetta et al. notice that this
particular error, classified as a head identification error, contributes to around 13
% of the total discovered erroneous instances. Since it is difficult to separate and
identify the instances marked correctly as AUX (cf. Chapter 7 for the experiment
on attempt at differentiation between AUX and VERB tags), the attempt at the
solution for this problem was not worked at.

8.6 nmod4obl: Confusion of nmod and obl Rela-
tions

In UDv1, nmod relation was used for nominals modifying either predicates or
other nominals. Following a change in guidelines in v2, the deprel was restricted
to modifying nominals. Furthermore, a new relation obl (oblique) was introduced
for oblique dependents of predicates.

To put it simply, this conversion implied the following in an equation format,
where xvi refers to the dependency relation x as used in version i of UD treebanks:

nmodv1 = nmodv2 ∪ obl
Depending on the parent node, the relations were modified as follows:

1. If the parent node was a verb, the deprel was changed from nmod to obl.

2. If the parent was a nominal predicate, the deprel could be either of nmod
or obl, depending on if only the nominal was being modified, or the whole
clause was being modified.
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3. If the parent was a nominal, but not a nominal predicate, there was no
change in the deprel.

4. If the parent was an adjective or an adverb, the deprel would be changed
to obl, based on additional conditions.

5. In case none of the above conditions held true, the instance would deserve
individual treatment.

The change in definition from UDv1 to UDv2 was the primary cause of the
error, as identified in Alzetta et al. [2017]. In the same work, the authors note that
this error contributes to around 7 % of total discovered errors in the newspaper
section of the Italian UD Treebank (IUDT). In the work, the authors attribute
this error pattern to annotation inconsistency internal to the treebank. Although
a significantly important error, this is not covered in the scope of the current
research. Nonetheless, this is an important error that should be taken care of in
future.

8.7 Punctuation
The UD Annotation guidelines on punctuation are simple and straightforward4.
There are discrepancies when it comes to implementation of the guidelines. Some
of them are listed as below:

1. It is difficult to identify the next conjunct in case of missing CCONJ and
SCONJ tags as in case of asyndetic coordination. In such cases, the informa-
tion about the next conjunct should be deduced semantically in most cases.
We saw a similar case in Section 5.1.3 (Example 10 and Figure 5.4) where
the next conjunct is not clear, owing to other (more suitable) deprel(s)
being used in place of conj deprel.

2. Re-attachment of a punctuation node is a problem that goes with the previ-
ous instance since it’s not always clear at what level the punctuation must
attach to.

3. For paired and nested punctuation, different languages use different sets of
nested punctuation pairs, specifically with respect to quotation marks. As
such, the treatment of paired punctuation pairs needs to be handled in a
language-specific manner.

The fixpunct.py block in Udapi-python [Popel et al., 2017] tries to take care
of significant number of edge cases in different UD treebanks. However, a more
concrete solution is needed for the problems aforementioned.

4https://universaldependencies.org/u/overview/specific-syntax.html#
punctuation
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8.8 Unspecified Dependencies - dep deprel
According to the UD definition of dep deprel5, the deprel is reserved for cases
when a more precise relation cannot be found. This can be either owing to the
sentence splitting in treebanks of some languages, or owing to the limitation in
parsing software. Nonetheless, the relation should be avoided as much as possible.

Noticing that some treebanks follow sentence splits where the parts of sen-
tences might be labelled as different sentences (as in the example of a list), the
deprel in question is more liable to be used in such instances. However, look-
ing at the data in UDv2.4, some languages have more than 1% of the tokens
marked with such relation (Examples being ko, ur, ja-BCCWJ, it-PoSTWITA,
hi-HDTB, gl-CTG, cs-PDT, among others). While these might be all true pos-
itives in other languages, a significantly higher count of dep is more troublesome
and is less likely to be all true positives in such cases.

An experiment can be performed on such instances where the data without
any dep deprel is used as a training set to parse the instances with the deprel in
question and then the results verified. Nonetheless, the cases of tokens marked
with deprel in question need to be reduced in some languages. As such, we leave
it as a problem for future researchers to tackle.

5https://universaldependencies.org/u/dep/dep.html
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Conclusion
Although the official title of the research seeks to deal with inconsistencies, this
work covers aspects from both error detection and correction (Chapter 5 on
conj_head), and inconsistency detection and correction (Chapters 4, 6 and 7).

In Chapter 4, we proposed a metric to attest the POS annotation consistency
across treebanks that allegedly follow the same guidelines, for the same language.
Through the use of the metric, we sought to answer how the different treebanks
of a language, with variable size and genre distributions but following the same
annotation guidelines, can be compared against each other. We also defined
a reliable threshold on the proposed metric that would inform the annotators
if the treebanks being compared are consistent in their annotation, or not. The
metric was employed in the scope of UDv2.5 [Zeman et al., 2019] data to compare
the different treebanks of different languages, and highlighting the ones that are
inconsistent in their annotation. To the best of our knowledge, this is the first
such metric that compares the treebanks directly, without an added variable of
tagger or parser performance.

In Chapter 5, we revisited the error type identified by Alzetta et al. [2017]
regarding the identification and correction of the head of a coordinating con-
junction, referred to as conj_head. We identified the different facets that would
come in the way of solving the problem, and proposed solutions for them. The
effectiveness of the proposed solutions was demonstrated on languages belonging
to different language families, followed by an identification of the cases where the
proposed solutions do not work as expected. While the experiments were done
primarily on right-headed languages, the approach is extensible to left-headed
languages as well, but not to languages with a mix of left and right-headedness6.

Chapter 6 focused on the LISCA algorithm, proposed by Dell’Orletta et al.
[2013]. The algorithm needs a reference corpus to identify the inconsistencies
in a treebank, based on the model framed off reference corpus. We checked
the viability of the algorithm in a low-resource setting when there might not
be a reference corpus to train the algorithm. We also investigated if the search
space for the inconsistent arcs could be narrowed without a significant decrease
in performance of the algorithm. Marking cross-validation technique as a viable
option for the low-resource setting, we further examined the effect of the number
of folds in k-fold cross-validation on the error mining process employing LISCA.
A typology of different errors as identified in the experiment were also listed.

The experiment in Chapter 7 sought to address the issue of drawing a line
of distinction between AUX and VERB categories in an automatic manner. We
employed an automatic classification technique to separate the individual tokens
as belonging to either of AUX or VERB, or neither. While there was a small subset
of instances that could be identified, the lower success rate of distinction between
the two categories highlighted the challenging nature of the task and that the
problem presents much room for improvement.

As the cost of storage falls lower, the size of the treebanks will increase.
Essentially, at one point it might be impossible for human annotators to be part
of the error-identification and error-correction process for the entire treebank.

6For details on right-headed and left-headed languages, refer to Section 5.1.1
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The current work is primarily aimed at finding the methods that don’t need
human annotators in the pipeline, and can be relied upon to fix the errors across
different languages in a reliable manner. The research has been in some aspect
successful at that front.

One major advantage of an iterative process, with respect to UD treebanks,
is how individual error types can be focused on in each iteration. With the UD
validator (cf. Level 5 checks in validate.py7 file) identifying and notifying the
development teams of the individual errors, the process no longer suffers from
a cold start problem. There is a high chance that with upcoming iterations,
more and more of the experiments discussed in the document would be rendered
obsolete for new treebanks, but they are still necessary to fix the issues in the
present treebanks.

It is important to note here that the different problems listed in this thesis
document rarely occur in isolation. More often than not, many of the problems
are intertwined with each other, resulting in error propagation. Having said that,
the corrections are also propagated in a similar fashion, whereby finding and
correcting the right error solves multiple intertwined issues at the same time.
Consider the example of experiment on conj_head (in Chapter 5). Correction
of this error instance in the specific case of eu also corrected the case of falsely
annotated non-projectivities in the trees.

Of the problems mentioned in the chapter titled ‘Future Work Recommenda-
tions’ (Chapter 8), there are some that were not worked on at all in the current
research and are left for future researchers (For example, nmod4obl in Section 8.6).
Additionally, some other problems are still being worked on, and thus do not fall
into the scope of the current thesis document (For example, FalseNonProjective
and auxHead in Sections 8.3 and 8.5 respectively).

The author hopes that future researchers will be able to tackle the problems
listed in this thesis in a greater capacity, and improve upon the methods already
discussed in this research wherever possible.

7https://github.com/UniversalDependencies/tools
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A. Appendix
A.1 Terminology Pertaining to UD
This appendix is meant primarily for the offline/hard copy readers of the docu-
ment. A better (and official) explanation of the terms can be accessed online1,2.

A.1.1 CoNLL-U Format
UD uses an extension of CoNLL-X format [Buchholz and Marsi, 2006], referred to
as CoNLL-U format. The CoNLL-U format is used for the annotation procedure,
with three types of lines. Each line is delimited by LF character as line break,
written in UTF-8 encoding. The details of the line types are as follows:

1. Blank Line: A line without any content, used as a separator for annota-
tions of different sentences in the treebank.

2. Comment Line: A line starting with hash (#) symbol, typically contains
details about the annotated sentence. The details that are common across
all treebanks are ‘sent_id‘ (a unique ID associated with each sentence in the
treebank), and ‘text’ (the text of the annotated sentence). The comment
can also include any other details like paragraph id, document id, etc.

3. Word Line: Each Word Line contains the annotation of a single word, in
a 10-column TSV (tab-separated values) format. The columns, in order,
and their explanation are as follows:

(a) ID: Word Index in the sentence, starts at 1. Can be a ranged value
for fused tokens and multiword tokens; decimal value for empty nodes.
The ID of a token can be only greater than 0.

(b) FORM: Word Form, as it appears in the sentence.
(c) LEMMA: Lemma or Stem of Word Form.
(d) UPOS: The Universal POS tag of the word, as per UD Tagset.
(e) XPOS: The language-specific POS tag of the word. Generally comes

from the original tagset that was converted into UD.
(f) FEATS: List of morphological features from UD feature inventory, or

a language specific version thereof.
(g) HEAD: Head of the current word in dependency relation. Contains

‘ID’ of the parent word, or 0 if the parent word is ‘Root’ (explained
later).

(h) DEPREL: Universal Dependency Relation, extendable with language
specific extension thereof (cf. Section A.1.2).

(i) DEPS: Enhanced Dependency Relation in form of head:deprel pairs.
1https://universaldependencies.org/format.html
2https://universaldependencies.org/u/overview/morphology.html
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(j) MISC: Any other annotation.

Of the different columns (referred to as Fields), there are associated restric-
tions, briefed as follows:

• Fields must not be empty. An unspecified value is represented by an
underscore (_) symbol.

• Fields other than FORM and LEMMA cannot contain space charac-
ters.

• UPOS, HEAD, DEPREL are not allowed to be left unspecified.

A.1.2 UD Annotation
There are some additional points with respect to UD Annotation that must be
clarified.

1. For the dependency tree, UD annotates the global root of a sentence as a
token with ID=0, referred to as ROOT. The root in the sentence is always a
singular unit, and is a direct child of this ROOT node.

2. A dependency relation is expressed in a format that combines the uni-
versal deprel and language specific part of deprel with a colon mark (:).
The language specific extension is optional, but is present in a lot of cases
nonetheless. We refer to the universal relation as udeprel, and the language
specific extension as xdeprel. Following example illustrates the same.
Example 29. In DEPREL Field value as acl:relcl, acl is the universal
dependency relation (referred to as udeprel, as per Udapi nomenclature)
while relcl is the language specific extension of acl udeprel (referred to
as xdeprel, as per Udapi nomenclature).

As mentioned earlier, we refer to udeprel when we talk about deprels in
this document, unless otherwise stated.
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A.2 List of Language Codes
This appendix contains the list of languages along with their identification codes,
as used in the different treebanks of UDv2.5. A full list of ISO 639-3 language
codes can also be accessed online3.

Table A.1 indicates languages where the ISO codes (ISO 639-1 or ISO 639-3)
is used as an identifier, arranged in alphabetical order. The only exception is qhe
for UD_Hindi_English-HIENCS code-switching treebank, where the ISO code
being employed is a reserved code for local use.

Note:

• * against a language name indicates lack of a treebank corresponding to
the language in UDv2.4.

Code Language Name
af Afrikaans

aii Assyrian
akk Akkadian
am Amharic
ar Arabic
be Belarusian
bg Bulgarian
bho Bhojpuri∗
bm Bambara
br Breton
bxr Buryat
ca Catalan
cop Coptic
cs Czech
cu Old Church Slavonic
cy Welsh
da Danish
de German
el Greek
en English
es Spanish
et Estonian
eu Basque
fa Persian
fi Finnish
fo Faroese
fr French
fro Old French
ga Irish
gd Scottish Gaelic∗

gl Galician
Continued on next page

3https://iso639-3.sil.org/code_tables/639/data/all
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Code Language Name
got Gothic
grc Ancient Greek
gsw Swiss German∗

gun Mbya Guarani
he Hebrew
hi Hindi
hr Croatian
hu Hungarian
hsb Upper Sorbian
hy Armenian
id Indonesian
it Italian
ja Japanese
kk Kazakh
kmr Kurmanji
ko Korean
koi Komi Permyak∗

kpv Komi Zyrian
krl Karelian
la Latin
lt Lithuanian
lv Latvian
lzh Classical Chinese
mdf Moksha∗

mr Marathi
mt Maltese
myv Erzya
no Norwegian
nl Dutch
olo Livvi∗
orv Old Russian
pcm Naija
pl Polish
pt Portuguese
ro Romanian
ru Russian
sa Sanskrit
sk Slovak
sl Slovenian
sme North Sami
sms Skolt Sami∗
sr Serbian
sv Swedish
swl Swedish Sign Language
ta Tamil
te Telugu

Continued on next page
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Code Language Name
th Thai
tl Tagalog
tr Turkish
ug Uyghur
uk Ukrainian
ur Urdu
vi Vietnamese
wbp Warlpiri
wo Wolof
yo Yoruba
yue Cantonese
zh Chinese

Table A.1: Languages in UDv2.5, identified with their ISO Codes

134



A.3 Multiple Treebanks in Languages (UDv2.5)
Table A.2 contains the different languages in UDv2.5 such that they contain
multiple treebanks. The second column of the table corresponds to the count of
the different treebanks, and the last column contains the name of the treebanks.
Notice that PUD treebanks are not included. A list of PUD treebanks can be
accessed in Appendix A.4.

Language Count Treebank Names
ar 2 NYUAD, PADT
cs 4 CAC, CLTT, FicTree, PDT
de 3 GSD, HDT, LIT
en 6 ESL, EWT, GUM, LinES, ParTUT, Pronouns+

es 2 AnCora, GSD
et 2 EDT, EWT
fi 2 FTB, TDT
fr 6 FQB, FTB, GSD, ParTUT, Sequoia, Spoken
gl 2 CTG, TreeGal
grc 2 Perseus, PROIEL
gun 2 Dooley, Thomas
it 5 ISDT, ParTUT, PoSTWITA, TWITTIRO+, VIT
ja 3 BCCWJ, GSD, Modern
ko 2 GSD, Kaist
kpv 2 IKDP, Lattice
la 3 ITTB, Perseus, PROIEL
lt 2 ALKSNIS, HSE
nl 2 Alpino, LassySmall
no 3 Bokmaal, Nynorsk, NynorskLIA
orv 2 RNC, TOROT
pl 2 LFG, PDB
pt 2 Bosque, GSD
ro 3 Nonstandard, RRT, SiMoNERo+

ru 3 GSD, SynTagRus, Taiga
sl 2 SSJ, SST
sv 2 LinES, Talbanken
tr 2 GB, IMST
zh 4 CFL, GSD, GSDSimp+, HK

Table A.2: Multiple Treebanks in Different Languages, UDv2.5
Note: Superscript + against a treebank name indicates treebank not present in

UDv2.4
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A.4 PUD Treebanks
PUD treebanks were formed as a part of CoNLL 2017 Shared Task [Zeman et al.,
2018]. Across different languages, the PUD treebanks contain the same 1000
sentences, from news genre, and from Wikipedia. Of these sentences, the first
750 sentences were originally in en, whereas the others were originally in de,
es, fr or it and were translated to other languages via en. The translation
into majority of the languages have been performed by professional translators.
The treebanks for the languages were first annotated as per Google universal
annotation guidelines Petrov et al. [2012], and then to UDv2 guidelines. The
treebanks for cs, fi, pl and sv were translated by local teams responsible for
the language, and were annotated directly as per UDv2 guidelines.

Table A.3 contains a list of languages which contain a PUD treebank. Notice
that PUD treebanks contain only the test set, and are devoid of train and dev
data. The official recommended usage of PUD treebanks is with a 10-fold cross
validation for training purpose, or using the whole treebank as testing data, as
the case may be.

Code Language Name
ar Arabic
cs Czech
de German
en English
es Spanish
fi Finnish
fr French
hi Hindi
id Indonesian
it Italian
ja Japanese
ko Korean
pl Polish
pt Portuguese
ru Russian
sv Swedish
th Thai
tr Turkish
zh Chinese

Table A.3: Languages with PUD Treebanks, UDv2.5
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A.5 Relaxations to Non-Projectivity
The condition of projectivity is a strict constraint for natural languages, exhibited
by very few constructions in most languages of the world. To better account
for linguistic processes, several relaxations to the definition of projectivity were
defined. A discussion of all such relaxations is out of scope of this work. However,
we define 3 most widely used relaxations here.

1. Planarity
The given tree is said to be planar, if it does not have any edges that overlap.
Formally speaking, given two undirected edges i1 ↔ j1 and i2 ↔ j2; if
i1 < i2 < j1 < j2 or i1 > i2 > j1 > j2, the edges are said to overlap.
Therefore, a given tree is called non-planar if there exists a pair of edges
i1 ↔ j1 and i2 ↔ j2 such that the edges overlap.

2. Ill-Nestedness
It is easier to define the condition of ill-nestedness rather than to define the
well-nestedness. A given (sub)tree is called ill-nested, if for given undirected
edges i1 ↔ j1 and i2 ↔ j2; i1 ∈ Gap(i2, j2) & i2 ∈ Gap(i1, j1). It is worth
noting that projective trees are always well-nested, but a well-nested tree
is not always projective.

3. Mild Non-Projectivity
A tree is said to be mildly non-projective if

(a) It is well-nested.
(b) The gap degree of the tree is bound by any constant k. Essentially,

gap degree of tree ≤ k.

A.5.1 Statistics of Non-Projectivities in UDv2.5

Treebank # Trees Non-Proj. Non-Planar Ill-Nested
Trees % Trees % Trees %

af-afribooms 1934 432 22.34 19 0.98 1 0.05
aii-as 57 - - - - - -
akk-pisandub 101 7 6.93 - - - -
am-att 1074 26 2.42 - - - -
ar-nyuad 19738 122 0.62 - - - -
ar-padt 7664 638 8.32 19 0.25 11 0.14
ar-pud 1000 38 3.80 1 0.10 - -
be-hse 637 46 7.22 - - - -
bg-btb 11138 342 3.07 2 0.02 1 0.01
bho-bhtb 254 35 13.78 7 2.76 1 0.39
bm-crb 1026 33 3.22 - - - -
br-keb 888 24 2.70 1 0.11 1 0.11
bxr-bdt 927 145 15.64 12 1.29 1 0.11
ca-ancora 16678 746 4.473 5 0.03 - -
cop-scriptorium 1575 206 13.08 - - - -

Continued on next page
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Treebank # Trees Non-Proj. Non-Planar Ill-Nested
Trees % Trees % Trees %

cs-cac 24709 3143 12.72 50 0.20 14 0.06
cs-cltt 1125 163 14.49 7 0.62 6 0.53
cs-fictree 12760 1455 11.40 32 0.25 3 0.02
cs-pdt 87913 10098 11.49 157 0.18 47 0.05
cs-pud 1000 104 10.40 2 0.20 1 0.10
cu-proiel 6338 1034 16.31 32 0.50 5 0.08
cy-ccg 956 18 1.88 1 0.10 - -
da-ddt 5512 1185 21.50 55 1.00 19 0.34
de-gsd 15590 1451 9.31 24 0.15 4 0.03
de-hdt 189928 12871 6.78 588 0.31 37 0.02
de-lit 1922 150 7.80 10 0.52 1 0.05
de-pud 1000 137 13.70 6 0.60 1 0.10
el-gdt 2521 142 5.63 - - - -
en-esl 5124 208 4.06 7 0.14 4 0.08
en-ewt 16622 767 4.61 22 0.13 6 0.04
en-gum 5427 410 7.55 10 0.18 1 0.02
en-lines 5243 459 8.75 24 0.46 13 0.25
en-partut 2090 39 1.87 2 0.10 1 0.05
en-pronouns 285 5 1.75 - - - -
en-pud 1000 45 4.50 1 0.10 - -
es-ancora 17680 928 5.25 5 0.03 - -
es-gsd 16013 937 5.85 16 0.10 2 0.01
es-pud 1000 45 4.50 1 0.10 - -
et-edt 30972 993 3.21 9 0.03 3 0.01
et-ewt 1662 111 6.68 2 0.12 1 0.06
eu-bdt 8993 2983 33.17 424 4.71 92 1.02
fa-seraji 5997 401 6.69 25 0.42 1 0.02
fi-ftb 18723 1444 7.71 150 0.80 73 0.39
fi-pud 1000 36 3.60 - - - -
fi-tdt 15136 931 6.15 9 0.06 - -
fo-oft 1208 33 2.73 2 0.17 1 0.08
fr-fqb 2289 75 3.28 1 0.04 - -
fr-ftb 18535 2019 10.89 69 0.37 21 0.11
fr-gsd 16342 428 2.62 6 0.04 - -
fr-partut 1020 45 4.41 - - - -
fr-pud 1000 17 1.70 - - - -
fr-sequoia 3099 66 2.13 - - - -
fr-spoken 2789 340 12.19 8 0.29 1 0.04
fro-srcmf 17678 2726 15.42 290 1.64 82 0.46
ga-idt 1763 272 15.43 22 1.25 9 0.51
gd-arcosg 2193 259 11.81 14 0.64 8 0.36
gl-ctg 3993 - - - - - -
gl-treegal 1000 113 11.30 7 0.70 2 0.20
got-proiel 5401 949 17.57 32 0.59 5 0.09
grc-perseus 13919 8890 63.87 1275 9.16 150 1.08
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grc-proiel 17080 6409 37.52 392 2.30 38 0.22
gsw-uzh 100 4 4.00 - - - -
gun-dooley 1046 - - - - - -
gun-thomas 98 4 4.08 - - - -
he-htb 6216 472 7.59 6 0.10 - -
hi-hdtb 16647 2264 13.60 116 0.70 13 0.08
hi-pud 1000 257 25.70 16 1.60 1 0.10
hr-set 9010 810 8.99 20 0.22 9 0.10
hsb-ufal 646 73 11.30 2 0.31 - -
hu-szeged 1800 488 27.11 38 2.11 17 0.94
hy-armtdp 2502 179 7.15 4 0.16 - -
id-gsd 5593 291 5.20 11 0.20 2 0.04
id-pud 1000 13 1.30 - - - -
it-isdt 14167 196 1.38 9 0.06 5 0.04
it-partut 2090 42 2.01 2 0.10 2 0.10
it-postwita 6713 86 1.28 2 0.03 2 0.03
it-pud 1000 8 0.80 - - - -
it-twittiro 1424 17 1.19 1 0.07 - -
it-vit 10087 353 3.50 18 0.18 7 0.07
ja-bccwj 57109 163 0.29 1 0.00 - -
ja-gsd 8186 - - - - - -
ja-modern 822 5 0.61 - - - -
ja-pud 1000 - - - - - -
kk-ktb 1078 130 12.06 3 0.28 1 0.09
kmr-mg 754 130 17.24 5 0.66 4 0.53
ko-gsd 6339 1006 15.87 22 0.35 3 0.05
ko-kaist 27363 5938 21.70 89 0.33 - -
ko-pud 1000 66 6.60 - - - -
koi-uh 49 1 2.04 - - - -
kpv-ikdp 117 3 2.56 - - - -
kpv-lattice 210 4 1.90 1 0.48 - -
krl-kkpp 228 45 19.74 3 1.32 - -
la-ittb 21011 7771 36.99 357 1.70 39 0.19
la-perseus 2273 1094 48.13 201 8.84 64 2.82
la-proiel 18411 5227 28.39 448 2.43 38 0.21
lt-alksnis 3642 441 12.11 7 0.19 1 0.03
lt-hse 263 38 14.45 2 0.76 1 0.38
lv-lvtb 13643 888 6.51 7 0.05 - -
lzh-kyoto 15115 - - - - - -
mdf-jr 65 2 3.08 - - - -
mr-ufal 466 28 6.01 1 0.21 1 0.21
mt-mudt 2074 81 3.91 1 0.05 - -
myv-jr 1550 79 5.10 4 0.26 3 0.19
nl-alpino 13578 1961 14.44 129 0.95 - -
nl-lassysmall 7338 447 6.09 25 0.34 1 0.01
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no-bokmaal 20044 1495 7.46 32 0.16 - -
no-nynorsk 17575 1361 7.74 27 0.15 4 0.02
no-nynorsklia 5250 495 9.43 37 0.70 3 0.06
olo-kkpp 125 17 13.60 2 1.60 2 1.60
orv-rnc 604 189 31.29 10 1.66 3 0.50
orv-torot 16944 2575 15.20 71 0.42 4 0.02
pcm-nsc 948 6 0.63 - - - -
pl-lfg 17246 111 0.64 3 0.02 1 0.01
pl-pdb 22152 1390 6.27 20 0.09 2 0.01
pl-pud 1000 52 5.20 - - - -
pt-bosque 9365 2862 30.56 307 3.28 72 0.77
pt-gsd 12078 684 5.66 11 0.09 6 0.05
pt-pud 1000 33 3.30 - - - -
qhe-hiencs 1898 192 10.12 7 0.37 4 0.21
ro-nonstandard 15843 819 5.17 9 0.06 1 0.01
ro-rrt 9524 864 9.07 21 0.22 10 0.11
ro-simonero 491 54 11.00 4 0.81 1 0.20
ru-gsd 5030 318 6.32 10 0.20 2 0.04
ru-pud 1000 24 2.40 - - - -
ru-syntagrus 61889 4658 7.53 58 0.09 13 0.02
ru-taiga 3264 277 8.49 12 0.37 5 0.15
sa-ufal 230 40 17.39 3 1.30 - -
sk-snk 10604 347 3.27 4 0.04 2 0.02
sl-ssj 8000 960 12.00 11 0.14 2 0.03
sl-sst 3188 144 4.52 1 0.03 - -
sme-giella 3122 338 10.83 21 0.67 5 0.16
sms-giellagas 36 2 5.56 - - - -
sr-set 4384 172 3.92 5 0.11 1 0.02
sv-lines 5243 305 5.82 13 0.25 4 0.08
sv-pud 1000 38 3.80 - - - -
sv-talbanken 6026 181 3.00 - - - -
swl-sslc 203 67 33.00 6 2.96 - -
ta-ttb 600 9 1.50 - - - -
te-mtg 1328 2 0.15 - - - -
th-pud 1000 28 2.80 - - - -
tl-trg 55 - - - - - -
tr-gb 2802 28 1.00 - - - -
tr-imst 5635 646 11.46 65 1.15 26 0.46
tr-pud 1000 149 14.90 4 0.40 - -
ug-udt 3456 172 4.98 1 0.03 - -
uk-iu 7060 547 7.75 9 0.13 1 0.01
ur-udtb 5130 1158 22.57 98 1.91 27 0.53
vi-vtb 3000 87 2.90 1 0.03 - -
wbp-ufal 55 6 10.91 - - - -
wo-wtb 2107 63 2.99 1 0.05 1 0.05
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yo-ytb 100 9 9.00 - - - -
yue-hk 1004 126 12.55 13 1.29 5 0.50
zh-cfl 451 4 0.89 - - - -
zh-gsd 4997 117 2.34 1 0.02 - -
zh-gsdsimp 4997 - - - - - -
zh-hk 1004 43 4.28 - - - -
zh-pud 1000 7 0.70 - - - -

Table A.4: Non-Projectivity and Relaxations in UDv2.5 Data (% of # Trees)

141


	List of Abbreviations
	Introduction
	Inter-conversion of Treebanks
	Universal Dependencies (UD) Project
	Motivation for the Problem
	Formal Problem Statement
	Data Source
	Organizational Layout of the Document
	A Brief Overview of Conventions Used

	Problems Identified in UD Treebanks
	Annotation Consistency in Different Treebanks
	Problems Caused by Change of Guidelines in UDv2
	Conversion Errors in Conjunctions
	AUX and VERB Distinctions

	Non-projective Structures
	Related Terms and Formal Definition
	Punctuation Induced Non-Projectivity


	Related Work on Solutions to Identified Problems
	Annotation Consistency across Treebanks
	Consistency in POS Annotation
	Consistency in Dependency Annotation
	LISCA

	Error Mining Methods
	Automatic Error Mining Based on n-gram Approach


	Estimating POS Annotation Consistency of Different Treebanks in a Language (Experiment 1)
	KLcpos3 and Metric Definition
	Dataset
	theta_pos Scores for UDv2.5
	Dataset Size and theta_pos
	Genre Distribution and theta_pos
	Relevant Literature on Textual Genres and Their Similarity
	Inter-Genre Similarity
	Combination of Genres
	Adulterant Genres in Dataset

	Framing Overall Theta_pos Limit
	theta_pos Scores for UDv2.5, Annotated To Mark Consistent And Inconsistent Treebanks
	Discussion And Conclusion
	Out of Vocabulary Words
	Using theta_pos Scores To Localise Inconsistency
	Split Into Constituent Genres As Requirement
	Conclusion


	conj_head: Head Identification Error in Coordinating Conjunctions (Experiment 2)
	Observations About Problem Statement
	Direction of Dependency
	Identifying Correct Conjunct for Misdirected Dependencies
	Conjunction Sandwich

	Dataset
	Experimental Setup
	Algorithm
	Evaluation and Results
	Originally Non-Projective Attachments
	Processing Pipeline Independent of Projectivity of Attachment

	Discussion and Conclusion

	Mining Errors in Low-Resource Languages by Combining LISCA And Cross-Validation (Experiment 3)
	Dataset
	Experimental Setup
	Arcs in Focus
	Statistics
	Baseline Run
	Experimental Runs

	Analysis
	Baseline vs Cross Validation: Who did it better?
	Comparing Different Experimental Runs

	Error Typologies
	Identification Error of Case-Marker: Case Error
	Annotation Error in Multi-Word Expression (MWE): MWE Error
	Annotation Error in Construction With Reported Speech: Reported Speech
	Head Identification Error: Wrong Head
	Annotation Error in Proper Nouns: Naming Error
	Dependency Head Located in Subtree: Tree Error

	Results and Discussion
	0-scored Arcs as Search Criteria
	Cross Validation as Strategy
	Error Typologies and Annotation
	Conclusion


	AUX vs. VERB: Attempt at Separation of Verbs and Auxiliary Verbs (Experiment 4)
	Observations About Problem Statement
	Dataset Definition
	Experiment
	Results
	Discussion of the Results

	Future Work Recommendations
	Enhanced Dependencies
	Ellipsis
	FalseNonProjective: Introduction of False Non-Projectivity into the Annotation
	Function Words and Associated deprels
	auxHead: Auxiliary as Head of Dependency
	nmod4obl: Confusion of nmod and obl Relations
	Punctuation
	Unspecified Dependencies - dep deprel

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Appendix
	Terminology Pertaining to UD
	CoNLL-U Format
	UD Annotation

	List of Language Codes
	Multiple Treebanks in Languages (UDv2.5)
	PUD Treebanks
	Relaxations to Non-Projectivity
	Statistics of Non-Projectivities in UDv2.5



