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by Xiaoyu Bai

We present a novel study on CEFR level prediction in writings by non-native speakers

of English, using on the one hand clean data elicited in a language learning context, and

on the other hand noisy, spontaneous data from social media. The elicited data were

drawn from the freely accessible learner corpus EF-Cambridge Open Language Database

and consist of level-matched short essays written as part of an online English course.

The spontaneous data were gathered from the social media platforms Twitter and Red-

dit, where users’ self-reported proficiency levels were used as distant labels. Our level

classification experiments were run both within and across the two domains as well on

mixed-domain data. They were mainly conducted using linear SVM and logistic re-

gression, although we also briefly explored bidirectional LSTM and convolutional neural

networks, particularly in a setting of multi-task learning. We find that distant super-

vision based on user self-reports is a viable option of automatically generating noisily

labelled training data for learner level prediction from social media texts. Despite the

noisy nature of both the data and the labels, level prediction within the social media

domain proved to be feasible, with system performance clearly beating the majority

class baseline. Classification across the two domains, however, was revealed to be un-

successful.
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Chapter 1

Introduction

Using Natural Language Processing (NLP) technologies for applications related to sec-

ond language teaching and learning has been a field of great interest. For instance,

second language (L2) readability assessment (Crossley, Greenfield, & McNamara, 2008;

Xia, Kochmar, & Briscoe, 2016) focuses on input material to learners, i.e. texts written

by native speakers intended for L2 learners, and attempts to automatically recognise

how “readable” a given piece of text is in terms of difficulty and complexity, usually pre-

dicting what proficiency level an L2 learner should be at in order for the text to make

suitable reading material. Furthermore, a series of L2-related NLP applications focus

on L2 users’ output material, i.e. texts written by non-native speakers. For instance,

Hawkins and Buttery (2010) conduct corpus-based analyses of learner language; auto-

matic error correction (Leacock, Chodorow, Gamon, & Tetreault, 2010; Ng et al., 2014;

Bryant & Ng, 2015) tackles the difficult task of recognising and correcting grammatical

errors in learner-generated texts.

One task which focuses on learner output texts and has been of particular academic and

commercial interest has been the automated assessment and grading of texts written

by learners in language exams (Attali & Burstein, 2006; Yannakoudakis, Briscoe, &

Medlock, 2011). Related to that is the automatic prediction of learners’ proficiency

levels in terms of a pre-defined scale or levels, based on their writings (Vajjala & Loo,

2014; Tack, François, Roekhaut, & Fairon, 2017). In this thesis project we explore

English learner level prediction based mainly on writings on social media platforms.

1.1 Project Task Definition and Research Questions

Elicited Data When it comes to the automated prediction of learner levels, we notice

that the focus is mostly (if not exclusively) on learner texts composed as part of some

1



Introduction 2

standardised exam or placement test (Vajjala & Loo, 2014; Hancke & Meurers, 2013;

Tack et al., 2017). We consider this type of data to be elicited data, in that they do

not arise from natural communication, but are produced “on cue” as part of a writing

task, mostly in response to specific or even topic-defining prompts. In all likelihood, the

non-native speaker will have paid special attention to writing well. There are clearly

practical reasons for using elicited data for this task: Most important of all, data from

the exam context are likelier to come with gold-standard level labels, produced by human

examiners.

Spontaneous Data However, presumably, when a non-native speaker achieves a cer-

tain proficiency level, that level should be reflected not only in the controlled exam

context, but also in natural, spontaneous and “random” language production, for in-

stance, when they write in web forums or comment on posts on social media. Here, they

do not write in response to someone else who wishes to obtain writings from them for the

purpose of assessing their proficiency levels. We consider this kind of data spontaneous

data.

In the project described in this thesis, we look at automatically predicting the pro-

ficiency level of non-native English speakers using elicited data on the one hand and

spontaneous data on the other hand, with a focus on the latter. We will use the profi-

ciency scale proposed by the Common European Framework of Reference for Languages

(CEFR) (Council of Europe, 2001). The spontaneous data will be obtained from social

media. Our core research questions are the following:

1. Can we use distant supervision to obtain a set of level-annotated, spontaneous data

from social media in order to perform level prediction with supervised machine

learning methods?

2. Is it at all possible to predict non-native speakers’ proficiency level based on their

writings in the noisy social media domain?

3. Given that most data with reliable level-annotation does come from the language

exam context, can the language exam domain inform the social media domain?

The ability to automatically detect a language learner’s language proficiency level based

on spontaneous data could have practical interest in various ways: For instance, it could

be interesting for English learners to receive some general feedback on their language level

simply by pointing the classification system to English texts which they have previously

produced on social media websites, without having to consult formal assessment services.

In a similar example, reading suggestions appropriate to language learners’ proficiency
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level could be made on the basis of their own user-generated content on the web. Overall,

such an automatic level classification would be based on spontaneous, naturally occurring

data and would reduce the language learners’ dependence on professional assessment

services, particularly if an informal and general proficiency assessment is sufficient for

their purpose.

1.2 Organisation of Present Thesis

We provide background information pertaining to the present project in Chapter 2, in

which we address both the fields of NLP for learner assessment as well as NLP applica-

tions on social media data, as both fields are highly relevant to our project. Chapter 3

illustrates our data collection process: We describe our method of harvesting sponta-

neous data from the social media platforms Twitter and Reddit, based on distant super-

vision, and the learner corpus from which we draw our set of elicited data. Chapter 4

details our classification experiments using two traditional machine learning algorithms,

the Support Vector Machine (SVM) and the logistic regression model. We discuss our

methods and results and also briefly explore an innovative method of evaluation which

might better suit the present task than the traditional evaluation metrics for multi-class

classification. In Chapter 5, we look at a pilot experiment which applies two neural

systems in a multi-task learning setting to the level prediction task. Finally, Chapter 6

concludes the present thesis and offers a few outlooks for future research in this field.



Chapter 2

Background

2.1 CEFR Learner Proficiency Levels

One of the most widely known and accepted scales for describing and measuring the

proficiency level of a foreign language learner is the six-level proficiency scale by the

Common European Framework of Reference for Languages (CEFR) (Council of Europe,

2001). The CEFR-system distinguishes between the six proficiency levels shown in

Table 2.1, which fall into the three more coarse-grained classes of basic, independent,

and proficient users.

A1 A2 B1 B2 C1 C2
Basic User Independent User Proficient User

Table 2.1: The six foreign language proficiency levels in the CEFR system

The Council of Europe provides rough descriptions concerning what learners at each of

the six levels “can do”. To name a few examples, this ranges from “Can understand and

use familiar everyday expressions and very basic phrases [...]” at level A1 to “Can express

him/herself spontaneously, very fluently and precisely, differentiating finer shades of

meaning even in more complex situations” at level C2. The CEFR proficiency levels

have been used in several level prediction studies summarised in the section below.

They will also be used in our own project.

2.2 Automated Essay Scoring and Level Prediction

The focus in the automatic prediction of learner levels and the highly related task of

automatically scoring the essays in foreign language exams lies in the writings produced

4
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by language learners. It is assumed that properties in their written production will

provide clues by which to classify or grade their levels of proficiency.

Automated Essay Scoring The automatic grading of essays dates back to the 1960s,

when Ellis Page introduced computer-based essay rating system which could provide

marks nearly indistinguishable from those produced by human assessors (Page, 1966).

Automated grading of free text writings in standardised foreign language exams can be

considered a special case of automatic essay scoring, albeit applied to language learner

essays and presumably with a greater focus on linguistic soundness. The final system

output tends to be a score on a continuous scale. Obviously, given the amount of

standardised English tests taken worldwide, including TOEFL, IELTS and Cambridge’s

English as a Second or Other Language (ESOL) exams, practical and commercial moti-

vations for automatic marking of such exam texts are plentiful.

One of the earlier but well-known commercial systems is the Education and Testing Ser-

vice’s (ETS) e-Rater (Burstein et al., 1998; Burstein, 2003; Attali & Burstein, 2006). It

uses a set of hand-designed numerical features which target individual, high-level aspects

of learners’ essay, such as grammar and language usage, organisation and prompt-specific

vocabulary usage. Amongst the features targeting grammar, for instance, is the total

count of (automatically detectable) language errors, normalised by the length of the

essay. Based on these features, they derive a component score for each of these aspects,

and the full essay score is then computed by combining these component scores, e.g.

by taking their weighted average, which is the policy adopted in the second version of

e-Rater (Attali & Burstein, 2006). Finally, a linear transformation can be applied to the

resulting score to obtain an interpretable score on the desired marking scale.

In contrast, Yannakoudakis et al. (2011) advocate a preference ranking approach to as-

sessing Cambridge ESOL exam scripts, showing its superiority over a regression model

using the same features. They use data from the Cambridge Learner Corpus (Nicholls,

2003), which contains scripts composed by non-native English speakers taking the Cam-

bridge ESOL exams. Based on a selection of linguistic features, including word n-grams,

part-of-speech (POS) n-grams, the length of the script and the rate of errors etc., they

let a binary SVM learn the correct rank which holds amongst the training samples by

learning the rank between each pair of scripts. It thus learns the relative mark of each

individual script with respect to all other scripts. The training inputs to the SVM are

difference vectors representing the difference between (the feature representations of) a

given pair of samples. In the test phase, the trained model outputs a rank amongst the

test scripts, which can then be mapped to any marking scheme. The authors evaluate

their system by measuring the correlation between their system’s output and the true
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scores recorded in CLC as well as with four further scores given by senior human ex-

aminers. They find that their system achieves an average Spearman’s rank correlation

score of 0.721, which is only around 5 points below the upper-bound of human-human

agreement.

Automated Level Prediction A few studies have looked at classification of learner

essays into discrete classes of proficiency levels, including the CEFR levels, and the task

has been applied to several languages. With respect to English, Crossley, Salsbury, and

McNamara (2012) investigate level prediction of learner texts based solely on lexical

competence, placing special emphasis on identifying the most predictive features which

relate to different measures of non-native speakers’ lexical competence. Such measures

include, amongst others, their lexical diversity, their understanding of polysemous and

homonymous words, the number of associations they make with given words etc. For

their study, Crossley et al. (2012) obtain open-topic written essays from 100 learners

of English of three proficiency levels. Using a Discriminant Function Analysis, they

find that amongst the top predictive features are the diversity of learners’ lexicon and

some properties of the words they use, including the words’ imagability, frequency and

familiarity. Based on these discriminative features, the authors achieve an F1-measure

of around 70%. Notice that the data used in this study are open-topic and have not

been composed in response to specific, topic-related questions. Nonetheless, they have

still been elicited and produced in a controlled context.

Vajjala and Loo (2014) examine automatic level prediction on essay texts written by

learners of Estonian, using four out of the six CEFR levels (due to lack of data for the

two levels excluded). They use a range of linguistic features and find morphological

features and features related to lexical variety to be particularly predictive. This is

unsurprising as Estonian is a strongly agglutinative language characterised by complex

morphology. Their best model, an SVM, reports an accuracy of 79%.

Similarly, Hancke and Meurers (2013) apply CEFR-based level prediction to texts writ-

ten by learners of German. Their data are drawn from the German portion of the

MERLIN corpus (Boyd et al., 2014), a collection of CEFR-labelled learner essays in

German, Italian and Czech. Drawing on insights from Crossley et al. (2012), they use

a series of linguistic features such as lexical diversity and word frequency features, but

also morphological and syntactic features such as the number of clauses per sentence and

the depth of a sentence’s constituency parse tree. They use five of the six CEFR levels,

excluding only the highest C2 class. With a linear SVM, they achieve classification

accuracy scores of 62%.
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Level Prediction on Short Samples All of the above studies focus on essays, i.e.

written samples of a certain length. Tack et al. (2017) are amongst the first that we

are aware of to attempt classifying learners’ proficiency to CEFR levels based on short

answers, where samples range from 30 to 150 words. In their experimental setting, non-

native speakers at different CEFR levels are prompted to provide short answers to open

questions. Based on these replies, they were assessed and assigned to a gold-standard

proficiency class via majority vote amongst three certified Cambridge examiners. While

the human examiners have reported difficulties in assessing very short samples, the

author report no correlation between the length of the samples and the level of disagree-

ment between the three examiners. The system designed to automatically classify the

learners’ level based on these short answer scripts uses a soft-voting ensemble classifier,

which consists of five traditional machine learning algorithms: Naive Bayes, decision

tree, k-nearest neighbour, logistic regression, and SVM with a polynomial kernal. The

classification features used are similar to the ones mentioned above. Amongst others,

lexical diversity, average sentence and word length features have been shown to be par-

ticularly predictive. Classifiyng into five CEFR-levels, with levels C1 and C2 conflated

into one class, they obtain an accuracy score of 53% and a macro-average F1-measure

of 49.5%.

Notice that, in all of the studies reported here, learners’ written production has been

explicitly prompted with certain questions or tasks, generally in the context of an exam.

Their setting is such that the learners write with the awareness that their writings will

be recorded for the purpose of assessing their proficiency. Thus, all of these studies

are concerned with what we consider elicited data. As mentioned, we wish to examine

CEFR-based level prediction on naturally and spontaneously produced data, which we

plan to harvest from social media.

2.3 NLP on Social Media Data

In recent years, with the rising popularity of various social media platforms, NLP tech-

nology has been increasingly applied to the social media domain for a range of tasks.

Platforms such as Twitter, Reddit and Facebook offer a source of abundant and easily

accessible (albeit also noisy and unannotated) data. Special tools have been developed

to deal with the idiosyncrasies of social media and web language, such as the uncanonical

use of spellings and punctuation marks, the usage of emoticons and special characters

etc. The Python NLP module SpaCy (Honnibal & Montani, 2017) has a model for En-

glish which takes the web genre into account1; Carnegie Mellon University’s NLP group

1https://spacy.io/models/en#en core web sm

https://spacy.io/models/en##en_core_web_sm
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provides a series of tools for application to Twitter data2, e.g. a tweet parser (Gimpel

et al., 2011). To name just a few examples, the following are tasks in which NLP is

applied to data from social media, especially from Twitter:

Author Profiling Since 2013, there has been an annual shared task on (multilingual)

author profiling (Rangel, Rosso, Koppel, Stamatatos, & Inches, 2013; Rangel et al.,

2014; Rangel, Rosso, Potthast, Stein, & Daelemans, 2015; Rangel et al., 2016; Rangel,

Rosso, Potthast, & Stein, 2017; Rangel, Rosso, Montes-y Gómez, Potthast, & Stein,

2018). Based on a person’s writings on Twitter, blogs, and other social network plat-

forms, the goal is to classify the person to a pre-specified age, gender and/or native

language group. In other words, NLP systems attempt to extract information on a

user’s profile, based on his/her writings on the web. In the most recent 2017 and 2018

editions, the traditional SVM with n-gram features and recurrent neural networks such

as the Bi-LSTM (Hochreiter & Schmidhuber, 1997) have proved to perform particularly

well (Basile et al., 2017; Cappellato, Ferro, Goeuriot, & Mandl, 2017; Rangel et al.,

2017, 2018).

Sentiment Analysis Another task of especially high commercial relevance is senti-

ment analysis (or opinion mining) on social media, which has also formed the topic of

several shared tasks (Nakov, Ritter, Rosenthal, Sebastiani, & Stoyanov, 2016; Rosen-

thal, Farra, & Nakov, 2017). Based on data from social media platforms, the goal is

to automatically recognise the sentiment which a piece of writing, e.g. a product re-

view, expresses towards a topic, a product, an event etc. Possible sentiment classes

can be, amongst others, simply positive versus negative versus neutral (Go, Bhayani,

& Huang, 2009). They can also be more fine-grained: Purver and Battersby (2012)

use the six sentiments happy, sad, anger, fear, surprise, and disgust, following theo-

retical work on emotions (Ekman, 1972). Here also, SVM (Go et al., 2009; Purver &

Battersby, 2012) has traditionally been amongst the common choices of classification

models. More recently, neural models as well as SVM with neural features have quickly

gained popularity (Rosenthal et al., 2017).

Hate Speech Detection Unfortunately, in recent years, social media has also pro-

vided a platform for the spread of offensive language and cyber-bullying, and increas-

ing effort has been made to automatically recognise such cases, often referred to as

hate speech (Schmidt & Wiegand, 2017). Given some writing, the goal is generally to

classify it as being offensive or not. The task is not necessarily binary, in many stud-

ies (Ruppenhofer, Siegel, & Wiegand, 2018; Gambäck & Sikdar, 2017; Bröckling et al.,

2http://www.cs.cmu.edu/~ark/TweetNLP/

http://www.cs.cmu.edu/~ark/TweetNLP/
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2018), authors use more fine-grained class labels indicating the type, target or the sever-

ity of the offence. Combinations of neural models or neural features with traditional

machine learning algorithms such as SVM and logistic regression have been shown to

be effective for this task (Del Vigna, Cimino, Dell’Orletta, Petrocchi, & Tesconi, 2017;

Davidson, Warmsley, Macy, & Weber, 2017; Gambäck & Sikdar, 2017).

2.4 Distant Supervision for Social Media Data

While social media platforms give easy access to data, obviously, the data are unanno-

tated, making them not yet suitable for supervised machine learning. Human annotation,

however, is always time-consuming and costly. To meet this challenge, several studies

have successfully applied distant supervision to NLP tasks involving social media data.

In distant supervision, (noisily) labelled training data are automatically generated from

an existing, unlabelled resource, typically by automatically labelling samples based on

some heuristics or proxy. To illustrate:

Performing multi-class sentiment classification on Twitter data, Purver and Battersby

(2012) examine the use of a) emoticons and b) hashtags as proxies to a tweet’s true

sentiment label. The emoticons in question would include :-), :-@, :-o etc., and the

relevant hashtags are those which essentially declare emotions, such as #happy, #scared,

or #sadness. The authors find that models trained on distantly labelled data, based

on either method of distant supervision, do learn to discriminate between sentiments

in tweets to a reasonable extent, although performance varies amongst the six emotion

classes they use. With respect to happiness, sadness and anger, classifiers trained in

this manner perform well, whereas they do less well on the emotions fear, surprise, and

disgust. The authors believe that the emoticon and hashtag conventions regarding these

classes might be too vague to effectively provide reliable distant supervision.

Emmery, Chrupa la, and Daelemans (2017) use distant supervision to predict the gender

of Twitter users based on their tweets, which is a part of the author profiling task (see

above). To generate gender-labelled training data automatically, they rely on Twitter

users’ self-report of their gender: Using a set of search terms and heuristics, they identify

tweets in which users declare their own gender in some reliable way, then pull all Twitter

data from these gender-matched users to obtain a gender-labelled dataset. Emmery et

al. (2017)’s method of distant supervision is largely adopted for the present thesis. We

therefore explain their technique in greater detail in the chapter to come.
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2.5 Present Project: Level Prediction Applied to Social

Media Data

Overall, the project described in the present thesis can be placed at the juncture of

the above-mentioned fields of automatic prediction of learner levels and NLP on social

media data. Using Emmery et al. (2017)’s distant supervision method, we harvest level-

annotated data produced by non-native speakers of English, in particular from Twitter

and Reddit. Given that these data constitute language production arising from natural

communication, produced not as part of some form of task or exercise and without any

assessment in mind, we deem such data spontaneous. We then apply automatic learner

level prediction to these data, also examining whether they can be informed by training

signals learned from a more “typical” set of elicited data from the language learning

context.

The task involves the use of supervised machine learning. To name a few traditional

and well-known algorithms: Naive Bayes classifiers are a class of probabilistic classifiers

that rely on the Bayesian Theorem to obtain the likelihood of a sample being drawn

from a certain class, given a set of features observed. Despite its “naive” assumption of

independence between the predictive features, it has been surprisingly successful in many

applications (Zhang, 2004). The decision tree algorithm is a tree-structured classification

algorithm which recursively learns the most informative decision rules and, according

to these rules, performs splitting on the training data such that samples from different

classes are eventually separated from each other (Alpaydin, 2009). At test time, the

decision rules are then applied to classify unlabelled test samples. Another example,

the k-nearest neighbour algorithm, represents all samples as points in a vector space

and simply assigns an unlabelled test sample the same class label as that of its nearest

neighbours in the vector space (Smola & Vishwanathan, 2008). SVM (Cortes & Vapnik,

1995) and logistic regression are both discriminative and inherently binary classification

algorithms which learn from labelled training data a hyperplane that separates the

samples of the two classes. Both algorithms have extensions to deal with multi-class

problems.

For the present project, we choose to mainly focus on using the SVM due to its popularity

and success particularly in classification tasks involving social media data (see above).

We do, however, also experiment with other algorithms such as logistic regression and

some more recent neural approaches, on which we elaborate in Chapter 5.



Chapter 3

Data Collection

This chapter provides an overview of our data for the present level prediction project. A

central sub-task in this project is the collection of data representing non-native English

speakers’ spontaneous language production, annotated with their respective level of

proficiency. As previously mentioned, for this purpose we harvest social media data

from Twitter and Reddit in English which

• we know to be produced by non-native speakers of English and

• of which we have some information concerning the proficiency level of the writer.

Following Emmery et al. (2017)’s approach to distantly supervised gender classifica-

tion, we first searched Twitter and Reddit and identified a set of users who have made

self-reports of their English proficiency level. Subsequently, we extracted all available

writings produced by these users and discarded the non-English and otherwise unsuit-

able data. In contrast to gender, foreign language proficiency is subject to possible

changes over time. Therefore, where possible, we also constrained our data collection

to a limited period around the time at which the users reported their proficiency level.

The following sections describe our data collection process in greater detail.

3.1 Twitter

3.1.1 Challenges to Automatic Data Collection

In their task of retrieving tweets containing gender self-reports, Emmery et al. (2017) use

a set of simple queries including {I’ / I a}m a {man, woman, male, female, boy,

girl, guy, dude, gal. Moreover, where the query terms appear in the context of a

11
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set of linguistic cues such as as if I’m a girl or Don’t just assume I’m a guy, the tweeter’s

true gender is assumed to be the opposite of what the query term indicates. Finally,

the authors remove hits in which the query appears as part of a retweet or a quote to

increase the accuracy of their distant gender labels.

In total, Emmery et al. (2017) retrieved 6,610 Twitter users, paired with their self-

reported gender. From these users, they extracted a total of 16,788,621 tweets.

Twitter also contains users’ self-reports concerning their proficiency levels in English

(and other foreign languages), often in status updates in which the tweeters announce

their having passed an official exam and achieved a certain level. Figure 3.1 gives an

anonymised example.

Figure 3.1: Example proficiency level self-report from Twitter

However, while it would be the ideal approach to largely adopt Emmery et al. (2017)’s

automatic method of identifying users of relevance, we quickly realised that it faced the

following two difficulties: First, there are larger numbers of ways for users to declare

their language levels. While phrases of the form ... I’m a girl/guy ..., which are targeted

by Emmery et al. (2017)’s queries, can arguably be considered the most generic way

of declaring one’s gender, there is no such equivalent with regard to reporting one’s

language proficiency. Common phrases can include I’m pretty much at B1 in English,

My English level is C1, I speak fluent English (C1) etc. Therefore, flexible search queries

would be required. On the other hand, matching tweets which simply have the words

English, I/my and A2/B1 etc. near each other would overproduce and return too many

false hits like I’m a native speaker of English with B2 in German or I teach English,

from A1 to C1 level. Thus, in the task, automatic extraction of relevant users would

need to be complemented by extensive manual reviewing to ensure that a hit in question

indeed involves a proficiency self-report.

Second, and more importantly, Twitter’s Standard Search API1 only supports seven

days of history. That is, given a search query, it will limit its search to tweets from

the most recent seven days. Preliminary search attempts showed that using the exact

string “I’m B2 in English” returned no hits at all. A search using the query I AND

B2 AND English, which simply targets tweets containing these key words, returned 16

hits, of which only four are genuine tweets of interest to the task. The remaining tweets

1https://developer.twitter.com/en/docs/tweets/search/overview

https://developer.twitter.com/en/docs/tweets/search/overview
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represent various types of false hits, including cases in which B2 does not refer to a

CEFR level and cases like English girl speaking French (B1/B2 level, 95% self-taught),

where English is used as an adjective. Thus, even if searches based on loose, over-

generating queries returned an abundance of hits, there would be no straight-forward

way to automatically filter out the large portion of false positives. Emmery et al. (2017)’s

search was constrained by the same API search limit. However, they were indeed able

to gather sufficient users based on the tweets from the most recent seven days. There

are simply far fewer cases of users discussing their English language levels than of users

making reference to their gender.

For the above reasons, it was revealed that adopting Emmery et al. (2017)’s method

of automatically extracting user profiles of interest would not provide sufficient users

in our task, due to the nature of our query and the API limit on the search history.

Furthermore, extensive manual validation and filtering would be necessary to ensure

a high precision of the search results, which is necessary as they function as seeds on

the basis of which we would identify relevant users and later extract more data. We

therefore decided to conduct the extraction of users and their self-reported proficiency

levels manually.

3.1.2 Manual Identification of Proficiency Self-Reports

Instead of using the API, we manually entered a set of queries into the Search tweets bar

on the Twitter home page. This search method was not limited to only seven days of

search history. Our queries are of the following forms: To encourage more hits, we did

not search for exact-string matches with phrases, but searched for tweets containing the

keywords below. The curly braces represent the set of CEFR proficiency labels, from

which each label was individually probed. The search was case-insensitive.

• I, English, level, {A1, A2, B1, B2, C1, C2}

• I’m, English, {A1, A2, B1, B2, C1, C2}

• my, English, {A1, A2, B1, B2, C1 , C2}

As mentioned, we realise that language proficiency levels can very well change over

months and years. Therefore, to prevent using, for instance, self-reported levels from

January 2015 as distant labels for tweets from March 2018, we only extracted proficiency

self-reports amongst query hits from 1st December 2017 to 18th March 2018. The

assumption made is that when we download individual users’ most recent tweets at a
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later stage (in April 2018), the majority of them would reflect the same level of English

as that reported by the user between December 2017 and March 2018.

Some self-reports of English proficiency refer to results from some form of formal as-

sessment, be it an established exam or an online test. Examples of such tweets include

Ayyy. I passed my ”Language and Use I” exam with a 1.3 (best grade would be 1.0).

That means I can now officially brag about my English being C1 level in the CEFR.

Others are statements without reference to anything to back up the assessment, as in

I’m kind of anxious about this account because I don’t know how to make friends, I think

my english sucks even though I have C1 level and the only thing interesting about myself

is my dog. We make the assumption, however, that users’ self-report offer sufficiently

reliable proficiency labels.

We indeed retrieved several cases which would have confused automatic searches and

would have been difficult to filter out automatically, such as Wtf did something happen

in my sleep? I swear since this morning my english is like A2 level and not B2-C1 ...

I must have damaged my brain or something or Why do I feel like my English turns

into A1 level once again when I am hyped?. Moreover, as an additional challenge, it

appears that A1 and A2 can also refer to grades in British schools, as suggested in Just

realised it’s be 8 years since I received my O Level results. One of the happiest days of

my life, because I got an A1 for English. When never in my life, have I gotten an A for

English (except for PSLE lol) and Fav subject at school? — English!! Loved it (hence

my interest in poetry). Got an A2.

Where users are undecided and report being between two levels, we consistently recorded

their level as the lower one. This was a practical choice in order to obtain a single

proficiency label for each user.

Using this manual method, we identified a total of 154 Twitter users with their respective

proficiency levels. The set of users is skewed towards the higher proficiency levels, such

as C1 and C2, while only two users have been found for level A1. This point will be

taken up again in Section 3.3.

Twitter API limits the number of retrievable tweets by a specific user to the 3,200 most

recent tweets at the time of extraction2. We therefore pulled twice in April 2018 (on the

7th and 30th) and extracted all available tweets from the timeline of the users previouly

identified, using unique tweet ids to remove those tweets which appeared in both batches.

In total, we gathered 387,298 tweets. However, the raw dataset contained large amounts

of content which would not be relevant to the present project, such as retweets, tweets

2https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-statuses

-user timeline.html

https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-statuses-user_timeline.html
https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-statuses-user_timeline.html


Data Collection 15

consisting solely of emoticons or URLs or tweets not primarily written in English. Hence,

the following steps were carried out to clean the data:

1. Removal of tweets composed before 1st of September, 2017

2. Removal of tweets starting with RT, indicating retweets

3. Removal of user mentions (handles) and URLs from the tweet texts

4. Removal of the hash sign from hashtags in tweets, treating them as simple words

5. Removal of tweets which, after the above steps of cleaning, did not contain at least

two adjacent letters. This chiefly targeted tweets which consisted solely of URLs

6. Removal of tweets which have not been identified as being primarily in English by

langdetect3 (Shuyo, 2010)

Since, at the previous step of extracting proficiency self-reports, tweets from December

2017 onward were considered, the threshold of September 2017 was chosen to exclude

tweets older than three months than the earliest self-reports. In choosing langdetect,

an easily applicable language identification tool for Python and Java implementations,

we again followed Emmery et al. (2017). Apart from filtering out non-English tweets,

using langdetect also allowed us to discard tweets which, while written in English, were

not recognisable as such due to the high abundance of emoticons outweighing the actual

words. Examples include the tweet YOUR OUTFIT!!!!!!, followed by a string of over

30 heart emojis. Such tweets are largely irrelevant to language proficiency assessment,

would likely pose an unnecessary challenge to later processing of the tweet data (e.g.

part-of-speech tagging) and could therefore be justifiably removed. After cleaning, the

original dataset was reduced to 107,767 tweets in total.

3.2 Reddit

Proficiency self-reports on Reddit were collected automatically, using PRAW, the Python

Reddit API Wrapper4, and manually validated. Reddit users discuss a wide range

of topics in topic-specific forums, known as “subreddits”. As the starting point of

our Reddit data collection process, we identified four subreddits5 dedicated to foreign

3https://github.com/Mimino666/langdetect
4http://praw.readthedocs.io/

https://github.com/praw-dev/praw
5https://www.reddit.com/r/languagelearning/

https://www.reddit.com/r/EnglishLearning/

https://www.reddit.com/r/language exchange/

https://www.reddit.com/r/LanguageBuds/

https://github.com/Mimino666/langdetect
http://praw.readthedocs.io/
https://github.com/praw-dev/praw
https://www.reddit.com/r/languagelearning/
https://www.reddit.com/r/EnglishLearning/
https://www.reddit.com/r/language_exchange/
https://www.reddit.com/r/LanguageBuds/
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language or English learning in which users provide self-reported information on their

proficiency in English, often with the aim of finding conversation partners for language

practice. The three methods described in the sections to come were used to find user

self-reports of their English proficiency levels in these subreddits. As in the case of data

collection from Twitter, we took into account the date associated with each proficiency

self-report, which at a later stage allowed us to extract user-specific texts produced

within a certain time period around that date.

3.2.1 Keyword Search Through User Flairs

Reddit users in specific subreddits can attach to their names a tag known as “flair”, which

provides some piece of information of relevance to the topic of the subreddit. In the lan-

guagelearning subreddit, various users use it to indicate their proficiency level in any

language they know, for instance IT N | EN B2 | FR A2 | DE A2 or ISL(N) | ENG

(C2) | ESP (C1) | TUR (B2) | NAV (A1) | GER (A2). We used Python flavour reg-

ular expressions to identify users who provide their English level in their user flairs and

where the level is not given as N or Native. To illustrate, the following expression was

used to perform this search, matching variants of abbreviations for English and using a

negative lookahead to exclude those where English is given as a native language:

/[^A-Za-z](ENG?|[Ee]ng?|[Ee]nglish)(\s|:|-|\()(?!(N|\(N))/

For each user, we recorded the date of the submission in which the user used the relevant

flair in his/her name, treating it as the time of the proficiency self-report.

The search matched a total of 28 users. Manual inspection of these search hits revealed

that some users have included English in their flair text but have either not provided

a proficiency level at all or an uninformative one which we were unable to convert to

the CEFR system, such as [?] or L2, which presumably indicates a second-language or

Level 2 on an unspecified scale. These hits were discarded.

Some users specified their proficiency levels as beginnner (beg), intermediate (int) or

advanced (adv), which could be deemed parallel to the three CEFR level groups A (Basic

User), B (Independent User) and C (Proficient User) (see Chapter 2). In keeping with

our practice on Twitter data of taking the lower level where users report being between

two levels, we therefore converted beginner, intermediate and advanced to A1, B1 and

C1, respectively. One user indicated his/her level as CAE (192/200), which translates

to C1 according to Cambridge Assessment6.

After manual filtering, we obtained 19 users in total using this method.

6http://www.cambridgeenglish.org/exams-and-tests/advanced/

http://www.cambridgeenglish.org/exams-and-tests/advanced/
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3.2.2 Keyword Search in Submission Titles

The subreddits LanguageBuds and language exchange offer their members the opportu-

nity to find partners for tandem language practice. To facilitate their search, almost all

submissions mention in the submission titles the languages they speak and their pro-

ficiency level in those languages. Examples include Offering: Polish(Native), Seeking:

English(B1/B2) and Offering: English (Advanced), Bahasa Indonesia (Native), Seek-

ing: Korea Or Japanese. Figure 3.2 gives a screenshot example from the LanguageBuds

subreddit.

Figure 3.2: Example self-report from Reddit

First, it was thus possible to read-off learners’ self-reported English proficiency from the

level of English which they offer. Second, it can be assumed that in language practice,

learners will seek conversation partners whose skills in the relevant language are on

approximately the same level as their own (or slightly superior). Hence, where they

indicate a specific level when seeking a language partner for English, as in the above

example, that level can be taken as a self-report of their own proficiency in English.

Searching through all available posts from the subreddits language exchange and Lan-

guageBuds, we used regular expressions to extract submission titles which contained

the word English while not preceded or followed by the word native, indicating native

speakers of English. Once again, we recorded the date of submission for each search hit.

Our search returned 378 hits. Again, they were manually validated and a sizeable portion

was filtered out, leaving 216 users with their respective proficiency labels. In the case of

most false hits, the user was a native speaker of English but indicated this in a manner

which was not picked up by the regular expression. Amongst the users discarded were

also those who indicated their level of English as fluent, which was considered too vague

to be matched with any one of the CEFR levels. As done previously, the levels beginner,

intermediate and advanced were mapped to A1, B1 and C1, respectively. Finally, we

ensured that there was no overlapping between the users found through this method

and those found through user flairs, thus barring the possibility of duplicates amongst

our set of users.
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3.2.3 General Phrase Search in Submissions

The last of the four subreddits, EnglishLearning, is a forum in which learners of English

pose in their submissions a variety of questions concerning the language, such as I have

a question about position of preposition in relative clauses. However, there is largely no

necessity for the users to specify their own level of proficiency for this purpose. Hence,

despite being most directly concerned with English learning, this subreddit did not lend

itself easily to the purpose of automatically identifying users with their self-reported

levels. We therefore searched through the titles and textual bodies of all available

submissions, using a series of regular expressions to extract occurrences of phrases like

I have level B1 in English or My English is at level C1. In order to increase the chance

of finding more user self-reports, the search expressions used were aimed at increasing

recall at the expense of precision, which, again, entailed the necessity of extensive manual

validation to filter out irrelevant search hits. This filtering as well as conversion of some

proficiency self-reports to the CEFR system was carried out in the same manner as

previously described.

Apart from the subreddit EnglishLearning, this most general method was also applied

again to the previous three subreddits as well as a fifth subreddit called language, which,

however, did not produce any search hits. Once again, for each search hit the time

of submission was recorded, and it was ensured that only users who had not already

been extracted through any of the previous methods was retained. Overall, this method

yielded 122 raw search hits, of which 42 were revealed to be genuine and useful additions

to our set of users.

3.2.4 User-Based Data Extraction

Based on the variety of methods described above, a total of 277 unique users with their

respective self-reported proficiency levels were found. Using PRAW, we pulled from

each user all of their available writings on Reddit, consisting of original submissions and

comments in any subreddit they have contributed to. As mentioned, for all users, we

recorded the date associated with their self-reported proficiency level. We now used it

to exclude writings produced more than three months around the date of self-report to

avoid sampling data which could not reliably be associated with the proficiency levels

which users had reported of themselves. Apart from this time-based filtering, we per-

formed similar steps of cleaning as in the case of the Twitter dataset, removing URLs

and discarding whole samples which consist solely of non-letters (such as emoticons

and punctuation marks) and those which are not identified as written in English by



Data Collection 19

langdetect (Shuyo, 2010). Samples shorter than 30 characters, which affected 1,752

samples, were also removed.

Furthermore, once again following Emmery et al. (2017)’s methods, we removed from

the resulting dataset all of the “self-report samples”, i.e. those samples which contained

the self-report through which we identified the users and their respective levels. This was

done through the unique ID of each self-report sample. We removed these self-report

samples as it would likely inflate the classification results if many samples contained a

direct statement of the true proficiency labels. The same was not carried out in the

case of the Twitter dataset since the users and their corresponding levels were obtained

manually instead of through the API (Section 3.1.2) and it was therefore difficult to

obtain the IDs of each individual self-report sample.

From Reddit we collected an inital set of 17,075 samples. After the above-mentioned

selection and cleaning, we obtained a total of 10,371 level-labelled samples as our final

dataset from Reddit.

3.3 Complete Dataset of Spontaneous Language

Our complete set of level-labelled social media dataset consists of 118,138 samples, of

which 107,767 were harvested from Twitter and 10,371 from Reddit. Table 3.1 below

summarise some aspects of the dataset:

Twitter Reddit Total

Number of samples 107,767 10,371 118,138
Mean characters per sample 81.09 (SD = 63.47) 221.55 (SD = 370.85) 93.42 (SD = 131.63)

Mean words per sample 17.70 (SD = 14.07) 47.90 (SD = 78.69) 20.35 (SD = 28.23)

Table 3.1: Core characteristics of the social media dataset

Particularly in the case of Reddit data, the samples vary extremely in length despite

our removal of extremely short samples. This is unsurprising as writings consist of both

comments, which can be no more than one to two sentences, and original submissions,

which can be texts of several paragraphs. We considered splitting long samples into

multiple samples with the same proficiency label but opted against such a permanent

alteration of the dataset out of the following consideration: Were samples to be split

at this stage, they would be stored in the dataset as independent samples. If the same

original sample were to have a section of it in the eventual training set and another in

the test set, the classification result might be biased. Therefore, splitting long samples

was carried out at a later point within the training dataset (Section 4.1).
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The distribution of the the six proficiency levels in the Twitter, Reddit and the joint

social media dataset are as shown in Table 3.2:

Twitter Reddit Total

A1 908 20 928
A2 1,210 86 1,296
B1 10,550 639 11,189
B2 12,344 2,609 14,953
C1 50,836 4,540 55,376
C2 31,919 2,477 34,396

Table 3.2: Distribution of the six levels in the social media data

Clearly, the dataset is highly skewed towards the higher levels, with the most frequent

class being C1 and with significant under-representation of the classes A1 and A2, par-

ticularly the former. Reasons for this are obvious: First, non-native speakers are far less

likely to either advertise / report their levels on social media or to engage in tandem

language learning when their level is quite low, possibly too low for working conver-

sations. Second, those who do report their beginner-level English proficiency do not

otherwise write in English, meaning that a large amount of the data that we do extract

from their accounts is discarded as non-English data. This imbalance of level distribu-

tion is certainly not optimal. Yet, given the self-report-based method of data collection,

it is difficult to alleviate. Future improvements in this respect would undoubtedly be

welcome.

3.4 Dataset of Elicited Language: Efcamdat

3.4.1 EF-Cambridge Open Language Database

The above sections detail our acquisition of level-labelled spontaneous data by non-

native speakers, which are to be juxtaposed with elicited data produced in the context

of foreign language learning. For the side of elicited data, we drew data from a readily

available corpus of learner English, the EF-Cambridge Open Language Database (Ef-

camdat) (Geertzen, Alexopoulou, & Korhonen, 2013; Huang, Murakami, Alexopoulou,

& Korhonen, 2018). Efcamdat is a POS-tagged, dependency-parsed and partly error-

annotated English learner corpus created at the Department of Theoretical and Applied

Linguistics of Cambridge University, in conjunction with Education First (EF). It com-

prises written data by English learners at a range of different levels. The second and

latest distribution, which was used in our studies, is publicly available on the website of

Efcamdat7.

7https://corpus.mml.cam.ac.uk/efcamdat2/public html/

https://corpus.mml.cam.ac.uk/efcamdat2/public_html/
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Geertzen et al. (2013) give the following characteristics on the data: The corpus con-

tains over 500,000 written essays (approximately 33 million sentences) produced and

submitted by English learners from around the world as part of their studies in EF’s on-

line English school Englishtown, later renamed English Live8. Courses of 16 proficiency

levels are offered by the online school, with each level consisting of up to eight study

units. At the end of each such unit, learners are required to compose an essay or piece

of text for which they are given the topic as well as a model answer. Figure 3.3 gives an

example of a writing prompt from the Level 2 material.

Figure 3.3: Example prompt with user interface for a Level 2 task

Evidently, data from this source can be regarded as elicited and controlled: Writers

produce their texts in response to a specific prompt and instructions, with a given topic

and even an example piece of writing.

According to Geertzen et al. (2013), the 16 proficiency levels used by Englishtown are

comparable with widely-known measures of proficiency, including the CEFR levels, and

can be aligned to them as shown in Table 3.3 (reproduced and adapted from their original

paper):

Englishtown 1-3 4-6 7-9 10-12 13-15 16

Cambridge ESOL - KET PET FCE CAE -
IELTS - <3 4-5 5-6 6-7 >7

TOEFL iBT - - 57-86 87-109 110-120 -
TOEIC Listening & Reading 120-220 225-545 550-780 785-940 945 -
TOEIC Speaking & Writing 40-70 80-110 120-140 150-190 200 -

CEFR A1 A2 B1 B2 C1 C2

Table 3.3: Alignment of Englishtown’s 16 levels with standard proficiency measures

Upon enrolment at the online school, students are allocated to one of the levels through

a placement test and can then work their way to the higher levels.

8https://englishlive.ef.com/en-gb/

https://englishlive.ef.com/en-gb/
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Efcamdat has been lemmatised, POS-tagged using the Penn Treebank Tagset (Marcus,

Marcinkiewicz, & Santorini, 1993) and syntactically analysed with dependency pars-

ing (De Marneffe & Manning, 2008). Furthermore, it is (partially) an error-annotated

learner corpus in which parts of the data (36% in the case of the database’s first release)

have been manually annotated with the learners’ errors and corresponding corrections

(Geertzen et al., 2013). Moreover, though not necessarily relevant to the present study,

the meta-data available in Efcamdat include unique IDs for all learners, their nationali-

ties and the mark they received. Alexopoulou, Geertzen, Korhonen, and Meurers (2015)

remark that where learners’ country of residence and nationality match and the country

in question has a clearly dominant and/or official language, their nationality can be con-

sidered an approximation to their native language. Such information makes the dataset

suitable for cross-sectional and longitudinal research on second language acquisition and

experiments in grammatical error correction and automatic grading. For comparability

of our spontaneous and elicited datasets in the present study, however, we made use

only of the plain texts without error-annotation and parse information, along with the

course/proficiency level, mapped to the CEFR scale according to Table 3.3.

3.4.2 Our Dataset from Efcamdat

Scripts from the Efcamdat database can be exported as XML-files (Geertzen et al.,

2013). Its web-interface allows for selection of scripts based on the level, the study units

and the learners’ nationality. Our selection of Efcamdat data were drawn from speakers

from China, Germany, Japan, Mexico, Russia and Saudi Arabia. For one thing, they

count amongst the nationalities with most learners in the database. Moreover, these

learners’ native languages (L1), approximated by their nationality, cover a range of

different language families. Learners with different L1s might make different types of

errors (see for instance Chierchia (1998) and DeKeyser (2005) for a discussion on the

acquisition of English articles by speakers with different L1s), and we did not wish to

limit the proficiency classification task to learners from a specific L1 background when

having information on their likely L1 at our disposal. With respect to level and study

units, where such a number of scripts was available, we randomly selected 250 scripts

for each study unit at each of the 16 levels9. Where there were fewer than 250 scripts

for a given unit at a given level, we took all available ones. All scripts were exported as

XML-files and parsed with the Python tool BeautifulSoup (Richardson, 2013).

9Recall that each level consists of eight study units
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In total, our dataset of elicited data, exported from Efcamdat and mapped to the CEFR

levels, consisted of 28,029 scripts / samples. Table 3.4 displays some key figures con-

cerning them, juxtaposed to those of our full social media dataset in italics, repeated

from Table 3.1:

Elicited (Efcamdat) Spontaneous

Number of samples 28,029 118,138
Mean characters per sample 559.62 (SD = 324.40) 93.42 (SD = 131.63)

Mean words per sample 114.59 (SD = 62.38) 20.35 (SD = 28.23)

Table 3.4: Core characteristics of our elicited dataset from Efcamdat, compared to
those of the spontaneous dataset from social media

Evidently, samples from Efcamdat are, on average, significantly longer than samples

from social media, with learners at the higher levels generally writing more (Geertzen et

al., 2013). Similarly as in the case of particularly long samples in the spontaneous data,

we considered splitting them. This would also be fruitful since long samples were more

likely found at the higher proficiency levels, where we also had fewer samples available

(see below). However, due to the same aforesaid reasons, we chose to do so only at a

later stage to ensure that a sample would not have parts of it in the training and parts

in the testing data.

Overall, the distribution of the six CEFR levels in our Efcamdat dataset are as shown

in Table 3.5 (once again contrasted to those in the social media dataset in italics):

Elicited (Efcamdat) Spontaneous

A1 6,000 928
A2 6,000 1,296
B1 6,000 11,189
B2 5,650 14,953
C1 3,749 55,376
C2 630 34,396

Table 3.5: Distribution of the six levels in the Efcamdat data, juxtaposed to those in
the social media dataset

Unlike in the case of the spontaneous data, our elicited dataset is skewed towards the

lower levels for the following reason: Overall, only few learners completed their course

with EnglishTown and reach the highest Level, 16 (Geertzen et al., 2013), meaning that

there is generally much more data available at the lower than the higher end. Further-

more, as shown in Table 3.3, in contrast to the CEFR levels A1 - C1, C2 corresponds

to only one instead of three EnglishTown levels, resulting in it being a clear minority

class. Thus, unfortunately though inevitably, our spontaneous and our elicited datasets

are skewed in opposite directions.
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3.4.3 Topic Influence in Efcamdat Dataset

One particular trait of Efcamdat data merits special attention in the context of this

study: As a rule, each study unit, for which a learner writes one script (unless failing

and retaking the unit), addresses one specific topic as its essay topic. They range from

presenting oneself and one’s family at the lowest proficiency level up to discussing news

stories at the higher ones. Geertzen et al. (2013) provide some example essay topics at

different levels, reproduced and adapted in Table 3.6.

Level Topic Level Topic

1 Introducing yourself by email 7 Giving instructions to play a game
1 Writing an online profile 8 Reviewing a song for a website
2 Describing your favourite day 9 Writing an apology email
2 Telling someone what you’re doing 11 Writing a movie review
2 Describing your family’s eating habits 12 Turning down an invitation
3 Replying to a new penpal 13 Giving advice about budgeting
4 Writing about what you do 15 Covering a news story
6 Writing a resume 16 Researching a legendary creature

Table 3.6: Example essay topics at a range of EnglishTown levels

The thorny issue here is that, aside from differing in the proficiency levels which the

respective writers display, samples from different EnglishTown and hence CEFR levels

will also significantly differ in the topics they deal with. Such topical differences are easily

captured by content words. Should word n-gram features be used in a proficiency level

classifier, the system could easily be misled to model the topical instead of the linguistic

distinctions at the different levels. This is likely characteristic of data acquired in a

language learning context, where writings are often produced in an elicited manner in

response to a specific topic.

At the stage of data collection, we saw no way of counter-balancing this topic influence

other than making sure that our data cover as many possible topics at each level as

there are in order not to make any particular topic strikingly indicative of a specific

level. However, this topic influence will be addressed again in the next chapter, where

we discuss methods to mitigate it.

3.5 Chapter Conclusion

We described in this chapter our data collection process. Using users’ self-reported

proficiency levels as distant labels, we obtained a set of 118,138 samples from Twitter

and Reddit, representing spontaneous writings by non-native speakers of English. The

process was partly manual and partly automatic with manual validation. On the side

of elicited data from a language learning context, we extracted a 28,029-sample dataset
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from the openly accessible learner corpus Efcamdat, which consists of scripts by learners

of English written in the context of an online English course. In the chapters to come,

we proceed to detailing our level prediction experiments using these data.



Chapter 4

Level Classification Using SVM

and Logistic Regression

This chapter describes and discusses our main experiments of performing level classi-

fication in both the elicited Efcamdat dataset and the spontaneous dataset gathered

from social media, with a greater focus on the latter. We also discuss whether classifica-

tion across these two domains is possible and look at classification in the mixed -domain

dataset formed by the union between the two sets. Finally, we also explore a customised

evaluation metric that reflects the ordered nature of our six labels. To repeat, the clas-

sification task is carried out on a per-sample basis. That is, given a piece of writing, a

learned model assigns to it one of the six CEFR proficiency levels.

4.1 Classification on Efcamdat Data

4.1.1 Methods

Following previous literature in which SVM (Cortes & Vapnik, 1995) has been shown

to be effective in classification tasks such as author profiling (Basile et al., 2017) and

offensive speech detection (Del Vigna et al., 2017; Davidson et al., 2017), we chose

to conduct our level classification task using a linear SVM with suface-level linguistic

features.

26
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4.1.1.1 Pre-processing

As a simple pre-processing step, we removed from the samples control characters indi-

cating new line, tabs etc. by taking out those characters whose unicode category begins

with C. Control characters fall into this group1.

Furthermore, as mentioned in Chapter 3, we planned to split particularly long samples

into two to reduce the dataset’s variance in sample length. This had the following

additional advantage: Long samples are generally members of the higher proficiency

classes. Given that the Efcamdat dataset is skewed towards the lower proficiency levels

(Section 3.4), splitting the long samples increased the number of samples in the under-

represented, higher proficiency levels. In concrete terms, given that the mean sample

length of the dataset is 559.62 characters (SD = 324.4) (see Section 3.4), we considered

samples with more than 800 characters in length to be long samples and split them,

giving both resulting samples the class label which the original long sample had. While

doing so, sentence boundaries were respected. We used NLTK’s (Bird & Loper, 2004)

sentence tokeniser to detect sentence boundaries and made sure that splitting samples

did not “cut through” sentences. Sample splitting was only performed on the training

portion of the dataset, while long samples in the test portion were left unchanged 2. We

opted for this because we ultimately wished to obtain a single proficiency label for a

given test sample. Should the long test sample have been split and its two parts receive

different class predictions, we would need to address how to decide on a single final label,

which we deemed a complication not worth adding.

4.1.1.2 Features

We used a simple set of surface-level linguistic features consisting of the following:

• Unweighted word unigrams

• Unweighted character n-grams in the range between 3 and 6

• Average sentence length in terms of number of characters. For this feature we

again used NLTK’s sentence tokeniser, obtained the length of each sentence in the

sample and took the mean.

Conceptually, word unigrams can reflect the language user’s vocabulary size and lexical

diversity, which in turn provides information on the person’s proficiency level (Crossley

1http://www.unicode.org/reports/tr44/#General Category Values
2See below for the train/test division

http://www.unicode.org/reports/tr44/##General_Category_Values
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et al., 2012; Yannakoudakis et al., 2011): Intuitively, rare, formal and domain-specific

words are more likely to be used by more advanced users, while beginner-level users

likely have a limited vocabulary at their command which consists of common-place and

informal terms. The character n-grams were expected to target orthographic errors,

which can be characteristic of lower-level non-native language users (Hancke & Meurers,

2013). Finally, sentence length has been shown to be an indicator of language learner

proficiency levels (Tack et al., 2017), being in many cases also a proxy to syntactic

complexity. We did not discard stop words since they typically include function words

such as articles, auxiliary verbs and prepositions (see, for instance, those provided by the

Python module stop-words3), and research in second language acquisition in English

have shown errors related to them as characteristic of learner writings (Leacock et al.,

2010; Master, 1997).

As discussed extensively in Chapter 3, an undesirable characteristic of the Efcamdat

dataset is that the systems are easily misled to model the topical differences between

the six levels as English Town/English Live students at different levels are given different

topics to write about. While we counteracted this effect at the data collection stage by

drawing data from as many topics as were available in the corpus for each level, there

is little doubt that this topic influence remained present. We therefore tried to mitigate

this by replacing the words in a sample with their part-of-speech (POS) tags, thereby

removing actual lexical content. This is related to the techniques used by Goot, Ljubešić,

Matroos, Nissim, and Plank (2018), which they call the bleaching of text. We adopt this

term and refer to our transformations POS-bleaching hereafter.

To obtain reliable POS tags, we applied NLTK’s (Bird & Loper, 2004) off-the-shelf

tagger using the widely-used Penn Treebank tagset4 (Marcus et al., 1993). We then

experimented with POS-bleaching of our samples in the following conditions:

1. Applying POS-bleaching to all tokens of the sample

2. Applying POS-bleaching only to nouns and verbs, hence those words whose POS-

tag starts with NN or VB

3. Applying POS-bleaching only to nouns

Nouns and verbs were chosen for POS-bleaching since we deemed them most likely to

exhibit topic influence. One disadvantage of bleaching verbs, however, is that the tagger

does not distinguish between content verbs and auxiliaries. The latter, however, are not

3https://pypi.org/project/stop-words/
4https://www.ling.upenn.edu/courses/Fall 2003/ling001/penn treebank pos.html

https://pypi.org/project/stop-words/
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
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only fully topic-independent, but might provide useful training signals as their irregular

inflection systems are a possible source of errors for learners.

An additional piece of information which POS-bleaching unfortunately discards is the

general frequency of the words used in a sample. As mentioned above, less frequent

words can be indicative of a writer’s larger vocabulary and thereby higher level of profi-

ciency. To compensate for this loss, in combination with POS-bleaching we introduced

an additional feature for explicit encoding of a word’s general frequency. This was done

using Speer, Chin, Lin, Jewett, and Nathan (2017)’s tool wordfreq5, which allows look-

ups of frequencies of words in 36 languages, based on a wide range of data, including

Wikipedia, Google Books, News, Twitter etc. They also provide a function which returns

a word’s Zipf -frequency, with values between 0 and 8, where higher values correspond

to higher frequencies. For instance, the values 7.75 and 3.75 are given as the respective

Zipf frequencies of the words the and monarchy.

For each word to which POS-bleaching was applied, we looked up their Zipf frequency

value and rounded it to a whole number, which effectively meant that there were eight

available frequency classes, ranging from 0 for words unknown to wordfreq to 8 for

highly frequent words like the. We then attached this rounded value to the POS-tag

of the bleached word. To illustrate, the nouns cats and man would be transformed to

the strings NNS 4 and NN 6, respectively. Finally, we took word n-grams in the range

between 1 and 3 on the POS-bleached and transformed sample texts. Character n-grams

were not used when bleaching was applied.

4.1.1.3 Model and Set-up

We used a linear SVM, implemented with Python and the Python machine learning

toolkit Scikit-learn (Pedregosa et al., 2011). Specifically, we used their LinearSVC

model6, a more efficient implementation of linear SVMs. The package’s default hyper-

parameters were adopted, which include L2 regularisation and C = 1.0. Given that

SVM is inherently a binary classifier, the model takes the one-versus-rest strategy (as

opposed to the computationally more expensive one-versus-one strategy) as its default

for performing multi-class classification (which applies in the present task).

We randomly carved out 25% of the 28,029-sample Efcamdat dataset to be our test set

and trained on the remaining 75%. We ran each experiment with its set of features and

settings three times and took the average classification results. This same procedure

was adopted for all experiments reported on in this chapter.

5https://github.com/LuminosoInsight/wordfreq
6http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html

https://github.com/LuminosoInsight/wordfreq
http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
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4.1.2 Results and Discussion

Given the clean nature of the dataset and the topic influence, we expect classification

on the Efcamdat dataset to achieve good results. An overview of these figures are given

in this section, using different combinations of pre-processing steps and features. We

provide the results (Table 4.1) in terms of accuracy and macro-average F1 measures,

given in percentages. We also set them in contrast to the performance of a baseline

system based on the majority class in the training split of the dataset. This majority

class is generally A1, A2 or B1, given that these three classes are equal in size and jointly

the most frequent class in our full Efcamdat dataset (see section 3.4).

System + features Acc Macro F1

SVM + splitting long samples + word + char n-grams 91.9 90.7
SVM + no splitting samples + word + char n-grams 92.3 90.8
SVM + word + char n-grams + mean sentence length 92.1 90.6
SVM + POS-bleaching of all words 56.5 46.1
SVM + POS-bleaching of nouns + verbs 82.7 77.5
SVM + POS-bleaching of nouns 86.3 81.9
SVM + POS-bleaching of nouns + freq. of bleached words 87.6 83.2
Majority class baseline 20.8 5.7

Table 4.1: Overview of classification results on the Efcamdat dataset based on random
75%/25%-train/test splits, with best results highlighted; figures given in percentages

As expected, the results on the Efcamdat data are extremely good, with both accuracy

and F1 scores over 90% in the best condition, which used little pre-processing and only

word and character n-grams (highlighted). Table 4.2 provides an example confusion

matrix based on the performance of the highest-scoring SVM (highlighted in Table 4.1).

The vertical labels represent the true gold-standard class labels and the horizontal labels

the system-predicted labels.

PREDICTED
A1 A2 B1 B2 C1 C2

G
O

L
D

A1 1,475 17 9 5 1 0
A2 40 1,390 41 21 9 0
B1 20 42 1,387 37 18 0
B2 4 24 62 1,266 25 2
C1 4 16 53 48 833 2
C2 4 3 6 17 11 116

Table 4.2: Example confusion matrix for classification on EFcamdat using an SVM
with word and character n-grams

Overall, the confusion matrix matches the high scores reported in Table 4.1. No note-

worthy patterns are discernible among the small number of errors made by the system.

Contrary to what we predicted, splitting long samples into two in the training set did

not seem to have any positive effect; we therefore removed this pre-processing step in all
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other runs on this dataset. Similarly, the average sentence length of a sample also failed

to produce any noticeable gains. It should be noted, however, that when the system was

run with average sentence length as the only feature, the result was significantly above

the majority class baseline (acc: 30.8%, macro F1: 14.7%), confirming that it is indeed

a useful feature. Possibly, it is simply not significant enough to raise the performance

based on the high-dimensional sparse n-gram features, which is already extremely high.

Certainly, the scores achieved by the best-performing model here are inflated due to

the topic influence characterising the Efcamdat dataset. POS-bleaching was added to

mitigate this effect. We see that bleaching out all words, as can be expected, dramatically

worsens the performance, although it is still very much above the baseline. When POS-

bleaching is applied to verbs and nouns only, or indeed only to nouns (arguably the most

topic-specific POS-category), accuracy and macro F1 scores are again over 80%. It is also

shown that the addition of Zipf frequency information to the bleached nouns is helpful.

However, whether these results suggest that POS-bleaching indeed effectively combats

topic influence and possibly makes a model less dependent on the training dataset will

be taken up again in due course.

4.2 Classification on Social Media Data

4.2.1 Methods

For the classification task on the social media dataset (which can be expected to be a

harder problem due to the noisy nature of both the data and the labels), we proceeded

along the same lines as in the case of the Efcamdat data but experimented with some

additions. We again used a linear SVM with a variety of features, not all of which proved

to be useful. Moreover, we also experimented with a logistic regression model and in

fact found it to be superior. Details of our studies on the Twitter and Reddit data are

presented in this section.

4.2.1.1 Pre-processing

We performed similar steps of pre-processing as described in Section 4.1, removing con-

trol characters and levelling the dataset’s high variance in sample length by splitting

long samples into two within the training portion. Samples longer than 400 characters

in length were chosen for splitting. Due to Twitter’s character limit7, this chiefly affected

7https://developer.twitter.com/en/docs/basics/counting-characters.html

https://developer.twitter.com/en/docs/basics/counting-characters.html
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samples from the Reddit section of the social media dataset, which varies particularly

highly in length (Section 3.3).

In addition to the above, we used regular expressions to remove emoticons: We matched

characters in the unicode range \U00010000-\U0010ffff8 as well as strings which

matched the (Python flavour) regular expression :-?[\)\(9D/P3]|[oO]\.[oO]. These

two expressions recovered most (albeit not all) emoticons in the samples. The emoticons

matched were not discarded, but replaced with the generic symbol “e”, indicating the

presence of an emoticon. We were motivated by the consideration that, while emoticons

do not bear any direct relation to people’s proficiency in a given language, they do reflect

their handling of communication on social media, and we deemed it possible that they

might contain useful signals for our task.

Moreover, under the assumption that social media users might intentionally use conven-

tionalised web language acronyms and abbreviations which ought not to be mistaken as

orthographic errors, we normalised them by “spelling them out”. For this, we used a

list of web language abbreviations found on the website socialreport9 and adopted the

45 acronyms listed under the category “Fun Acronyms For Daily Use”. They include,

for instance, BFF for Best Friends Forever or JK for Just Kidding.

4.2.1.2 Features and Various Experimental Settings

Surface-Level Features The main surface-level features used were again identical to

those used in classifying the Efcamdat dataset, viz. word unigrams, characters n-grams

in the range of 3 to 6, and the mean sentence length in a sample. Furthermore, we

experimented with using word bigrams in addition (which enlarged the feature space

and slowed down training).

Dimensionality Reduction Due to the noisy and open-domain nature of our so-

cial media dataset and the resulting large vocabulary, we expected to obtain a large

and sparse feature space based on the word and character n-gram features. Therefore,

we explored the effect of applying dimensionality reduction to the feature space prior

to classification. Since the Scikit-learn toolkit does not support the application of the

widely-used Principal Component Analysis (PCA) (Jolliffe & Cadima, 2016) to sparse

feature matrices, we chose to use Latent Semantic Analysis (LSA) via Single Value De-

composition (SVD) (Schütze, Manning, & Raghavan, 2008), with the number of output

8https://unicode.org/emoji/charts/full-emoji-list.html
9https://www.socialreport.com/insights/article/115003187266-80-Social-Media-Acronyms

-You-Need-To-Know

https://unicode.org/emoji/charts/full-emoji-list.html
https://www.socialreport.com/insights/article/115003187266-80-Social-Media-Acronyms-You-Need-To-Know
https://www.socialreport.com/insights/article/115003187266-80-Social-Media-Acronyms-You-Need-To-Know
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dimensions d set to d = {100, 1000}. Scikit-Learn’s default parameters10 were used in

the implementation.

Over- and Undersampling To recall, the social media dataset is highly skewed to-

wards the higher proficiency levels, owing to the manner in which it was collected. On

the extreme end, 56,109 samples from the largest class C1 are contrasted with only 935

samples from the smallest class A1 (Section 3.3). Given this class imbalance, we experi-

mented with performing over- and undersampling on the training data using Imbalanced-

Learn (Lemâıtre, Nogueira, & Aridas, 2017), an extension to Scikit-learn designed to

deal with imbalanced data. Specifically, we experimented with

1. Oversampling to the largest class (viz. C1) using random oversampling11: In all

but the majority class (viz. all but C1), random copies of the original samples are

made for the class to reach the size of the larget class. The total number of samples

after oversampling is the size of the majority class multiplied by the number of

classes, hence 336,654 in our case.

2. Undersampling to the smallest class (viz. A1) using random undersampling12:

Assume that the smallest class has N samples in total, the under-sampler reduces

the size of all other classes to N samples by randomly picking N samples from

each. The total number of samples is the size of the smallest class multiplied by

the number of classes, hence 5,610 in our case.

Notice that over- and under-sampling was applied only to the training portion of the

data. The highly skewed class distribution remained in the test data portion.

Fewer Classes Given that six proficiency levels constitute a comparatively fine level

distinction, we also investigated classification using fewer than the six levels. In partic-

ular:

1. We ran a system based on a coarser level distinction consisting of three classes.

For this, the levels A1 and A2, B1 and B2, and C1 and C2 were conflated to the

levels A, B, and C. Recall that at the data collection stage (Chapter 3), some of the

Twitter and Reddit users in fact reported on their levels in terms of the three-part

10http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD

.html
11http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over

sampling.RandomOverSampler.html
12http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.under

sampling.RandomUnderSampler.html

http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.RandomOverSampler.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.RandomOverSampler.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.under_sampling.RandomUnderSampler.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.under_sampling.RandomUnderSampler.html
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proficiency levels beginner - intermediate - advanced to start with, which we had

converted to A1, B1 and C1.

2. Furthermore, on the assumption that adjacent classes on the proficiency scale

would be difficult for the classifier to distinguish, we carved out the datasets with

the labels C1 and C2 and tested a binary classifier on them to see if it would learn

the likely limited distinctions between two similar classes. Levels C1 and C2 were

chosen since they were the two adjacent levels with the largest amounts of samples

available.

4.2.1.3 Models and Set-up

Once again we used Scikit-learn’s implementation of the linear SVM with their default

parameters. In addition, we also experimented with a logistic regression model instead of

the SVM. For the latter, we also employed Scikit-learn’s implementation13. The default

hyper-parameters, which were again kept in place, include L2 regularisation, C = 1.0

and the use of the one-versus-rest strategy for non-binary classification.

As done previously, all system were tested using a random train/test-split of 75%/25%,

applied to our 118,138-sample social media dataset. As mentioned, over- and under-

sampling was applied to the training dataset only, after the random test dataset has

been carved out. In the case of the experiments involving the smaller dataset of only

C1 and C2 samples, the 75% (train)/25% (test)-split was applied to that. Once again,

we ran each experiment three times and noted the average results achieved with that

experimental setting.

4.2.2 Results and Discussion

An overview of our classification results under the various experimental settings is pro-

vided in the tables in this section. We again provide accuracy scores and macro-average

F1 measures as percentages. Again, a majority class baseline is provided where all test

samples are classified as C1.

Table 4.3 shows all the results obtained from the SVM in classifying into the usual six

classes. Clearly, the task is significantly harder on the social media dataset. This is as

expected, given the noise in the writing, the distantly supervised nature of the labels and

the brevity of many samples. However, we see that all systems (with the exception of

the undersampled one) do significantly beat the majority class baseline, which is higher

13http://scikit-learn.org/stable/modules/generated/sklearn.linear model

.LogisticRegression.html

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html


Level Classification Using SVM and Logistic Regression 35

System + features Acc Macro F1

SVM + splitting long samples + word + char n-grams 56.7 43.2
SVM + no splitting samples + word + char n-grams 56.7 43.7
SVM + word uni + char n-grams + mean sentence length 56.8 43.7
SVM + word uni + bigrams + char n-grams + sentence length 57.2 43.7
SVM + word uni + char n-grams + LSA (d = 100) 48.3 15.8
SVM + word uni + char n-grams + LSA (d = 1, 000) 53.0 30.0
SVM + word uni + char n-grams + Oversampling 56.2 43.4
SVM + word uni + char n-grams + Undersampling 27.3 22.6
Majority class baseline 47.2 10.7

Table 4.3: Overview of the SVM’s classification results on the social media dataset
based on random 75%/25%-train/test splits; figures given in percentages

than in the Efcamdat dataset as class C1 is the single, clearly most numerous class in

this dataset.

The variations in the surface-level features appear to have little effect on the system

performance: As in the case of the elicited data, treating particularly long samples in the

training set as two separate samples did not produce any gains. Equally making no note-

worthy difference is the information on the average sentence length in a sample. Unlike

in the case of Efcamdat data, when the SVM is run with average sentence length as the

only feature, its performance is equal to the baseline, suggesting that the feature simply

does not encode useful information. This could partly be due to the noisier nature of

social media data, on which NLTK’s sentence tokeniser possibly underperforms. Finally,

somewhat to our surprise, the addition of word bigrams also has almost no effect on the

classification scores.

What is undoubtedly shown in Table 4.3 is that LSA dimensionality reduction as well

as over- and undersampling do not appear to be viable options for system improvement:

Dimensionality reduction with either numbers of target dimension (100 and 1,000) af-

fected classification performance negatively; Oversampling to the majority class yielded

approximately the same scores as without it, likely because the oversampled classes were

simply filled up with copies of existing samples, which did not in fact provide any addi-

tional training signals; Undersampling to the smallest class, on the other hand, impacted

the performance detrimentally, likely because the resulting dataset after performing un-

dersampling was simply too small.

Once again we provide an example confusion matrix showing the error tendencies for

classifications on the social media dataset (Table 4.4). The matrix is based on the

top-most model of Table 4.3, viz. an SVM with word and character n-grams.

Two remarks are worth mentioning: First, we see the influence of the extreme imbalance

of class distribution. Errors are extremely frequent among the heavily under-represented

lower levels A1 and A2. More specifically, the majority of falsely classified samples from
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PREDICTED
A1 A2 B1 B2 C1 C2

G
O

L
D

A1 68 1 11 11 78 52
A2 2 33 24 35 149 64
B1 3 21 1,223 258 889 431
B2 5 22 235 1,469 1,357 689
C1 26 55 708 1,082 9,256 2,694
C2 17 44 390 624 2,810 4,699

Table 4.4: Example confusion matrix for classification on social media data using an
SVM with word and character n-grams

these classes are mispredicted as class C1, which of course is the majority class by far

in the social media dataset. Second, among the classes on which classification is more

successful, e.g. C1 and C2, most errors are misclassified into the level just above or just

below the true level. This reflects the ranked nature of our six classes, which in fact form

a proficiency scale. This point will be addressed in greater detail below (Section 4.5).

Classes Acc Macro F1

SVM + word uni + char n-grams
A, B, C, (using all data) 75.6 52.6
C1, C2, (using C1 and C2 samples) 70.0 68.0
Majority baseline
A, B, C, (using all data) 75.7 28.7
C1, C2, (using C1 and C2 samples) 62.1 38.3

Table 4.5: Overview of results where a) classification is performed on three classes
only and b) classification exclusively aims to distinguish between the classes C1 and C2;

contrasted with majority class baseline in the same setting

Table 4.5 shows the results of our experiments using labels other than the six CEFR

levels. As could be expected, the coarser classification problem into three levels is an

easier task. Due to the heavy over-representation of the class C in this setting (with C1

and C2 being the two largest classes in our collected dataset), the majority class baseline

is extremely high in terms of accuracy and is in fact equal to the SVM output. However,

the SVM beats it by a wide margin in terms of the macro-average F1 score. We expected

the likely limited difference between the levels C1 and C2 to be difficult to learn. Yet,

the classifier did manage this to a respectable extent, outperforming the baseline by a

large margin.

Finally, our results of classification to the original six proficiency levels using an alter-

native model, the logistic regression model (LogReg), are shown in Table 4.6.

Although SVMs appear to enjoy greater popularity in the literature (Basile et al., 2017;

Del Vigna et al., 2017), we find that in our task the logistic regression model in fact

significantly outperforms the former with more than four points of improvement in terms

of macro-average F1. The beneficial effects of adding bi-grams remains ambiguous, being
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System + features Acc Macro F1

LogReg + word uni + char n-grams 61.7 47.4
LogReg + word uni + bigrams + char n-grams 63.4 47.5

Table 4.6: Overview of the logistic regressor’s classification results on a random
train/test-split of 75%25% set, best performing system on the dataset highlighted.

present in the accuracy scores but absent in the macro F1. Overall, in the social media

domain, we obtained the best classification results from the logistic regression model

with simple surface-level word and character n-gram features, which are highlighted in

Table 4.6.

4.3 Cross-Domain and Mixed-Domain Classification

One of our main interests in the present project is to examine to what extent the elicited

data from the controlled language learning environment can inform the noisier social me-

dia domain. Therefore, we also conducted various classification experiments across the

two domains, with an emphasis on improving classification in the social media domain

using training signals from the language learning context. Furthermore, we also exam-

ined mixing all of our data into a mixed -domain dataset and modelling level prediction

on that.

4.3.1 Methods

The same methods as in the previous, within-domain tasks were used, excluding those

which clearly proved not to be useful, such as dimensionality reduction and over- and

downsampling. That is:

Pre-processing We removed control characters from all datasets. In the social me-

dia data we additionally normalised the emoticons and web language abbreviations in

the manner previously described. The splitting of long samples was abandoned as it

accounted for no improvement in either domain.

Features We generally used word unigrams and character n-grams in the range of

3 to 6 and optionally added word bigrams and the mean sentence length feature. We

also once again examined the POS-bleaching of nouns, where all words detected as

nouns were replaced by their POS-tags and the information on their Zipf frequency (see

above). Our original motivation for introducing this feature to the Efcamdat dataset
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was to make the Efcamdat samples less topic-sensitive by taking out the lexical content

of what we considered the most topic-specific category of words, viz. nouns. By reducing

the influence of topics, we hoped that models trained on the bleached Efcamdat data

would be more transferable to domains where the same co-occurrence between certain

topics and certain proficiency levels do not hold. Therefore, testing POS-bleaching in

this cross-domain context was of particular interest. Clearly, the POS-bleaching of nouns

would need to be applied to both the training domain and the test domain, using the

same tagset. Instead of NLTK’s POS tagger, in the cross-domain setting we chose to

use the POS tagger from SpaCy (Honnibal & Montani, 2017). It is based on a model

which is tuned to, among others, web language14 and could therefore be expected to

perform better on the social media side of the data. The SpaCy tagger also uses the

Penn Treebank tagset15.

Models and baselines The same two models, the linear SVM and the logistic re-

gressor, were once again used. For the mixed -domain experiments, once again a single

baseline based on the majority class in the training set was used. In the cross-domain

context, however, we used the following three different baselines:

• Baseline 1: Identical to the baselines previously used, this chooses the majority

class in the training data. However, in the cross-domain setting this is bound to

be an extremely poor baseline due to the starkly different class distributions in

the training and the test domains (Chapter 3). The majority class in the training

set, i.e. the full Efcamdat dataset, will be A1, A2 or B1 (which are identical in

frequency and jointly the most frequent class), which are least frequent in the

social media test domain.

• Baseline 2: Given that we know class C1 to be the clear majority class in the test

domain, i.e. the social media set, this baseline predicts class C1 for all test samples.

• Baseline 3: The last baseline predicts a class at random.

Training and test data In the cross-domain experiments the main focus was put

on training on the full Efcamdat dataset and testing on 5,000 randomly chosen samples

from the social media data. However, we also investigated other cross-domain constel-

lations: Amongst others, we held out 5,000 social media samples to test on and added

the remaining social media data to the Efcamdat data to train on. The model was thus

trained on a large, mixed -domain dataset and then tested on social media samples.

14https://spacy.io/models/en#en core web sm
15https://spacy.io/api/annotation

https://spacy.io/models/en##en_core_web_sm
https://spacy.io/api/annotation
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Moreover, given that our social media dataset originates from two different sources, viz.

Twitter on the one hand and Reddit on the other, and that they do display different

characteristics regarding, for instance, mean and variance of sample length (Section 3.3),

we also tested a) to what extent transfer of training signals between the two social media

subsets of data is possible and b) if either social media dataset gains more from training

signals from Efcamdat than the other. For a) we trained on the Twitter and tested on

the Reddit domain, and vice versa; for b), we trained on Efcamdat and tested separately

on Twitter and Reddit. In each of these cases, the test set consists of 5,000 randomly

chosen samples from the relevant test domain.

In the mixed-domain setting, we joined all of our data (from either domain), which

yielded a dataset of 146,167 samples in total, and again took a random portion of 25%

to test on, training on the other 75%.

4.3.2 Results and Discussion

Table 4.7 gives an overview of the performance of our models in the cross-domain setting,

where we trained on all samples from the Efcamdat domain and tested on a 5,000-sample

subset of the social media data. They are contrasted with the scores from the three

baselines described in the previous section.

System + features Acc Macro F1

SVM + word uni + char n-grams 11.8 9.3
SVM + word uni + bigrams + char n-grams 7.7 7.3
SVM + word uni + bigrams + char n-grams + sentence length 7.0 6.7
LogReg + word uni + char n-grams 12.1 9.5
LogReg + word uni + bigrams + char n-grams 6.9 6.6
LogReg + word uni + bigrams + char n-grams + sentence length 7.0 6.7

LogReg + word uni + char n-grams + sentence length
+ POS-bleaching of nouns + freq. of bleached words

5.7 4.9

Baseline 1 (majority class in train) 0.6 0.2
Baseline 2 (always predicting C1) 47.4 10.7
Baseline 3 (random prediction) 17.0 12.8

Table 4.7: Overview of cross-domain prediction with systems trained on all Efcamdat
data and 5,000 randomly chosen social media samples, best non-baseline system and

highest overall scores highlighted

It is immediately evident that direct transfer from the Efcamdat to the social media

domain is impossible, as shown by the very poor performance of both the SVM and the

logistic regressor. In fact, much better performance is achieved by the baselines: The

highest accuracy score is obtained by Baseline 2 by always predicting the class known

to be the majority class in the test domain, and the highest macro-average F1 score

by random prediction (Baseline 3) (Baseline 1 is as poor as expected). In Table 4.8 a
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confusion matrix based on the best non-baseline system, viz. the logistic regressor with

word unigrams and character n-grams, is shown.

PREDICTED
A1 A2 B1 B2 C1 C2

G
O

L
D

A1 20 4 2 6 7 1
A2 26 9 4 3 8 1
B1 233 67 49 71 59 5
B2 284 97 83 112 77 11
C1 942 300 246 429 376 48
C2 487 202 153 279 262 37

Table 4.8: Example confusion matrix for cross-domain classification using a logistic
regressor with word and character n-grams, trained on Efcamdat, tested on social media

Clearly, the most striking observation from the confusion matrix is that social media

samples from all proficiency levels are deemed as lower-level writings by a model trained

on Efcamdat data. In fact, a large portion of test samples from all classes is predicted

as the lowest level A1.

In both machine learning models, the addition of word bigrams and the sentence length

feature have a negative effect. A closer examination of the mean sentence length feature

reveals the shortcomings of this feature: As a follow-up, we again ran the NLTK’s

sentence tokeniser and obtained for both the Efcamdat and the social media data the

mean sentence length in the samples at each of the six proficiency levels, always in terms

of number of characters. The findings are given in Table 4.9.

A1 A2 B1 B2 C1 C2
Efcamdat 47.8 57.8 68.3 84.0 89.8 99.9

Social Media 48.4 51.3 51.3 57.6 58.3 57.2

Table 4.9: Mean sentence length in writings at each level for both domains, given in
terms of number of characters

Evidently, while in the Efcamdat dataset, rising mean sentence length nicely corresponds

to increasing proficiency levels, the same trend is not at all present in the social media

dataset, where the figures are remarkably similar across all six levels. This clearly

explains why, as previously pointed out, while mean sentence length is a predictive

feature in the Efcamdat dataset which gave above-baseline performance when used as

the only feature (Section 4.1.2), it was proved entirely unhelpful in the social media

domain (Section 4.2.2). Moreover, it is plausible that the addition of this feature in

the cross-domain context would have further aggravated the error trend observed in

the above confusion matrix: Based on mean sentence length, even social media samples

labelled as C2 would resemble one at level A2 to a model trained on Efcamdat data.

The results of our cross-domain classification tasks in other data constellations are given

in Table 4.10. All of these tasks were performed using what has been revealed as the
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best system. viz. the logistic regression model using only word unigrams and character

n-grams in the range of 3 to 6, with the pre-processing steps described in the previous

section. We indicate in the table the training and the test set used in each run, along

with the accuracy and macro-average F1 scores achieved.

Train Test Acc Macro F1

All data except
the 5,000 samples held out for test

Social media (5,000) 63.4 49.0

Twitter Reddit (5,000) 36.3 16.3
Reddit Twitter (5,000) 35.0 14.7

Efcamdat Twitter (5,000) 7.2 6.8
Efcamdat Reddit (5,000) 12.3 9.4

Table 4.10: Overview of classification results using the same system with different
constellations of training and test set

The results shown in Table 4.10 draw attention to two main points: First, when training

on a mixed set between large parts of the social media data and all of the Efcamdat data

and testing on a set of social media data only, the performance is hardly better than

the best result achieved by training and testing on only the social media data, which,

to repeat from Section 4.2.2, reached the accuracy and the macro-average F1 score of

63.4 and 47.5, respectively. Importantly, the model trained on the mixed set has access

to significantly more training data than a model trained on the social media set only.

Namely it trains on a large training portion of the social media dataset, much like the

in-domain model, and on all of the Efcamdat data in addition. The observation that

having 28,029 samples16 of extra training data only yielded marginal improvement again

shows that the Efcamdat domain does not effectively inform the social media domain.

Second, although our social media dataset has been treated as representing a unified

domain, the cross-domain classification results show that there are evidently significant

differences between the data from Twitter and from Reddit. Recall that it has already

been pointed out that samples from Reddit are longer on average but vary much more

in length (Section 3.3). While the transfer of training signals between Twitter and

Reddit is certainly much better than from the Efcamdat to the (combined) social media

domain, the results in Table 4.10 reveal that training on one and testing on the other is

nonetheless significantly more difficult than in-domain prediction on the combined social

media dataset. Furthermore, these results also suggest that Reddit is closer to Efcamdat

than Twitter; prediction on the former benefits more from training on Efcamdat than

prediction on the latter.

16The size of our full Efcamdat dataset (Section 3.4)
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Finally, we present in Table 4.11 the results of mixing all of our data to form a single

mixed-domain dataset and performing classification on a randomly chosen 75%/25%-

train/test split of this set. As previously mentioned, the baseline is once again based on

the majority class in the training data portion.

System + features Acc Macro F1

LogReg + word unigram + char n-grams 67.2 70.4
LogReg + word uni + bigrams + char n-grams 67.5 70.9
Majority class baseline 40.6 9.6

Table 4.11: Overview of the classification performance on the mixed-domain data
based on a random 75%/25%-train/test split

In the fully mixed setting, in which samples are drawn from all three sources (Efcamdat,

Twitter and Reddit), but in which the same, mixed domain applies to both the training

and the test set, the classification performance is fairly reasonable and far superior to

the baseline based on the majority class, which is C1 in the full mixed dataset. The

results lie between those of in-domain classification on Efcamdat and on social media

data, which seems plausible. Performing level prediction on the single, mixed-domain

dataset will be taken up again in the next chapter, which explores neural models in a

multi-task learning setting, applied to this task.

4.4 Predictive Features in Each Domain

To gain a better understanding of our datasets drawn from and representing different

domains, we printed out and list in the tables to follow the five most predictive features

for each class in the Efcamdat, the combined social media, the Twitter, and the Reddit

datasets. They were obtained by fitting a model17 on a given dataset and subsequently

extracting the five features with the highest weight coefficients.

In all of the below feature lists we use [c] to indicate a character n-gram feature and

[w] a word n-gram feature. Moreover, all features per class are given in descending

order, starting with the most predictive.

Table 4.12 shows the five most predictive features by class for the Efcamdat dataset.

They reveal to some extent the influence of topics on the Efcamdat dataset: For exam-

ple, the top predictive features for level A1 are clearly related to phrases about social

introductions, such as Hi! I’m .... This is unsurprising, given that in a controlled for-

eign language learning context topics for beginners mostly relate to introducing oneself.

17The SVM or the logistic regressor. Generally, the top predictive features for each class largely
remained the same for all models we tested.
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Efcamdat
A1 ’m [c], i’m[c], i’m [c], hi[w], . be[c]

A2 rie[c], leter[c], eter r[c], rien[c], rien [c]

B1 u [c], t a te[c], u c[c], u can[c], u ca[c]

B2 rtl[c], hortl[c], hortly[c], shortly[w], ortly[c]

C1 tyl[c], ortyl[c], shorty[c], hortyl[c], shortyl[w]

C2 robot[c], robo[c], robot[w], robo[c], obo[c]

Table 4.12: Top 5 predictive features for each class in the EFcamdat data

Recall that Level 1 of the EnglishTown/English Live curriculum centres on, among oth-

ers “Introducing yourself by email” and “Writing an online profile” (Section 3.4). This

offers a plausible explanation for the misclassification of large portions of higher-level

social media samples to level A1 (Table 4.8): Presumably, on social media, users of all

proficiency levels will comment on events related to themselves, on their “current sta-

tus”, on what is on their mind etc. Thelwall (2009)’s examination of MySpace comments

reveals highly pervasive usage of personal pronouns like I in those comments. When

users’ writings contain phrases like I’m ..., the Efcamdat-trained model is easily misled

by them to classify the samples as belonging to level A1.

Social Media
A1 acts e[c], late e[c], cts e[c], orrow[c], rrow[c]

A2 why[c], why[w], feas[w], cutee[c], feas[c]

B1 yo [c], od e e[c], te[w], non.[c], sting[c]

B2 yo[w], oc[w], *of[c], non[w], eat[word]

C1 || [c], for n[c], f god[c], e you.[c], w it e[c]

C2 cj[w], l so b[c], u you[c], tf[w], ht e e[c]

Table 4.13: Top 5 predictive features for each class in the combined social media data

Table 4.13 shows the top predictive features in the combined social media dataset (i.e.

Twitter and Reddit). Notice that the individual, isolated occurrences of “e” almost

certainly represent emoticons, which have been normalised to “e” in the pre-processing

step (Section 4.2). These, combined with the presence of some non-alphanumerical

features like || reflect the noisier nature of the data and that many predictive features

are specific to the social media domain.

Twitter
A1 fr[w], mf[c], hoe[c], hoe[c], e e[c]

A2 of*[c], o 1[c], sonic[w], yo 1[c], feas[w]

B1 ??[c], ugh[w], wig[c], wig[c], wig[w]

B2 ^^[c], yo[w], -- [c], non[w], *-*[c]

C1 ||[c], // [c] , ...[c], iked a[c], dan[w]

C2 ♥[c], ...[c], ! e[c], esc[c], ♥e[c]

Table 4.14: Top 5 predictive features for each class in the Twitter subset of the social
media data
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Reddit
A1 e p[c], try[w], try[c], h a1[c], sh a1[c]

A2 ack[c], > [c], , and [c], , and[c], , s[c]

B1 20[c], franc[c], i w[c], fran[c], france[w]

B2 ’s [c], n’t[c], ’t [c], n’t[c], ? [c]

C1 tai[c], l i[c], & [c], nt a[c], lol[c]

C2 t. [c], , b[c], , and[c], ted[c], e to t[c]

Table 4.15: Top 5 predictive features for each class in the Reddit subset of the social
media data

Finally, Table 4.14 and Table 4.15 list the most predictive features in the Twitter versus

the Reddit data as separate datasets. They again underline some differences between

the two domains: Twitter seems to be characterised more by special characters and

emoticons and appears to be closer to noisier web language than Reddit. This possibly

explains why training signals from the Efcamdat domain transfer to it less successfully

than to Reddit (Section 4.10).

4.5 Dealing with Ranked Nature of Class Labels

One important point only mentioned in passing in the previous discussions is the ordered

nature of our six labels. Recall that the six labels form a scale in the CEFR scheme.

Thus, the task does not simply deal with data of nominal, but ordered categories. Based

on the traditional methods of computing precision, recall and the F1-measure for each

class, which we did in order to obtain the macro-average F1 measures reported above, we

effectively disregard the fact that misclassifying a C1 sample as A2, for instance, shows

worse performance than misclassifying it as B2. On the other hand, since the data

are not of continuous categories either, a linear regression model is not appropriate.

Therefore, as an alternative to using a different model, a different evaluation method

can be considered which does take the ordered nature of the labels into account. Hence,

this section details our exploration of a customised version of the traditional metrics

precision, recall and F1-measure. It is a more lenient adaptation which, put bluntly,

also rewards the model if it mispredicts a sample but the predicted level is close to the

gold-standard level on the proficiency scale.

4.5.1 Methods

To recall, the standard metrics precision and recall, which have been used in the previous

sections, are defined as follows for each class C:

Precision =
TruePositives

TruePositives+ False Positives
(4.1)
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Recall =
TruePositives

TruePositives+ FalseNegatives
(4.2)

where

• True Positives (TP) are: the number of samples which are truly from class C and

correctly classified as such by the model

• False Positives (FP) are: the number of samples not from C but falsely classified

as such by the model

• False Negatives (FN) are: the number of samples truly from class C but falsely

classified as something else by the model

True Negatives (FN), i.e. the number of samples not from class C and correctly classified

as something else by the model, are irrelevant here. Overall, precision indicates what

percentage of samples which the model believes to be members of a given class C truly

are members of C; recall indicates what percentage of samples which are truly members

of C have been identified as such by the model.

The F1-measure is defined as the harmonic mean between precision and recall and

computed as follows:

F1 = 2× Precision×Recall
Precision+Recall

(4.3)

Our customisation of these metrics target precision and recall, more specifically, the

collection of the numbers of TP, FP and FN. The core idea is as follows:

In the standard method, given a sample for which the gold-standard and the predicted

class labels differ, the sample entails one addition to FP of the predicted class as well

as to FN of the gold-standard. Conversely, a sample for which the gold-standard class

is identical to the predicted class adds one to TP of that class. In this treatment,

correctness of class assignment is all-or-nothing, either coinciding with the gold-label

(correct) or differing from it (false). In our alterations, we employ a nuanced approach

to the correctness of class assignment based on the distance between the gold-standard

and the predicted class on the class label scale. Thus, if a sample is labelled such

that the predicted class is different from but close to the gold-standard, it nevertheless

contributes a degree of correctness to TP of the predicted class. Conversely, it also adds

a smaller degree of falseness to FP of the predicted and FN of the gold-standard class

than in the standard method. More concretely, for each sample, hence each pair of gold

versus predicted class label, we obtain
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Figure 4.1: Visualisation of the correctness scores which hold between class C1 and
its neighbours

• a correctness score between 0 and 1, indicating the degree to which the predicted

label is correct, judged against the gold, and

• a falseness score, indicating the reverse and computed as complementary to the

correctness score, hence as 1− correctness

Where gold and predicted are identical, the correctness score will be 1 and falseness 0.

Then, we add

• the correctness value to TP of the predicted class,

• the falseness value to both FP of the predicted class and to FN of the gold-standard

class.

How to set the correctness score in relation to the proximity between the gold and the

predicted labels is essentially a matter of choice. In our case, we chose to set correctness

as

• 1 if the distance between gold and predicted is 0 (i.e. if they are identical)

• 0.6 if the distance between them is 1 (i.e. if they are adjacent on the label scale)

• 0.3 if the distance is 2 (i.e. if they are separated by one label)

• 0 if the distance is greater than 2.

Figure 4.1 visualises an example of these heuristics, with the arcs showing the correctness

value which would hold between class C1 and each of the other labels if they formed a

pair of gold versus predicted labels. As already mentioned, should the gold and the

predicted labels be identical, or if they are more than two labels apart from each other

such that the prediction must be considered “completely false”, the customised metrics

will have the same effect as the standard ones.
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The changes described above affect the values TP, FP and FN for each class and thereby

also the precision and recall calculated. The F1-measure is based on the harmonic

mean between the (now altered) precision and recall values, as in the standard case.

To illustrate an application of our customised metrics, regard the following toy case

consisting of 20 samples with their gold (G) versus predicted (P) labels:

labelsG = [ A2, B2, B2, B2, C1, B2, A2, C1, C1, C2, A1, A1, B2, C2, C1, C1, A2, B2, A2, C1]

labelsP = [ A2, B1, C2, C1, B1, B2, A1, A1, A2, C2, A2, B1, B2, A1, A1, B2, B2, A1, A2, B1]

Table 4.16 contrasts the values given by the standard classification metrics and our

customised adaptation to this toy dataset.

Standard Customised

Precision Recall F1 Precision Recall F1
A1 0.0 0.0 0.0 37.5 33.3 35.3
A2 50.0 50.0 50.0 57.5 74.2 64.8
B1 0.0 0.0 0.0 45.0 39.1 41.9
B2 66.7 28.6 40.0 66.7 43.5 52.6
C1 0.0 0.0 0.0 37.5 35.7 36.6
C2 33.3 1.0 50.0 43.3 1.0 60.5

Table 4.16: Values from the standard vs. the customised precision, recall and F1
metrics for toy dataset

In the case of class A1, for instance, the standard evaluation metrics assigns 0 to both

precision and recall and thereby also F1, given that there is not a single instance in the

toy dataset in which A1 is correctly assigned. However, there is an instance in which a

true A1-sample has been assigned to class A2 and another where a true A2-sample has

been assigned to A1. Therefore, under usage of the customised metrics, the system still

receives some measure of positive evaluation for its performance on class A1 since it has

misclassified into near neighbours of the true class.

Overall, the figures outputted by our altered evaluation metrics are bound to be higher

than those of the standard ones, and it would be pointless to compare the performance

of different models with each other where some use the standard metrics and others

the customised. However, given a model, we can, for instance, compare if it performs

similarly on all six classes, judged using the standard versus the more lenient customised

metrics. We can also use the same customised metrics for classification in different

domains and examine if the difference in performance is observed to the same extent once

the allowance is made for “minor” classification errors in the form of misclassification

into nearby classes on the scale.

Concretely, the following two experiments were conducted:
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1. We ran our best system for in-domain classification on the social media set, i.e.

the logistic regression model with word uni and bigrams and character n-grams in

the range of 3 to 6, and evaluated the results with the standard as contrasted to

the customised metrics. A random train/test-split of 75%/25% was again used.

2. We again ran the cross-domain logistic regression model (with word unigrams

and character n-grams) which trained on mixed-domain data and tested on 5,000

samples from the social media dataset (i.e. the top-most model in Table 4.10),

this time, however, evaluated using the customised metrics. We then ran the

same model in an in-domain run, where we tested on the same 5,000 samples but

trained only on the remaining samples from the social media set. This was then

also evaluated with the customised metrics. Recall from the previous findings and

discussion that training on the mixed-domain dataset, with the 28,029 Efcamdat

samples as extra training data, hardly yielded any improvement to level prediction

in the social media domain (Section 4.3.2). This experiment now investigated this

more closely by a) having both runs test on the same 5,000 test samples and by

b) using the more lenient, “order-sensitive” evaluation metrics.

4.5.2 Results and Discussion

Table 4.17 contrasts the detailed results of the first experiment, i.e. the in-domain clas-

sification on the social media set, using the standard metrics on the one hand and our

customised metrics on the other hand. Furthermore, Figure 4.2 visualises the differ-

ences with respect to the F1-measure for each proficiency level under the two evaluation

schemes.

Standard Customised

Precision Recall F1 Precision Recall F1
A1 88.6 31.7 46.7 89.0 31.9 46.9
A2 47.4 8.8 14.8 54.2 10.5 17.6
B1 62.5 44.2 51.8 72.4 54.6 62.3
B2 59.0 37.0 45.5 79.6 61.6 69.5
C1 64.8 75.9 69.9 83.1 90.2 86.5
C2 58.1 59.8 58.9 76.8 80.9 78.8

Table 4.17: Standard vs. customised evaluation for in-domain classification on the
social media dataset using the best logistic regression model

We see in these results that despite using the more lenient customised evaluation, perfor-

mance in the classes A1 and A2 remain extremely poor. This shows that misclassification

in these classes is largely not errors in fine-grained distinction between similar proficiency

levels. Rather, the classifier is usually “utterly” wrong in that it confuses samples from

these low levels with levels on the other end of the proficiency scale. This is in accordance
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Figure 4.2: Bar chart for results for in-domain classification on social media dataset
using logistic regressor: F1-measures by class based on standard vs. customised metrics

with the observations from the confusion matrix in Table 4.4. However, in the other

four levels, particularly B2, C1 and C2, usage of the customised metrics clearly raises

their respective F1-measures, indicating that in a considerable amount of cases, while

the system misclassies samples from these classes, they do place them in the generally

correct area on the proficiency scale.

In Table 4.18 we contrast the detailed results of the second experiment, wherein we

contrast two model runs tested on the same 5,000 samples of social media data. In

one run (“No mixed-domain”), the model trained only on those social media samples

not among the 5,000 test samples; in the other (“With mixed-domain”), it trained on

these and all Efcamdat samples in addition, hence on a larger, mixed-domain dataset.

Figure 4.3 visualises the F1-measures by class, contrasting the two runs.

No mixed-domain With mixed-domain

Precision Recall F1 Precision Recall F1
A1 82.6 39.3 53.2 87.5 43.4 58.0
A2 69.0 16.8 27.1 59.0 13.7 22.2
B1 73.2 58.0 64.7 74.4 57.2 64.7
B2 76.9 65.1 70.5 83.3 58.0 68.4
C1 84.0 90.5 87.1 82.6 93.1 87.5
C2 78.5 80.4 79.5 81.0 78.3 79.6

Table 4.18: Classification of social media data without and with training on extra
Efcamdat data, evaluated using customised metrics

These results further corroborate our earlier finding regarding the addition of the 28,029

Efcamdat samples as additional training data for a model tested on the social media:

They are not useful. Figure 4.3 clearly shows no overall benefit of adding the extra

data from a foreign domain. Given that these figures have been obtained by using our

customised metrics, this means that the addition of the Efcamdat training data not only
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Figure 4.3: Bar chart for results for classification on social media dataset excluding
and including extra training data from Efcamdat

fails to yield more (fully) correct predictions on the social media test set, it does not

even allow the model to “reduce the gravity of its errors” and place incorrectly classified

samples closer to the gold label.

4.6 Chapter Conclusion

This chapter discussed our main experiments of making proficiency level predictions

using two traditional machine learning systems, the SVM and the logistic regression

model, and various features. In all cases, simple word and character n-grams proved

to be the most useful. We looked at in-domain classification in both the Efcamdat

and the social media datasets, respectively, and cross-domain classification wherein we

attempted to use training signals from the former to inform the latter. The following

findings have been gained: Rather unsurprisingly, classification can be done very well

on the Efcamdat data, where the co-occurrence of certain topics with certain levels

further made the task even easier. However, despite the noisy nature in the social media

samples, level prediction is also possible on these data to some extent, at least when

models are trained on data from the same domain. The accuracy and macro-average

F1 measure reach up to 63.4% and 47.5%, respectively, which clearly beats the baseline.

We found large differences between the performance on the six different levels, which

reflect the impact of the highly skewed class distribution in the dataset. Finally, while

in-domain classification on the social media data was possible, prediction in the cross-

domain setting proved to be futile. Training signals from Efcamdat were revealed as

hardly useful at all for making predictions in the social media domain.



Chapter 5

Multi-Task Learning on

Mixed-Domain Dataset

The results from the previous chapter have shown, among others, that a) despite the

noisy nature of social media data, prediction of the writers’ levels of English is indeed

feasible to some extent, and that b) it is not possible to use clean data from the language

teaching context as training data for this purpose, the two domains being too different

to inform each other in a cross-domain setting.

In a follow-up experiment, we took a closer look at making proficiency level predictions

on the joint mixed dataset, which puts together the data from all three sources (Twitter,

Reddit and Efcamdat). Given the difference between the datasets, we examined if level

prediction for individual samples would benefit from a multi-task learning setting in

which we introduced an auxiliary task aimed at predicting the dataset that the sample

originates from. The experiment is intended as a simple pilot study introducing multi-

task learning to proficiency level prediction to see whether it could be an interesting

method for further research. An in-depth analysis of how much representation the two

prediction tasks should share, to what extent the auxiliary task is recognised as being

related to the main task etc. would be beyond the scope of this project.

In the sections to come, we first provide background information on multi-task learning

(Section 5.1), then describe its integration into our present task (Section 5.2) and the two

models we examined (Section 5.3), and describe our experimental set-up (Section 5.4).

Section 5.5 presents and discusses our results.

51
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5.1 Background: Multi-Task Learning (MTL)

In a seminal paper, Caruana (1997) makes a strong case in favour of MTL in machine

learning, which he defines as “[S]haring what is learned by different tasks while tasks

are trained in parallel”, with the aim of better generalisation. He argues that many,

if not most, real-world problems are multi-task rather than single-task problems and

that, rather than breaking down problems into subtasks and training them separately,

subtasks from the same domain gain from sharing information with each other and

learning in parallel. This also means that, in MTL, a task of interest, the main task, can

benefit from the introduction of parallel auxiliary tasks. The latter are not by themselves

relevant but are useful to the main task by virtue of providing it with extra knowledge

when they are trained in parallel. Caruana (1997) regards the training signals from the

auxiliary tasks as useful inductive bias for the main. To name an example he reports,

MTL can be effective in object recognition. When learning to predict the type of door

shown to the machine learning system and the position of the door knob, it benefits

from explicitly learning to predict a range of other properties of the door, such as its

width or the position of its edges.

Caruana (1997) is inspired by previous work related, but not identical, to MTL: NetTalk

(Sejnowski, 1987; Rosenberg & Sejnowski, 1986), an early neural network system that

learns to “translate” written English texts into phonemes and word stresses to enable

text-to-speech synthesising, already has multiple output units sharing the same learned

representations. Although not dealing with parallel training using shared representa-

tions, Pratt (1992) reveals the feasibility of transferring learned weights from one net-

work to a second network which is learning a related task and demonstrates the benefit of

doing so (albeit mainly with regard to training speed). Similar advantages of knowledge

transfer between related tasks are presented in Sharkey and Sharkey (1993).

Amongst others, Caruana (1997) identifies the following ways the auxiliary task can

improve a system’s performance on the main: Features shared by both tasks can be

trained more effectively with more feed-back (from both sets of gold-standard labels),

hence more training signals. Moreover, learning the auxiliary task may allow the system

to “discover” features which are in fact useful to both tasks but which would not be

recognised as useful to the main task in a single-task setting.

In recent years, MTL is increasingly being adopted by the NLP community: Luong, Le,

Sutskever, Vinyals, and Kaiser (2015) examine MTL in a sequence-to-sequence learning

context and show that neural machine translation benefits from the addition of the

parallel tasks of syntactic parsing and image caption generation. In Klerke, Goldberg,

and Søgaard (2016), sentence compression, a form of sentence simplification, is shown
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to be aided by parallel learning of reader gaze prediction, where intuitively, sections of

the sentence that invite longer gaze fixation are also candidates for compression. On

the other hand, Alonso and Plank (2016) examine the application of MTL to a range

of semantic sequence prediction tasks, such as semantic role-labelling and named entity

recognition, and find that they do not generally gain from the addition of auxiliary tasks

such as dependency parsing or part-of-speech prediction. Bingel and Søgaard (2017)’s

systematic investigation of under which conditions MTL works concludes that its success

greatly relates to the learning curves of the tasks involved. They suggest that the best

combination is one where the main task’s learning by itself quickly becomes caught in

local minima and reaches a plateau while the auxiliary task’s learning does not plateau

fast. In such cases, the auxiliary can help the main task out of the local minimum.

5.2 MTL in English Level Prediction

In the present study, we explored the application of MTL to the joint set of all our data,

from both the social media and the language teaching context. The main task remains

the automatic classification of writers’ level of English as a foreign language on a per-

sample basis, with the CEFR levels A1 to C2 as the possible classes. As an auxiliary

task, we introduced the task of automatically predicting, for any given sample, the

dataset which it was drawn from. As the previous chapter has shown, within social

media, there appear to be sizeable differences between samples from Twitter and Reddit

such that prediction across these two datasets is largely not successful. Therefore, with

respect to the auxiliary task, we not only distinguished between the controlled language

learning domain and the social media domain, but also between the two different sources

of social media data, making the auxiliary task a 3-way classification problem.

Hence, the main task involved the six classes A1, A2, B1, B2, C1 and C2, and the auxiliary

task the three classes Twitter, Reddit and Efcamdat. Tables 5.1 and 5.2 give an

overview of the class distributions in the joint dataset with respect to both the main

and the auxiliary task. The Twitter dataset is by far the largest in terms of number of

samples (although they are shorter, see Section 3.3). Level distribution is again skewed

towards the higher levels, especially C1, since this is the trend in the largest dataset,

i.e. the Twitter dataset (Section 3.1).

Level A1 A2 B1 B2 C1 C2 Total

Samples 6,928 7,296 17,189 20,603 59,125 35,026 146,167

Table 5.1: Distribution of the six main task classes in the joint dataset
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Data source Twitter Reddit Efcamdat Total

Samples 107,767 10,371 28,029 146,167

Table 5.2: Distribution of the three auxiliary task classes in the joint dataset

The intuition behind our MTL set-up is as follows: Given the differences between the

datasets, it is possible that certain features which are predictive of the origin of given

samples are also useful for improving level prediction on this mixed, joint dataset. How-

ever, such features might not be recognised as beneficial when level prediction is the

only task being learned. In other words, by introducing the auxiliary task of data origin

classification, we force the system to explicitly learn the differences between the three

datasets while predicting proficiency levels on all of them.

Possibly the most straight-forward method of doing MTL is the use of neural networks,

where all tasks being trained share all hidden representations and where each task simply

has its distinct layer of output nodes. This is in accordance with Caruana (1997)’s ob-

servations (although he also sees ways of incorporating MTL into non-neural algorithms

such as k-nearest neighbour). Therefore, we also conducted our experiments using basic

versions of two neural architectures: the (bidirectional) Long Short Term Memory (Bi-

LSTM), first proposed by Hochreiter and Schmidhuber (1997), and the Convolutional

Neural Network (CNN), which dates back to Fukushima (1979, 2013) (see Schmidhuber

(2015) for an overview). In recent years, both types of networks have become popular

in various NLP applications. Amongst others, LSTMs and Bi-LSTMs have been used in

natural language inference tasks (Nangia, Williams, Lazaridou, & Bowman, 2017), POS-

tagging (Plank, Søgaard, & Goldberg, 2016) and neural machine translation (Bahdanau,

Cho, & Bengio, 2014); CNNs have tranditionally been applied to vision-related tasks

like hand writing recognition (Wu, Fan, He, Sun, & Naoi, 2014) and image captioning

(Xu et al., 2015) but have also been shown to be successful in sentence classification

tasks (Kim, 2014; Gambäck & Sikdar, 2017). Discussions of these models as such are

beyond the scope of this thesis.

Notice that the main goal of our MTL-related experiments was to assess whether or

not MTL including the auxiliary task would perform better on the main task, i.e. level

prediction, than the main task as a single task. The goal was not achieving the best-

possible level prediction results. Therefore, we did not attempt to improve either neural

model we used by optimising hyper-parameter selection or increasing their complexity,

but focused on contrasting their performance in the MTL setting with that in the single-

task setting.
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5.3 Architecture of Models

5.3.1 Bi-LSTM

In our simple Bi-LSTM model we use softmax-classification on top of the last hidden

states of the forward and the backward LSTM. The overall architecture of the single-task

model is as follows:

Embeddings NLTK’s (Bird & Loper, 2004)’s word tokenizer is used to turn each

input sample into a list of word tokens. We then represent all individual words as

64 dimensional embeddings, randomly initialised and trained with the whole model.

Forward and Backword LSTM We feed the embedding representations of the sam-

ple into a standard Bi-LSTM architecture: The forward LSTM processes the sample in

the regular order, reading in one word representation at each time step and outputting

for each word a 64 dimensional hidden state. The last hidden state,
−→
h Last, is taken as

the representation of the full sample in the forward pass. The backward LSTM performs

the same but reads in the sample in the reversed order, producing
←−
h Last, the sample

representation in the backward pass. These two 64 dimensional last hidden states are

then concatenated to yield the 128 dimensional
−→
h Final, the final vector representation

of the full sample, hence:
−→
h Final =

−→
h Last ⊕

←−
h Last (5.1)

where ⊕ is the concatenation operator.

Softmax Finally,
−→
h Final is passed to a softmax layer with a bias term for classification,

which outputs probability scores for each of the six main task classes.

The only difference between the above single-task architecture and the multi-task one is

that in the MTL setting, the sample representation
−→
h Final is also fed to an additional,

separate softmax layer for the 3-way classification of the auxiliary task. Figures 5.1 and

5.2 visualise the single and the multi-task Bi-LSTM models, respectively.

5.3.2 CNN

Our CNN is a simple model with softmax-classification on top of a single convolution

layer, itself built on top of an embedding layer. In greater detail:
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Figure 5.1: Bi-LSTM model in the single-task setting

Figure 5.2: Bi-LSTM model in the MTL setting

Embedding The embedding layer is the same as that in the Bi-LSTM, with 64 di-

mensional word embeddings generated “on the fly” for all word tokens of the input

sample.

Convolution At the convolution layer with a bias term, all word embeddings of the

sample are concatenated along axis 1, creating a matrix of size embedding dimensions

(i.e. 64) by the length of the sample. A single filter moves over this representation,

using the following CNN hyper-parameters:

• stride: 1

• filter size: 64

• window size: 3

This effectively means that we regard each possible trigram within the sample and

extract from it a 64 dimensional feature vector through convolution. The resulting
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feature map then undergoes max-pooling to yield a single feature vector representing

the full sample. To this, we further apply a non-linear transformation using ReLU to

produce the final sample representation.

Softmax Once again identical to the Bi-LSTM, the vector representation of the full

sample is then fed to the softmax function with a bias term for classification. Again, in

the single-task setting, there is only one such output layer classifying into the six levels,

while in the MTL one, there is an output layer in addition for the three-way auxiliary

classification task.

Figures 5.3 and 5.4 show the single and the multi-tasl CNN models, respectively.

Figure 5.3: CNN model in the single-task setting

Figure 5.4: CNN model in the MTL setting
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5.3.3 Loss Calculation

Loss is calculated in the same manner for both neural models. In either case, we use

categorical cross-entropy to calculate the loss L, hence:

L = − 1

N

N∑
i=1

C∑
c=1

1yi∈Cc log(pmodel[yi ∈ Cc]) (5.2)

where N is the number of samples and C the number of possible classes, 1yi∈Cc is the

indicator function for the i-th sample belonging to the c-th class, and log(pmodel[yi ∈ Cc])

is the probability which the model assigns to the case of the i-th sample belonging to

the c-th class.

In the MTL setting, this is done separately for both tasks. We then sum the loss from

the main and the auxiliary task, controlling, however, the weighting of the two. In a

similar manner to Mou et al. (2016), the total loss LTotal is calculated as

LTotal = λ Lmain + (1− λ) Laux (5.3)

where Lmain and Laux are respectively the individually calculated losses for the main

and the auxiliary task and λ controls to what extend we place more (or less) weight on

the main than on the auxiliary task; the larger the λ-value, the higher the importance

of the main task and its training signals.

5.4 Experimental Set-up

All models in our experiments were implemented with the Python neural network toolkit

DyNet (Neubig et al., 2017)1, using their AdamTrainer2 which incorporates optimisation

with Adam (Kingma & Ba, 2014). In all cases, the input samples were lightly pre-

processed by removal of control characters and detectable emoticons in the same manner

as described in Chapter 4.

We held out 25% of the full dataset for testing and further split the the remaing data into

a training and a dev set of 80% and 20%, respectively. We planned to train our models

for ten epochs, i.e. ten iterations through the whole training set. However, single-task

classification results on the dev set showed that overfitting already appeared to set in

after three. Therefore, in the below section we report on the classification results by

1The implementation of both models is based on Graham Neubig’s example implementations made
available at https://github.com/neubig/nn4nlp-code

2http://dynet.readthedocs.io/en/latest/optimizers.html

https://github.com/neubig/nn4nlp-code
http://dynet.readthedocs.io/en/latest/optimizers.html


Multi-Task Learning on Mixed-Domain Dataset 59

all models on the held-out test data after three epochs of training. For these runs, we

attached the dev dataset back to the train set so that we trained on a total of 109,625

samples and tested on the fixed test set of 36,542 samples.

With respect to the weighting of the main task loss versus the auxiliary task loss, we

experimented with the following values for the λ-parameter:

λ = {0.5, 0.8, 0.95, 0.999} (5.4)

5.5 Results and Discussion

All of our experimental results are presented in terms of accuracy and macro F1. Ta-

ble 5.3 shows the test set results of either neural system in the single-task setting; Ta-

ble 5.4 gives an overview of the test results in the MTL setting under the four different

values for the weighting parameter λ.

Acc Macro F1

Bi-LSTM 64.2 69.1
CNN 61.2 64.5

Table 5.3: Test set results for the Bi-LSTM and the CNN in the single-task setting

Main Aux
Acc Macro F1 Acc Macro F1

λ = 0.5
Bi-LSTM 65.8 69.7 94.4 85.7
CNN 61.0 63.8 93.2 79.7
λ = 0.8
Bi-LSTM 65.7 69.1 94.3 82.6
CNN 62.4 65.0 92.3 69.3
λ = 0.95
Bi-LSTM 66.8 70.3 92.9 74.2
CNN 62.6 64.0 91.6 67.9
λ = 0.999
Bi-LSTM 65.2 68.2 90.8 68.9
CNN 62.0 63.8 91.2 62.8

Table 5.4: Test set results for the Bi-LSTM and the CNN in the multi-task setting
with varying values for λ; Conditions where the multi-task performs better than single-

task setting in terms of both accuracy and macro F1 are highlighted

As demonstrated by these figures, in several cases the incorporation of the auxiliary task

in an MTL setting benefits the main task of level classification in terms of accuracy.

Under three conditions, highlighted in Table 5.4, improvement is seen in both accuracy

and the macro-average F1-measure, thus clearly showing improvement over the single-

task scores.
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Regarding the relative weighting between the main and the auxiliary task, these results

are not fully conclusive, particularly in the case of the Bi-LSTM. In the case of the CNN,

MTL’s benefit is most pronounced at λ = 0.8, which places significantly more weight

on the loss of the main than the auxiliary task. This also holds for the Bi-LSTM to

some extent, with the largest improvement over the single-task counterpart at λ = 0.95.

Benefits are also seen at λ = 0.8, albeit only in terms of accuracy (and not macro

F1). Unlike the CNN, however, the Bi-LSTM also benefits from MTL in the λ = 0.5

condition, which gives equal weight to the main and the auxiliary task. Overall, the

Bi-LSTM is possibly slightly more susceptible to the benefits of MTL than the CNN,

although this would need to be established by further systematic studies looking into

a larger set of parameters. In either model, giving too much weight to the main task,

with λ = 0.999, harms performance, likely since the training signals from the auxiliary

task are too little to be of use.

With regard to the models’ performance on the auxiliary task of predicting a sample’s

source dataset, the coherent picture is that the less weight on the auxiliary task, the

lower the scores from either neural model. This appears plausible.

5.6 Chapter Conclusion

This chapter does not (and does not intend to) offer a deep understanding of MTL in the

prediction of proficiency levels on the mixed dataset, but intends to examine whether or

not introducing the intuitively sound auxiliary task of dataset prediction is at all a viable

option for improving level prediction in an MTL architecture. We implemented two

neural models which are frequently used in NLP, viz. the Bi-LSTM and the CNN, and

contrasted their performance in level prediction including and excluding the auxiliary

task. Based on our experiments, we can clearly conclude that incorporation of the

auxiliary task benefits level prediction, given the appropriate weighting of the main and

the auxiliary task, and that MTL in such a setting merits further attention. Without

complex model architectures and any parameter tuning, for both the Bi-LSTM and

the CNN we obtained improvements over their single-task counterparts in terms of

both classification accuracy and macro-average F1. Such an MTL set-up might well

be applicable to other tasks where a model is required to learn from a mixed-domain

dataset. More thorough studies into how to determine the optimal weighting scheme for

the main and auxiliary task signals, how much representation all tasks should optimally

share, how MTL will perform in more complex, deeper neural architectures etc. will

shed more light on the benefits of MTL.



Chapter 6

Concluding Remarks

6.1 Summary and Main Findings

In this project, we performed automatic learner level prediction for English, using elicited

data on the one hand and spontaneous data on the other. Given a written sample

produced by some non-native speaker of English, the task was to predict the writer’s

level of English in terms of one of the six levels in the CEFR system. Our elicited data

were drawn from the Efcamdat corpus, a learner corpus comprising short essays written

by English learners as part of an online English course. In contrast, our spontaneous

dataset was extracted from the social media platforms Twitter and Reddit, distantly

supervised based on users’ self-reported proficiency levels. We performed a series of

classification experiments both within and across the two datasets as well as on their

joint, mixed-domain dataset. In terms of classification methods, we experimented both

with linear SVM and logistic regression, as well as with two neural systems in a multi-

task learning setting.

Our main findings, in response to our core research questions (Chapter 1), are as follows:

We see that it is indeed possible to obtain a set of distantly level-annotated data from

social media, based on taking users’ self-reported proficiency level to be the gold labels.

While the annotation is undoubtedly noisy, it is dependable enough to be used for

training supervised machine learning models with considerable success. It should be

noted, however, that our search for users who make reliable proficiency level self-reports

was not fully automatic but relied on much manual validation. Moreover, we do also find

that using user-reported levels as distant labels entails an unbalanced level distribution

in the dataset, seeing that self-reports for the lower levels A1 and A2 are understandably

rare.
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Our experiments show that, in spite of the difficulty posed by noise and sample brevity,

automatic prediction of learner levels from social media data texts is possible to some

extent. Using word unigrams and bigrams as well as character n-grams, our best in-

domain logistic regression model achieved an accuracy score of 63.4% and a macro-

average F1 value of 47.5%, which by far beats the baseline based on the training set

majority class. Hence, there are clearly useful and exploitable training signals in data

from the social media domain.

However, our findings suggest that level prediction in the social media domain do not

benefit from training in the language learning domain, the latter being too different to

inform the former. When training on the elicited Efcamdat data and testing on our

spontaneous dataset collected from social media, system performance is disastrously

bad. Direct transfer of level prediction training signals from the controlled language

learning context to the undirected social media context seems not to be possible.

6.2 Future Directions

Finally, we outline a few possible directions for further research in the direction of

automatically predicting learner levels based on spontaneous data:

A simple alteration to our experimental setting is to perform the prediction on a by-user

instead of a by-sample basis. Assuming that most users will each be the authors of a

set of multiple writings, by-user classification might be an easier task as there would be

more data to base predictions on than a single writing sample, which in some cases can

be little more than a short comment. It would also place the task closer to the field of

author profiling.

If feasible, it would also be interesting to have a small portion of the social media

data assessed and assigned to CEFR levels by human annotators (although this might

be difficult). Our in-domain classification on the social media dataset suggest that

our system is indeed learning to differentiate between proficiency levels. It could be

rewarding to validate this finding on a set of human-labelled test set.

With regard to the collection of the dataset, As once again mentioned above, our social

media dataset is highly unbalanced and heavily skewed towards the higher proficiency

levels, especially the levels C1 and C2. This is a plausible consequence of the manner in

which the dataset was created. Thus, future studies would ideally employ a second, com-

plementary method of distant supervision to generate more training samples specifically

for the lower levels.
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Last but nor least, since our experiments found cross-domain classification to be unsuc-

cessful, for one thing, a closer examination of the corpus characteristics and differences

between the two domains could be of interest. We could statistically evaluate the n-gram

distribution, the frequencies of function words versus content words, the mean length,

concreteness and other properties of the words composing each dataset etc. In particu-

lar, it would be interesting to see if the features which Hawkins and Buttery (2010) and

Crossley et al. (2012) identify as being predictive of learner levels vary to such an extent

between the elicited and the spontaneous data domains that in a cross-domain context,

they simply lose their value as predictors of proficiency level. In this context, exploration

of domain transfer, an entire field in its own right, would certainly be of interest. Our

own experiment involving multi-task learning is a small pilot experiment and has shown

promising results. Certainly more insight on how relevant training signals can be passed

between tasks and/or domains would benefit learner level prediction.

To our knowledge, our experiments are the first to look at applying (English) learner

level prediction to social media texts. In the above, we have identified only a few possible

continuations of the project. Certainly, much more in-depth research with regard to this

task is still needed in the future.
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Gambäck, B., & Sikdar, U. K. (2017). Using convolutional neural networks to classify

hate-speech. In Proceedings of the first workshop on abusive language online (pp.

85–90).

Geertzen, J., Alexopoulou, T., & Korhonen, A. (2013). Automatic linguistic

annotation of large scale l2 databases: The ef-cambridge open language database

(efcamdat). In Proceedings of the 31st second language research forum.

somerville, ma: Cascadilla proceedings project.

Gimpel, K., Schneider, N., O’Connor, B., Das, D., Mills, D., Eisenstein, J., . . . Smith,

N. A. (2011). Part-of-speech tagging for twitter: Annotation, features, and

experiments. In Proceedings of the 49th annual meeting of the association for

computational linguistics: Human language technologies: Short papers - volume 2

(pp. 42–47). Stroudsburg, PA, USA: Association for Computational Linguistics.

Retrieved from http://dl.acm.org/citation.cfm?id=2002736.2002747

Go, A., Bhayani, R., & Huang, L. (2009). Twitter sentiment classification using

distant supervision. CS224N Project Report, Stanford , 1 (12).
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