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Abstract

In recent years, there have been many attempts of decoding computational representa-
tions of sentences from the associated brain activity of human’s reading these sentences
during functional Magnetic Resonance Imaging. However, most of these studies have
not interpreted what information is encoded in the representations, while assuming that
these representations capture general constructs such as “semantics”. One goal of this
thesis is to demonstrate how computational representations can be characterized by how
much information they contain related to many linguistic and semantic properties in-
cluding animacy, semantic similarity, or word order to show they encode more than just
the task they were trained on (e.g., text categorization). Therefore, if certain regions
decode these representations, these regions can be better described. A second goal is
to show the value of using complementary computational representations of the same
task for brain mapping. For instance, different models –from logistic regression trained
on tf-idf features to a deep neural network trained on word embeddings– accomplish
text categorization in different ways. It is then possible to see which which brain regions
have information on all forms of text categorization and which brain regions are specific
to each model.

We first train models on text categorization. We then show how these models
can be mapped onto the brain using Representational Similarity Analysis. However, in
order to understand what information is mapped to each region, we provide a series of
methods to analyze representations. We first compare each model’s performance with
human judgments on semantic textual similarity and text categorization to understand
which model best captures human processing. The human sentence categorization task
is carried out on sentences with more than one plausible category, which creates a chal-
lenge for any computational model that wishes to capture human intuition. Finally, we
use a series of techniques to interpret each model’s representations including probing,
distorting inputs and architecture, Representational Similarity Analysis, and measuring
how superficial or abstract each hidden layer is. We expect models that are similar in
their interpretations to produce similar brain mappings.

Keywords: semantics, categorization, compositionality, convolutional neural net-
work, long short-term memory, deep learning, brain, fmri.



1. Introduction

“Essentially, all models are wrong, but some are useful“ - George Box

“Truth is much too complicated to allow anything but approximations” - John von
Neumann

Humans are constantly categorizing the world around them. We categorize ex-
plicitly when remembering that Fitzcarraldo is a Werner Herzog film or more implicitly
while trying to comprehend a sentence such as “He wrote many famous songs”. We
know the sentence is about something animate and very likely a musician while knowing
a sentence with a very similar meaning such as “It has many famous songs” is about
something inanimate, an album. Powerful models from formal semantics (e.g., Mon-
tague (1970)) have described the type of knowledge and rules that humans may have in
order understand how the meaning of individual words change when they are composed
into phrases; for instance, to know that the meaning of “red” in “the red light” is quite
different than “red” in “he’s a redhead”. Interpreting the exact meaning of a phrase
or its overall category are types of semantic compositionality. Furthermore, semantic
categorization is probably occurring in parallel when interpreting the precise meaning of
a phrase.

1 Decoding Semantic Compositionality in the Brain.

In recent years, there have been many attempts of using feature vectors to predict
brain patterns associated to the meaning of words (Mitchell et al., 2008; Abnar et al.,
2017) and sentences (Anderson et al., 2016; Pereira et al., 2018; Anderson et al., 2018;
Jain and Huth, 2018). Two complementary approaches are used: encoding, which uses
stimuli (e.g., word embeddings) to predict brain activity and decoding, which uses brain
activity to predict information about the stimuli (Naselaris et al., 2011).

Gauthier and Ivanova (2018) summarize a series of issues with these studies. First,
these models assume that since the stimuli feature vectors encode “meaning” –which is
arbitrarily and vaguely defined–, then the predicted brain regions are “semantic repre-
sentations”. However, computational representations not only encode “meaning”. For
instance, when studies decode brain activity from averaged word embeddings of a sen-
tence (as in Pereira et al. (2018)), word embeddings encode meaning as well as different
aspects of words such as lexical frequency, hypernymy (Fu et al., 2014) and also more
complex syntactic features (Mikolov et al., 2013a). So even though being able to decode
brain activity linked to sentence comprehension is an accomplishment for the field, these
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studies do not specify the type of processing that is being carried out in these regions.
Second, they show that models trained on a wide array of tasks (e.g., language model-
ing, natural language inference, machine translation, image caption retrieval, sentiment
analysis) can partially predict brain activity associated to reading a sentence, and there-
fore, this brain activity carries aspects of each one of the task-specific models. Finally,
they suggest the following recommendations: 1. commit to a specific mechanism and
task to show that the decoded brain regions represent that specific task and not vague
constructs such as “semantics”. 2. subdivide the input feature space, for instance, by
manually building a feature vector with different features (e.g., semantic, visual, syn-
tactic) and evaluating the complete and partial model to see which regions belong to
which features, and which features overlap in the brain. 3. Explicitly measure explained
variance. For instance, Anderson et al. (2018) predicted “brain activity encodings for
individual stimuli such as the mention of a specific story character, the use of a specific
syntactic part-of-speech or the occurrence of a given semantic feature”.

Here we wish to take this proposal a step further: not only should a specific task
be specified, but we wish to demonstrate that several models trained on the same task
can provide complementary and useful information. We develop a framework for map-
ping interpretable models of a given task onto the brain (see figure 1.1). We use four
different models on the task of semantic categorization and analyze their representations
to show common and different information. All models can be used to predict overlap-
ping and different brain regions dedicated to text categorization in order to find more
specific representations. We hypothesize that this task may elicit different brain regions
than a paraphrasing task (which encodes something closer to the exact meaning of the
sentence). Furthermore, categorization models have given promising results in the field
of vision (Cichy et al., 2016), where each layer of a convolutional neural network can
be mapped to the brain following the visual ventral stream which is known to gradually
encode semantic abstraction. However, there remains to be studies using language to
show how the language categorization model may reveal linguistic semantic abstraction
(i.e., reveal areas specialized for single-word meaning onto areas specialized for inter-
preting the category of a sentence).

Figure 1.1: Our approach to map interpretable and complementary models of a given
task on the brain.

In chapter 2, we describe the design, training, and testing of these complementary
text categorization models from which feature vectors will obtained (step 1 and 2 in
approach). In chapter 3, we provide the design for an fMRI experiment to predict brain
regions important for different levels and types of text categorization (step 4; this is
presented before interpreting the models in order to understand the goal of this thesis
and interpreting computational representations). In chapter 4, we start analyzing the
feature vectors by comparing their predictions to human judgment (step 3). We also
provide a challenge to any computational model that wishes to encode a human intuition
of text categorization: models must predict the category of sentences with more than one



possible category and compare their predictions to human judgment. This should start
to answer which model best captures human intuition. In chapter 5, we apply several
methods for analyzing and comparing each model’s representations to know what is
actually being encoded in potential brain regions (step 3).



2. Text Categorization in Machines

We chose four different text categorization models that cover a diverse array of
semantic compositionality needed for text categorization: 1. logistic regression trained
on tf-idf features, 2. logistic regression trained on averaged word embeddings 3. a
convolutional neural network (CNN), and 4. a long short-term memory (LSTM). The
first two models are simple linear models and the second two are deep neural networks.
Deep neural networks allow the possibility of higher performance, a different type of
compositionality, and intermediate representations of that compositionality from the
hidden layers. Each one will be reviewed in how they theoretically and empirically
model the compositionality of text categorization. The goal of this first experiment
is to see which model has the highest performance on a new data set on the task of
text categorization. Furthermore, feature vectors will be obtained from each model for
further experiments.

1 Review of Models with Different Types of
Compositionality

Each one of the four models will described in turn. Table 2.1 summarizes theoret-
ical types of compositionality that we assume each model seems to be performing.

Model Type of compositionality Levels

LogReg Tf-idf No compositionality: shortcuts compositionality by
weighing important words per category.

No

LogReg avg. em-
beddings

Composition through averaging word embeddings of
a sentence without stop words.

No

CNN Hierarchical composition from local compositionality
(ngrams) in first layer to global compositionality (cat-
egory) in final layer.

Hidden
layers

LSTM Cumulative composition word by word. Time
steps

Table 2.1: Types of compositionality. “Levels” means the degree of compositionality
either throughout hidden layers (both deep neural networks) or time steps (LSTM).
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1.1 Term Frequency-Inverse Document Frequency

small edits as requestedTerm Frequency-Inverse Document Frequency (tf-idf) is a
method of assigning weights to words to measure the importance of a given term in a
document (Salton and Buckley, 1988). Tf-idf carries the intuition that a term that occurs
in many documents (e.g., the pronoun “she”) is not a good discriminator and should
be given less weight than a term that occurs substantially more in a single document
(e.g., “pilot” in an document on a pilot), which would mean it is representative of that
document. The classical formula is:

wi,j = tfi,j × log(
N

dfi
)

where wi,j is the weight for ith term in jth document, N is the number of docu-
ments in the collection, tfi,j is the term frequency of ith term in jth document and dfi
is the document frequency of ith term in the collection (Zhang et al., 2008).

Logistic regression. The resulting feature vectors are then trained with a
logistic regression classifier. In the binary logistic regression problem, there is a binary
output variable Y, and the goal is to model the conditional probability Pr(Y = 1—X =
x) as a function of x (Shalizi, 2013). When applying linear regression to this probability
problem, a first attempt could make p(x) be a linear function of x, where an increment in
x would add or subtract a certain amount to the probability. However, p must be between
0 and 1 and linear functions are unbounded. Therefore the solution is to first apply a
log transform so that changing an input variable multiplies the probability by a fixed
amount, and then modifying p with a logistic transformation or logit since logarithms
of probabilities are unbounded in only one direction and linear functions are not. The
logistic regression model would be:

log
p(x)

1− p(x)
= exp(β0 + β1 + β2 + · · ·+ βn

For multiclass classification, we simply compute this logit probability for each
class. For a given class (e.g.,“Aircraft”) and a given input (e.g., 300 dimensional word
embedding), when solving for p, the formula would be:

Pr(Aircraft | 300D word embedding) =
exp(β0 + β1 + β2 + · · ·+ β300)

1 + exp(β0 + β1 + β2 + · · ·+ β300)

It would be reasonable to assume humans have the intuition of tf-idf: a way
of categorizing a text would be to evaluate which category the content words belong
to the most. However, there is no composition in tf-idf since a sentence is simply a
concatenation of term weights. Most weights will be zero, creating a sparse vector,
which is practically a “mask” of zeros over irrelevant words. Furthermore, returning to
the example in the introduction, tf-idf would probably not return a strong distinction
between “She wrote many famous songs” and “It contains many famous songs”, since
pronouns such as “she”, and verbs such as “writing” and “contains” are not particularly
important for the sentences’ categories.



1.2 Averaged word embeddings

Given a sentence, each word can be represented by a word embedding, a mul-
tidimensional vector (e.g, of 300 elements) that represents its meaning obtained from
co-occurences in large corpora (Mikolov et al., 2013a)1. A very basic form of composing
these units of meaning is taking the element-wise average of these word vectors, also
known as bag-of-words. Due to averaging, the sentence vector does not encode word
order. And it is possible to include only content words because the stop words could
re-orientate the multidimensional vector in a sub-optimal and semantically meaningless
direction, as only content words tend to carry meaning (Mitchell and Lapata, 2008;
Mikolov et al., 2013b). These resulting feature vectors are also trained with the logistic
regression model described before.

This simple approach has obtained surprisingly high performance in different types
of task (Hill et al., 2016). However, from a cognitive point of view, averaging units
of meaning is hard to interpret. Furthermore, removing stop words creates an artificial
input space. Cognitively plausible models should learn to extract or disregard information
from stop words within phrases as humans do.

1.3 Convolutional Neural Network (CNN)

CNNs had generally been used for computer vision (Krizhevsky et al., 2012) in-
spired by the brain’s visual system (Goodfellow et al., 2016). However, recent studies
using CNNs have performed extremely well on sentence classification tasks (Kim, 2014;
Zhang and Wallace, 2015; Conneau et al., 2016). Many CNNs for sentence classification
have a single convolutional layer. However, a CNN more hidden layers enable analyzing
how the semantic representation changes at each layer, which is of particular interest
for us since we can find different levels of representation throughout the brain.

In figure 2.1 we describe a the multi-layer CNN architecture for text categorization.
We added a dense layer between the last maxpool layer and the softmax layer to create
a bottleneck from the output of the maxpool2 to the last layer. The dense layer allows
the model to reorder what it has learned up until the second maxpool layer (which still
maintains ngram order) if necessary to improve performance.

A model with at least three layers is preferable to obtain a gradual composition of
meaning from sentence to category –from more concrete and local composition of a few
words in layer 1 to more abstract and global in the last layer. If the brain has degrees
of abstraction, one could assume that at some point there is a single representation for
the whole sentence when it is read and a dense layer seems to better characterize this
type of representation.

ELU is preferred over ReLU because the latter creates sparse feature vectors since
it flattens negative values to zero. Since our goal is to correlate the feature vectors from
the hidden layers of the CNN between sentences for Representational Similarity Analysis
(see Chapter 3), a more nuanced feature vector (with different positive and negative
values) is preferred (however, we include ELU vs. ReLU comparisons in the gridsearch
analysis and choose the highest performing after the dense layer).

1 See online tutorial for introduction to Natural Language Processing: https://github.com/

danielmlow/nlp_tutorial/blob/master/tutorial.ipynb

https://github.com/danielmlow/nlp_tutorial/blob/master/tutorial.ipynb
https://github.com/danielmlow/nlp_tutorial/blob/master/tutorial.ipynb


Figure 2.1: Convolutional neural network architecture. The input is a sentence matrix,
which is built by concatenating the word embeddings of each word (of size 300 in this
example). If using sentences up to size 36 and a filter of weights of size of three, three
rows of the sentence matrix are repeatedly multiplied (through a dot product) by a single
filter of weights of size 3x300, shifting one row at a time (i.e., a convolution). Each filter
contains weights that are randomly intiliazed and later learned through training. Applying
the filter to the input through a dot product ouputs convolutional layer 1 (conv1) of size
36x1. Then a bias term and an activation function are applied to each feature vector.
The bias is learned to determine how important that conv1 neuron is for the network.
If the bias is low (negative) than the input and weight must be high for the neuron
to be active; if the bias is high (positive) than even small inputs will make it activate.
This activationfunction(inputs · weights + bias) computation is done with multiple
independent weight filters (128 in the example) to learn complementary information of
the same input. Maxpool is then performed to obtain one value from each feature vector
resulting in maxpool layer 1. Maxpool seeks to downsample the information, keeping
only the highest features. This process can be repeated with multiple conv-maxpool
layers. Finally, there is a fully-connected dense layer which results in an ouput layer of
64 elements.

1.4 Long Short-Term Memory (LSTM)

Recurrent neural networks (RNN) were introduced to model sequential and de-
pendent inputs. They are recurrent because they apply the same process for every time
step of the sequence with the output being dependent on the previous time steps. The
issue is that these models carry a “memory” of only a few previous time steps. RNNs
also have high time complexity and can end exploding gradients or vanishing gradients,
which make time complexity depend exponentially on the size of the weights:

Exploding gradient. An error gradient with respect to the weights is the direction
and magnitude calculated during the training of a neural network that is used to update
the network weights in the right direction and by the right amount. Exploding gradients
occur when weights with values larger than 1.0 are repeatedly multiplied (Pascanu et al.,
2013). This makes the network unstable during learning, which when the loss function
has a high oscillation, instead of an optimal steady decrease.

Vanishing gradients. Certain activation functions (e.g., sigmoid and tanh) map
large regions of the input space to an extremely small range. In these regions of the
input space, even a large change in the input will produce a small change in the output



(a) Full LSTM architecture

(b) Content of LSTM cells

Figure 2.2: LSTM architecture

(i.e., the gradient is small). This is worse in a deep neural network: a first layer will map
a large input region to a smaller output region, which will be mapped to an even smaller
region by the second layer and so on. Therefore, even a large change in the parameters
of the first layer does not change the output much. This means that the neurons in the
earlier layers cannot learn as much and the first layers are important because they can
detect patterns directly from the input.

For these reasons, the LSTM, a more efficient recurrent network, was introduced
(Hochreiter and Schmidhuber, 1997). It enforces constant (instead of exploding or
vanishing) error flow by truncating the gradient at certain points. Several gate units
learn to open and close access to this constant error flow. Although this constant flow
is not perfectly obtained, the model does learn longer term dependencies.

More formally, following the architecture in figure 2.22, at a given timestep ht, an
LSTM must decide whether to keep or remove an input xt from the error flow at a given
time step or cell state. It makes this decision through a forget gate which is a sigmoid
layer: the network looks at ht−1 and the input xt and outputs a value between 0 and 1,
which is a confidence estimate for each number in the cell state Ct1:

ft = σ(Wf · [ht−1, xt] + bf )

Then the LSTM decides what to save in the cell state. First, a second sigmoid
layer called “input gate layer” chooses which value to update:

2 Figure (b) from colah.github.io/posts/2015-08-Understanding-LSTMs



it = σ(Wi · [ht−1, xt] + bi)

Then a tanh layer outputs a vector of new candidate values, C, to be added to
the state:

Ct = tanh(WC · [ht−1, xt] + bi)

The old state is updated:

Ct = ft ∗ Ct−1 + it ∗ Ct

Then a sigmoid layer filters the outputs o and a tanh layer is applied to return
values between -1 and 1, which are multiplied by the output of the sigmoid gate as a
filter:

ot = σ(Wo[ht−1], xt] + bo)

ht = ot ∗ tanh(Ct)

Deep neural networks have the advantage of having multiple levels. In an LSTM,
this is true in two ways: if LSTM layers are stacked one on top of the other, the
representation from the last time-step (i.e., that represents the whole sentence) can be
obtained from the stacked layers to potentially achieve gradual levels of composition.
A second approach is to obtain representations at multiple time-steps and therefore
compare how the representation changes as the model gradually covers the input. For
the latter, a single layer model seems to be better as the first time-steps will not be
affected as much by a vanishing gradient then in a stacked model.

Please refer to Future Work in General Discussion for alternative computational
approaches to compositionality.

2 Experiment 1: Wikipedia-DBpedia Text
Categorization

2.1 Dataset

A dataset was built by linking wikipedia sentences to DBpedia classes or categories
as follows. The DBpedia project (Lehmann et al., 2015) links each one of the Wikipedia
articles (1.4 million in Italian) to an ontological category within an ontology or semantic
hierarchy. Therefore, a dataset was built by tokenizing the sentences of every Italian
Wikipedia article (i.e. the training samples), and linking each sentence to the articles
DBpedia category as a training label.

Since some categories have very few articles, 64 categories were chosen from the
320 categories available to obtain similar sample sizes of 6000 sentences per category
(see Experiment 1 Sentence Examples in Appendix for categories and sentence exam-
ples). We wanted to maximize the amount of categories covered. 6000 samples were
selected because lowering it to, for example, 5000 would only provide three more cate-
gories and increasing it to, for example, 12000 samples would reduce the semantic space
considerably to 54 categories that have that amount of sentences.



Sentences are between 6 and 38 words, since the goal of this study is to present
sentences to humans and sentences over 40 words are more likely to change topics.
Furthermore, median Wikipedia sentence length was 20 words and therefore we left out
sentences less than 6 words (percentile 4) and more than 38 words (percentile 89),
leaving out 15% of the sentences.

An 80-20 train-test split was applied which resulted in a training set of 4800
sentences per category (used for grid search and cross validation) and a test set of 1200
sentences per category.

Other datasets were considered: 1. Using only the abstract of the artcile instead
of the whole article. However, was not preferred since it creates less sentences per
categories which either hurts the sample size or the amount of classes (i.e., semantic
space); a less fuzzy semantic space which is not preferred since humans seem to have a
fuzzy semantic system (Binder et al. (2016)): semantic categories are not divided in the
brain but overlap and connect in many different ways, so the type of fuzzyness captured
by Wikipedia articles is optimal. 2. The DBpedia label of the article may not apply to
certain sentences within the article (e.g., an article on the humming bird will describe
not only birds, but also its discoverer or its ethymology). Therefore, unsupervised topic
modeling of sentences was sought out but resulted in many redundant topics over the
first 15 topics, resulting in a small semantic space.

2.2 Models

Logistic Regression with Tf-idf. The default scikit-learn Logistic regression
parameters3 were used including one-vs-rest (OvR) scheme. Tf-idf was used with scikit-
learn default parameters4 except with a minimum document frequency = 2 and an ngram
range from 1 to 3 words to match input information of the CNN.

Logistic Regression with word embeddings The same logistic regression model
was used as with the tf-idf model. We used Google word2vec Italian word embeddings.
We left only content words because stop words tend to not carry meaning but never-
theless carry the same weight in reorienting the sentence vector. (Bojanowski et al.,
2016). It possible to choose the highest performing option, but since this work cares
about the interpretability of the representations, the reasoning is the averaged sentence
vector mean(the, airline, flies, to, Africa) would be in a worse semantic direction for
the category Airline than mean(airline, flies, Africa) (?).

CNN. Once we designed a basic architecture as described in the previous CNN
section (see figure 2.1), we optimized the hyperparameters for accuracy. To reduce
the amount of hyperparameter comparisons, we split the grid search in three steps:
1. We first found a reasonable epoch size by starting the model on intermediate or
standard values for the hyperparameters, and ran it for 10 epochs with the following
parameters: drop: 0.3, batch size=256, optimizer: Adam, activation1: elu activation2:
elu. The validation accuracy was the highest after three epochs (see figure 2.3 for
learning curves).

2. We than ran a grid search on hyperparameters pertaining to key architecture
design: number of filters: 32, 64, 128; amount of neurons in first dense layer: 1024,
512, 256; amount of neurons in second dense layer: 64, 128; best parameters were:

3 http://scikit-learn.org/stable/modules/generated/sklearn.linear model.LogisticRegression.html
4 http://scikit-learn.org/stable/modules/generated/sklearn.feature extraction.text.TfidfVectorizer.html



0 1 2 3 4 5 6 7 8 9 10
Epoch

0.0

0.2

0.4

0.6

0.8

A
cc
ur
ac

y

val_acc
acc

(a) Accuracy

0 1 2 3 4 5 6 7 8 9 10
Epoch

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

val_loss
loss

(b) Loss

Figure 2.3: CNN accuracy and loss learning curves

number of filters: 128; dense 1 neurons: 512; dense final neurons: 128; activation in
convolutional layers: elu.

3. We ran a grid search on the remaining key parameters: dropout rates: 0.1, 0.2,
0.3, 0.4, 0.5; batch sizes: 64, 128, 256, 512; activations in dense layers: elu, relu.

Final parameters after tuning:

• dropout rates: 0.2;

• batch size: 512;

• optimizer: Adam;

• activation conv layers: elu;

• activation dense layers: elu;

• number of filters: 128;
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Figure 2.4: LSTM accuracy and loss learning curves

• dense final neurons: 128;

This procedure is suboptimal since there could be possible interactions between
the hyperparameters of each step. Furthermore, there alternatives to gridsearch such
as random search (Bergstra and Bengio, 2012). However, this is a proof-of-principle of
how models can be interpreted for their linguistic-semantic properties and mapped onto
the brain.

LSTM. The architecture consisted of a single LSTM layer with a dense layer and
softmax layer (see figure 2.2 (a); see table 5.2 for results on an LSTM with two stacked
layers). A single LSTM was preferred since the compositionality of interest was that
across time-steps, not layers, as we are trying to build models with different types of
compositionality. As with the CNN, an initial model found three epochs to be optimal
(see figure 2.4 for learning curve).



Then grid search was performed with the following parameters: Dense final neu-
rons: 512, 128; dropout rates: 0.1, 0.2, 0.3, 0.4, 0.5; batch size: 128, 256, 512;
optimizer: Adam, activation for LSTM layer: elu, relu; lstm neurons: 300, 600.

Final parameters after tuning:

• dropout rates: 0.3;

• batch size: 512;

• lstm neurons: 600;

• optimizer: Adam;

• activation: elu;

• dense final neurons: 128.

Since each sentence can have more than one reasonable label, top 1, 2, 3, and 5
accuracy will be computed for each model along with their 5-fold cross-validation (CV)
score to observe the difference between validation and testing accuracy and accuracy
variance within CV folds.

Deep neural networks were run with Keras (Chollet et al., 2015) with TensorFlow
(Abadi et al., 2015) backend on the GPU Peregrine HPC cluster of the University of
Groningen. Logistic regression was run with sklearn (Pedregosa et al., 2011).

2.3 Results & Discussion

Table 7.2 shows the full results. The standard deviation in cross validation is low
and therefore the data set is relatively consistent across folds. The difference between
the cross-validation scores and the test score is also quite low; therefore, results from
validation generalized well to the test set.

The highest performing model was the LSTM (for the LSTM classification report,
see section 1.1.Classification Report in Appendix). The accuracy increases substantially
from top-1 to top-5 accuracy, reconfirming that this dataset has fuzzy labels. It is reason-
able to assume that there are several appropriate labels for most sentences. Therefore,
the top-3 or top-5 accuracy seem to be more valid estimates of performance.

Since the goal is to compare models, one interesting metric is Cohen’s Kappa score
for inter-rater agreement. Each model’s predictions for test set were compared as raters,
which resulted in kappa = 0.73 (and almost identical scores for other metrics such as
fleiss). This agreement score is considered substantially high. (Viera et al., 2005).



Model CV (SD) Top-1 Top-2 Top-3 Top-5

Tf-idf 65.48 (.18) 66.19 77.33 82.56 87.82
Avg. w2v 67.06 (.24) 67.13 79.47 84.87 90.12
CNN 68.65 (.31) 69.52 80.85 86.00 91.17
LSTM 71.47 (.34) 72.32 83.52 88.24 92.73

Table 2.2: Accuracy (%) on 64-way text categorization. Approximately equivalent values
for f1-score. CV: Mean 5-fold cross-validation accuracy (SD: standard deviation). Top
1,2,3 and 5 accuracy on test set.



3. Understanding the Brain with Machines

In this chapter, we review an approach to map computational representations
onto the brain using fMRI. As detailed in the Introduction, brain decoding studies have
generally not framed their interpretations on the type of task their models were trained on
(if any at all as some use averaged word embeddings). Furthermore, since it is reasonable
to assume that different circuits in the brain care about different types of semantic
compositionality (e.g., local, global, exact meaning, overall category), our goal is to show
how the models from the previous chapter trained specifically on text categorization can
be essentially mapped onto the brain and how these mappings represent different types
and levels of compositionality. This approach should be revealing in that it is possible
to see how the different models with different types of compositionality map to different
regions as well as seeing which regions are common to all.

In this chapter, we focus on the CNN from the previous chapter to show how
the final layer as well as the intermediate layers can be mapped onto the brain. Our
hypothesis is that conv1 should map to areas where simple meaning representations are
thought to be stored such as the inferior and middle temporal cortex (Hagoort, 2013).
Whereas, final dense layer should map to areas involved in more complex and abstract
compositionality, possibly typical language networks as the left inferior frontal gyrus as
well as those overlapping with the default mode network Mineroff et al. (2017); Hagoort
(2013). An alternative hypothesis is that layer 3 is decoded by subregions that layer
1 decoded; layer 1 may be representing information of conceptual primitives shared by
many phrases, whereas layer 3 may be narrowing the representation by composing it into
a specific category and therefore using less of the same regions.

1 Design of an fMRI experiment to map
computational models on the brain

1.1 Create a model

Here we use the CNN from the previous chapter as an example. Any of the previous
models can be used but we choose the CNN as it has been used in other studies (e.g.,
Cichy et al. (2016)) and particularly illustrates that each layer can be mapped. This is
interesting because each layer seems to have different levels of compositionality, from
local superficial representations to global and abstract representations (we show evidence
for the superficial-abstract change in section 4 of Chapter 5).
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1.2 Design stimuli

We need to choose stimuli that are representative of each layer while being as
different as possible from other layers in order to obtain a single in fMRI data. The
following approach achieves this while removing us from the stimuli selection to avoid
bias:

1. Filter sentences with psycholinguistic cofounds such as mean lexical frequency,
which we left within a 5 and 95 percentile-range (using the frequency dictionary
from Crepaldi D (2015)) and sentence length, which was set to 14 and 15 words per
sentence. This range is an adequate length for reading. We restricted sentences
to a small sentence-length range because different sentence lengths carry different
amount of “zero rows” due to zero-padding in the embedding input layer (i.e.,
sentences shorter than the maximum input length of 38 words carry the learned
weights and biases in conv1 associated to zero rows in the embedding layer).
By choosing sentences of 14 and 15 words with the parameters we chose and
tuned, the first 14 rows out of 36 (which corresponds to the first 1792 elements
of 4608 flattened feature vector) carry information of the first 16 words. The last
row will carry information about words 14-16 and therefore, if a sentence has 14
words this last row will not be a zero vector. The remaining zero-rows (17-26)
can be discarded from analysis. In conv2 the non-zero rows go from 1-5 (which
corresponds to the first 1280 elements of 4352 flattened feature vector).

2. Using the feature vectors from the final dense layer, performed unsupervised hier-
archical agglomerative clustering with a Ward criterion and Euclidean distance1.

3. Within each cluster, choose the top 20 silhouette scores to obtain the most rep-
resentative sentences from each cluster. Silhouette scores near +1 means the
sentence is far away from the neighboring clusters. A score of 0 indicates that the
sentence is near the decision boundary between two neighboring clusters and neg-
ative values indicate that those sentences may have been assigned to the incorrect
cluster.

4. Recluster these 20 sentences per cluster into 64 clusters.

5. Build a RSM for the remaining sentences, but using their conv1 representations.
Then for each sentence, take the mean within-cluster correlation (Spearman’s
rho) and subtract the mean across-cluster correlation, which enables ranking how
similar sentences are to other categories. Select the 6 sentences per cluster that
have the lowest scores.

6. Recluster these 6 sentences per cluster into 64 clusters. This results in uneven
clusters (from 2 to 17 sentences per cluster).

7. Repeat process starting with conv1 representations and using final dense represen-
tations for the final selection.

With this algorithm, we select sentences that are representative of each layer and
are not similar to the other layer. However, some are easier to understand than others
out of context, even though Wikipedia offers well-curated sentences. Therefore, we ran

1 Seaborn clustermap is used: https://seaborn.pydata.org/generated/seaborn.clustermap.html



a survey with 4 Native Italian speakers that rated the sentences in random order from
1 to 5, where 1 was very easy to understand and was very 5 difficult to understand.
Then there individual scores were normalized by subtracting the mean and 4 scores were
averaged. From each cluster, only half of the most easiest to understand were selected
for the stimuli resulting in 192 sentences representative of each layer (384 in total).
Participants gave their informed consent and were paid for their participation.

Although this stimuli set allows us to optimally compare layers, it also allows us
to compare the layers with the representations from models that are not deep neural
networks (i.e., tf-idf, averaged word embeddings), where this procedure is not necessary.
In Chapter 4 and 5 we will analyze each model’s representations to show the differences
and similarities between the models.

1.3 Representational Similarity Analysis

To map semantic categorization onto the brain we first use a method called Repre-
sentational Similarity Analysis (Kriegeskorte et al., 2008): take the correlation (or other
distance metric) between sentence’s feature vectors to obtain a measure of similarity
(e.g., rho) or disimilarity (e.g., 1-rho) between sentences for a given model’s feature
vectors. When done with N sentences, an NxN Respresentational Similarity Matrix
(RSM) is obtained for each model. See figure 3.1 for the RSM of each CNN layer for
a subset of 12 sentences. Then see figure 3.2 for an RSM computed by correlating the
previous CNN laye RSMs.

This method allows us to correlate two RSMs that carry any type of information: an
RSM from a CNN layer with an RSM from brain responses (our ultimate goal described
in figure 3.4), RSMs from different computational models (e.g., see figure 3.3), or RSMs
built directly from human similarity judgments between pairs of sentences (e.g., see 4.5b
from Experiment 3 in Chapter 4).

1.4 Searchlight analysis.

To compare models with brain responses we will use searchlight analysis (Etzel
et al., 2013), which is an multivariate pattern analysis (MVPA) method (see figure 3.4).
A sample of human participants read sentences from the stimuli set while undergoing
functional magnetic resonance imaging (fMRI). The 3D brain volume is divided into
spheres or searchlights. The searchlights are centered on each voxel and have a radius of 9
milimeters around the voxel. Reading a sentence will produce a specific BOLD activation
pattern within each searchlight (i.e., a brain feature vector). Then an RSM will be built
by computing the pairwise correlation between the pattern produced by reading each
sentence to understand where and how the brain encodes meaning. Finally, mapping is
produced by correlating model and brain RSMs. Statistically significant correlations will
be regions that share information with the given CNN layer. And this process can be
repeated with the different text categorization models to view where they overlap and
differ in the brain.
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Figure 3.1: RSM of three CNN layers.
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(c) Final dense layer

Figure 3.1: RSM of three CNN layers. Each cell is the Spearman correlation between
two sentence feature vectors at the given layer. Then Ward clustering is applied to show
how similarity between sentences changes from layer to layer.
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Figure 3.4: Adaptation of the description of searchlight analysis from Cichy et al. (2016).
Pairs of sentences are evaluated by the CNN and read by humans undergoing fMRI.
An RSM is built by computing the pairwise correlation (rho) between these feature
vectors within each modality: RSMs are built for each layer in the CNN and for each
searchlight on the human cortex. Then brain and model RSMs are correlated and
consistent correlations mean that the model and searchlight share information. The
brain mappings are from Cichy et al. (2016).



4. Understanding Machines with Humans

In the previous chapter, we showed how computational representations of sentences
and different types of compositionality can be mapped onto the brain. However, what
exactly is represented in each model is unclear. In this chapter, we will use human
judgments to inform differences between models, that is to say, to understand which is
most similar to human judgment. We will include human judgments on text similarity as
well as text categorization and compare them to the models. The human categorization
task is included to create a challenge to computational models of text categorization by
using sentences that hard for models to categorize but categorizable by humans.

1 Experiment 2: Human Similarity Judgments

1.1 Introduction

As described in the previous chapter, our goal is to build RSMs of the different
models and hidden layers to map them onto the human brain. In this first experiment, we
will compare the RSMs from the model’s from Experiment 1 in Chapter 1 with an RSM
built from human similarity judgments of sentences. This will allow us to determine which
model encodes semantic similarity between sentence’s categories closest to humans. This
is a natural language processing task known as semantic textual similarity. This task
trains models to measure the degree to which the underlying semantics of two segments
of text are equivalent to each other or are paraphrases (Agirre et al., 2016). Therefore,
another way of measuring this feature is to correlate RSM of models trained on both
tasks to see how much information a text categorization RSM shares with a semantic
textual similarity (for more on this, see section Representational Similarity Analysis in
Chapter 5).

1.2 Methods

Subjects. 26 native Italian participants were recruited through the Figure Eight
platform. We requested at least 4 independent scores per stimuli and Figure Eight has
designed algorithms to dynamically recruit more subjects for stimuli with high response
variance (mean amount of judgments per worker = 36.3, SD = 8.3). This intends
to provide a more accurate sample of human judgment. If one wished to calculate
entropy or variance per stimuli, one could look at the first four judgments per stimuli.
Participants were paid for their participation.
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Stimuli. Three sentences from 6 categories that were clustered together in the
LSTM model were chosen in order to obtain very nuanced similarity ratings (see 5.1 to
see clustering between categories). The 6 categories are: Decoration, Military Conflict,
Military Person, Monarch, Politician, and University. See section 3. Experiment 2 in
Appendix for full stimuli set.

Procedure. Participants where shown two sentences and asked: “From 1 to 6,
are these two sentences about the same topic?” (original in Italian: “Da 1 a 6, quanto
riguardano lo stesso argomento queste due frasi?”). Then the scale in figure 4.1 appeared
detailing the meaning of values 1 (“very different”) to 6 (“very similar”). This scale was
used to avoid too many responses on a central, neutral value.

Figure 4.1: Scale used in human text similarity judgment task.

Models. We trained the models described in Chapter 1 on all 64 categories as
well as on the 6 categories of the stimuli set.

Representational Similarity Analysis For the linear logistic regression models,
we can obtain a feature vector for each sentence, the probability estimates. In this
feature vector, each element is the probability the sentence belongs to each class (i.e.,
the class probability distribution).

In the deep neural networks we used, this corresponds to the final softmax layer.
However, the softmax layers in these two deep neural networks are extremely sparse
(which is not the case for the probablity estimates in the linear models) and the same
RSMs can be computed from any layer. Therefore, we chose the final dense layers (of
512 features in LSTM and 128 in CNN) since they have a richer representation (i.e.,
more information) than the softmax layer.

The RSM for each model is the pairwise correlation between all feature vectors
within a model. The human RSM is built by inserting the similarity scores from the
experiment. Then these RSMs are correlated with each other to find the most similar
to the human judgement RSM.

1.3 Results & Discussion

The results of models performance on the 6-way classification are in table 4.1. The
same pattern of results are maintained as in the 64-way classification with the LSTM
outperforming other models. It is possible that the results are biased to benefit LSTM
clustering by using categories that were clustered in the LSTM model; however, this does
not guarantee that the LSTM captures the specific similarities between these specific
sentences more than the other models. To be safe, a more unbiased approach would be
to use the categories that cluster for all models.

There is also a large jump in performance from top-1 to top-2 accuracy. The
RSMs of each model are compared to human judgment. The RSMs for each model
trained on the 64-way classification are in figure 4.2 for this stimuli set. The RSMs
for each model trained on the 6-way classification are in figure 4.3. IN the latter, the
similarities and disimalrities increase as expected since the classifiers have an easier task
of differentiating the categories. The RSM of human judgments is in figure 4.4. The
upper triangles of these RSMs are vectorized, normalized and correlated and the results



Model Top-1 Top-2

Tf-idf 73.18 87.67
Avg. w2v 73.67 89.38
CNN 76.50 90.46
LSTM 77.06 91.18

Table 4.1: Top-1 and top-2 accuracy (%) on 6-way text

for the 64-way model are in figure 4.5a and the results for the 6-way model are in 4.5b
(however, see figure 3.3 for RSM of RSMs on test set).
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Figure 4.2: Representational similarity matrices for stimuli from models trained on 64-
way classification. Each element is the correlation between two sentence feature vectors
where 1.0= dark red and -1.0=dark blue. Each sentence is represented by its DBpedia
category.
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Figure 4.3: Representational similarity matrices for stimuli from models trained on 6-
way classification. Each element is the correlation between two sentence feature vectors
where 1.0= dark red and -1.0=dark blue. Each sentence is represented by its DBpedia
category.
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Figure 4.4: RSM of human judgment.
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figure 4.4. Only the vectorized upper triangles without the diagonals are correlated.



The human judgments were scaled from 1 and 6 to -1 and 1 to match other
RSMs, which were normalized by subtracting the mean. The main result is that human
similarity evaluations are best captured by the information within LSTM models in the
64-way classification feature vectors and within averaged word2vec models in the 6-way
classification feature vectors. The first vectors are more meaningful for the purpose of
the cognitive neuroscience experiment described in Chapter 3, since these are the ones
that will be used for analysis (for further comparison between models see the section
Representational Similarity Analysis in chapter 5). Here we learn that by comparing
model similarity scores to human similarity judgment we can describe how much of this
type of information is encoded in each model. Then, when each model is mapped to the
brain (as described in Chapter 3), it is possible to see, for instance, that the CNN does
not seem to capture human semantic similarity (although it may capture other linguistic
or semantic features). Therefore, instead of assuming the CNN model is a model of
semantics, we narrow its representation to exclude semantic similarity. However, these
are preliminary results because this experiment should involve more categories to better
capture judgment across the semantic space. It seems these results are biased by the
specific categories chosen since the similarity between models is quite different when
using a sample of the test set of all semantic categories as in figure 3.3: the similarity
between models is not the same does not follow figure 4.5a. However, this experiment
is a proof-of-principle for the interpretation approach we are presenting (see figure 1.1
for approach).



2 Experiment 3: Human Text Categorization

2.1 Introduction

Here we build a task that human’s can do but machines cannot: we selected
sentences that are classified differently by most models in Experiment 1 as a proxy for
ambiguous sentences; that is to say, we chose sentences where the models are focusing
on different information. The goal is to 1) have human choose the main category of
sentences that are difficult to classify for models, creating a challenge for any model that
attempts to capture human intuition on text categorization, and, 2) see which model is
closer to human performance on difficult, ambiguous, or easily-confused sentences.

2.2 Methods

Subjects.16 native Italian participants were recruited through the Figure Eight
platform. We requested at least 4 independent scores per stimuli (mean amount of
judgments per worker = 29.5, SD = 24.5).

Stimuli. A dataset was created composed of sentences from four categories that
were classified differently by at least three of the four models in Experiment 1. The
four categories were: Album, Musical Artist, Song, and Musical Genre. For instance,
the sentence “Testo e musica sono di Antonio Pagliuca ed Aldo Tagliapietra” [Text and
music are by Antonio Pagliuca and Aldo Tagliapietra] was labeled as “Album” using
the DBpedia label of the containing article, as “Song” by avg. word2vec embeddings
and CNN models, “Music Genre” by the tf-idf model and “Album” by the LSTM (see
Experiment 3 in Appendix for full dataset). These four categories were chosen because
they are often confused in all models. Cohen’s kappa for inter-rater agreement = -0.12,
which is considered practically random and confirms that these models disagree on these
sentences while they usually have high agreement.

Procedure. Sentences were presented randomly and participants had to select
which of the four categories best described the sentence.

2.3 Results & Discussion

Since only four categories were used, we reran the models from Experiment 1 on
a 4-way categorization task. See figure 4.2 for performance on 4-way classification task.
The pattern changes from the 64-way classification: the CNN matches the LSTM in
top-1 accuracy and surpasses it in top-2 accuracy, while tf-idf surpasses avg. word2vec
embeddings.

Table 4.3 summarizes the main results. All models do substantially worse on
this ambiguous dataset regarding both the DBpedia labels and human judgment. Even
though LSTM performs best on this subset of sentences according to the DBpedia
labels, using both 64- and 4-way classification feature vectors, tf-idf best captures human
intuition under ambiguous circumstances, although all scores are quite low. In other
words, when a sentence carries several possible categories, the information that tf-idf
captures seems to be closest to what humans rely on (i.e., something similar to typical
words of a category).

This task does not necessarily help with carachterizing different brain mappings
(following the general goal in chapter 3), but helps us understand if the models capture
the most difficult human intuitions on text categorization. Future work could adapt an



Model Top-1 Top-2

Tf-idf 70.48 88.92
Avg. w2v 67.71 88.02
CNN 71.88 90.35
LSTM 71.88 90.33

Table 4.2: Top-1 and top-2 accuracy (%) on 4-way text categorization.

Model DBpedia Human judgment

Tf-idf 40.70 45.35
Avg. w2v 33.72 32.56
CNN 36.05 31.40
LSTM 47.67 34.88

(a) 64-way classification

Model Dbpedia Human judgment

Tf-idf 43.02 45.35
Avg. w2v 34.88 29.07
CNN 45.35 31.40
LSTM 39.53 34.88

(b) 4-way classification

Table 4.3: Accuracy on DBpedia labels and Human judgment using feature vectors
obtained from model trained on 64 and 4 categories.

LSTM to use tfidf model when the softmax assigns a low maximum probability (i.e.,
when the model is uncertain). This could possibly capture human intuition best.

See tables for accuracy of the models on human judgment categorization. On this
highly ambiguous stimuli set, DBpedia labels match human judgments 51.16% of the
time. This low accuracy is expected for DBpedia lables on these sentences since they
are quite ambiguous. As stated in the Dataset section of Chapter 2, DBpedia labels
reflect the article’s overall category, but not necessarily represent every sentence within
the articles. If we want to capture whatever text categorization is for humans (i.e.,
what human’s actually process), then models must capture the intuitive knowledge of a
dataset like this.



5. Disassembling Machines

In this chapter we review a series of methods to analyze computational represen-
tations. This list is not exhaustive but allows us to tackle our main goal of showing
that the four text categorization models from chapter 2 can be interpreted to show they
are complementary. Complementary mean that they contain different information on
semantic-linguistic features. Performance is not the only relevant metric on which to
compare them. They hold different information and they can all be used to reveal new
insights in brain decoding studies.

1 Experiment 4: Probing Animacy

1.1 Introduction

Probing consists of using feature vectors trained on one type of task (e.g., text
categorization) to train a different task (e.g., animate-inanimate classification) in order
to reveal if it contains the information of the latter task (Conneau et al., 2018). Conneau
et al. (2018) offers a series of probing tasks, including sentence length, but since they
are not highly semantic in nature and our data set is in Italian, we designed a new
probing task. In this experiment, we labeled a subset of sentences from the test set in
Experiment 1 as either “animate” or “inanimate”. Then we train a linear classifier to see
if these feature vectors obtained from categorization tasks have information to classify
animacy. If this latter classification results in high accuracy, it means that the original
feature vectors contain information on animacy.

The same can be done by labeling sentences with any other feature: degree of syn-
tactic complexity, human/non-human, artificial/natural, transitive/intransitive, sentence
length.

1.2 Methods

Dataset. A dataset was built by manually tagging the categories of the dataset
in experiment 1 as either “animate” or “inanimate”. Then the containing sentences of
both categories were randomized and 20k were selected from each.
Since sentences within a certain category, for instance “dog”, belong to articles about
dogs, these are assumed to be animate. Closer inspection confirmed that they belong
to the assumed category in approximately 90% of cases.
Using the models from Experiment 1, the sentences from the dataset were evaluated to
obtain their feature vectors.
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Models. Using the new animacy labels, these pre-trained feature vectors were
used to traina linear support vector machine with scikit-learn default parameters1. The
models previously used are marked (〈number〉)

• Tf-idf prob. (1): Probability estimates (1x64 vectors) from Logistic Regression
tf-idf features.

• avg. w2v: Averaged word2vec embeddings.

• w2v prob.:Product of Logistic Regression coefficient matrix (one row for each
category) and the averaged w2v input.

• w2v raw:Product of Logistic Regression coefficient matrix (one row for each
category) and the averaged w2v input.

• w2v prob. (2): Probability estimates from Logistic Regression averaged w2v
features.

• CNN conv1: Conv layer 1 of the CNN, which represents local compositions of
trigrams.

• CNN conv2: Conv layer 2 of the CNN, which represents intermediate composi-
tions of conv-maxpool layer 1.

• CNN conv dense final (3): CNN’s final dense layer of 128 features before
softmax layer, representing the global composition of sentence’s category.

• LSTM dense final (4): LSTM’s final dense layer of 512 features before softmax
layer, representing the cumulative composition of sentence’s category.

1.3 Results & Discussion

See table 5.1 for results. The averaged word2vec embeddings trained on logistic
regression had the most information on animacy. Each score can be a measure of animacy
encoded in model’s feature vectors. This means that averaged word embeddings and tf-
idf contain more animacy representations than the CNN and LSTM. We also see that the
CNN learns animacy gradually throughout the layers. This can be seen as the CNN needs
to learn more animacy in order to classify. Therefore, if these models are decoded by brain
data, one can describe how much animacy is being decoded. One could perform probing
with other lexical, syntactic, or semantic features (e.g., dependency parsing, sentence
length, place-tool distinction) to better describe the representations. This is important
because once all four models are mapped to the brain, the information represented
in each region can be better interpreted: the regions where only tf-idf and average
word embeddings overlap can be said to contain more animacy than the regions where
only CNN and LSTM overlap. Of course, it is not possible to seperate animacy from
text categorization in a single model, therefore these regions encode both to different
measurable degrees.

1 http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html



Model Anim.-inanim. clas.

Tf-idf prob. (1) 82.46
Avg. w2v 78.17
w2v raw 67.84
w2v prob. (2) 84.05
CNN conv1 71.01
CNN conv2 71.04
CNN dense final (3) 78.99
LSTM dense final (4) 78.80

Table 5.1: F1-score (%) on 2-way text categorization. F1-score was used because it was
different than accuracy in this task. The models previously used are marked (〈number〉)

2 Experiment 5: Distorting inputs and architecture

2.1 Introduction

By altering the inputs or changing the architecture, it is possible to evaluate how
much of what is changed is contained within the original representation. For instance, if
by scrambling word order, the model performs 5% worse than when having correct word
order, then word order information is quite low than if it lost 25% accuracy. Since some
models could use syntax or word order more than others, it is important to measure how
much of this type of information is contained in each model.

Scrambling or distorting word order. Word order gives information about long-
and short-distance dependencies, which is part of a syntactic knowledge. By randomizing
word order, it is possible to see how much accuracy is lost, and therefore how much of
the original accuracy was learning from normal word order.

Removing word embeddings. By removing word embeddings, the models have
no previous “world knowledge” and must learn from initial random vectors. Therefore,
the accuracy lost is how much of pre-trained word meaning is contained in the original
model.

Removing layers. We will remove conv2 from the CNN to compare model com-
plexity.

2.2 Methods

Dataset. Test set described in Experiment 1.

Models.

• LSTM with 1 layer: original LSTM from Experiment 1;

• LSTM with scrambled word order;

• LSTM without word2vec embeddings;

• multilayer CNN: original CNN from Experiment 1;

• multilayer CNN with scrambled word order;



• multilayer without word2vec embeddings;

• CNN with 1 layer while mainting all other parameters the same;

2.3 Results & Discussion

See table 5.2 for results. Whatever the models lose in accuracy from these distor-
tions is thought to be the proportion of that feature contained in the original model.

Model 3 layers 4 layers Scrambled w/o word2vec

CNN 70.42 (+0.9) 69.52 (orig.) 67.74 (-1.8) 62.24 (-7.3)
LSTM 72.32 (orig.) 72.21 (-0.1) 70.75 (-1.6) 65.90 (-6.4)

Table 5.2: Accuracy (%) when distorting inputs and architecture. 3 layers = LSTM
or conv-maxpool layer + dense + softmax. 4 layers = LSTM or conv-maxpool layer
+ second LSTM or conv-maxpool layer + dense + softmax. Between parenthesis, the
difference between column model and original model is presented. Orig.: original model.
Scrambled was performed on the original models.

We can see that both models are trained to not learn from word order since it was
not optimal given the specific task of text categorization. Whereas a higher amount of
their performance is due to using pre-trained word embeddings.

The stacked LSTM (4 layers) performs slightly worse than the single LSTM layer
model (original model). The one-layer CNN performed slightly better (70.42% accuracy)
than the multilayer model (69.52%), although neither modal is fully optimized. One of
the issues is we wished to fix certain parameters a priori to capture certain type of
compositionality. For instance, we set it to take small ngrams, trigrams in our case,
instead of trying larger ngrams or multiple ngrams. However, so far, whatever the
additional layer is learning in the multilayer, it is partially overfitting as it is not helping
improve the generalization to the test set.

In conclusion, distorting inputs and architectures allows us to understand the undis-
torted models better. We learned how much information they contain on word embed-
dings and word order as well as how much accuracy is gained or lossed by altering the
amount of layers. The latter informs the degree to which models may be overfitting.

3 Representational Similarity Analysis (RSA)

As seen in the previous chapter, RSA places multimodal representations (e.g.,
human, computer, brain data) in a common space. We were able to compare models to
human judgments in Experiment 2. RSA also enables us to compare similarity between
the models themselves to answer, for instance, how much of tf-idf information does a
CNN carry? Figure 4.5a summarizes these results for the stimuli used for Experiment 2.
For instance, the averaged word2vec model shares information with tf-idf at a correlation
of rho=0.62, whereas the CNN does not correlate with tf-idf (rho=0.05). Therefore, it
is possible to measure what is shared and not shared in the representations. Figure 3.3
takes a random subsample of 5% of the test set to compare models. Results change
considerably. Results in figure 3.3 show that the two most similar models are the two
deep neural networks while tf-idf and LSTM are the most disimilar. Therefore, it is



plausible to assume that Experiment 2 is not representative of the whole feature vector
and the human judgment experiment should include more categories to make inferences
on the full-category models.

3.1 Hierarchical Clustering of Representational Similarity
Matrix

An important question is whether a model captures the human-intuitive semantic
relationships between categories. In figure 5.1 we cluster the average similarity between
categories. The results seem to be human-intuitive but should be confirmed by a human
judgment task: humans would have to group the categories and then their grouping
could be compared to this clustering by measuring the distance between categories.
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Figure 5.1: Each cell computed by taking the mean of the an RSM built of 20 random
sentence feature vectors from two categories. For instance, on average, sentences from
Cardinal and sentences from Christian Bishop tend to correlate at rho=0.47, and this
value is placed in the corresping cell. Then all cells are clustered using Ward clustering
and Euclidean distance.



4 Understanding Hidden Layers’ Superficiality and
Abstraction with Rouge

The method used to select the stimuli in Experiment 1 is an original way of finding
representative samples of a given layer. Once obtained, it is possible to test the assumed
superficial-to-abstract nature of CNNs by measuring how similar these sentences are
among each other on a superficial level. To accomplish this, we use the Rouge metric
(Lin, 2004), which counts the amount of overlapping units such as n-grams between two
segments of text. This is generally used to compare machine and human translations
and machine and human-generated summaries.

Table 5.3 shows that as predicted, conv1 sentences have a higher superficial simi-
larity than dense final sentences. This means that the conv1 finds high similarity between
sentences that are superficially the same whereas dense final is able to find high simi-
larity between sentences with the same category even though they may be superficially
more dissimilar than in conv1. For instance, using features vectors from either conv1
or the final dense layer, one cluster containing sentences originally labelled as “sports
team” by DBpedia, resulted in two sentences that were highly similar superficially for
conv1 feature vectors and more abstract for dense final feature vectors (sentences were
translated):
Conv1 layer learns more superficial features:

• The Olympic Committee of Qatar was recognized by the CIO in 1980.

• The Olympic Committee of Monegasco was recognized by the CIO in 1953.

Final dense layer learns more abstract features:

• Valentyna Sevcenko carried the flag during the opening ceremony of the Olympics.

• The Shield then began to attack Kane, except to withdraw when the Usos inter-
vened.

This is an interesting finding because it reproduces what is found in visual CNNs2.
The CNN seems to be an abstraction machine. When the layers are mapped to the
brain, we can say more about what each region encodes: layer 1 encodes more superficial
representations and the final layers encode more abstract representations.

2 e.g., http://cs231n.github.io/understanding-cnn/

Conv1 Dense Final

Rouge 1 0.144 0.117
Rouge 1 0.060 0.020

Table 5.3: Rouge 1-gram and 2-gram scores between sentences within clusters from
Experiment 1.



6. General Discussion

The goal of this thesis was to show the value of using complementary and inter-
pretable computational representations of a given task for brain mapping. In Chapter
2, we described machines theoretically to show that they could provide different types
and levels of text categorization since they compose meaning differently. In chapter 4
and 5, we used a series of techniques to interpret each models representations includ-
ing comparing similarity measures to human judgments, probing, distorting inputs and
architecture, RSA, and comparing Rouge metrics on representative sentences obtained
through clustering.

In Table 6.1 we provide a summary of the relevance of different features for each
model, a semantic-linguistic description of what each model encodes.

Feature Tf-idf Avg. w2v CNN LSTM

Exp. 1: DBpedia Text categorization 66 67 70 72
Exp. 2: Human Semantic similarity 46 47 9 53
Exp. 3: Human Ambiguous Text categorization 45 33 31 35
Exp. 4: Animacy 83 84 79 79
Exp. 5: Previous knowledge 98 98 11 9
Exp. 5: Syntax: word order 0 0 3 2
Fig. 4.5: Tf-idf 100 62 5 41

Table 6.1: Summary of relevance of different features for each model. Text categoriza-
tion and semantic similarity scores are their accuracies (%); animacy is the f1-score (%)
since it did not match accuracy in this task; or correlation (rho) value, depending on
the feature. Previous knowledge and word order scores are calculated as follows: for the
CNN and LSTM, the score = (score with condition - score without condition)/score with
condition. It is is the proportion that removing the condition represents of the original
condition (e.g., 11% of the accuracy is due to previous knowledge). For avg. w2v,
one can assume that without this previous knowledge the model cannot learn beyond
change ( 2%) and tf-idf also learns most of its knowledge before training the model, and
therefore their scores are a theoretical 0.

Another important finding, described in section 4 of chapter 5, is that the CNN
captures more superficial representations in the first layer and a more abstract represen-
tation in the final layers. This follows what has been shown for visual CNNs, but to our
knowledge it is the first time it has been shown with text CNNs.
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1 Building models of human text categorization vs.
understanding brain regions

There are two different scientific questions in this thesis:

1. How can we build a computational model of human text categorization?

2. What information is in each brain region that can decode a computational repre-
sentation?

It is possible to tackle each question separately or combine them. To answer
question 1, we can compare models’ predictions to human judgments as a gold standard.
This was done in Experiments 2 using judgments on sentence similarity to see how much
of this information is captured in the text categorization models. The LSTM model best
captured human judgment. It was also carried out in Experiment 3, where we found that
tf-idf best captures the human intuition of text categorization in difficult or ambiguous
circumstances. As proposed in the Discussion of Experiment 3, these models could
be combined to better match human intuition. On the other hand, the computational
experiments of chapter 5 could be done with human judgment instead to asnwer this
question. For example, the animacy probing task of Experiment 4 explains the animacy
information contained in the representations (i.e., question 2) but a human judgment on
the animacy of sentences should be done to see which model captures human’s intuitions
on animacy (i.e., question 1). A a perfect model of human intuition would achieve 100%
accuracy on all human judgment tasks.

Question 2 can be answered by the computational experiments of chapter 5. We
show it is possible to map models onto the brain (chapter 2) and by interpreting their
semantic and linguistic properties (chapters 4 and 5), one can better understand and
compare the resulting brain regions. In this sense, as long as certain models accurately
capture information, they are useful and complementary for understanding brain func-
tional activity. For instance, if probing is performed with other linguistic or semantic
properties (e.g., dependency parsing, sentence length, place-tool distinction) the result-
ing brain regions can be better interpreted. In our case, after mapping the four models
from chapter 1 on the brain, we would interpret that the regions where only tf-idf and
average word embeddings overlap can be said to contain more animacy than the regions
where only CNN and LSTM overlap. Therefore, even though a given model may not
capture human intuition, it may still be decoded by brain activity, which can then be
described.

Finally, these questions can be combined: one could build models to match human
intuition using human judgment tasks as the ones in chapter 4 and then interpret the
representations with methods from Chapter 5. Furthermore, many different semantic
and linguistic features could also be measured to gradually match what psycholinguistics
proposes humans use when comprehending or categorizing a sentence (David, 2000) by
tuning the models. The hypothesis would be that a more psycholinguistically accurate
model would better match human judgment.

2 Limitations

One limitation of this study is that models such as the CNN can be further opti-
mized for performance, for instance by removing layers, but this would take away from



its multi-layer architecture which creates gradual compositionality. The benefits of the
multilayer outweigh the cons. All complex models (e.g., deep neural networks) overfit to
some degree since there are more parameters then theoretically needed to fit the task.
The question of how each model overfits is not clear. What is clear is that feature vec-
tors can decode brain data and a multilayer model is preferable for our goal of obtaining
a model of gradual compositionality: it has more intermediate layers of representation
which could allow us to map more levels of abstraction, from local compositionality
and superficial representations to global and abstract representations. Having a partially
wrong model is preferable than not having a model of that level of representation. Fur-
thermore, we have found that the disimilarity between the first conv layer and the final
dense layer is higher when there is an intermediate conv layer in the middle. From an
fMRI analysis point of view, this would be an issue for signal-noise ratio in finding the
separate contribution of the two layers to an external neural representation.

Another limitation is that the human judgment experiments should involve more
categories to better capture judgment across the semantic space. It is plausible that the
results are biased by the specific categories chosen since the similarity between models
is quite different when using a sample of the test set as in figure 3.3. However, they are
a proof-of-principle for the interpretation framework we are presenting.

3 Future work

An alternative task to text categorization is semantic textual similarity which trains
models to measure the degree to which the underlying semantics of two segments of
text are equivalent to each other or are paraphrases (Agirre et al., 2016). This would
capture the other main form of semantic compositionalty which is the exact meaning of
a sentence (instead of its category as done here).

Alternative models for either task that should reveal interesting insights are those
incorporating 1) universal sentence encoders that intend to represent enough information
to transfer well to many different natural language processing tasks (e.g., Conneau et al.
(2017)), 2) syntax for semantic classification as is the Tree LSTM (Tai et al., 2015),
and 3) better prediction of upcoming words such as a bidirectionalLSTM (Graves et al.,
2013).

As mentioned before, alternative interpretation tasks include the SentEval package
Conneau et al. (2018), but this can only be applied to English data sets.

Finally, the approach presented in this thesis (see figure 1.1 in Chapter 1) is viable
not only for many different tasks that can be mapped onto the brain using fMRI, but
also for different cognitive neuroscience methods. For instance, one could decode the
different time step representations of an LSTM from MEG or EEG temporal. In this case,
one could show how different brain areas are recruited as a whole sentence is gradually
comprehended at the time-steps of words 1,5,15, for instance.

4 Conclusion

Whereas previous studies use a single model for decoding, encoding or searchlight
analysis, we have shown the potential of using multiple models of the same task to
map complementary forms of compositionality onto the brain. Furthermore, we have
described a series of methods to interpret representations –from human judgment to



computational analysis. This framework allows us to understand the resulting brain
regions function with greater detail.
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7. Appendix

1 Experiment 1 Sentence Examples

Category Sentence

Monarch Mori di leucemia nella capitale egiziana nell’autunno del 1988, all’eta
di 67 anni.

Ship A partire dal 1944 la nave fu utilizzata nel Pacifico per scortare le
portaerei.

MilitaryConflict I tedeschi, riconoscendo l’indifendibilita della propria posizione, si riti-
rarono dalla Marna verso nord.

Book Fu rivisto e adattato agli altri racconti, quando fu inserito nella raccolta
Mulliner Nights.

SportsSeason La divisa casalinga era completamente rossa, a strisce verticali nere,
pantaloncini neri e calzettoni rossoneri.

CyclingCompetition Il tedesco Bert Grabsch domino la gara, mantenendo una velocita media
di 50km/h.

EthnicGroup Chiaramente, la tribu trae ancora grande orgoglio dalla sua prodezza e
dal suo valore militari.

Museum Il museo si trova in quella che un tempo era la centrale termoelettrica
di Bankside.

TennisPlayer Fino alla finale l’Errani, partendo dalle qualificazioni, ha incontrato solo
tenniste americane battendole tutte.

Road Il rimanente tratto, da Rezzato a Limone sul Garda, e invece rimasto
all’ANAS.

Road Superato lo svincolo di Cosenza, l’autostrada attraversa le varie mon-
tagne in direzione Altilia.

Dog Il cane da orso della Carelia e un cane da caccia della famiglia degli
spitz.

MotorcycleRider E ottavo nel 1998 e ancora nono l’anno successivo, con una Yamaha
YZF-R6.

Disease Per quanto riguarda l’origine della viremia esiste la suddivisione fra
forma attiva e passiva

MusicGenre Questi nuovi complessi incorporavano gli elementi piu commerciali di
alternative rock, emo e post-hardcore.
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Category Sentence
ReligiousBuilding Il campanile e una torre pendente e infatti inclinato di circa 1,4 in

direzione Est-Sud-Est.
Monarch In mancanza di eredi, gli successe come era facile prevedere, il fratello

minore Leopoldo.
Monarch In mancanza di eredi, gli successe come era facile prevedere, il fratello

minore Leopoldo.
Road Il rimanente tratto, da Rezzato a Limone sul Garda, e invece rimasto

all’ANAS.
RacingDriver Anche nell’inverno 2008-2009 partecipa alla GP2 Asia, vincendola, e

nel 2009 al campionato GP2.
TelevisionSeason La serie e ambientata in Sicilia, ma e stata quasi interamente girata in

Puglia.
TelevisionShow Dal 2 maggio 2016 lo spazio dedicato al TG5 non va piu in onda.
Dog Il Vastgotaspets e un cane di piccole dimensioni ma con un carattere

molto forte.
Diocese Il territorio della diocesi si estende su 43.110km2 ed e suddiviso in 4

parrocchie.
SportsTeam Anche se era ovviamente per attaccare la Kru, Konnan ha rifiutato la

fiducia di Kip.
Airport L’autorita aeroportuale ha in concessione l’aeroporto dalla citta di New

York dal 1947.
SportsTeam Anche se era ovviamente per attaccare la Kru, Konnan ha rifiutato la

fiducia di Kip.
SoccerPlayer Poi Giuseppe Viani lo fa esordire in Serie A il 20 marzo 1960 in Udinese-

Milan.
Newspaper Negli anni novanta la rivista continuo ad essere un punto di riferimento

del settore.
VolleyballPlayer Per il campionato 2017-18 veste la maglia del Volley Milano, sempre

in Serie A1.
Island Diresse la piantagione con un pugno di ferro che porto al suo omicidio

nel 1904.
Mineral Il nome del minerale e stato attribuito in onore di Pavel’Ivanovich

Stepanov, geologo russo.
Game Il gioco e stato creato dal matematico Alain Rivollet e dall’informatico

Gaetan Beaujannot.
VolleyballPlayer Giulia Pincerato inizia la sua carriera pallavolistica nella squadra gio-

vanile di Legnaro, nel 1999.
Disease Per quanto riguarda l’origine della viremia esiste la suddivisione fra

forma attiva e passiva
MilitaryConflict Sull’altro versante, da Vienna si insisteva con Gyulai per una condotta

piu energica.
TelevisionShow L8 gennaio 2018 inizia la settima edizione sempre con la conduzione

di Paolo Bonolis.
Ship Mentre transitava nel canale Kaiser Wilhelm il 14 marzo 1917, la

Kaiserin si areno.
Road Superato lo svincolo di Cosenza, l’autostrada attraversa le varie mon-

tagne in direzione Altilia.



Category Sentence
TelevisionShow Questo format era gia stato sperimentato nel novembre 2007 ma ab-

bandonato dopo poco tempo.
AmericanFootballPlayer Nella settimana 8 fece registrare il primo intercetto stagionale nella

vittoria sugli Atlanta Falcons.
VolleyballPlayer Giulia Pincerato inizia la sua carriera pallavolistica nella squadra gio-

vanile di Legnaro, nel 1999.
CyclingCompetition Presero il via da Compiegne 186 ciclisti, 92 di essi portarono a termine

la gara.
Diocese Sede vescovile e la citta di Ica, dove si trova la cattedrale di San

Gerolamo.
Game Nel 1990 la TSR pubblico una seconda edizione del gioco, etichettan-

dola erroneamente come terza edizione..
TennisPlayer Agli US Open esce al primo turno di qualificazioni contro la greca Maria

Sakkari.
Politician Il mandato termino tuttavia pochi mesi dopo, a causa della vittoria

elettorale della CDU.
Road Il rimanente tratto, da Rezzato a Limone sul Garda, e invece rimasto

all’ANAS.
ChemicalCompound Il confronto con l’urea ricavata dall’urina lo convinse di aver sintetizzato

quel composto.
CelestialBody HD 30197 e una stella gigante arancione di magnitudine +5,99 situata

nella costellazione del Toro.
ChristianBishop Nel 1909 e stato insignito di un Master of Arts honoris causa dall

Hobart College.
Software MariaDB si compila sia su processori a 32 bit sia su processori a 64.
MusicGenre La Frenchcore e un sottogenere musicale molto veloce e ritmato pro-

posto soprattutto in Francia.
Politician Il mandato termino tuttavia pochi mesi dopo, a causa della vittoria

elettorale della CDU.
Book Fu rivisto e adattato agli altri racconti, quando fu inserito nella raccolta

Mulliner Nights.
SportsSeason La divisa casalinga era completamente rossa, a strisce verticali nere,

pantaloncini neri e calzettoni rossoneri.
TelevisionShow L8 gennaio 2018 inizia la settima edizione sempre con la conduzione

di Paolo Bonolis.
River Scorre poi lungo il confine con Meduna di Livenza e la provincia di

Treviso.
SportsSeason Questa voce raccoglie le informazioni riguardanti la Pallavolo Chieri

nelle competizioni ufficiali della stagione 2003-2004.
SoccerPlayer Conclusa la carriera di calciatore, ha intrapreso quella di allenatore nelle

categorie dilettantistiche lombarde.
Mountain La vetta del Nelion fu scalata la prima volta da Eric Shipton nel 1929.
Film By the Sad Sea Waves e un cortometraggio muto del 1917 diretto da

Alfred J.
TelevisionShow Dal 2 maggio 2016 lo spazio dedicato al TG5 non va piu in onda.

Table 7.1: Examples from dataset of Experiment 1.



1.1 Classification Report

category f1 score precision recall support

0 Aircraft 0.77 0.82 0.73 1200.0
1 Airport 0.81 0.86 0.77 1200.0
2 Album 0.62 0.62 0.63 1200.0
3 AmericanFootballPlayer 0.92 0.96 0.89 1200.0
4 Artwork 0.69 0.64 0.74 1200.0
5 AthleticsPlayer 0.78 0.80 0.76 1200.0
6 Automobile 0.84 0.80 0.89 1200.0
7 BasketballPlayer 0.74 0.66 0.84 1200.0
8 Book 0.42 0.39 0.46 1200.0
9 Building 0.54 0.54 0.55 1200.0
10 Cardinal 0.60 0.54 0.68 1200.0
11 CelestialBody 0.95 0.94 0.95 1200.0
12 ChemicalCompound 0.82 0.88 0.77 1200.0
13 ChristianBishop 0.45 0.55 0.38 1200.0
14 Company 0.54 0.55 0.54 1200.0
15 Country 0.49 0.51 0.47 1200.0
16 CyclingCompetition 0.89 0.97 0.82 1200.0
17 Cyclist 0.84 0.81 0.87 1200.0
18 Decoration 0.88 0.89 0.87 1200.0
19 Diocese 0.86 0.87 0.85 1200.0
20 Disease 0.80 0.71 0.90 1200.0
21 Dog 0.89 0.92 0.86 1200.0
22 EthnicGroup 0.63 0.61 0.65 1200.0
23 FictionalCharacter 0.55 0.56 0.54 1200.0
24 Film 0.55 0.54 0.56 1200.0
25 Game 0.73 0.68 0.80 1200.0
26 IceHockeyPlayer 0.88 0.91 0.86 1200.0
27 Island 0.71 0.78 0.64 1200.0
28 Language 0.77 0.75 0.80 1200.0
29 MetroStation 0.84 0.80 0.88 1200.0
30 MilitaryConflict 0.43 0.54 0.35 1200.0
31 MilitaryPerson 0.48 0.54 0.43 1200.0
32 MilitaryUnit 0.56 0.51 0.63 1200.0
33 Mineral 0.92 0.92 0.91 1200.0
34 Monarch 0.56 0.50 0.64 1200.0
35 MotorcycleRider 0.87 0.88 0.87 1200.0
36 Mountain 0.76 0.83 0.69 1200.0
37 Museum 0.55 0.56 0.55 1200.0
38 MusicalArtist 0.59 0.57 0.61 1200.0
39 MusicGenre 0.78 0.75 0.82 1200.0
40 Newspaper 0.73 0.77 0.69 1200.0
41 Politician 0.54 0.50 0.59 1200.0
42 PopulatedPlace 0.56 0.63 0.51 1200.0
43 RacingDriver 0.83 0.84 0.82 1200.0
44 RailwayStation 0.85 0.86 0.83 1200.0



category f1 score precision recall support
45 ReligiousBuilding 0.62 0.66 0.59 1200.0
46 River 0.81 0.79 0.83 1200.0
47 Road 0.86 0.84 0.89 1200.0
48 Saint 0.54 0.52 0.57 1200.0
49 Ship 0.76 0.71 0.82 1200.0
50 SoccerPlayer 0.75 0.73 0.77 1200.0
51 Software 0.88 0.86 0.90 1200.0
52 Song 0.62 0.67 0.57 1200.0
53 Species 0.82 0.81 0.83 1200.0
54 SportFacility 0.83 0.84 0.82 1200.0
55 SportsSeason 0.84 0.87 0.81 1200.0
56 SportsTeam 0.92 0.90 0.94 1200.0
57 Swimmer 0.80 0.86 0.75 1200.0
58 TelevisionSeason 0.54 0.56 0.53 1200.0
59 TelevisionShow 0.72 0.73 0.71 1200.0
60 TennisPlayer 0.92 0.93 0.91 1200.0
61 University 0.75 0.72 0.80 1200.0
62 VideoGame 0.55 0.71 0.46 1200.0
63 VolleyballPlayer 0.87 0.83 0.91 1200.0

avg/total 0.72 0.73 0.72 76800.0

Table 7.2: LSTM classification report on 64-way classification.



2 Experiment 2

Stimuli for sentence similarity task.

Category Sentence

University L’Universita di Turku e la seconda maggiore universita della Finlandia
per numero di studenti dopo l’Universita di Helsinki.

University L’UCO ha partnership internazionali con piu di 75 universita del mondo.
University Per entrambi i corsi master, il diploma finale e rilasciato da ALaRI -

Universita della Svizzera Italiana, in collaborazione con l’ETH Zurich
e il Politecnico di Milano.

Decoration La croce d’argento puo essere concessa anche ad intere unita militari
o navali, a civili e a citta.

Decoration Sul retro del medaglione, invece, si trovava la figura di Massimiliano I,
fondatore dell’ordine, circondato dalla scritta, sempre in dicitura antica.

Decoration L’Ordine dispone delle seguenti classi di benemerenza
MilitaryConflict La “Piacenza” pago lo scontro con 27 morti e 32 feriti gravi.
MilitaryConflict Filippo V aveva avuto dal suo primo matrimonio tre figli ed era chiaro

fine di Elisabetta Farnese ottenere ducati in Italia per i propri figli.
MilitaryConflict I ministri Orlando e Sonnino, e con loro gli alti comandi alleati, sol-

lecitarono ripetutamente Diaz perche desse inizio all’attacco risolutivo
e il generale dovette piegarsi.

MilitaryPerson Anderson si diplomo allo Staff College, Camberley nel 1928 ed entro
nella 50th Division.

MilitaryPerson Il 13 luglio intercettava con altri quattro Macchi una dozzina di Spitfire
che stavano attaccando dei Messerschmitt 109 e abbatteva in succes-
sione due Spitfire, il secondo dei quali, pilotato dal Flight Sgt.

MilitaryPerson Nel luglio del 1943 la 9a Armata di Model prese parte alla battaglia di
Kursk la piu grande battaglia di carri armati di tutta la seconda guerra
mondiale.

Politician Nato e cresciuto nel New Jersey, dopo il college Norcross entro in
politica con il Partito Democratico.

Politician Scoperto per un suo errore ad’avere ancora contatti con i liberali si-
ciliani, l 8 luglio 1850 fu bandito formalmente dal Regno delle Due
Sicilie.

Politician Come loro appartiene alla minoranza religiosa sciita dell’Alawismo.
Monarch Quando Guglielmo ottenne infine il permesso di visitare la moglie,

decise di portare il primogenito in Inghilterra, cosa non gradita da
Guglielmina.

Monarch Dopo la morte della sua prima moglie, Maria Emanuela d Aviz, Filippo,
su consiglio del padre, decise di risposarsi con la trentasettenne Maria
I d Inghilterra.

Monarch Federico era il figlio maggiore del principe Filippo Giuseppe di Salm-
Kyrburg e di sua moglie, Maria Teresa di Horn.



3 Experiment 3

Table 7.4: Stimuli for ambiguous text categorization task.

Sentences

Che divento un altra volta il singolo natalizio piu venduto in Inghilterra.
Alcuni rapper “interpretano” le parti di due personaggi diversi, che dialogano l’un l’altro nella
stessa canzone.
Nel febbraio 1997, gli U2 pubblicarono il singolo “Discotheque”, come brano di lancio del
nuovo album.
I Cure arrivarono anche ad inserire un estratto di tale dibattito nella traccia finale dell’album.
Anche i Blondie realizzarono nello stesso periodo un brano simile, “Rapture”.
In Italia “Scars” e conosciuta grazie ai The Fire che l’hanno rifatta in una versione piu rock.
Quando Bjork ritorna, si unisce alla comitiva per una speciale performance della versione
“Audition mix” della canzone.
Brian Wilson, lo storico membro dei Beach Boys, partecipa ai cori della canzone che da il
nome al disco.
Maple, Xiu Xiu, Man Man, The Fiery Furnaces, e TV on the Radio.
Egli ha migrato particolarmente verso la Svezia poiche affascinato dalla ”buona” musica degli
Europe, Roxette e ABBA.
Il 23 aprile viene pubblicata una versione acustica anche per il singolo ”Starring Role”.
Benche indiretta, anche ai Rolling Stones e ascritta un influenza sullo ”sleaze”.
Altre volte fu suonata durante la militanza di Page con i Black Crowes nel 1999.
Sul disco French si occupo anche di suonare la chitarra in qualche traccia.
Ha composto canzoni con Nick Manasseh, Future Cut e Feng Shui per l’album di debutto
”Turned on Underground”.
E il secondo brano con cui Mogol vince il festival ligure dopo ”Al di la”.
”Bump” viene anche utilizzato nella colonna sonora di ”Entourage”.
Il suo singolo successivo ”Don Quixote” fu l’ultimo singolo della striscia positiva ad entrare
nella top 20 inglese.
Rapidamente divenne una delle canzoni piu popolari del XX secolo.
L’autrice invece si accompagna in questo disco con strumenti come chitarra acustica, banjo,
ukulele e tastiere.
Il CD ebbe un ottimo successo grazie alla sua carica innovativa dovuta all’uso seppur ancora
molto blando delle tastiere.
Hobsbawm, storico e docente inglese, con il libro ”The Jazz Scene” del 1961, e Amiri Baraka
con ”Blues people”.
Nel 1977 ha rappresentato la Finlandia all’Eurovision con la canzone ”Lapponia”.
Howard in molte canzoni dei Manilla Road, cosi come dei Crimson Glory.
Guest star che parteciparono all’incisione di quest’album furono Richard Page dei Mr. Mister
e Kevin Cronin dei REO Speedwagon.
Breakbot inizialmente riscosse un buon successo di pubblico grazie ai suoi remix.
In ”Tentacled” ritroviamo Silvia Chicco in un brano del 1989 originariamente inciso con Monica
Cioce.
Alcuni dei suoi singoli classici sono reperibili anche oggi, ma ”Choice of Version” e una delle
migliori raccolte.
”Cantabrasil” ripercorre praticamente tutta la storia moderna della musica brasiliana.



Pochi giorni piu tardi usci un 45 giri contenente le prime due canzoni ”Mi sono innamorato di
te” e ”Angela”.
Dylan volle dare un suono austero al tutto in sintonia con il contenuto dei testi.
Tipici del gruppo uno stile frenetico, estremamente ritmato e la breve durata delle canzoni.
”Lady Liberty”, cambia registro con la comparsa dei fiati che rendono l’atmosfera molto piu
energica.
Quest ultimo realizza per lui la strumentale per il singolo ”Raise Up”.
Fra i ballerini si puo riconoscere anche Cris Judd, ex-marito della cantante.
Bill lo volle come frontman e chitarrista dei Blue Grass Boys.
Dr. Dre con la canzone ”What’s the Difference”, presente nell’album ”The Chronic” del 2001.
Qualcuno nei media, in toni celebrativi, dichiaro la disco ”morta” e il rock rianimato.
Fortunatamente riusci a riprendersi in tempo per le sessioni di registrazione di ”Keep the
Faith”.
A meta febbraio 2006, ”Wasteland” e arrivato in testa alle classifiche di Alternative e Modern
Rock.
Nell’aprile del 1988 gli Scorpions pubblicarono il loro decimo album in studio, ”Savage Amuse-
ment”.
Il primo singolo estratto, ”The Fly”, spiazza i fan degli U2 degli anni ottanta.
”For What It’s Worth” vendette circa un milione di copie nei soli Stati Uniti, diventando presto
disco d’oro.
Fairies Wear Boots e l’ultimo brano presente nell’album Paranoid del gruppo heavy metal
britannico Black Sabbath.
Con la quale introduce e spesso chiude, la maggior parte dei brani musicali a cui partecipa.
La quarta traccia e secondo singolo promozionale, ”Walking on Air”, e stata prodotta da Klas
Ahlund.
La canzone vinse anche nella categoria ”Singolo dell’Anno”, ai Juno Award del 2003.
Harris, fan di musica ”country”, sposta lo stile di Joan verso il country-rock piu complesso di
”David’s Album”.
”Love Me” debutto nel Canadian Hot 100, dove ha trascorso dodici settimane non consecutive
nella classifica canadese.
Si tratta della pubblicazione di maggior successo del quartetto, tanto da essere piu volte
ripubblicata da Taang!
Il brano e uno dei due della band a contenere poliritmie, il che e molto raro nella musica
popolare.
Nel 2000, Carey ha ripubblicato la canzone con nuovi live vocali.
”Mr. Jones”, una dei Talking Heads sul loro album del 1988 ”Naked”, similarmente descrive
un Mr. Jones in terza persona.
Ha scritto o coscritto infine diversi brani per Tina Turner.
Compare insieme a Dylan nell’album del 2012 ”Tempest” e nel 2015 nell’album ”shadows in
the night”.
The Distillers e l’album d esordio del gruppo Punk Rock The Distillers.
In quest ultimo lavoro, e soprattutto molto apprezzato l’uso che Plunkett fa delle tastiere.
In alcuni frangenti il coro degli altri membri del gruppo si unisce alla voce di Robert Plant.
Sempre nel 1997 esce la ristampa di ”Testa plastica”, contenente la cover della canzone dei
Violent Femmes ”Gone Daddy Gone”.
Testo e musica sono di Antonio Pagliuca ed Aldo Tagliapietra.
Diversamente da quanto avveniva normalmente, si decise di fare un disco di canzoni, quindi
non solo recitato.
”Jumpin Jumpin” e entrato nelle classifiche di molti altri paesi, tra cui Svezia, Belgio e Francia.



La compilation del 2004 ”Join the Dots B-Sides & Rarities 19782001” utilizza anch essa il
titolo ”Lovesong”.
Il libro traccia i profili di alcuni musicisti outsider conosciuti e ha ispirato due CD compilation,
vendute separatamente.
Alla chitarra egli suona con esuberanza, spesso percuotendo con ”slap” le corde.
I Mascarimiri sono un gruppo musicale italiano composto da 4 elementi, provenienti dalla citta
di Muro Leccese.
Con ”Solo noi” e ”Innamorati” Toto inizia a scrivere anche i testi delle proprie canzoni, oltre
alla musica.
Nel 1977, Giorgio Moroder e Pete Bellotte hanno prodotto ”I Feel Love” per Donna Summer.
Un gruppo chiamato E-rotic ricevette l’attenzione con testi sessualmente provocanti e video
musicali.
Le peculiarita di questo brano sono il ritmo semplice, veloce e ipnotico.
Sierra suona la chitarra, il flauto ed e la voce principale del duo.
Un altro momento ironico del disco cantato in inglese.
Changes e una nota canzone del gruppo heavy metal britannico Black Sabbath.
La versione country di Ricky Nelson fu un successo da Top 40 hit negli Stati Uniti.
Il titolo della canzone ha anche ispirato il nome del movimento artistico degli anni ottanta
”Memphis Group”.
Dopo essersi separato dagli Orb, il membro Jimmy Cauty pubblico ”Space”, mentre Paterson
compose il singolo ”Little Fluffy Clouds”.
Nel 2000 fu messo in commercio lalbum ”Quadros modernos” e il testo ”Livrao da Musica
Brasileira”.
L’idea dell’album nasce da un commento rilasciato da John Lennon che, quando pubblico il
suo singolo ”Instant Karma!”
E diventato famoso grazie ad artisti come Kid Cudi, Donald Glover, Kid Sister, Azealia Banks
e Chiddy Bang.
La loro prima pubblicazione ufficiale, l’EP ”Metal & Dust”, e datata febbraio 2013.
Il singolo vendera circa 70.000 copie ma non gli varra nessuna certificazione.
Nel marzo 2004 Tobias registra la canzone ”Decks-Athron” con DJ Krush e Tatuki Oshima,
inserita nell’album ”Jaku”.
Molte copertine degli album dei Minutemen come ”Paranoid Time”, ”What Makes a Man
Start Fires?”
Harrison fece ristrutturare la chitarra e la uso per la copertina dell’album.
La prima fonte on-line aveva annunciato che il titolo dell’album sarebbe stato ”Bogey Depot”.
La musica ha un ritmo caraibico, accompagnato nell’arrangiamento da una slide guitar.
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