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MSc. Dissertation

Department of Intelligent Computer Systems

Faculty of Information and Communication Technology

UNIVERISTY OF MALTA

January 2019

Supervisors:

Dr Lonneke van der Plas, University of Malta

Dr Eneko Agirre, University of the Basque Country

Dr Barbara Plank, IT University of Copenhagen

Submitted in partial fulfillment of the requirements for the

Degree of European Master of Science in Human Language Science

and Technology



M.Sc. (HLST)

FACULTY OF INFORMATION AND

COMMUNICATION TECHNOLOGY

UNIVERSITY OF MALTA

Declaration

Plagiarism is defined as “the unacknowledged use, as ones own work, of work of

another person, whether or not such work has been published” (Regulations Gov-

erning Conduct at Examinations, 1997, Regulation 1 (viii), University of Malta).

I, the undersigned, declare that the Master’s dissertation submitted is my own

work, except where acknowledged and referenced.

I understand that the penalties for making a false declaration may include, but

are not limited to, loss of marks; cancellation of examination results; enforced

suspension of studies; or expulsion from the degree program.

Student Name: Jovana Urošević
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Abstract

Semantic role labeling (SRL) is an essential task for understanding natural lan-

guage, which allows for identifying events and their participants in a text by means

of semantic roles (eg. agent, theme, goal). As such, it has been proven useful for a

wide range of tasks in natural language processing, such as information extraction,

question answering, machine translation, etc. However, the amount of manually

labelled data necessary for building SRL systems is unfortunately not available

for most languages given the time and resources required for their creation. Var-

ious cross-lingual methods have been suggested in order to create such models

for resource-poor languages by means of model transfer or annotation projection

while often making use of existent monolingual SRL systems and parallel language

corpora.

The proposed thesis builds upon the work of Kozhevnikov and Titov (2013) who

proposed a model transfer method for SRL of English, French, Czech and Chi-

nese languages by making use of shared feature representations, such as cross-

lingual clustering or cross-lingual distributed word representations, and machine

learning. Even though they have demonstrated competitive results without using

word-aligned parallel corpora, they still make use of syntactic information for the

transfer. In this project, we show that by using a state-of-the-art neural SRL sys-

tem (He, Lee, Lewis, et al., 2017) and pretrained cross-lingual word embeddings

(Smith et al., 2017) we can achieve competitive results even without using any syn-

tactic information. On the CoNLL-2009 data, our best models achieve weighted

F1 score of 74.44 and 79.86 for French and Chinese language, respectively.

Key words: semantic role labelling, model transfer, cross-lingual word embeddings,

deep learning, bi-LSTM



Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 Introduction 1

1.1 Motivation and Research Objectives . . . . . . . . . . . . . . . . . 3

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Theoretical Background 7

2.1 Semantic Role Labelling (SRL) . . . . . . . . . . . . . . . . . . . 7

2.1.1 Different Approaches to SRL . . . . . . . . . . . . . . . . . 11

2.1.1.1 Supervised Learning Methods . . . . . . . . . . . 11

2.1.1.2 SRL in a Low-resource Context . . . . . . . . . . 13

2.1.1.2.1 Unsupervised Methods. . . . . . . . . . 13

2.1.1.2.2 Cross-lingual Annotation Projection. . . 14

2.1.1.2.3 Cross-lingual Model Transfer. . . . . . . 16

2.2 Vector Semantics and Word Embeddings . . . . . . . . . . . . . . 17

2.2.1 Cross-lingual Word Embeddings . . . . . . . . . . . . . . . 21

2.3 Neural Network Approaches to NLP . . . . . . . . . . . . . . . . 24

2.3.1 Common Architecture . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Recurrent Neural Networks (RNNs) . . . . . . . . . . . . . 27

2.3.2.1 Long Short-Term Memory Network (LSTM) . . . 28

3 Related Work 31

3.1 Syntax-agnostic Neural SRL Methods . . . . . . . . . . . . . . . . 31

3.2 Model Transfer of SRL . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Neural Model Transfer of Syntactic Dependencies . . . . . . . . . 35

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Cross-lingual Model Transfer for SRL: Design and Methodology 38

4.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Cross-lingual Word Embeddings . . . . . . . . . . . . . . . . . . . 41

i



4.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Training and Development Data . . . . . . . . . . . . . . . 43

4.3.2 Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Implementation Setup . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Experiments and Results 52

5.1 Baseline - Delexicalized Parser . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Results and Analysis . . . . . . . . . . . . . . . . . . . . . 54

5.2 Bilingual and Multilingual Model Transfer . . . . . . . . . . . . . 55

5.2.1 Results and Analysis . . . . . . . . . . . . . . . . . . . . . 55

5.3 Bilingual and Multilingual Model Transfer using MUSE embeddings 58

5.3.1 Results and Analysis . . . . . . . . . . . . . . . . . . . . . 58

5.4 Model Transfer within the Romance Language Family . . . . . . . 59

5.4.1 Results and Analysis . . . . . . . . . . . . . . . . . . . . . 59

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Conclusion and Future work 63

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Bibliography 81

A Chapter 4.3 82

B Chapter 4.4 84

ii



List of Figures

2.1 Example of an annotation projection from English to German using

word alignments in parallel sentences (Akbik, Guan, et al., 2016). 15

2.2 Vector space model with three dimensions. . . . . . . . . . . . . . 18

2.3 Semantic and syntactic relations captured as linear relations in a

simplified vector space models. . . . . . . . . . . . . . . . . . . . . 18

2.4 Distributed word representations of numbers (up) and animals

(down) in English (left) and Spanish (right). (Mikolov, Le, et al.,

2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Illustration of a biological neuron.(Jacobson, 2013) . . . . . . . . 25

2.6 An example of a single-layer percepteron.(Jacobson, 2013) . . . . 25

2.7 Left: linearly separable data points. Right: not linearly separable

data points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 Feed-forward neural network (bias not shown). (Jacobson, 2013) . 27

2.9 An unfolded recurrent neural network. (Olah, 2015) . . . . . . . . 28

2.10 A standard RNN structure. (Olah, 2015) . . . . . . . . . . . . . . 29

2.11 A structure of a LSTM network. (Olah, 2015) . . . . . . . . . . . 29

3.1 Overview of syntax-agnostic systems tested on the CoNLL-2012

test data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Results reported by Kozhevnikov and Titov (2013). Left: argument

identification (F1). Right: argument classification (accuracy) . . . 35

4.1 Example of the highway bi-LSTM with four layers. It takes a se-

quence of word-predicate pairs as input and produces a sequence

of BIO tags as output. The curved connections stand for highway

connections, while the plus symbols stand for transform gates which

are controlling inter-layer information flow. (He, Lee, Lewis, et al.,

2017). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 The difference between the span-based and dependency-based se-

mantic role annotation (Choi and Palmer (2011)). . . . . . . . . . 42

iii



4.3 Distribution of PropBank role labels in the training and develop-

ment sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Distribution of PropBank role labels in the test sets. . . . . . . . 47

4.5 Training and testing process and the data used. . . . . . . . . . . 50

5.1 Results of the baseline system for French and Chinese. . . . . . . 54

5.2 Results of the bilingual systems trained using aligned bilingual em-

beddings for English-French and English-Chinese language pairs. . 56

5.3 Results for French and Chinese for the system trained using aligned

English, French and Chinese cross-lingual embeddings. . . . . . . 56

5.4 Results of the bilingual systems trained using aligned MUSE bilin-

gual embeddings for English-French and English-Chinese language

pairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.5 Results for French and Chinese for the system trained using aligned

English, French and Chinese MUSE cross-lingual embeddings. . . 58

5.6 Results for the French language for system trained using aligned

English and Romance languages embeddings. . . . . . . . . . . . . 60

6.1 SRL model transfer and annotation projection results of

Kozhevnikov and Titov (2013) for the tasks of argument identi-

fication (F1 score) and argument classification (accuracy). . . . . 66

6.2 Results of all our systems trained on English and tested on French

and Chinese language data. . . . . . . . . . . . . . . . . . . . . . 66

A.1 Information contained in each column in the CoNLL-2012 data

(Pradhan, Moschitti, et al., 2012). . . . . . . . . . . . . . . . . . . 82

A.2 An example of an annotated sentence from the CoNLL-2012 data

(English). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.3 Information contained in each column in the CoNLL-2009 data
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Chapter 1

Introduction

Semantic role labeling (SRL) is the task of automatically assigning labels to pred-

icates and their arguments in a sentence which are indicators of their shallow

semantic roles, such as those of agent, theme, goal or other. A predicate is usually

evoked by a certain word or phrase, and is accompanied by one or more arguments

which have different (semantic) roles in sentences depending on the evoked predi-

cate. This kind of analysis is essential for the task of natural language understand-

ing (NLU), since it allows meaning to be extracted out of possibly syntactically

different sentence structures. For example, taking a look at the annotated sen-

tences in example 1 below, we can see that the meaning (and thus semantic roles)

stay unchanged across different syntactic structures. The predicate is marked by

letters in bold, while each of the arguments is in square brackets with its semantic

role explicitly marked.

(1) a. [Agent Jessica] [Rel−load.01 loaded] [Theme boxes] [Destination into the

wagon].

b. [Agent Jessica] [Rel−load.01 loaded] [Destination the wagon] [Theme with

boxes]. 1

This kind of analysis enables a range of NLP tasks, some of which are the fol-

lowing: information extraction (Fader et al., 2011), question answering (Kaisser

and Webber, 2007, Shen and Lapata, 2007, Maqsud et al., 2014), machine trans-

lation (Liu and Gildea, 2010, Gao and Vogel, 2011, Lo et al., 2013), dialogue

systems (Van der Plas, Henderson, et al., 2009), text summarization (Trandabât,

2011, Khan et al., 2015), opinion mining (Marasović and Frank, 2018). Therefore,

1Example taken from Van der Plas, Apidianaki, et al. (2014).
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several invaluable semantic resources have been created (such as FrameNe2, Prop-

Bank3, NomBank4, VerbNet5, etc.) which allow us to carry out many of these

natural language processing tasks that involve meaning. All of these resources,

however, have been developed by linguists’ manual efforts over an extensive period

of time and are most commonly available solely for the English language. Also,

the amount of manually labelled data necessary for building SRL systems is un-

fortunately not available for most languages given the time and resources required

for their creation. That is why various cross-lingual methods have been suggested

in order to create such models for resource-poor languages.

In recent years, there have been attempts to create unsupervised (Lang and Lap-

ata, 2010, Titov and Klementiev, 2012b, Luan et al., 2016, Titov and Khoddam,

2015), semi-supervised (Deschacht and Moens, 2009, Fürstenau and Lapata, 2012,

Zadeh et al., 2011), transfer systems (Kozhevnikov and Titov, 2013), as well as

annotation projection systems for SRL (Padó and Lapata, 2009, Van der Plas,

Samardzic, et al., 2010, Van der Plas, Apidianaki, et al., 2014, Akbik, Chiticariu,

et al., 2015). All of these methods share an effort to benefit from unlabeled,

monolingual data or some type of cross-lingual resources, such as parallel corpora,

instead of relying on large amounts of often unavailable annotated data.

Looking more closely into this research direction, unsupervised methods seem the

most appealing for the low-resource setting, since they require the least amount

of multi- or cross-lingual data, and are supposed to be language-independent.

However, their performance is still not able to surpass those of the transfer and

annotation projection models (Kozhevnikov and Titov, 2013). On the other hand,

there has been an extensive amount of research conducted to investigate the possi-

bility of automatically projecting semantic role labels from resource-rich languages

(in most cases English) to resource-poor languages by using word-aligned parallel

corpora. The underlying assumption behind this idea is that translated sentences

in parallel corpora are semantically equivalent to the original sentence, given that

they represent their translations. In this way, resources such as the ones men-

tioned earlier can automatically be created and enable the training of statistical

SRL systems for new languages. This relatively simple method, however, suffers

from incorrect word alignments, structural differences between languages, and in

addition performs badly when applied to a domain it was not trained on (Akbik,

Chiticariu, et al., 2015). And finally, research done on SRL model transfer has

2FrameNet (Fillmore and Baker, 2009): https://framenet.icsi.berkeley.edu/fndrupal/
fnbibliography

3PropBank (Palmer et al., 2005): https://propbank.github.io/
4NomBank (Meyers et al., 2004): https://nlp.cs.nyu.edu/meyers/NomBank.html
5VerbNet (Schuler, 2005): https://verbs.colorado.edu/verbnet/
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achieved better results when compared to both annotation projection and unsu-

pervised methods by taking a system trained on one language and applying it to

another (Kozhevnikov and Titov, 2013). These systems usually either use delex-

icalized models leveraging only formal shared features across languages (such as

POS-tags for example), or use shared lexical feature representations for the lan-

guages involved, such as cross-lingual clustering or cross-lingual distributed word

representations (Kozhevnikov and Titov, 2013). This approach showed competi-

tive results, even when compared to the supervised state-of-the art systems that

make heavy use of annotated data, and as such show that similar cross-lingual

approaches could have an important role for natural language processing in low-

resource settings.

The proposed thesis is aimed to improve the results obtained by Kozhevnikov and

Titov (2013) by transferring the deep SRL model of He, Lee, Lewis, et al. (2017)

and making use of pretrained cross-lingual word embeddings (Smith et al., 2017).

A similar approach has been successfully applied before for the model transfer of

the universal dependency parser by J. Guo et al. (2016), who showed that using

cross-lingual word embeddings reduces the lexical gap between different languages

by projecting their monolingual embeddings to a common vector space. On top

of that, they show that one of the key components for the success of their results

is the use of a deep bi-directional Long Short-term Memory Network. Given

that this approach has given improvements over other traditional methods when

transferring a dependency parser, we are expecting similar outcome for our deep

SRL model transfer.

1.1 Motivation and Research Objectives

The research objectives of this thesis are split in five categories we wanted to

explore and will be explained in more detail further below.

• Research question 1:

– Can a system based on a deep neural network outperform the re-

sults obtained with the traditional machine learning approach used by

Kozhevnikov and Titov (2013) for the task of SRL model transfer for

the English, Chinese and French language?

– Given that their model does not always outperform the annotation pro-

jection method used as a baseline, the second question is consequently:

can our system also outperform the annotation projection model of

3



Kozhevnikov and Titov (2013)?

Our main objective is to use the deep SRL system of He, Lee, Lewis, et al. (2017)

and incorporate the pretrained corss-lingual word embeddings of Smith et al.

(2017) for different languages in place of the initial monolingual English embed-

dings, and in such way train and make available SRL systems for the Chinese and

French language. The goal is to try and outperform the currently available transfer

system of Kozhevnikov and Titov (2013) for the mentioned languages, as well as

the results they reported for the annotation projection system. Besides currently

being the most dominant approach, neural networks are also producing state-of-

the-art results in a range of NLP tasks, such as language modelling (Yang et al.,

2017; Krause et al., 2018), POS-tagging (Ling et al., 2015; Bohnet et al., 2018),

dependency parsing (Dozat and Manning, 2016; Clark et al., 2018), etc. On top

of that, the recent approach of J. Guo et al. (2016) to the task of model transfer of

a dependency parser has shown that the combination of cross-lingual embeddings

with a deep neural network approach significantly outperforms previously sug-

gested traditional machine learning approaches. Given that their method showed

promising results, we would expect a similar outcome for the model transfer of

semantic role labels.

• Research question 2 - Syntactic information:

– How does the model perform without any syntactic information as com-

pared to the previous work?

We would like to train and test the system without any use of syntactic infor-

mation just like the original system of He, Lee, Lewis, et al. (2017) does. There

has been a range of SRL models suggested in the past that make use of differ-

ent types of syntactic information, which are often part-of-speech tags, syntactic

treebanks or a combination of both. However, even though it has been shown pre-

viously that syntactic information can benefit the task of shallow semantic parsing

(Màrquez et al., 2008; Roth and Lapata, 2016), this type of information is not

always available for different language and in the task of model transfer it was

shown that transferred syntactic information could be one of the sources of errors

for structurally more distant languages (Kozhevnikov and Titov, 2013). Finally,

in this thesis, we wanted to follow the recent trend in SRL that tries to rely on

as little syntactic data as possible (such as in He, Lee, Lewis, et al. (2017), Tan

et al. (2018), and He, Lee, Levy, et al. (2018)).

• Research question 3 - Language similarity:

– Does incorporating only structurally similar languages to a common

4



vector space result in a boost in performance?

Since there are pretrained multilingual embeddings available for Romance lan-

guages, we would like to see how the result of our system for French changes when

it uses more similar languages projected in the common vector space. Does in-

corporating more languages result in a boost in the performance or does it just

introduce more noise to the system?

• Research question 4 - Word embeddings alignments:

– Does using monolingual word embeddings for the three languages

aligned to a common vector space with different techniques make a

significant difference in the obtained results?

According to the recent survey of cross-lingual embeddings by Ruder et al. (2017),

different pretrained embeddings were evaluated for specific tasks and do not guar-

antee the same results when used in other tasks or with different systems and data.

Therefore, we would like to compare two types of readily available cross-lingual

embeddings aligned using the approaches suggested by Smith et al. (2017) on the

one hand and by Conneau et al. (2018) on the other. These approaches will be

both described in detail in the Chapter 4.

All or combination of the above mentioned ideas and research objectives are sup-

posed to produce a successful SRL system for the two target languages (French

and Chinese), but is ideally possible to modify and apply to any other language

as long as monolingual embeddings and seed dictionaries are available for it. And

this is exactly the motivation for building such a system - make available a method

for obtaining shallow semantic parsers for languages other than English at fairly a

low cost. In the future, if this method shows good results, we would like to apply

it in a real low-resource setting as well, in which no available syntactic information

nor labelled data is available.

1.2 Outline

The structure of the thesis is as follows. The Chapter 2 covers the theoretical

background of the thesis. Firstly, it introduces the framework of semantic roles

and the task of semantic role labeling (2.1), followed by an overview of different

approaches to SRL (2.1.1), which cover supervised methods as well as the ones

applied in a low-resource scenario. Finally, vector semantics is described in the

Section 2.2 followed by a brief introduction to common neural network architec-

tures used in NLP research (2.3) with more detail about the Recurrent Neural

5



Networks that we will make use of in this thesis.

Furthermore, Chapter 3 covers the related work, presenting the relevant research

done on syntax-agnostic neural SRL approaches (3.1), SRL model transfer (3.2)

as well as related methods in the area of nerual model transfer for syntactic de-

pendencies (3.3).

Following, in Chapter 4, we present the design and the methodology that was

followed in order to create our neural SRL transfer model. We start by describing

the system of He, Lee, Lewis, et al. (2017) used for the transfer, the cross-lingual

embeddings alignment approaches (4.2), the data that we used to train and eval-

uate our models on (4.2), and finally we give an overview of the implementation

and evaluation methodology (4.4 and 4.5, respectively).

In Chapter 5, we describe all the different experiments that have been conducted,

and the obtained results and their analysis. The analysis is then further expanded

in the Section 5.5, which gives a brief discussion of the results and the systems’

performance, as well as of the spotted errors our parser tends to make for different

languages.

And finally, Chapter 6.2, summarizes the most important findings of the exper-

iments we carried out while reflecting both on advantages and disadvantages of

our models. Based on the results we have obtained, we also give suggestions for

future work that could further explore similar methods for low-resource SRL and

potentially lead to an improvement in the accuracy of the models suggested in

this thesis.

6



Chapter 2

Theoretical Background

In this chapter, we will give a brief overview of the theoretical background needed

to understand the systems we use in this project. In order to do this, the chapter is

split in two main parts. On the one hand, we introduce the theory behind semantic

role labeling, including the common approaches, resources and annotation used

to build such systems. And on the other hand, we introduce vector semantics and

neural network approaches that have recently become essential parts of natural

language processing and which we will make use of in this project as well.

2.1 Semantic Role Labelling (SRL)

In order to claim that we have understood a particular event, we need to be able

to answer the following questions concerning it: “Who did what to whom (when,

where and how)?” (Palmer et al., 2005). The words “who, what, to whom” are

essential because they represent the core participants of an event, while the other

three are optional as they provide additional information. If we take a look at

example 2 below, we will see that we are able to answer the previous questions (or

at least most of them) with the same answers even though the same event might

have been expressed by syntactically different structures.

(2) a. Chuck bought the car.

[Who Chuck] [What bought] [To whom the car].

b. The car was bought by Chuck.

[To whom The car] [What was bought] [Who by Chuck].

7



c. The purchase of the car by Chuck...

[What The purchase] [To whom of the car] [Who by Chuck]...

d. The car was sold to Chuck by Jerry.

[To whom The car] [What was sold] [To whom to Chuck] [Who by Jerry].

e. Jerry sold the car to Chuck.

[Who Jerry] [What sold] [To whom the car] [To whom to Chuck].

We see that the sentences can have a different word order, can be in a different

voices (passive, active), that the action can be expressed by different verbs (buy,

sell) or nouns (purchase), etc. and yet, they all still convey essentially the same

meaning and answer the same questions.

The idea behind this kind of meaning decomposition is that we have predicates

(mostly verbs, but also nouns, some adjectives, adverbs, phrases) that require

certain arguments which can carry a particular (semantic) role with respect to the

predicate. Semantic roles should allow us to extract meaning across differently

structured sentences, because the meaning stays the same no matter the surface

form we express it with. Semantic roles show us that there are several participants

in the previously mentioned purchase event in example 2: Chuck, Jerry, the car

and that each of them has a specific role in the sentences. This kind of meaning

representation is called shallow semantic parsing and it uses semantic roles to

mark pieces of meaning in a sentence (Jurafsky and Martin, 2018). The roles and

their names are often closely related to their syntactic function in the sentence.

For example, Chuck is a subject in the first sentence and has a role of an agent;

the car is an object and has a role of a patient, etc. This could be taken as a

general rule: agents are often subjects of a sentence, direct objects are the theme,

etc. (Jurafsky and Martin, 2018). There are, however, exceptions to these rules,

which are described further below and illustrated in example 3.

The idea of thematic roles, or marking participants and events in a sentence,

is a very old one in linguistics, but there is still no fixed set of thematic roles

researchers agree on. Thus, we will see different sets of roles from one paper to

another. Depending on the author, semantic roles can range from more specific

(as BUYER role), more abstract ones (AGENT role), to those on a very abstract

level (as PROTO-AGENT) (Jurafsky and Martin, 2018). Therefore, some authors

will have very specific roles and hence quite many of them, while others will try

to use fewer but more general roles. In Table 2.1, obtained and adapted from

Jurafsky and Martin (2018), some of the most commonly used thematic roles
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Thematic Role Definition Example

Agent The volitional causer of an event That girl plays tennis.
Experiencer The experiencer of an event Mary felt ill.
Force The non-volitional causer of the event The wind blows debris into.
Theme The participant most directly affected by an event The boy kicked the ball.
Result The end product of an event The city built a new park.
Content The proposition or content of a propositional event Mat said “I can help you!”
Instrument An instrument used in an event He signed with a black pen.
Beneficiary The beneficiary of an event They made me a surprise.
Source The origin of the object of a transfer event I flew in from Madrid.
Goal The destination of an object of a transfer event I drove to Rome.

Table 2.1: Commonly used thematic roles, their definitions and examples.

are represented. The term semantic roles is normally used to generalize over all

different sets of thematic roles that different researchers use.

In computational linguistics, semantic roles are used for the task of semantic role

labeling (SRL), which refers to the task of automatically assigning semantic roles

to constituents or phrases in a sentence, that is, to find the predicates and assign

roles to their arguments (Jurafsky and Martin, 2018). Having these labels allows

us to infer sentence meaning that we might not always be able to infer from a

syntactically parsed sentence. For example, while the AGENT is often realized as

the subject of the sentence, in other cases the THEME can be the subject (Jurafsky

and Martin, 2018). The following are possible realizations of the thematic roles

of the verb break :

(3) a. [Agent John] broke [Theme the window].

b. [Agent John] broke [Theme the window] [Instrument with a rock].

c. [Theme The window] broke.

d. [Theme The window] was broken [Agent by John]. 1

Each predicate has a set of arguments that can accompany it called the thematic

grid or case frame (Jurafsky and Martin, 2017). The case frame basically presents

different ways of describing the same situation or an event by a certain predicate.

In the above example, the case frame of the verb break is composed of AGENT,

THEME and INSTRUMENT, but there are other roles that can appear, too.

Besides, some predicates allow their arguments to have a more free word order:

(4) a. [Agent Doris] gave [Theme the book] to [Goal Cary].

b. [Agent Doris] gave [Goal Cary] [Theme the book]. 2

1Example taken from Jurafsky and Martin (2018).
2Example taken from Jurafsky and Martin (2018).
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These are called verb alternations or diathesis alternations (Jurafsky and Martin,

2018). On top of this, it is possible that a predicate requires different set of

semantic roles depending on its sense in a particular context. For example, if we

take a look at the two senses of buy (Palmer et al., 2005) in the example 5, we

will see that the sets of roles defined for them are different.

(5)

buy.01: “purchase” buy.05: “accept as truth”

Arg0-PAG: buyer Arg0-PAG: believer

Arg1-PPT: thing bought Arg1-PPT: thing believed

Arg2-DIR: seller

Arg3-VSP: price paid

Arg4-GOL: benefactive

All of the previously mentioned facts, make it clear that automatically disam-

biguating predicates and accordingly recognizing and labeling their arguments is

a very challenging task. This resulted in, on the one hand, vast research done on

trying to develop corpora labelled with semantic roles which would then enable,

on the other hand, training of automatic SRL systems.

When it comes to the development of different resources, it has been a problem to

define a fixed set of roles with their definitions and the inventory of case frames

that all researchers would use. This lead to introducing different semantic role

models that either have more specific or more general roles. Among most known

resources for shallow semantic parsing are FrameNet (Fillmore and Baker, 2009),

VerbNet (Schuler, 2005), PropBank (Palmer et al., 2005) and its extension Nom-

Bank (Meyers et al., 2004). We will not describe these resources here, but for

a very good survey of most of the state-of-the-art semantic resources we refer to

Abend and Rappoport (2017). For the purpose of our thesis, we will make use

of the PropBank annotation, which is currently most commonly used resource for

training supervised SRL systems.

Given the difficulties SRL task imposes, besides developing different resources,

many different approaches to the task have been suggested over the years as well.

We will give a brief description of them in the following sections by dividing them

into the ones that always require labelled resources (supervised approaches) and

the ones that are trying to use less or as little labelled data as possible (approaches

applied in lower-resources scenarios).
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2.1.1 Different Approaches to SRL

This section will cover different approaches to semantic role labeling, with a par-

ticular focus on SRL methods in low-resource settings. Here, we will shortly cover

a broader theoretical description of the approaches, while in section 3 we will give

a more detailed overview of those most relevant to our topic.

2.1.1.1 Supervised Learning Methods

The emergence of resources such as FrameNet and PropBank enabled a new wave

of research for SRL. Previous rule-based methods were abandoned in favor of

supervised machine learning given the new, large corpora with reliable and hand-

annotated semantic roles (Jurafsky and Martin, 2018). One of the first and well-

known statistical SRL algorithms was trained by Gildea and Jurafsky (2002) using

the English version of FrameNet. In order to identify the constituents and assign

them with correct roles, they applied statistical methods, such as probabilistic

parsing and statistical classification. The final result was a method that assigns

semantic roles to sentence constituents with a 77% accuracy that could then be

used in various NLP applications. Furthermore, one of the first semantic parsers

that used PropBank came soon after and was created by Gildea and Palmer (2002).

On top of that, this paper pointed out the importance of accurate syntactic parses

for the task of SRL.

These first SRL systems set the base for a lot of the systems that came after, es-

pecially when it comes to the used feature set. Most of the traditional supervised

learning approaches use the features proposed by Gildea and Jurafsky (2002) or

some kind of generalization of their suggested features (Jurafsky and Martin, 2018,

Màrquez et al., 2008). These typically include: the governing predicate, phrase

type of the constituent (noun phrase, prepositional phrase, etc), headword of the

constituent, POS of the headword, the path from the constituent to the predi-

cate in the parse tree, voice of the sentence or a clause in which the constituent

appears (active or passive), subcategorization pattern of the predicate (the set of

arguments that is likely to appear in the phrase type of the predicate), the po-

sition the constituent has in the sentence relative to the predicate (left or right).

Each of these features has, of course, later been expanded and further developed

by other researchers , such as Surdeanu et al. (2003), Nianwen Xue and Palmer

(2004), Pradhan, Ward, et al. (2005), Zapirain et al. (2007), and so on.

Besides the typical set of features, a typical SRL pipeline that is used in most of

the supervised systems in one way or another can be defined. Given a sentence and
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its syntactic parse tree, algorithms need to, given a predicate, identify boundaries

of its arguments (argument identification) and label them with a correct role

(argument classification) (Màrquez et al., 2008). This is normally done in three

steps: (1) filtering (pruning) a set of possible arguments for the predicate; (2)

local scoring, where each argument candidate is assigned a confidence score for

each possible role label; and (3) global scoring, where local scores are combined

in order to produce the most probable sequence of labelled arguments given the

predicate (Màrquez et al., 2008).

Recent work on supervised SRL is mostly focused on applying deep neural net-

works (NNs). One of the biggest differences between these models and the tradi-

tional ones is that the traditional approaches needed to rely on complex sets of

hand-crafted input features, which in most cases heavily relied on syntax. How-

ever, NN approaches have slowly moved away from this tradition. One of the

first SRL NN models was by Collobert et al. (2011), but it did not manage to

outperform the traditional models. One of the first successful application of neu-

ral networks in a SRL task was by FitzGerald et al. (2015) who used arguments

and semantic roles jointly embedded in a shared vector space as input features for

a given predicate. Even though syntactic information was considered important

for SRL and used in SRL tasks for a long time, most recent work has proven the

opposite by achieving state-of-the-art results without using any syntactic informa-

tion (for example, Zhou and Xu, 2015, He, Lee, Lewis, et al., 2017, Marcheggiani,

Frolov, et al., 2017). Therefore, we could say the NN methods could be roughly

split into syntax-aware (for example, FitzGerald et al., 2015, Roth and Lapata,

2016, Marcheggiani and Titov, 2017) and syntax-agnostic methods (for example

Zhou and Xu, 2015, He, Lee, Lewis, et al., 2017, Marcheggiani, Frolov, et al., 2017)

based on the importance they place on syntax for SRL and how much syntactic

information they use, if any. Given that we have a multilingual, low-resource set-

ting in mind for the current project, the systems that make use of a lot of syntactic

information (such as fully parsed sentences) are not very relevant, because that

kind of information is difficult to obtain for many languages. The systems that

are not using syntax at all or are limited to using only POS-tags are covered in

the related work section (Chapter 3) since their methods are more suitable for our

project. However, a good overview of the most recent, deep neural approaches is

given in Marcheggiani, Roth, et al. (2017).
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2.1.1.2 SRL in a Low-resource Context

Most of the research in SRL falls under the umbrella of supervised machine learn-

ing approaches and, thus, relies on hand-annotated data for semantic roles in order

to train such systems. This is especially true with the recent emergence of deep

neural approaches, which require even larger amounts of data for training. Such

methods achieve fairly good performance, mostly around 80% of the F1 measure

on the standard test collections for the English language (Kozhevnikov, 2017).

However, these are predominantly developed for English, as obtaining labeled

data for supervised learning is expensive and time-consuming, and, therefore, pre-

vents the development of (better) SRL systems across different languages. Data

for other languages is not non-existent, but it tends to be smaller than that of

English and sometimes it is of lower quality. The lack of (high-quality) annotated

data has given rise to several approaches that try to avoid or reduce the need for

such data.

2.1.1.2.1 Unsupervised Methods. We have seen that even a small amount

of labelled data could be difficult to obtain. Thankfully, other methods and ap-

proaches have been explored in order to completely avoid the need for labelled

data. One such direction is the research conducted in the area of unsupervised

learning, which makes assumptions about the semantic roles of arguments of a

certain predicate based on the generalizations about arguments’ syntactic func-

tions (Jurafsky and Martin, 2018). This implies the assumption that the system

can learn a lot from just looking at the syntactic features of arguments. For ex-

ample, subjects often tend to have a semantic role of an agent, while objects lean

to fill in the roles of a theme or an instrument, etc. It is important to notice

that this is not always the case, but rather just a good place to start, a good

baseline (Kozhevnikov, 2017). Besides taking syntax into account as a feature,

there have been attempts of including information about the characteristics of

predicates (voice, for example), information about the word order in a sentence,

some lexical data, etc. (Kozhevnikov, 2017).

One of the first unsupervised systems for SRL were firstly proposed by Swier

and Stevenson (2004) and then followed shortly by that of Grenager and Man-

ning (2006). These models relied on statistical methods and syntactic features

mentioned above, which they applied to VerbNet and PropBank, respectively.

Building upon this work, Lang and Lapata (2011a, 2011b) propose two methods

- induction via split-merge and with graph partitioning methods. Shortly after,

Titov and Klementiev (2012a) introduce Bayesian methods to solve the unsuper-
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vised SRL task, which lead to state-of-the-art performance. They also tried using

parallel data to improve the results (Titov and Klementiev, 2012b), as well as a

small amount of labeled data, and in this way strive to incorporate semi-supervised

methods to help augment the performance of their unsupervised method (Titov

and Klementiev, 2012c).

As is the case with most of the recent work, newer research in unsupervised learn-

ing also involves using neural architectures and embeddings. Titov and Khoddam

(2015) suggest a system based on autoencoders, which performed equally well as

the previous, traditional unsupervised methods only without using any kind of lin-

guistic information about the languages involved. Finally, Luan et al. (2016) tried

to treat the problem of unsupervised SRL as an argument embedding problem

achieving state-of-the-art performance.

In summary, unsupervised methods seem very appealing for the low-resource set-

ting since they require the least amount of multi- or cross-lingual data among all

of the approaches that will be mentioned. They are also language-independent as

some of the research on dependency parsing has shown (for example, Jiang et al.,

2016, Cai et al., 2017 etc.). However, their performance is still not able to beat

those of the transfer and annotation projection models (Kozhevnikov and Titov,

2013) which we will describe next.

2.1.1.2.2 Cross-lingual Annotation Projection. In the previously de-

scribed approaches none or very little data was used. However, this and the

following section will cover those approaches that make use of existing labelled cor-

pora for developing SRL systems languages other than English. Such approaches

are cross-lingual annotation projection and model transfer.

Cross-lingual annotation projection tries to transfer semantic roles from a

resource-rich source language (such as English) to a resource-poor target language,

where the source language side is already annotated either manually or automat-

ically. Most often, researchers use either FrameNet or PropBank and parallel

corpora. The idea here is to use some type of alignment between sentences in the

two languages, either by aligning tokens (words), constituents or whole sentences.

After having obtained the alignments, the annotations is then transferred from

a source text unit to the target one. This method is also called direct transfer,

because the annotations are being transferred directly from one unit to another

(Van der Plas, Merlo, et al., 2011).

In order to do this, there are several conditions that need to be met: we need

to have an annotated corpus for the source language to train an SRL model, a
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Figure 2.1: Example of an annotation projection from English to German using
word alignments in parallel sentences (Akbik, Guan, et al., 2016).

parallel corpus with semantically equivalent sentences in two languages, and on

top of that, in order to obtain correct transfers, we need to have correct and

complete alignment pairs between the languages (Van der Plas, Merlo, et al.,

2011, Van der Plas, Apidianaki, et al., 2014). When this is fulfilled, we can use an

existing SRL model to annotate the source with labels and then, using alignments,

transfer those labels to sentences in the target language (example in figure 2.1).

In this way we can obtain an automatically labeled target language corpus with

semantic roles, which enables the training of SRL systems for target languages

(Akbik, Chiticariu, et al., 2015, Van der Plas, Merlo, et al., 2011).

At first, attempts of direct transfer of FrameNet frames were made, for example

in Padó (2007), Padó and Lapata (2009), Basili et al. (2009), Annesi and Basili

(2010). However, later work has shifted to PropBank because of its broader cover-

age and because it is more suitable to use in combined semantic-syntactic settings

(Merlo and Van Der Plas, 2009, Van der Plas, Merlo, et al., 2011). However, even

though the direct transfer of annotations is easy to implement for any language

pair, the problem of missing or incorrect alignments between pairs caused by non-

literal translations or translation shifts (also called translation divergences) are

the main cause of wrongly transferred or missing annotations, as stated in many

of the previously conducted research (such as Padó, 2007, Van der Plas, Merlo,

et al., 2011, Van der Plas, Apidianaki, et al., 2014, Akbik, Chiticariu, et al., 2015,

Aufrant et al., 2016). Therefore, the situation seen in examples like the aforemen-

tioned one, where we have completely correct, token-to-token alignments, is not

always existent.

More recent work has, thus, focused on solving this problem of alignments. In

Van der Plas, Apidianaki, et al. (2014), a different approach was suggested that

does not use any parallel data, but instead gathers alignment information from the

whole corpus. In this way, the system is not affected by non-literal translations

and reduces the amount of errors caused by wrong alignments because it simply

does not depend on the token-to-token correspondences (Van der Plas, Apidianaki,
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et al., 2014). Here, the transfer is modeled as a word sense disambiguation task,

where French verbs are annotated with English predicate labels (Van der Plas,

Apidianaki, et al., 2014). Building upon this work, Akbik, Chiticariu, et al. (2015)

also suggests a way of avoiding above listed common errors by creating a model

that iteratively projects annotation only for those arguments and predicates with

high-confidence. In order to show that this model is language-independent, the

authors successfully applied it to seven different languages.

However, the most common problems to this day occur because of translation

shifts which represent cross-lingual differences coming to light when a translation

of one language into another results in a very different structure than that of the

original. Clearly, these kinds of differences are expected and will always happen

in any type of parallel corpora, no matter how controlled the language in them is.

2.1.1.2.3 Cross-lingual Model Transfer. The second approach that makes

use of existing labelled corpora of resource-rich languages is, the so called, model

transfer, and represents an approach of, in simple words, training a model on

one language and, with certain modifications, applying it directly to another lan-

guage. It was initially introduced by Zeman and Resnik (2008) for the purpose

of syntactic parsing. This type of approach has a potential of being less affected

by parallel data and wrong alignments, since it learns a shared representation

between the languages involved (Kozhevnikov, 2017). This in fact means that

we would represent the information we want the system to process in a way that

it would be shared between the languages involved and that the system process-

ing this information would not be able to distinguish between the languages in

question. Like this, we would then train the system on one language and apply

it directly to another. For example, Zeman and Resnik (2008) experimented on

the Danish-Swedish language pair. Even though these languages are very similar

both lexically and syntactically, they still tend to use different spellings for the

same words, and thus, present an obstacle to the system which would then mark

most of the words as unknown. As a type of shared representation for these two

languages, they used glosses and POS-tags. With the former, the model is trained

on Danish and then, when tested, the Swedish words are replaced with glosses -

Danish translations with the highest weight. Like this, the system can recognize

all the words and is able to parse the test set, after which the original Swedish

words are again introduced and the success of the parser is finally evaluated. The

latter shared representation, however, removes every lexical information from the

training data and relies only on the POS-tags for training, and the same is done for

testing. This approach of removing lexical information is called delexicalization.
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Besides these two types of shared features, other approaches were proposed, also

for syntactic parsing, such as mapping words from both languages to a cross-

lingual word-cluster (Täckström et al., 2012) or using a distributed word repre-

sentation (Klementiev et al., 2012, Xiao and Y. Guo, 2014, Vulić, 2017). It is

important to notice that even though these methods are more resistant to the

already mentioned difficulties the parallel data brings, they still need some type

of knowledge about the connection between the shared information between lan-

guages involved. However, they do not require complete and accurate alignments

of words, phrases or sentences as annotation projection approaches do.

All of these ideas have developed further in the area of dependency parsing, which

can be seen in more recent work (section 3) that involves exploring the combination

of deep neural approaches and different types of distributed word representations,

such as in Xiao and Y. Guo (2014), Duong et al. (2015b), J. Guo et al. (2016).

For the task of SRL, Kozhevnikov and Titov (2013) have made an attempt of

transferring semantic roles from resource-rich to resource-poor languages. Since

our work builds directly on their ideas, this and other related research will be

covered in detail in the following chapter (Chapter 3).

2.2 Vector Semantics and Word Embeddings

Even though the use of word embeddings became popular in the field of Natural

Language Processing in the recent years, the idea of representing words in a lan-

guage as vectors in a high dimensional space goes far back to a semantic theory

called Distributional Hypothesis which was first introduced by linguists Harris

(1954)) and Firth (1957) (Jurafsky and Martin, 2018). Distributional hypothesis

is best known by Firth’s quote: you shall know a word by the company it keeps.

This refers to the fact that words similar in meaning tend to appear in similar

contexts. For example, book and article will often appear near words such as

read, write, publish, text, story, etc. To put it differently, words that have similar

semantic characteristics, tend to have similar distributional properties.

This idea was then adopted by Distributional Semantics in which computational

models are built to automatically learn word representations by looking into their

distribution in a large amount of text (corpora). In this way, we represent words’

meaning as a set of contexts they appear in (Jurafsky and Martin, 2018). In order

to find words with similar meaning, we just need to compare their distributions,

i.e. co-occurrence counts. After obtaining co-occurrences, we are able to represent

word meaning as a vector or a point in a high dimensional space. Closely related
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Figure 2.2: Vector space model with three dimensions.

Figure 2.3: Semantic and syntactic relations captured as linear relations in a
simplified vector space models.

words will tend to be closer together in the semantic space, as we have shown in

the fictional example in the figure 2.2. We can see that in the context of three

verbs eat, write and read, the words article and book are closer together while rice

is positioned further from them in this three dimensional semantic space.

These vectors are called word embeddings because words are embedded as vectors

in a multidimensional space (Jurafsky and Martin, 2018). They are also called

distributional semantic models or distributed word representations. Besides being

able to capture semantic similarity (couch vs. sofa, article vs. book) and semantic

relatedness (tea vs. cup, house vs. kitchen), these models are also able to capture

other types of semantic, syntactic and other relationships between words, such as

gender, verb forms, relations between cities and countries, etc. This was firstly

pointed out by Mikolov, Chen, et al. (2013) and in the figure 2.3 we show a

simplified example of how these models are able to capture simple linear relations.

Distributed feature representation has now become a standard way of representing

features for NLP tasks and it has shown state-of-the-art results in many of them.

The available distributional models will differ, however, based on the way they
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represent the words’ context - word vectors can be learned from a context as

wide as a document or as narrow as the words’ nearest neighbours in a sentence

(Jurafsky and Martin, 2018). When learning the distributions, we decide on the

size of a context window and, depending on it, we can learn more syntactic or

more semantic meaning representation of a given word. If the content window is

narrow, we will manage to capture more of the syntactic meaning, while if we take

a wider context, we will capture more of its semantic meaning.

The vector models have shown to be very useful for representing word meaning

and there are various models available that are commonly used in NLP research

for this purpose. These models are normally based on co-occurrence matrices,

that is, how often words co-occur. There are two main types of co-occurrence

matrices: term-document matrix and term-term (term-context) matrix (Jurafsky

and Martin, 2018). The former contains the number of times each word appeared

in each document, which means that every document is represented by a vector

of word counts. In the latter model, each word of a vocabulary is represented as

a vector of co-occurrence counts, i.e. how many times the target word appears in

the context of another word (or a context window). In a lot of cases, the length

of a word vector tends to be the size of the vocabulary, which can be anywhere

between 10.000 and 50.000 words (Jurafsky and Martin, 2018).

In both of these types of matrices, not all the words will co-occur with every

document or every context word in the vocabulary. Therefore, a lot of numbers

in a vector will be zeros. These kinds of vectors which tend to have a lot of zeros

are called sparse. They are not always easy to process because they tend to be

quite large and due to the fact that the zeros do not carry any truly significant

information about the word meaning.

Instead of using raw frequency to represent the meaning of words or documents,

there are approaches that were shown to work well, which introduce weighting

of the raw counts in order to give more importance to certain contexts or words

over others. For example, there are particular words, such as a, the, for, in,

etc. (called function words), that will appear across a lot of different documents

and are, therefore, not good indicators of the document’s meaning. The goal of

a weighting approach would be to give less weight to these words in a certain

document retrieval task as they tend to be less informative. There are many

approaches in NLP that introduce some type of a re-weighting on the raw vectors,

but the two very common are Tf-idf and Positive Pointwise Mutual Information

(PMI) models.

All of the previous approaches deal with sparse vector representations which, how-
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ever, have been shown to work less efficiently than their alternative - dense vectors,

which consist of numbers that are mostly non-zeros. (Jurafsky and Martin, 2018).

Since the most recent research in NLP has almost completely switched to utilizing

these vector representations as features, the term word embeddings is now mostly

used to refer to dense word vectors. One of the main differences between word

embeddings and DSMs is that word embeddings are learnt by predicting the words

(either predicting a word based on a context or predicting the context based on

the given word), while DSMs were learnt, as we have seen before, by taking into

account word co-occurrence. This was also proven by Baroni et al. (2014) who

pointed out that word embeddings models performed better than DSMs in a range

of NLP tasks, such as semantic relatedness, synonym detection, concept catego-

rization, selectional preference and analogy task. This could be due to several

factors - firstly, with dense vectors, classifiers trained for a particular task have to

learn less weights for representing word meaning than with sparse, where classifiers

have to learn several thousands of weights for every sparse dimension, and sec-

ondly, given that there are less parameters to learn, classifiers trained with dense

vectors tend to generalize better and have less chances for over-fitting (Jurafsky

and Martin, 2018).

The following are the most commonly used algorithms to learn dense vector rep-

resentations:

• CBOW (Continuous Bag-of-words): The model was introduced by Mikolov,

Chen, et al. (2013) and it predicts a target word based on a context window,

which represents the sum of the vector representations of the words in it.

• Skip-gram: Another model introduced by Mikolov, Sutskever, et al. (2013)

which predicts a context window based on a given word.

• GloVe (Global Vectors for Word Representation): This method was sug-

gested by Pennington et al. (2014) and it is based on ratios of word

co-occurrence probabilities (as opposed to DSMs that are based on co-

occurrence probabilities only) that are computed using a weighted least

squares objective in order to decrease the difference between the dot prod-

uct of the vectors of two words and the logarithm of the number of their

co-occurrences (Ruder et al., 2017).

• FastText: It was introduced by Bojanowski et al. (2017) as an extension

of the Skip-gram model by incorporating a way to account for out-of-

vocabulary words. This was done by including character n-grams, where

the words that were not seen in the training data are represented by the

sum of the vectors of their character n-grams (sub word units).
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• ELMo (Deep Contextualized Word Representations): This model is cur-

rently state-of-the-art in word embeddings and it was introduced by Peters

et al. (2018). Similarly to FastText, ELMo embeddings are character based,

which means they represent words as a combination of their sub-units and

like that have representations even for OOV words. On the other hand, as

opposed to all other models, the word presentations depend on the whole

context they are used in. ELMo embeddings are, in fact, concatenations of

the activations on several layers of the deep bidirectional language model

(biLM), since different layers encode different types of information about

a word (Peters et al., 2018). For example, lower level layers predict well

parts-of-speech, while higher levels tend to encode better word-sense disam-

biguation. Using these embeddings in several NLP tasks has already proven

very successful and lead to increased accuracy of the models for semantic

parsing, question answering, textual entailment and sentiment analysis (Pe-

ters et al., 2018).

2.2.1 Cross-lingual Word Embeddings

The emergence of the previously described approaches to learning monolingual

word embeddings, gave rise to several approaches proposing to expand their ideas

to a cross-lingual scenario and enable knowledge transfer between different lan-

guages for multilingual NLP tasks. This would potentially allow us to train models

simultaneously for different languages, as well as create a possibility to transfer

knowledge between resource-poor and resource-rich languages (Ruder et al., 2017).

There are multiple models and algorithms proposed to project word embeddings

from different languages to a common vector space. They differ in the approach

they take, but could be mainly split in those that are based on word-aligned,

sentence-aligned, document-aligned data, lexicons and those that do not use any

parallel data (Ruder et al., 2017). For the purpose of this thesis, we will be using

word-aligned approaches, that is, the approaches that align words in different

languages to a common vector space by using bilingual or cross-lingual dictionaries

with word pair translations. We will focus mostly on these as they are the most

dominant and most successful in the literature currently. These approaches can

be further split as follows:

• Monolingual mapping: These types of methods make a great use of mono-

lingual word embeddings, which are first independently trained on large

corpora of text. After these were obtained, this group of approaches tries to

project the monolingual embeddings to a common space, which is normally
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Figure 2.4: Distributed word representations of numbers (up) and animals (down)
in English (left) and Spanish (right). (Mikolov, Le, et al., 2013)

done by learning a transformation matrix that would allow us to map word

representations in one language to the representations of the other (Ruder

et al., 2017). This method could be well described with the observation

made by Mikolov, Le, et al. (2013) who noticed that geometric relationships

between words tend to be similar in different languages. As shown in the

figure 2.4, the words for numbers and animals in English and Spanish have

a similar geometric shape in a vector space. This observation then gave

rise to the idea that we could learn a linear mapping from one vector space

to another by leveraging bilingual dictionaries. This mapping is learned by

minimizing the mean squared error (MSE) between bilingual word pairs.

Since this work, there has been a tendency to try to use as little resources as

possible to obtain the linear mappings. The most recent work of Conneau

et al. (2018) has suggested an unsupervised method for learning a linear

projection based on a discriminative adversarial objective.

• Pseudo-cross-lingual approach: This approach trains multilingual embed-

dings using monolingual word embedding tools that are used and trained

on an automatically constructed pseudo-cross-lingual corpus, which would

contain text from both the source and target languages (Ruder et al., 2017).

The expected result here is for the model to be able to learn cross-lingual
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relations by being exposed to this type of cross-lingual context.

• Joint optimization: This class of approaches train their models on both

parallel and monolingual data, while jointly optimizing a combination of

monolingual and cross-lingual losses (Ruder et al., 2017).

There are also models that include methods which train crosslingual embeddings

using comparable, instead of parallel data, such as language grounding models

and comparable feature models. However, since their methods are not the ones

we are going to use in this thesis, we will not cover them. For further information

about them, however, we refer the reader to Ruder et al. (2017).

Despite the fact that cross-lingual embeddings present the current state-of the-art

in multilingual and crosslingual NLP and are a great resource to further influence

its development, they have, however, some disadvantages. We have outlined a

couple of them here (Ruder et al., 2017):

• Word order: Given that most of the approaches are based on the bag-of-

words representation, the models we currently have are not able to capture

word order. And, as we will see later, this could be one of the potential

sources of error our semantic role labeling model has, since these kind of

models would tend to assign the same representation to, for example, a

sentence in active and passive voice.

• Polysemy: The problem here arises because of the fact that a monosemous

word in one language can be polysemous in another, and the models are

currently not able to capture this feature of the target word through a simple

linear alignment method. What happens usually is that we would align the

monosemous source word to one of the senses of the target word, which is

not necessarily the correct one.

• Creating a shared feature representation seems to work fairly well for closely

related languages. The further the linguistic structures of languages are

apart, the more difficult it is to create a shared representation that would

capture all of their linguistic particularities. On top of that, if the languages

are too different, there is a chance of not being able to transfer any knowledge

between languages and have a negative transfer (Ruder et al., 2017).

• And finally, different cross-lingual embeddings are evaluated on different

tasks and under different conditions. If they functioned well in one, it does

not mean they will function equally well in another task. Besides, it was

shown that for different tasks, embedding models require different forms

of supervisions. An interesting observation, and perhaps useful for our re-
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search, is that for the task of parsing word-level alignment models tend

to perform better as they are able to capture syntactic information more

precisely (Upadhyay et al., 2016).

In the next two chapters, we will show how multilingual embeddings could be used

for the task of shallow semantic parsing in a low resource setting, where either

little or no annotated data is available. The embeddings we will use fall under a

monolingual mapping category. We also try to compare two types of pretrained

cross-lingual embeddings that were integrated into our SRL system and allowed

for a knowledge transfer between a resource-rich language and languages with a

smaller amount of resources available. We will cover in more detail in chapter 4

the two types of cross-lingual embedding alignment approaches we will use in this

thesis.

2.3 Neural Network Approaches to NLP

Until recently, most of the machine learning approaches used in the field of NLP

were linear models (support vector machines, linear regression, etc.) that were us-

ing as input high-dimensional and sparse vectors as features. However, influenced

by the use of NNs in other fields, such as computer vision and pattern recognition,

NLP slowly started turning to non-linear, neural network models trained on dense

vectors that are able to automatically learn feature representations (Goldberg,

2016; Young et al., 2018). This change of direction came along with advancement

in word embedding learning models as well as deep learning models, which re-

sulted in state-of-the-art performances on various NLP tasks: language modelling

(Yang et al., 2017; Krause et al., 2018), POS-tagging (Ling et al., 2015; Bohnet

et al., 2018), dependency parsing (Dozat and Manning, 2016; Clark et al., 2018),

named entity recognition (Akbik, Blythe, et al., 2018) and machine translation

(Vaswani et al., 2017; Edunov et al., 2018), among others.

In this section, we will give an overview of the common neural architecture and

cover in more detail one of the methods commonly used to tackle challenging NLP

tasks - Recurrent Neural Networks (RNNs) and one of their modifications - Long

Short-Term Memory network (LSTM). This is, in fact, the method that we will

make use of for the task of semantic role labelling in this project.
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Figure 2.5: Illustration of a biological neuron.(Jacobson, 2013)

Figure 2.6: An example of a single-layer percepteron.(Jacobson, 2013)

Figure 2.7: Left: linearly separable data points. Right: not linearly separable
data points.
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2.3.1 Common Architecture

Neural Network models represent a class of machine learning models that attempt

to process information similarly to neural networks in biological brains, only on

a simplified scale. In figure 2.5, we showed an example of a neuron: neurons

receive input information through structures called dendrites and send an elec-

trical signal further via axons all the way to boutons in the network if the sum

of impulses received from dendrites is higher than a certain threshold (Jacobson,

2013). Similarly, artificial neural networks consist of neurons as their basic units,

also called nodes or perceptrons. In the figure 2.6, we can see the similarity be-

tween a perceptron and a biological neuron - a perceptron also receives several

inputs (x1, x2, ...xn) and is supposed to produce an output. All the inputs re-

ceived by a perceptron are separately weighted (w1, w2, ...w3) depending on their

relative importance when compared to each other. Weights can be either positive

or negative. The node then sums the weighted input and if that input is over a

certain threshold, it produces an output - just like we have seen with the biological

neuron. Whether the model will or will not fire or produce an output is defined

by an activation function (for example, tanh or ReLU functions), which is used to

convert the input into a more meaningful output (Jacobson, 2013). This basically

means that when we train a model for a certain task, we want the perceptron to

fire whenever the model manages to learn a new pattern from the data we are

using, which is modeled with an activation function. By changing the weights

and the threshold, we can get different decisions from the system. And finally,

a perceptron can have one additional input called bias which serves to shift the

activation function either to the left or to the right.

A perceptron is, however, a linear classifier and it cannot deal with non-linearities.

In the figure 2.7 on the left, we show an example of data points that can be

separated by a single line, while on the right, we have data that is not possible

to separate by one unique line. If we have data that is not linearly separable, we

will need a model that has a higher representational capacity - a neural network.

(Goldberg, 2016)

A neural network would normally consist of a network of such perceptrons. In the

figure 2.8, we have a network consisting of an input layer with four input nodes,

one output layer with two nodes and one hidden layer. Each input node is used as

an input to each node of the hidden layer, each of which have, thus, several inputs

and produce a single output fed to the output layer (Goldberg, 2016). Given that

there is only one direction in which information could move to in this network,

it is called a multi-layer perceptron (MLP) or a feed-forward network, since the
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Figure 2.8: Feed-forward neural network (bias not shown). (Jacobson, 2013)

information can only move forward through the network. In other words, output

from one layer is used as an input to the following layer.

2.3.2 Recurrent Neural Networks (RNNs)

In a feed-forward network, we made the assumption that all inputs are independent

of one another. However, that is not always the case, especially when we deal with

text as input. For example, if we wanted to predict the next word in a sentence

based on the previous word, we could implement another type of network that

would allow us to do this in an easier way than the FFN could. In this case, we

could use a Recurrent Neural Network (RNN), which does the same computation

on each of the elements in a sequence (thus the name) and it assumes that the

output of the network is based on all of the previous calculations (Olah, 2015).

If we look at figure 2.9 on the far left, we can see that a simple RNN receives an

input xt and has an output ht, with the arrow denoting a loop. If we unfold this

network (figure 2.9 on the right), we will see that the RNN is nothing else then

a sequence of connected FNNs that are following one another in continuous time

step (Goldberg, 2016). Each FNN is passing its output information to the next

one in the sequence. In other words, each FNN receives two inputs at a time -

one from the current time step and one from the hidden layer of the previous time

step.

Given their ability to model sequences and predict the next element based on

the previous ones, they are successfully applied to various NLP tasks, such as

language modeling, POS-tagging, machine translation, etc. (Olah, 2015). In
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Figure 2.9: An unfolded recurrent neural network. (Olah, 2015)

particular, a special type of RNNs is used successfully in these tasks, which is

called Long Short-Term Memory network (LSTM). This network had a big success

in NLP mainly because it is able to tackle the main issue the typical RNN has -

long-term dependencies. RNNs were shown to be very biased towards the most

recent input and are, thus, limited in terms of how much of previous information

they can keep (Goldberg, 2016). This is also related to the problem of vanishing

gradients or their counterpart exploding gradients (Pascanu et al., 2014). The

issue arises from the fact that neural network parameters are optimized using

error backpropagation which calculates gradients of the loss function through the

chain rule (Zilly et al., 2017). Activation functions that are commonly used (such

as tanh) have derivatives between -1 and 1, so the multiplication sequence of such

small numbers will result in the gradients to approach zero with each time step

the network goes through. Similarly, the gradients can explode if the weights of

large numbers are multiplied (Pascanu et al., 2014).

2.3.2.1 Long Short-Term Memory Network (LSTM)

In order to deal with the issue of vanishing gradients and long-term dependencies,

Hochreiter and Schmidhuber (1997) proposed a version of RNN, LSTM, that have

memory cells instead of the nodes in the hidden layer. We show the difference

between an RNN and LSTM network in the figures 2.10 and 2.11, respectively.

While RNNs have several repeating modules of neural networks containing only

one tanh layer, LSTMs contain a four layer network (Olah, 2015).

Following the figure from left to right, the structure of the LSTM is as follows.

Firstly, in the sigmoid layer a decision is made about whether information from

the input is going to be kept in the cell Ct. The sigmoid layer is called forget gate

and it takes into account the output of the hidden layer of the previous time step

ht−1 and the input from the current time step xt (Goldberg, 2016). The decision

is binary - it outputs 1 if the information is relevant and should be kept, and 0 if it

should not for all the numbers from the previous cell Ct−1. It is formally written
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Figure 2.10: A standard RNN structure. (Olah, 2015)

Figure 2.11: A structure of a LSTM network. (Olah, 2015)

as follows, where ft is the output of the forget gate:

ft = σ(Wf · [ht−1, xt] + bf )

Next, it needs to decide what new information should remain in the current cell

state. First, the next gate, input gate (it), modulates which values should be

updated, while the tanh layer is used to create vectors of new potential values for

the update, C ′t. These two steps are then multiplied to obtain an update to the

state (Olah, 2015). Again, these are formally calculated as:

it = σ(Wi · [ht−1, xt] + bi)

C ′t = tanh(WC · [ht−1, xt] + bC)

Then, the previous cell state, Ct−1 , needs to be updated with the new values and

create a new state Ct. In order to do that, the previous state is multiplied by the

output of the forget gate, we add the multiplication of the new values and the
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output of the input gate:

Ct = ft ∗ Ct−1 + it ∗ C ′t

And finally, the last step determines what the output, ot, of the cell will be, which

is decided in two steps. First, the sigmoid layer filters what part of the cell state

will be outputted and second, the cell state is ran through a tanh layer in order to

set the output between -1 and 1. The results of the sigmoid and the tanh function

are then multiplied to create the output vector ht (Goldberg, 2016, Olah, 2015):

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

In this thesis we will make use of a variation of an LSTM network called a bi-

directional LSTM (bi-LSTM), which is able to process sequences of words in both

directions: from x1 to xt and from xt to x1 by concatenating outputs that are

produced in both directions (Schuster and Paliwal, 1997). This type of network

has proven very successful in recent SRL research and has produced a range of

state-of-the-art results, which are going to be described in the next section.
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Chapter 3

Related Work

After having discussed the background material discussed for this thesis in the

previous chapter, we now look in the most relevant and related work from the

literature. What is meant by this is that we will not go through the annota-

tion projection and unsupervised methods which are often applied in cross-lingual

scenarios, because their approaches differ significantly from ours. On the one

hand, annotation projection relies heavily on parallel data and other resources

such as POS-tags, syntactic parsing output, etc., while on the other, unsupervised

methods have a very different approach from ours and tend to perform with a

significantly lower accuracy than both annotation projection and model transfer

systems. Even though we are not using a supervised method in a traditional way,

we are, however, making use of a modified state-of-the-art supervised model to

apply it to new languages. Therefore, this section will firstly give an overview of

the current research on supervised methods which typically do not require using

any syntactic data, as we consider high quality syntactic trees to be a very high

resource annotation which is not available for many languages. Then, we will give

an overview of the model transfer methods used in SRL until now and, in the

end, we will look at the most recent examples in the field of dependency parsing

transfer as some of the approaches could be applied in an SRL scenario as well,

since the tasks are related.

3.1 Syntax-agnostic Neural SRL Methods

As we have shown in section 2, in the past, most of the SRL systems tended to

use syntactic information as one of the important features of both traditional and

neural machine learning models. However, a lot of recent work seems to turn this
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story around, proving that syntactic parsing is not a necessary step for successful

semantic role labeling. One of the first neural models in SRL by Collobert et

al. (2011) was actually the first model to make an attempt of doing semantic

parsing without syntactic features. However, this model was not successful as it

did not manage to perform better than the traditional models at the time. The

first successful syntax-agnostic system was the one of Zhou and Xu (2015) who

constructed a deep bi-directional long short-term memory (bi-LSTM) network

with a conditional random field (CRF) model at the top for predicting the output

tag sequence. The model achieved an F1 score of 81.27% on the CoNLL-2012

shared task data. This was a big turn in SRL research since this model did not

rely on any syntactic information, which was difficult and expensive to obtain and

which was causing the biggest amount of errors in SRL systems until that time

(as pointed out by Pradhan, Ward, et al. (2005)). On top of this, their work laid

ground for many of the upcoming state-of-the-art systems, which not only applied

a similar neural architecture, but also avoided using syntactic features.

Following this work and building upon it, He, Lee, Lewis, et al. (2017) proposed a

system that, as opposed to the work of Zhou and Xu (2015), uses a deep highway

bidirectional LSTMs with constrained decoding. This system became the new

state-of-the-art with an F1 score of 81.7% on the CoNLL-2012 test set. Given its

competitive performance, this system was a very good proof that LSTMs have a

great potential to learn underlying syntactic structure of sentences even without

using any syntactic features. Their model is the one we will make use of in this

thesis for the purpose of SRL model transfer, since it was the state-of-the-art

at the time we started our progress on this work. A detailed overview of the

system will, thus, be given in the following section (section 4) which describes our

approach.

A slight change to this model was suggested a couple of months later which was

following the new advancements in the field of word embeddings - the appearance

of already described ELMO embeddings by Peters et al. (2018). Changing the

input to the model from pretrained GloVe to ELMO embeddings, significantly

improved the accuracy of the model, from 81.7 to 84.6 F1. This is due to the

fact that ELMO manages to capture context-dependent characteristics of word

meaning as well as words’ syntactic information (Peters et al., 2018), which is

especially beneficial for this task.

Up until this point, it was shown that the two biggest issues in syntax-agnostic

SRL were structural information on the one hand and long-range dependencies on

the other. The system that attempted to tackle these was by Tan et al. (2018) and

it involved using a deep attentional neural network (DEEPATT) which relies on
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Figure 3.1: Overview of syntax-agnostic systems tested on the CoNLL-2012 test
data.

self-attention mechanisms to directly draw the global dependencies of the inputs.

This model can, as opposed to bi-LSTM models, create connections between two

arbitrary tokens in a sentence and thus allow for distant elements to interact

with one another by shorter paths, making it possible to deal with long-range

dependencies. The model achieved 82.7 F1 score on the CoNLL-2012 shared task

dataset which became a new state-of-the art after He, Lee, Lewis, et al. (2017).

And finally, the current state-of-the-art system is again proposed by He, Lee, Levy,

et al. (2018) and with the use of ELMO word embeddings. The difference from

the 2017 model is that instead of assuming predicates as given, the model tries to

predict them. This is the biggest contribution of this system as it is the first span-

based SRL model to try to do this. The very idea actually came from a coreference

model by Lee, He, et al. (2017) and given that a similar model worked fairly well

on an SRL task, gives place to the conclusion that a similar approach could be used

in other tasks that use span-based labelling, such as syntactic parsing and relation

extraction. On top of this, the model shows, similarly to Tan et al. (2018), that

it is able to tackle long-range dependencies as well. Finally, the system achieved

an F1 score of 85.5% on the CoNLL-2012 dataset.

In order to have a better overview of all the previously described systems, we have

showed their results in the figure 3.1 bellow. The results presented are the ones

on the CoNLL-2012 data as this is the dataset that we will use for training our

models (more about this in the next section).
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3.2 Model Transfer of SRL

To the best of our knowledge, the only model transfer method applied to the

task of SRL by using distributed feature representation was the one proposed by

Kozhevnikov and Titov (2013). As opposed to the previous work that mostly

made use of delexicalized parsers to reduce the lexical gap between different lan-

guages, Kozhevnikov and Titov (2013) use a shared feature representation for the

languages involved - English, French, Czech and Chinese. They trained models

for the following language pairs: EN-ZH, ZH-EN, EN-CZ, CZ-EN and EN-FR

(where ZH is Chinese, CZ Czech, En English and FR French). In other words,

every language was used both as a source and as a target, except in the case of

French which was used only as a target language.

In order to build the transfer model, they used the following features: (1) a shared

feature representation, which included using cross-lingual word clusters and cross-

lingual distributed word features, (2) unlabeled dependencies or, if non-existent

for a certain language, syntactic information was transferred from the source to

the target language, (3) universal POS-tags, (4) glossed word forms. In order to

train their mdoels, they used a linear classifier by Björkelund et al. (2009), which

is comprised of a set of linear classifiers.

Compared to a cross-lingual projection systems they used as a baseline, the model

performed competitively given that no direct parallel data was needed. For the

pairs EN-ZH, ZH-EN, EN-CZ, it even outperformed the projection model. The

results obtained on the CoNLL-2009 dataset are given in the figure 3.2. On the

left are the F1 scores for the task of argument identification, while on the right

are the results for argument classification. In both of the cases, Kozhevnikov and

Titov (2013)’s results are compared to their annotation projection system. The

results vary widely depending on the both source and the target languages in

question, as well as on the type of syntactic information that was used (original

or transferred).

The authors showed a successfully attempt of incorporating lexical features into

the transfer model, which is the main achievement of their approach. However,

this method requires a lot of resources expensive to obtain. The authors claim that

this model could be used in a low-resource scenario, but it requires dependency

parses in order to achieve good results, which is expensive information to obtain.

In order to try and overcome this issue, they transfer syntactic information from

the source to the target language. The transferred parses introduce a lot of chances

for errors since, by making the transfer, we are trying to fit one language structure
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Figure 3.2: Results reported by Kozhevnikov and Titov (2013). Left: argument
identification (F1). Right: argument classification (accuracy)

into the another, which is very prone to errors (Kozhevnikov and Titov, 2013).

Since we are making a comparison to this work in our project, we are implementing

a different approach. We try to keep our model as low resource as possible and we

do not use any syntactic information. On the other hand, we try to experiment

with using no target language(s) data or using only a small amount of target data

(100 sentences). By exposing the model to the target data, it should implicitly

learn the syntax of the target language. This was already attempted by J. Guo

et al. (2016) for the task of model transfer for dependency parsing and it showed

promising results, as it will be pointed out in the next segment.

3.3 Neural Model Transfer of Syntactic Depen-

dencies

Given that the only system for SRL model transfer was the one of Kozhevnikov and

Titov (2013, 2014) who use a traditional machine learning model, we will shortly

look into some of the related research in the field of dependency parsing that

makes use of a neural approach in combination with different types of distributed

word representations. These models of dependency parsing are normally referred

to in the literature as cross-lingual representation learning methods because at the

time they were published, the biggest focus was on finding the best way to learn

cross-lingual word embeddings and apply them to the task of model transfer.

Here we will cover only the methods that could be applied to a lower resource

setting - there are other approaches that give good results as well, however they

include using annotated treebanks (for example, Duong et al. (2015a)), which is
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the approach very distinct from ours.

One of the first neural models for the transfer of a dependency parser was proposed

by Zou et al. (2013) and Xiao and Y. Guo (2014). Similarly to Kozhevnikov and

Titov (2013), they make use of word embeddings to reduce the lexical feature

gap in a cross-lingual scenario, but as opposed to them, these two approaches

use them as augmenting features to train a delexicalized parser on a resource rich

source language and apply it to another. They train their own dense vectors using

a deep neural network and bilingual dictionaries from Wiktionary. Difference is,

however, that Zou et al. (2013) first trained monolingual embeddings for each

language and then tried to transform the representations from one language to

another using machine translation alignments. On the other hand, Xiao and Y.

Guo (2014) jointly trained cross-lingual embeddings for the two languages involved

by using a small set of bilingual pairs of words from Wiktionary, a dictionary which

is freely available. They implemented the learnt embeddings to the MSTParser

(McDonald et al., 2005) which they trained first on English and then applied to

the other language. Finally, their results showed a significant improvement over

the baseline delexicalized parser, as well as that the distributed lexical features

combined with the structures learned by a delexicalized parser could be very useful

for reducing the amount of errors in model transfer approaches.

Following this work, there is interesting approach by Søgaard et al. (2015), who

suggested a parsing model that incorporates embeddings learned from multiple

sources via inverted indexing in Wikipedia. They applied the method on various

NLP tasks besides dependency parsing and even though they concluded that their

embeddings did not improve much the results from previous work, it did however

point to a promising future direction for learning cross-lingual word embeddings.

More recent work by J. Guo et al. (2016) builds upon the previous work, but tries

to implement a different approach for using cross-lingual embeddings - by mapping

vocabularies from different languages to a common vector space. They also no-

ticed that they can additionally reduce the error rate by embedding cross-lingual

clusters (similar to Täckström et al. (2012)). And finally, they have also shown

that even a small amount of target labelled data (100 sentences) can significantly

improve the parsing results because it allows for parameter adaptation.

3.4 Conclusion

All of the described approaches differ from one another mainly based on the ap-

proach they use to learn cross-lingual embeddings. However, what they have in
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common is that besides using the embeddings themselves to reduce the lexical

gap between languages, they also incorporate another approach to learn the non-

lexical features in a target language - usually, word clusters. That being said,

in our work we will try to investigate if our neural cross-lingual model is able to

automatically learn clusters in these languages by incorporating state-of-the-art

multilingual embeddings aligned in the same vector space which should allow for

the model to access both their lexical and non-lexical features at the same time.
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Chapter 4

Cross-lingual Model Transfer for

SRL: Design and Methodology

The proposed thesis aims to use the deep SRL model of He, Lee, Lewis, et al.

(2017) in order to build new SRL parsers for French and Chinese. We attempt to

do this by training the model on the English training data while using pretrained

cross-lingual word embeddings (Smith et al., 2017) to reduce the lexical gap be-

tween these languages. This also makes it possible for the system trained solely

on English to be directly applied to French and Chinese sentences. Additionally,

this system is particularly useful for the purpose of our task of SRL labeling as

it does not use any syntactic information, which was shown to be beneficial for

the languages with significantly different syntactic structures. This is true for

the languages we are using for this project as they belong to different language

families: Germanic, Romance and Sino-Tibetan.

In this chapter, we will firstly give a description of the model that we will im-

plement, followed by the embeddings that we will use for its initialization in the

conducted experiments. Then, we will give an overview of the data we trained

and tested the system on. And finally, we will present the implementation setup

used throughout all the experiments as well as the method used to evaluate the

performance of our systems.

4.1 Model Description

The model we will use for this project is, as already mentioned, the one proposed

by He, Lee, Lewis, et al. (2017) with certain modifications that will be explained

in the upcoming sections. This model proved very successful for the task of SRL
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Figure 4.1: Example of the highway bi-LSTM with four layers. It takes a sequence
of word-predicate pairs as input and produces a sequence of BIO tags as output.
The curved connections stand for highway connections, while the plus symbols
stand for transform gates which are controlling inter-layer information flow. (He,
Lee, Lewis, et al., 2017).

for the English language, which could be mainly attributed to the fact that it

incorporates the latest advancements in the field of deep learning - the authors

implement a bidirectional LSTM to tackle this task, however, they simplify the

input and the output layer, they incorporate highway connections (Srivastava et

al., 2015), use recurrent dropout (Gal and Ghahramani, 2016) as well as pose cer-

tain constraints to the output sequence of labels by using A* decoding algorithm

(Lewis and Steedman, 2014). We will take a more detailed look at each of these

below.

The structure of the model is presented in the figure 4.1, where it can be seen

that what it essentially does is that given a sequence of word-predicate pairs, it

predicts a sequence of outputs. Each label of the output is part of the BIO tagset.

In this type of annotation, the label B-tag denotes the beginning of an argument

span marked with a certain label, I-tag denotes an inside element of a tagged

argument span, while O is used to mark all the unlabelled tokens, that is, those

tokens that are outside of a tagged argument span1. The model finds and outputs

the highest-scoring tag sequence over the span of all possible tag sequences.

Furthermore, the model represents a stacked (or deep) bi-LSTM network, which

is the extension to a classical bi-LSTM model with the main difference being

additional hidden layers (in our case eight), where each layer has several memory

1This is shown in more detail and followed with an example in the Section 4.3 where we
introduce the data used for the project.
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cells (Pascanu et al., 2014). Stacking LSTM hidden layers creates a deeper model,

and the depth is what is usually thought of being the main contributor to the

model’s success (Pascanu et al., 2014; Hermans and Schrauwen, 2013). Each layer

of the network processes one part of the task and then sends it to the next until

it reaches the last layer which produces the output (softmax). On top of that,

additional layers can process further what was learned in the previous layers, and

it is believed that deeper layers in the network are able to create higher level of

abstraction (Pascanu et al., 2014). For example, by working on speech recognition,

Graves et al. (2013) found out that depth of a network was more important than

the number of cells for obtaining better results. In fact, they showed that the

error rate was constantly dropping as they increased the number of hidden layers.

It is clear that this model can benefit from using a deep neural structure, however,

stacked LSTMs tend to have a similar problem with vanishing and exploding

gradients as other RNNs (Pascanu et al., 2014). In Chapter 2, this problem was

already introduced for a classic RNN architecture and it was said that LSTMs

were presented as a solution for this problem. This was, in fact, the solution

for the increased depth through time, which is proportional to the length of the

input sequence. Here, the problem is now increased depth through space as we

are stacking several LSTM layers on top of each other. In order to alleviate

this issue deep networks have, He, Lee, Lewis, et al. (2017) incorporate highway

connections proposed by Zilly et al. (2017). They essentially introduce another

gatening mechanism to control the flow of information through the network - the

transform gate is added in order to control how much of the activation is passed

from one layer to the next (transform gates are marked with a plus sign in the

figure 4.1).

And finally, in order to set constraints and ensure structural consistency between

output tags, A* decoding algorithm over potential tags is used (suggested before

by Lewis and Steedman (2014) and Lee, Lewis, et al. (2016)). These constraints

can be split in BIO constraints and SRL constraints. The former ensures that

the sequence of tags is a valid BIO transition - that IA0 is, for example, always

preceded by a BA0. The SRL constraints can be of two types: (1) Unique core roles

(U), where each core role (A0-A5) can appear only once for each predicate; (2)

Continuation roles (C), which refers to the fact that a continuation role (C-X) can

appear only when its base role appeares before it (X). The authors experimented

with using different types of syntactic decoding, but these were omitted from the

final system as the only real improvement came from the BIO constraints.
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4.2 Cross-lingual Word Embeddings

In this project two types of pretrained cross-lingual embeddings are used to initial-

ize our models, the ones by Smith et al. (2017) for the main experiments and the

ones by Conneau et al. (2018) for comparison purposes. As it has become practice

in NLP recently, we use these embeddings in order to provide the model with

an initial word-level representations. Using pretrained embeddings in itself can

be seen as a type of transfer learning since we are leveraging information learned

through training these embeddings on large corpora of text and applying it (i.e.

transferring it) to a another NLP task such as SRL. Both types of approaches are

using pretrained monolingual embeddings trained on Wikipedia corpus with the

approach proposed by Bojanowski et al. (2017).

Most of our experiments are done using FastText embeddings aligned to a com-

mon vector space by using Smith et al. (2017)’s transformation matrices2. In order

to obtain the matrices, the authors take 10000 most frequent words from the En-

glish FastText vocabulary and translate them to other languages through Google

Translate API. This created dictionary is split into 5000 words for training and

5000 words for testing. In order to induce a shared bilingual space for a language

pair, the authors use the created bilingual dictionary of translation pairs and the

pretrained monolingual embeddings. If an English word has a phrase as its trans-

lation, they take the average of the word vectors that the phrase contains. The

multilingual mapping is then done by minimizing mean squared errors between the

translation pairs in the seed dictionaries, while to avoid the issue of hubness3 they

invert the softmax used to find word translations at test time and then normalize

the probability over source words instead of target words (Ruder et al. (2017)).

In order to preserve the original distances in the monolingual spaces, the authors

apply orthogonal constraints to the linear transformations.

Besides these, we will make use of another type of cross-lingual embeddings that

represent the current state-of-the-art - MUSE embeddings by Conneau et al.

(2018). The authors make freely available pretrained cross-lingual embeddings for

various languages, as well as high-quality bilingual dictionaries for aligning new

cross-lingual embeddings4. In order to obtain the cross-lingual embeddings, the

authors also use pretrained, monolingual FastText embeddings and then leverage

2The transformation matrices and the tutorial for obtaining the embedding alignments are
available at https://github.com/Babylonpartners/fastText multilingual

3Hubness refers to the problem in the approach to linear projection proposed by Mikolov,
Le, et al. (2013) and it refers to the fact that some words tend to appear as nearest neighbours
of a lot of other words in a vector space. This was first noticed by Lazaridou et al. (2015).

4The embeddings and the dictionaries are freely available here: https://github.com/
facebookresearch/MUSE
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bilingual dictionaries to learn the mappings between source and the target spaces.

The main difference to the previous approach is that the authors use only two

monolingual corpora and propose an adversarial learning approach to learn a

linear mapping from source to target spaces. This approach involves having

two systems where one (discriminator) tries to make a distinction between the

mapped embeddings in two languages (tries to decide which language embeddings

belong to), while the other (generator) tries to align the two spaces and like that

prevent the discriminator of being successful. After the shared space is obtained,

they extract the dictionaries created in this way and fine-tune the mapping with

iterative Procrustes alignment by (Schönemann, 1966).

Figure 4.2: The difference between the span-based and dependency-based seman-
tic role annotation (Choi and Palmer (2011)).

4.3 Data

The data we will use is comprised of three different datasets: one for the training

and development of our models and two for their evaluation. For the former

purpose we make use of the data from the CoNLL-2012 shared task (Pradhan,

Moschitti, et al., 2012) for the English language, while for the latter we use the

CoNLL-2009 shared task data (Hajič et al., 2009) for Chinese and the one from

Van der Plas, Merlo, et al. (2011) for the French language. Even though the French

data was obtained in a different way, it is in the same format as the Chinese data

- CoNLL-2009 format (this is explained in more detail in the next section).

Before we present the datasets in more detail, there is an important piece of
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information about the semantic role annotation in these datasets. Even though

they are all annotated with PropBank style labels, there is a difference in how

this annotation is applied across the datasets. While the CoNLL-2009 data is in

the dependency-based format, the CoNLL-2012 data is in the span-based format.

In the figure 4.2 on the previous page, the difference between the two formats is

shown. While in the dependency-based format only the head of a phrase is labelled

with a semantic role, in the span-based format the whole constituent is identified

and then marked with BIO tag structure. In the BIO annotation, B presents the

beginning of a tagged phrase, I denotes a word carrying a semantic role within

that phrase and O means that the word is not carrying any semantic role label

(it stands for Outside of a tagged phrase sequence). This type of annotation is

illustrated by the example 6 below.

(6) [HeB−A0] opened [theB−A1 doorI−A1] [withB−A2 hisI−A2 footI−A2] [atB−TMP

tenI−TMP ].

Samples of the two annotated sentences from the datasets are given in Appendix A,

together with the explanation of contained information in each of the columns in

the datasets.

The reason why we are obliged to use the data in different formats is that the

original monolingual system of He, Lee, Lewis, et al. (2017) that we use for the

implementation is constructed to use the data in the span-based format. On the

other hand, the previous work we want to compare our results to (Kozhevnikov

and Titov (2013) and Van der Plas, Merlo, et al. (2011)) is evaluating their systems

on the CoNLL-2009 data which is in the dependency-based format. In order for

our results to be comparable to theirs, we need to evaluate our systems on the

same datasets.

4.3.1 Training and Development Data

The dataset we use for the training and development of our models is the En-

glish data from the CoNLL-2012 shared task, following the original experiment

by He, Lee, Lewis, et al. (2017). The data was extracted from the news, broad-

casts, talk shows, etc. and follows the PropBank for labelling predicate-argument

relations (Pradhan, Moschitti, et al., 2012), which are in the span-based, BIO for-

mat explained earlier. Both verbal and nominal predicates are given in the task

together with their sense disambiguation. Besides this information, the data in-

cludes named entities, correference information, POS-tags, syntactic parses, etc.,
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but we do not use this information in our models. Instead, we only use word

forms.

CoNLL-2012 English language data
Train Dev Total

Sentences 2.2M 300K 2.5M
Tokens 115K 15K 130K

Table 4.1: Number of sentences and tokens in the English training data.

We followed the training-development data split from the shared task. The number

of sentences and tokens contained in both is shown in the table 4.1.

In the figure 4.3, the distribution of the role labels is presented for the training

set (a) and development set (b). In both of the datasets, there is a noticeable

predominance of the labels A1 and A0, which make around 80% of all the labels

appearing in the datasets. The most frequent is the label A1, which represents

around 50% of all the labels, while A0 is the second most frequent label with 30%

(31% in development data). The next, A2 label, is already much less frequent,

with around 17% in both datasets. The other core roles appear only on a limited

amount of arguments - 1% for A3 and A4 roles, while A5 appears only in very

rare cases, 0.02% and 0.03% in the training and development data, respectively.

It is clear from this visualization that there will be a bias when it comes to training

the models, which will be mostly exposed to the first two most frequent labels.

Given that the rest of the labels appear so rarely, the models will be able to

encounter them only a limited amount of times and in limited contexts, which can

potentially lead to the lack of training of the models for these labels and, thus,

lead to them rarely assigning these labels to arguments during the evaluation

phase. However, there is a reason for this kind of label distribution: A0 tends

to be a PROTO-AGENT, while A1 tends to be a PROTO-PATIENT - two roles

that most of the sentences will have. The rest of the roles tend to denote less

frequent elements in a sentence - A2 can be a benefactive, instrument, attribute,

end point; A3 can be a start point, benefactive, instrument, or attribute; A4 the

end point. Besides being more rate, the A2-A5 labels tend to be also inconsistent

when it comes to the role they denote, which could also be a potential problem

for the classifier.

4.3.2 Test Data

In order to be able to test the models, the data should be annotated using the

same set of semantic roles and also following the same annotation guidelines. This
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(a) Training data

(b) Development data

Figure 4.3: Distribution of PropBank role labels in the training and development
sets.
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is usually hard condition to obtain for many languages, however, we follow the

previous work (for example, Kozhevnikov and Titov (2013)) which has shown that

the languages that fulfill these conditions and that are freely available are Chinese

and French, which we will describe in more detail below.

CoNLL-2009 Chinese and French language data
Tokens Sentences

Chinese 2456 71K
French 20K 700

Table 4.2: Number of sentences and tokens in the Chinese and French test data.

The test data for Chinese is the one from the the CoNLL-2009 shared task (Hajič

et al., 2009). Even though this annotation of Chinese is not identical to the English

one, the guidelines used for the core roles (A0-A5) are similar and interpretable

across these two languages (Kingsbury et al., 2004). Since this is the case, we will

evaluate our systems on core roles only. On the other hand, for French, we use

the data provided by Van der Plas, Merlo, et al. (2011) which contains manually

annotated sentences from the Europarl corpus (Koehn, 2005) using PropBank

semantic role annotation guidelines. As opposed to the English data, none of the

test sets contains nominal predicates, so we exclude these from the evaluation as

well. The overview of the number of tokens and sentences in each of these datasets

is given in the table 4.2.

In the figure 4.4 on the next page, the distribution of role labels in the datasets is

represented. It is clear that the distribution is similar to the one of the training

and development sets. The most frequent labels are A0 and A1, while the rest

of the core labels appear much less frequently. A0 and A1 make nearly 43% and

51% in the Chinese data and nearly 37% and 53% in the French data. The main

difference here, when compared to the training and the development sets, is that

A2 appears around 10% less in the French and Chinese data. Also, in Chinese we

can see that A2 and A3 appear 6% and nearly 5% of times, respectively, while

the A4 appeared less than 1% and A5 does not appear at all. In the French data,

there are almost no A3 and A4 labels appearing (0.77% and 0.45% respectively),

while there is no argument containing the A5 role here either. The difference in

percentage of the more rare roles (A3-A5) in French as compared to Chinese could

be explained by the fact that the French data is significantly smaller - it contains

700 sentences while Chinese test data contains nearly 2500.

In the same way this kind of distribution of labels was problematic for the training

set, it could potentially be problematic for testing as well. Given this distribution,

we will not have an opportunity to evaluate our models for the more rare labels,
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since they do not appear or appear with very low frequency in the test data.

(a) Chinese test data

(b) French test data

Figure 4.4: Distribution of PropBank role labels in the test sets.
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4.4 Implementation Setup

We implement our models by using Allennlp library (Gardner et al., 2018) that

is freely available5. This is a deep learning NLP library built on top of PyTorch.

Besides, it made it possible for us to use He, Lee, Lewis, et al. (2017)’s model as

they provide the reimplementation of their system using Allennlp library. The

original system was implemented in Theano, which we are not familiar with.

Precision Recall F1 score
He et al, 2017 (original) 83.5 83.2 83.4

He et al., 2017 (re-implem.) 78 81 79

Table 4.3: Results of the original system of He, Lee, Lewis, et al. (2017) and its
re-implementaiton using Allennlp library.

Given that we are working with a reimplementation of the original system, we ran

the original implementation setup in order to get the perception of how differently

it performs as compared to the results reported in the paper of He, Lee, Lewis,

et al. (2017). The original system uses 100-dimensional pretrained GloVe embed-

dings, while training and testing on the CoNLL-2012 data following the data split

from the CoNLL-2012 Shared task. In the table 4.3, we provide the obtained

results. The original paper reports 83.4 F1 score on the CoNLL-2012 test data,

while the reimplementation obtains slightly lower F1 score of 79.

Structure of the network. Following the original experiment, our bi-LSTM net-

work contains 8 hidden layers, where four are forward and four reversed LSTMs.

There are 300 hidden units, as well as a softmax layer which predicts the distri-

bution of the output.

Initialization. All the weight matrices are initialized with random orthonormal

matrices (Saxe et al., 2013), while all tokens are lower-cased and initialized with

300-dimensional cross-lingual FastText embeddings, either by Smith et al. (2017)

or Conneau et al. (2018). Those tokens that were not captured by the embeddings

are marked with UNK, which is randomly initialized.

Training. Following the original experiment, as an optimizer we use Adadelta

(Zeiler, 2012) with p = 0.95, while the mini-batches size is set to 80. The dropout

probability is set to 0.1 and the gradients with the norm larger than 1 are clipped.

We set to train all the models in this project for 500 epochs, however there is an

early stopping option that is based on the development results (He, Lee, Lewis,

5The allennlp library is available here: https://github.com/allenai/allennlp.
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et al., 2017). All the experiments are trained on the whole CoNLL-2012 training

set and it takes around three days to train on a single GeForce GTX 1050 GPU

and around 5 days on a Tesla K20m GPU.

An example of a jsonnet configuration training file is given in the Appendix B.

All the models are trained on the English language data using the CoNLL-2012

training and development datasets, while they are evaluated for Chinese and

French on the CoNLL-2009 test data and the data from Van der Plas, Merlo,

et al. (2011), respectively. This process is illustrated in the figure 4.5 below

where we can see that the models are trained using only the English data and the

cross-lingual embeddings for the three languages and then tested on the target

languages.

4.5 Evaluation

In order to evaluate the classification performance of our systems, the metrics

used are precision, recall, macro and weighted F1 measure. We report the results

using the weighted F1 as well, because the distribution of the labels in the used

datasets is highly skewed, thus, giving more weight to the more represented labels

in the datasets (A0, A1, A2). We evaluate the systems only on the core roles (A0-

A5), because there is a slight difference in the annotation guidelines for Chinese as

compared to the other two languages. Also, given the specificity of our data, which

is in fact annotated using two different formalisms, a special type of evaluation

methodology is required. In this project, we implement an approach similar to

the one of Van der Plas, Merlo, et al. (2011). Our evaluation method consists of

three mains steps:

1. Predicate identification - As compared to the previous work, in this project

we do not take predicates as given to the system, but rather try to predict

the verbal predicates using the POS-taggers for French and Chinese (spaCy

(Honnibal and Montani, 2017) and Jieba6, respectively). As mentioned be-

fore, we are not considering nominal predicates here, because they appear

only in the English training data, but not in the target languages data and

are, thus, excluded. Given that we predict predicates, the first step in the

evaluation process is to check how good is the POS-tagger at identifying

6Jieba is available here: https://github.com/fxsjy/jieba.
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(a) Training on English

(b) Testing on Chinese and French

Figure 4.5: Training and testing process and the data used.

verbs in the sentences for Chinese and French. We consider this to be a

very important step, since if the predicate is not identified or not correctly

identified, then the classification tends to be missing or incorrect. This is

expected given that the semantic roles are defined for each predicate in a

sentence. If a predicate is wrongly predicted or missing in the system’s

prediction output, the error is counted and the wrong predicates are then

removed together with their roles from both gold evaluation data and the

predicted output. This allows us to focus in the next steps of the evaluation

only on those arguments which predicates were well predicted.

2. Argument identification – For the correctly predicted predicates, we evalu-

ate how well did the system do with identifying arguments. This is impor-

tant because argument identification is a step towards the correct argument
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classification. If this was excluded and we were counting only whether the

classification is correct or not, we would not know if the system was labeling

a random word in a sentence or if it actually learned something about the

language structure and identified a true argument and then marked it with a

label. In order to achieve this and the next evaluation steps, a certain prepro-

cessing of the data was needed. As described earlier, the data we are using

contains two different types of annotation, so we needed to find a way to

align these two annotation types. The span-based model would tend to out-

put a label for every element that is included in the constituent, thus, would

have a high recall and low precision if evaluated on a dependency-based test

set using a standard evaluation approach. What we did to overcome this

issue is that we kept only those labels in the predicted output that appear

on the head of an argument phrase. This was done by looking at which

position in a sentence does the gold data marks the head of a phrase and

checks whether this head is also marked in the system’s output.

3. Argument classification - This evaluates the classification performance of

the system, counting the correctly classified arguments given a predicate as

compared to the gold. It is important to note here that we calculate the

classification metrics only for those arguments that were correctly identified.

Additional semi-automatic preprocessing steps needed to be made in order to align

the two types of formalisms in the datasets. Our evaluation method relies on the

exact, line-by-line alignment of the predicted and gold sentences. However, the

ConLL-2009 test data had some inconsistencies in the word tokenization. For ex-

ample, the articles with apostrophes in French are sometimes split (la protection

de l ’ environnement) and sometimes kept together (la protection de l’ environ-

nement). These and other types of similar errors in both Chinese and French

resulted in several thousands mismatched lines that needed to be fixed before

conducting the evaluation step.
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Chapter 5

Experiments and Results

In this chapter, we will give an overview of the experiments conducted and the

results that were obtained. Since the experiments are in accordance with the

research questions presented in Chapter 1, we will mention which research question

eeach experiment relates to as well.

As it was explained in the previous chapter, we split the evaluation of the systems

in three steps: predicate identification, argument identification and argument clas-

sification. For each of the steps, we report precision, recall and macro F1, while

we also report the weighted F1 score for the classification task. The experiments

are grouped in the following way: firstly, we will describe the baseline, language-

independent delexicalized system that is trained using the universal Part-of-Speech

tags instead of words. Then, we introduce the bilingual systems and their results

followed by the description of the multilingual systems. Bilingual systems are

trained using aligned bilingual embeddings (for the English-Chinese and English-

French language pairs), while multilingual systems make use of aligned multilin-

gual embeddings (English-Chinese-French). Both of these are conducted using

aligned FastText embeddings by Smith et al. (2017). Building upon the multi-

lingual experiments, we also make an attempt of training a system for a specific

language family, in this case Romance family. The reason why we do not do the

same for the Sino-Tibetan family is that neither the pretrained monolingual em-

beddings were available nor the bilingual dictionaries for training the cross-lingual

embeddings. Furthermore, we experimented using MUSE embeddings (Conneau

et al., 2018) in all of the previous scenarios in order to investigate how these com-

pare to the ones of Smith et al. (2017) in terms of the systems’ performance. And

finally, we conclude with a general discussion about the obtained results, which

includes a short overview of some of the common errors the systems tend to make,

as well as an overview of the difficulties encountered while evaluating the data
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and the disadvantages that arised by using this kind of evaluation methodology.

5.1 Baseline - Delexicalized Parser

As the baseline model, we implemented a delexicalized parser, which means that

the words in all of the datasets and languages were substituted with their cor-

responding POS-tags. Even though both training and testing data come with

POS-tags already given, these vary slightly across English, Chinese and French

languages. For example, in the Chinese dataset, there are POS-tags that do

not appear in the others such as M (measure word), VA (predicative adjective),

X (numbers and units) (Naiwen Xue et al., 2005); similarly in French, there

are CLS (subject clitic pronoun), CLO (object clitic pronoun) or P+D (prepo-

sition+determiner), for example, which are specific only to French (Pascal and

Sagot, 2012). This was overcome by the use of the set of Universal POS-tags by

Petrov et al. (2012) as seen in previous work on dependency parsing (for exam-

ple McDonald et al. (2011) and projects on grammar induction and projection

(Naseem et al., 2010; Zeman and Resnik, 2008)). Thus, we are able to generalize

over specificities of POS-tags in different datasets. The universal POS-tags in-

clude the following set of tags: NOUN (nouns), VERB (verbs), ADJ (adjectives),

ADV (adverbs), PRON (pronouns), DET (determiners), ADP (prepositions or

postpositions), NUM (numerals), CONJ (conjunctions), PRT (particles), PUNC

(punctuation marks) and X (a catch-all tag). All language specific tags that ap-

pear in our data were then replaced with the above tags in order to have them

consistent across different languages and datasets.

Even though we will not make use of POS tags in other experiments, this provides

a good baseline, since this was the initial approach for a direct model transfer

before the appearance of the distributed feature representations. What we are

trying to incorporate is another way of overcoming a lexical gap when transferring

a system for semantic parsing from one language to another. Besides, in the

field of dependency parsing, it was shown that even delexicalized parsers can

achieve competitive results, while also being able to capture significant amount of

information about the source language structure (McDonald et al., 2011). With

this simple method, we are able to tag directly a target language with the system

trained only on the source language. Furthermore, this type of system overcomes

the lexical gap between languages without any use of parallel data, since the

universal POS-tags provide us with a way to transfer, to a certain extent, both

structural and lexical knowledge from one language to the other.
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5.1.1 Results and Analysis

In the figure 5.1, we show the results obtained by training the modified system

of He et al. 2017 on the delexicalized English language data and tested on the

delexicalized French and Chinese test sets. Looking first at the predicate identifi-

cation results, the difference between the success of the French tagger and of the

Chinese one can be observed. While for French, the tagger was able to identify

the majority of verbs correctly (with F1 score of 81.73%), the Chinese tagger falls

behind significantly, with the F1 score lower for 20 points, achieving the result of

59.29% F1. The results of the predicate identification, logically, tend to be the

same or very similar in all the experiments as we are testing on the same data in

all of them and using the same POS-taggers.

The situation is similar for the argument identification, where the results on the

French data are much higher, achieving an F1 score of 66.45%, while on the

Chinese data it is 46.72%. The reason for the system to miss so many arguments

in both languages could be explained by the fact that both of them differ in

grammatical structure from English, which the system was trained on. The reason

could be as simple as the word order in the languages.

Finally, looking at the classification performance, we can observe that the system

performed similarly on both data sets. Out of the identified arguments, the system

achieves macro F1 score of 32.18 on the French and 34.71 on Chinese. Even

though the system recognized only a smaller portion of arguments in Chinese,

those that were identified were classified with a slightly higher accuracy than in

French. These results are obtained by taking into account every label category as

equally important, however, as explained in the previous chapter, we also report

the weighted F1 score which gives more weight to the more represented labels in

the datasets - A0, A1 and A2. The weighted results change significantly for both

language, where the system achieves 75.35 weighted F1 score on the French and

78.82 on the Chinese data.

Figure 5.1: Results of the baseline system for French and Chinese.
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5.2 Bilingual and Multilingual Model Transfer

The bilingual and multilingual experiments try to answer the first set of research

questions that are at the same time the most general questions and at the core

of the idea of this project: Can we get competitive performance using a deep bi-

LSTM network and cross-lingual word embeddings by Smith et al. (2017) while

training the models on the English language data and testing on the target lan-

guages, French and Chinese?

Firstly, we will describe the results obtained by training the bilingual systems,

which involve training separate models for the English-French and English Chinese

language pairs by using aligned bilingual embeddings by Smith et al. (2017). In

these alignment pairs, English vector space is used as a common space on to which

the other two languages are aligned.

Then, similarly, we will take a look at the results obtained by training one model

for all three languages by using the same embeddings, but this time all aligned to

the same, English vector space. We refer to this model as a multilingual model,

since we train a system that can be applied to more than two languages - English,

Chinese and French. In this, and all other experiments, we trained on English

and then tested on French and Chinese.

The reason we wanted to train the bilingual models besides the multilingual ones

is because we wanted to ascertain whether the performance will differ significantly.

If not, it might not be worth training two or more separate neural networks for

each language pair instead of training only one system which will use all the target

language embeddings aligned to the source language space.

5.2.1 Results and Analysis

The results of the bilingual and multilingual experiments are displayed in the

tables 5.2 and 5.3, respectively. In terms of predicate and argument identifica-

tion, in both settings, the situation is similar to the baseline - French POS-tagger

performs significantly better than the Chinese one; it achieves around 81% of F1

score in both bilingual and the multilingual experiments, while the Chinese one

achieves around 59% of F1 score in both. Likewise, argument identification is

more accurate for French, with F1 score of 60.55% in bilingual and 48.51% in

the multilingual setting. Chinese argument identification is similar in both set-

tings, slightly under 40% in the multilingual and 40.33% in the bilingual scenario.

Interestingly enough, when it comes to argument classification, the systems per-
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form better on Chinese in both scenarios, while being significantly better in the

multilingual setting with macro F1 score of 37.62%.

Figure 5.2: Results of the bilingual systems trained using aligned bilingual em-
beddings for English-French and English-Chinese language pairs.

Figure 5.3: Results for French and Chinese for the system trained using aligned
English, French and Chinese cross-lingual embeddings.

The results change drastically when using a weighted F1 measure resulting in the

best score for French being in the bilingual setting with 74.44% weighted F1, while

the system performs better on Chinese when trained in a multilingual setting,

with F1 measure of 79.86%. On another note, when looking at the weighted

measure, the ratio of precision and recall changes - for Chinese in the bilingual

experiment, for French in the multilingual setting. When giving less weight to the

less represented label in the datasets, the precision in both cases increases and

becomes higher than the recall.

After having looked at the results, we try to answer to the first set of research

questions:

• Can a system based on a deep neural network outperform the results ob-

tained with the traditional machine learning approach used by Kozhevnikov

and Titov (2013) for the task of SRL model transfer for English, Chinese

and French languages?

• Can it also outperform annotation projection model used for comparison in

Kozhevnikov and Titov (2013)?
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The work and the results of Kozhevnikov and Titov (2013) were presented in

Chapter 3 and, as we have seen, by applying the model transfer method in combi-

nation with the transferred syntactic information, they achieve 34.5% F1 score for

English-Chinese and F1 score of 61.6% for English-French for argument identifica-

tion task, while in the argument classification they achieve accuracy of 70.1% and

65.1% for English-Chinese and English-French, respectively. We can conclude that

our system outperforms theirs in the task of argument identification for Chinese.

This likely happened due to the fact that we do not make use of transferred syntax

from English and thus avoid some of the errors that kind of information would

introduce given the structural differences between these languages. We also out-

perform their system on the task of argument classification for both Chinese and

French when looking at the accuracy scores, which are 75% for the best Chinese

and 70.44% for the best French system in this setting.

The second question relates to the projection method of Kozhevnikov and Titov

(2013), which we significantly outperform for the task of argument identification -

their annotation projection method achieves 13.9% F1 for Chinese and 43.5% for

French. The accuracy of their projection model for the argument identification

task is 69.2% for Chinese and 66.1% for French, which is slightly lower result than

ours in this setting.

Another research question we attempted to answer was: How does the model

perform without using transferred syntactic information as opposed to Kozhevnikov

and Titov (2013), whose model transfer system relies on the transferred syntax?

Given that this system leverages only English training data and the cross-lingual

embeddings, it has achieved competitive results and in a lot of settings outperforms

the method reporeted by Kozhevnikov and Titov (2013).

Figure 5.4: Results of the bilingual systems trained using aligned MUSE bilingual
embeddings for English-French and English-Chinese language pairs.
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5.3 Bilingual and Multilingual Model Transfer

using MUSE embeddings

Following the previous experiments and their results, we also wanted to imple-

ment bilingual and multilingual systems that use a different method for aligning

crosslingual embeddings. We wanted to see whether a different type of embed-

dings would be more suited for this task and lead to a better performance of the

systems in the bilingual and multilingual settings.

For this purpose, we chose the state-of-the art MUSE embeddings by Conneau

et al. (2018). The aligned embeddings for English and French were already freely

available, while we had to align the ones for Chinese. This was done in a super-

vised way by following the instructions in the GitHub repository of the MUSE

embeddings and by making use of the pretrained monolingual embeddings for

English and Chinese, as well as the corresponding bilingual dictionaries.

5.3.1 Results and Analysis

The results of the described experiments are shown in the table 5.4 for bilingual

and in the tabe 5.5 for the multilingual models. While the predicate identifica-

tion remains the same as in the previous experiments, the argument identification

improves significantly for French for nearly 5% in both bi- and multilingual experi-

ments as compared to the bilingual English-French with the embeddings of Smith

et al. (2017), which was the previously best achieved result. Also, using these

embeddings, French results improve in the multilingual setting, from 27.19% to

32.71% of macro F1 score and from 68.6% to 72.47% of weighted F1 score. A very

noticeable difference when using these embeddings comes for Chinese, whose per-

formance drastically drops in the bilingual setting, from 32.35% to 15.52% macro

Figure 5.5: Results for French and Chinese for the system trained using aligned
English, French and Chinese MUSE cross-lingual embeddings.
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F1 and from 78.94% to 48.74% of weighted F1 score, while also being significantly

lower in the multilingual setting, dropping from 37.62% to 33.86% macro F1 and

from 79.86% weighted F1 to 63.91%. The reason for this could be the fact that

the Chinese crosslingual embeddings were not already available and were, thus,

trained by us. Even though we followed all the instructions given in the mentioned

repository, the trained embeddings proved to to be of a much lower quality than

the pretrained ones for French and English.

This set of experiments also answers the next research question: Does using mono-

lingual word embeddings for the three languages aligned to a common vector space

with different techniques make a significant difference in the obtained results? As

obtained results show, depending on the language and the scenario, they introduce

different performance. While they did have a certain improvement for French, they

reduced the performance of Chinese.

5.4 Model Transfer within the Romance Lan-

guage Family

The final set of experiments conducted in order to try to improve the results fo-

cused on training a system using aligned embeddings for English and languages

of one language family. In this case, the system is trained using languages from

a Romance language family aligned to the English vector space. These languages

include: French, Spanish, Portuguese and Catalan. The idea behind this is that

several languages which have similar lexicons and structure could help one another

in the cross-lingual transfer setting. We conduct this experiment only for the Ro-

mance language family, because there are no pretrained cross-lingual embeddings

from the Sino-tibet family besides Chinese (Mandarin).

We trained our models using aligned embeddings for languages from a Romance

language family by both Smith et al. (2017) and Conneau et al. (2018). It is worth

to point out that even though we are trying to build an SRL parser only for French,

by training a model with cross-lingual embeddings for all of these languages, we

are consequently training parsers for other aligned languages as well.

5.4.1 Results and Analysis

The results of the experiments are given in the table 5.6. We can observe that

the performance for French decreased when training the system with all of these
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languages with both types of cross-lingual embeddings. Even though when look-

ing at the macro averages the performance is comparable for the two types of

embeddings (28.39% F1 and 29.65% F1 with Smith et al.’s (2017) and the MUSE,

respectively), when looking at the weighted average, the systems’ performance

differs significantly: 55.04% with Smith et al. (2017) and 67.31% with MUSE em-

beddings. By looking to the confusion matrices for these two systems we conclude

that the performance of MUSE embeddings is justified by the fact that the sys-

tem trained with these embeddings makes considerably fewer errors for the most

common roles (A0, A1, A2).

Figure 5.6: Results for the French language for system trained using aligned En-
glish and Romance languages embeddings.

And finally, answering the last research question: Does incorporating more struc-

turally similar languages to a common vector space result in the boost of the perfor-

mance? - the answer is that in our case and using these two types of embeddings,

incorporating more similar languages to the systems does not increase the perfor-

mance of the systems, it in fact reduces the performance.

5.5 Discussion

Summing up all the previously described results, we can conclude that the best

system for French was the bilingual one using Smith et al.’s (2017) cross-lingual

embeddings and achieving an F1 score of 60.55% on the argument identification

and 74.44% of weighted F1 on the argument classification task. On the other

hand, the best system for Chinese is the multilingual one using the same type

of embeddings which obtained 38.45% F1 for argument identification and 79.86%

weighted F1 for the argument classification task. Both of these results are, how-

ever, performing similarly to the delexicalized baseline. The best Chinese system

outperforms the baseline slightly in terms of argument classification (79.86% ver-

sus 78.92% of weighted F1), but it falls behind in terms of argument identification

for around 8%. When comparing the best French system to the baseline, we can
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notice that the results of the latter are still slightly higher in both of the tasks -

approximately 1% for argument classification and 6% for argument identification.

The reason why the bilingual and multilingual systems perform very similarly

to the baseline could be explained by the fact that even though the latter does

not include any lexical information, it does still incorporate a certain amount

of structural information, which is very beneficial for this task. The difference

in the outputed results is, thus, not very different. By looking at the outputs

of both delexicalized and lexicalized systems, we can notice that they all make

similar errors. This could be explained by the fact that both of the system types

were trained only on English data and, therefore, learned the English language

structure that was then applied to Chinese and French data as well. For example,

we can notice that the pattern A0-V-A1 is the most commonly outputted by the

system and indeed the most common in the training data. However, this word

order is not necessarily correct for Chinese and French. An example of such a case

can be seen in the example 7 below. We can see that instead of marking the first

mention of services with the A1 role and the second with A3, our systems outputs

roles A0 and A1, respectively. Even though additional, non-core roles appear in

the original gold data, they were removed before testing and are thus not in our

output since we are only taking into account the core roles (A0-A5). The third

sentence represents the translation of the French examples.

(7)

FR (gold) Les [A1 services] postaux doivent [V rester]

des [A3 services] publics.

FR (transfer) Les [A0 services] postaux doivent [V rester]

des [A1 services] publics.

EN (translation) Postal [A1 services] must [V continue]

to be [A3 public] services.

Also, there is a noticeable difference in the correctness of the outputted labels in

shorter and longer sentences. This makes sense, since longer sentences tend to

be more complex and require more structural knowledge about a language than

the shorter ones. Besides, in longer sentences, a bigger variety of roles appears as

opposed to the shorter ones which, in most cases, include A0 and A1 roles only.

Furthermore, the lower macro F1 scores across the systems could be potentially

explained by several difficulty factors our systems deal with in terms of the pre-

trained embeddings and the type of training and testing data. On the one hand

we have the English data used for the training which is comprised of the texts

from news, broadcast, talk shows, etc. while the test data comes from the Eu-

roparl corpus, which is made out of the proceedings of the European Parliament.
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The two types of data come from significantly different domains, which results in

different vocabularies and significantly different sentence structures between the

two. On top of that, the embeddings that we are using, incorporate the lexicon

from Wikipedia, which they were trained on. Thus, we have in fact not only

cross-language knowledge transfer, but also cross-domain transfer, which adds an

additional layer of difficulty for the systems. And on the other hand, the data

used comes in two different annotation formalisms - span and dependency-based

- which could not be directly compared without heavily preprocessing the data

beforehand.

And finally, as opposed to the previous work on SRL transfer (Kozhevnikov and

Titov, 2013) we do a slightly more difficult task as our system does not take

predicates as given but tries to predict them by using a POS-tagger. Predicate

identification is one of the very important steps in the SRL pipeline, since it is

not possible to correctly assign semantic roles to incorrectly identified predicates.

It is clear that by attempting to do such a task automatically, we make place for

additional errors to be made by the systems as the POS-taggers do not always

perform well, especially for Chinese. The reason for the decrease in the taggers

performance could be that we applied them to a test set in a different domain

(Europarl) than the one it was originally trained on. On top of that, we do not,

however, perform a predicate disambiguation task which has proven problematic

as different senses of predicates can require a different set of semantic roles.
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Chapter 6

Conclusion and Future work

6.1 Conclusion

In this thesis, we constructed several SRL systems for two target languages, French

and Chinese, by transferring the state-of-the-art neural model of He, Lee, Lewis, et

al. (2017). This was achieved by training the models solely on the English language

data and then directly applying them to the target language data. In order to

reduce the lexical gap and enable knowledge transfer between these languages,

we used pretrained cross-lingual embeddings for English, Chinese and French by

Smith et al. (2017) and Conneau et al. (2018). On the CoNLL-2009 data, our

best models achieve weighted F1 score of 74.44% and 79.86% for French and

Chinese language, respectively. This is a competitive result when compared to the

previous work on SRL model transfer of Kozhevnikov and Titov (2013), especially

taking into account the fact that we do not use any syntactic information in our

experiments.

Detailed results of the main experiments presented in the previous chapter are

summarized in table 6.2, while the results of Kozhevnikov and Titov (2013) are

given in table 6.1 for easier comparison. Both tables are given at the end of this

subsection.

Throughout our project, we attempt to answer four research questions which are

in accordance with different approaches we take to train our models, each of which

tries to explore the topic of SRL model transfer from a different perspective. In

order to summarize our findings, we go again through the research questions while

answering each of them with the main conclusions drawn from our experiments.
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• Research question 1:

– Can a system based on a deep neural network outperform the re-

sults obtained with the traditional machine learning approach used by

Kozhevnikov and Titov (2013) for the task of SRL model transfer for

the English, Chinese and French language?

– Given that their model does not always outperform the annotation pro-

jection method used as a baseline, the second question is consequently:

can our system also outperform the annotation projection model of

Kozhevnikov and Titov (2013)?

Our best systems for French and Chinese outperform the ones reported by

Kozhevnikov and Titov (2013) in most cases on both argument identification

and argument classification tasks. For argument identification, the authors report

F1 score of 61.6% for French and 34.5% for Chinese. Our best model for Chi-

nese surpasses this result by around 4% (achieving 38.45% F1 score), while the

performance of our best French model for argument identification results in 1%

lower performance (60.55% F1 score). On the other hand, when comparing the

argument classification results, our best models outperform those of Kozhevnikov

and Titov (2013) when taking into account the accuracy scores of the models.

Since this is the only measure the authors report for the task of argument classi-

fication, it is the only one we are able to compare to. The accuracy scores of our

best models for Chinese and French are 75.93% and 70.44%, respectively, while

the authors report 70.1% for Chinese and 65.1% for French on the task of model

transfer. Consequently, our models preform better than the annotation projection

baseline of Kozhevnikov and Titov (2013), which achieves 69.2% accuracy score

for Chinese and 66.1% for French. Even though the numbers reported here show

higher results for our systems, the accuracy scores could be masking a part of the

misperformance of our models shown by the macro F1 scores reported in table 6.2.

• Research question 2 - Syntactic information:

– How does the model perform without any syntactic information as com-

pared to the previous work?

Given the previously mentioned results, we can conclude that the system of He,

Lee, Lewis, et al. (2017) used for the model transfer and which does not use any

syntactic information achieves very competitive results for this type of task on

English, Chinese and French. Given the fact that the related work we described

in Chapter 3 has shown that the use of syntactic information tends to significantly

boost the performance of SRL systems, in the future it would be interesting to
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try to transfer syntactic information as well from English to Chinese and French,

and investigate how this change would affect the performance of our systems.

• Research question 3 - Language similarity:

– Does incorporating only structurally similar languages to a common

vector space result in a boost in performance?

In order to answer this question, we trained a model using aligned cross-lingual

embeddings for English and four languages from the Romance language family. We

found that incorporating more languages results in the decrease of the performance

for French no matter which type of embeddings are used. This could possibly be

explained by the fact that even though these languages are structurally similar,

having so many languages aligned to the same vector space introduces more noise

to the data and thus results in the decrease of the performance.

• Research question 4 - Word embeddings alignments:

– Does using monolingual word embeddings for the three languages

aligned to a common vector space with different techniques make a

significant difference in the obtained results?

According to the recent survey of cross-lingual embeddings by Ruder et al. (2017),

differently trained embeddings are evaluated for specific tasks and do not guaran-

tee the same results when used in other tasks or with different systems and data.

Therefore, we wanted to compare two types of available embeddings, the ones by

Smith et al. (2017) on the one hand and the ones by Conneau et al. (2018) on the

other. Incorporating MUSE embeddings by Conneau et al. (2018) resulted in the

5% increase in the performance on the task of argument identification for French,

as compared to the experiments in which we used the embeddings by Smith et al.

(2017). However, the performance for the Chinese language drastically reduces

when incorporating MUSE embeddings, which confirms to some extent the find-

ings of Ruder et al. (2017) that not all the pretrained embeddings are equally

successful in every task and for every language.

In conclusion, the main contribution of our approach is that it trains and makes

available a low-resource SRL parser for French and Chinese by leveraging the

existence of large amount of labelled English language data and pretrained cross-

lingual word embeddings. As opposed to the previous work, we do not use syn-

tactic information nor parallel corpora. Also, we do not take predicates as given,

but incorporate a POS-tagger to identify verbal predicates in target language

sentences, which is significantly different and more complex task as compared to

approaches applied in previous work.
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Figure 6.1: SRL model transfer and annotation projection results of Kozhevnikov
and Titov (2013) for the tasks of argument identification (F1 score) and argument
classification (accuracy).

(a) Results of all systems tested on French language data.

(b) Results of all systems tested on Chinese language data.

Figure 6.2: Results of all our systems trained on English and tested on French
and Chinese language data.
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6.2 Future Work

There various directions in which the work conducted in this thesis could be

extended in order to improve the obtained results. Most of the following ideas are

derived from related literature:

• Fine-tuning the models on the labeled target language data. The previous

research has shown that incorporating even a 100 sentences of labelled target

data can make a significant improvement to the results of a transfer system

(J. Guo et al., 2016).

• Training the cross-lingual embeddings specifically for the task of SRL, or at

least train the embeddings on a similar domain to the one of the data sets.

As we already mentioned in the theoretical background, Ruder et al. (2017)

has recently pointed out that the use of availabe pretrained embeddings

does not neccessarily result in equally good performance in every NLP task.

The authors showed that training embeddings for a specific task might be a

better approach.

• Incorporating a better method of predicting predicates. Using a POS-tagger

for predicate identification introduced a certain amount of errors to our

systems. Also, in this way we are not able to recognize nominal predicates,

but only verbal ones.

• Related to the previous point, we would like to perform predicate disam-

biguation before assigning roles to arguments, since different predicate senses

can evoke different set of semantic roles.

• If possible, implement the systems using less noisy test data which uses the

same annotation format. In our case, we show that a lot of errors were

introduced because of the nature of the data we were dealing with, so the

cleaner datasets could potentially lead to better results of the same systems.
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Appendix A

Chapter 4.3

Figure A.1: Information contained in each column in the CoNLL-2012 data (Prad-
han, Moschitti, et al., 2012).

Figure A.2: An example of an annotated sentence from the CoNLL-2012 data
(English).
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Figure A.3: Information contained in each column in the CoNLL-2009 data (Hajič
et al., 2009).

Figure A.4: An example of an annotated sentence from the CoNLL-2009 data
(Chinese).

Figure A.5: An example of an annotated sentence from the Van der Plas, Merlo,
et al. (2011) data in CoNLL-2009 format (French).
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Figure B.1: An example of a configuration training file in jsonnet format.
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