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Abstract

Accent conversion (AC), the process of transforming the accent of one speaker as if
they had the accent of another speaker, has been cited as a prospective solution for
challenges faced in language learning and voice-based technologies. Works such as
Aryal and Gutierrez-Osuna (2014b) and Zhao, Sonsaat, Levis, et al. (2018) have found
some success in using accent conversion to minimize the accents of various non-native
speakers, while work such as Mohammadi and Kain (2017) points to the multiple ap-
plications of voice conversion as a whole. Despite these works, accent conversion still

remains a relatively new section of research, with plenty to be investigated.

In this master’s thesis, we detail previous research as related to accents by outlining
important theories from the perspective of linguistics and provide details on how ac-
cent conversion arose as a prospective solution for language learning and voice-based
technologies by discussing research in computer-assisted pronunciation training and
automatic speech recognition systems. We then detail our experiments with accent
conversion using a traditional Gaussian Mixture Model approach following Aryal and
Gutierrez-Osuna (2014b) using the ARCTIC/L2-ARCTIC corpora to test non-native to
native conversion, and the Accents of the British Isles (ABI) corpus to test conversion
between two native, but distinct accents. We compare the performance of accent con-
version between these two separate corpora by recruiting the help of outside evaluators
to do a perceptual study. Through the perceptual study, we observe that the evaluators
agree that the converted audios in both corpora have the desired accent; however there
are issues in maintaining the identity of the speakers. We conclude with discussion on

possible sources for the results and directions for future work.
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Chapter 1

Introduction

1.1 Whatis an ‘““accent’?

Before continuing on, it is best to define what accent is, especially in the context of this
work. The definition of ‘accent’, much like any other word can fluctuate based on the
context it is used in, and by whom the word is used. Fundamentally, accents consist
of a number of features, including the vowels and consonants, the stress, rhythm, into-
nation, and even pauses that a speaker uses. The variation in these features contribute
to what many known as accent, or variations in pronunciation across speakers based
on location, ethnicities, social classes, native languages, etc (Crystal 2008). Accents
can be considered to be a part of dialects, where users of the same language may have
variations beyond pronunciation, such as usage in vocabulary or grammar. The line
between accents and dialects may often be blurred in everyday discussions and even
in academic analyses as accent and dialect (as well as language) could be considered
to be on a continuum, but for the sake of simplicity, we consider ‘accent’ to be solely

variations in pronunciation in this work.

1.2 Motivation for this work

Technology has flourished and led to a number of new state-of-the-art systems such as
improvements in commercial speech recognition and machine translation. However,
it can be argued that these benefits have not reached all potential users and uses to
the same extent. For example, many commercial systems like Google Translate, Siri,
Alexa, etc. have grown in the number of languages they have available, but when
considering the robustness of these systems across languages, it is often evident that

the systems function much better with languages that have more speakers across the



globe such as English or Spanish. In some cases such as with newer products, a user’s
native language might not yet even be available, which can cause them to relegate to
English.

These systems are also often better equipped to work with specific language varieties,
which are often considered to be the ‘standard’ or more common variety of that lan-
guage. In the context of speech recognition systems, this means that this could cause
potential challenges for speakers of other varieties— or accents, whether it be another
native but ‘non-standard’ accent or a non-native accent. This issue can be observed in
various viral videos, such as an Italian grandmother who is trying to activate a Google
Home device by saying, “Okay Google!” (Actis 2017) or another video where a woman
is trying to get her Amazon Alexa device to play a song called “Something’s Cooking
in My Kitchen by Dana” (Newsflare 2018). In both cases, both women have issues
with their devices properly understanding them likely because they speak English with

an accent that the systems are not (well-)trained on.

Yet when it comes to accents, teaching them can be as equally difficult as trying to have
them recognized by speech recognition systems. This extends into language teaching
and learning as well, where learners of a second language often have trouble acquir-
ing proper pronunciation. In fact, pronunciation has been a large standing challenge
in language learning due to its complex nature as observed in second language learn-
ing research (Flege et al. 1995; Lenneberg 1967; Scovel 1988). Unlike grammar and
vocabulary, which many language learners acquire without issue, pronunciation can be
challenging to both learn and teach due to the lack of clarity on how to teach it (Darcy et
al. 2012). This is because pronunciation involves a number of nuanced characteristics,
including stress, rhythm, vowels, and consonants, which can vary just small enough for

one language or accent to draw a distinction, while others conflate them.

In order to address these issues in speech recognition and language learning, researchers
have investigated variation solutions. Linguists focused on language learning and pho-
netics have examined the underlying causes of what creates obstacles in learning an
accent, with some concluding that native-like accents are nearly unobtainable after a
certain age threshold. Regardless of this conclusion, some researchers have turned
to language technology to develop potential pronunciation training systems with the
hopes of any possible accent reduction. Earlier studies using some of these pronun-
ciation training systems have shown that while they have the potential, many of them
suffer from the lack of appropriate feedback that the user can understand. Thus, some
researchers have pointed to the potential use of accent conversion as a mode of feed-
back as it has been hypothesized that hearing one’s voice pronounce something with the
desired accent is better feedback as compared to a point-based system or spectrograms,

which require specialized training to interpret.
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Accent conversion has also been proposed as a potential solution to challenges in
speech recognition. Because speech recognition is often trained on large amounts of
speech data, it can be unrealistic to attempt to collect sufficient speech data for the end-
less possible varieties or accents that exist for a single language. Instead, researchers
have pointed to accent conversion as a possible way to adapt current available systems
to more speakers, with the idea that accent conversion could change the accent of a
speaker into sounding more like an accent the speech recognition system can better
recognize without training it on a large amount of data. Similarly, accent conversion
can be applied to expand the number of available accents for text-to-speech systems for
languages that may have a large number of accents such as English or Spanish. This
adaptation process can be viewed similarly to other natural language processing tasks,
such as text classification or part-of-speech tagging of varying genres such as formal
news text vs. informal blogs or tweets, where currently available systems have been
adapted to perform better on more genres instead of creating specialized systems for

each genre type.

1.3 Research Questions

In this thesis, we focus on investigating the following questions:

e How effective is accent conversion in changing the accent of a non-native speaker
into sounding more like a native speaker while retaining their voice characteris-
tics, or identity? Concretely, how effectively can we convert the accents of learn-

ers of English to sound more like US English while retaining their identities?

e How effective is accent conversion to change the accent of two native speakers
of English who speak two distinct varieties? Specifically, how effectively can we
convert the accents of speakers of ‘non-standard’ English such as speakers from
Scotland, to sound more like Standard Southern English while retaining their

identities?

e Does the same methodology of accent conversion which is most often applied to
the conversion of non-native to native accents work similarly for native to native
accent conversion? Concretely, would we observe similar performance between

non-native to native accent conversion vs. native to native accent conversion?

1.4 Thesis Overview

The overview of the thesis is as follows:



In Chapter 2, we give a proper definition of voice conversion and accent conversion,
and a high level overview of some technical details needed to better understand the

current work.

In Chapter 3, we present the motivation for creating an accent conversion system by
discussing previous findings in second language acquisition research especially in rela-
tion to speech. We then cover previous work in voice and accent conversion to frame

the advances and shortcomings of previously developed systems.

In Chapter 4, the design and methodology of the experiments are presented alongside

the appropriate tools utilized to conduct each one.

In Chapter 5, the results of the experiments previously described are presented along

with some short discussion and conclusions drawn from the results.

In Chapter 6, the thesis is concluded with a reflection on the work presented along with

some appropriate suggestions for future work.



Chapter 2
Background

Before delving into previous literature and its relevance to this work and the fields of
NLP and language learning as a whole, we detail both voice conversion and accent
conversion in order to help better distinguish them. We also explain some common
speech technology concepts typically used in these systems at a high level in order to

make the current work more accessible to those unfamiliar with the area.

2.1 Voice conversion

To properly frame voice conversion, we take a look at Mohammadi and Kain (2017)
who present a recent overview of the subfield. Following a definition set forth by the
authors, voice conversion refers to the transformation of a speech signal of a source
speaker to make it sound as if it were uttered by a farget speaker in any chosen fash-
ion with the utterance still being intact. Some of these changes can include changes in
emotion, accent, or phonation (whispered/murmured speech). There have been a num-
ber of proposed uses for VC, including the transformation of speaker identity (perhaps
for voice dubbing), personalized TTS systems, and protection against biometric voice

authentication systems.

Voice conversion often involves a large number of processes, one of which includes de-
ciding the appropriate type of data. To start, one must decide whether to have parallel
or non-parallel speech data. Parallel speech data refers to speech data that has source
and reference speakers that say the same utterance, so only the speaker-specific infor-
mation is different, while non-parallel data would indicate datasets where the utterances
are not the same, and thus entail further processes to create a target waveform. Even
though parallel corpora are more desirable as it reduces the footprint necessary for con-

version, parallel corpora are often curated for specific purposes and are not available in
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most cases. Because of its simplicity, in some cases, researchers have tested making a
psuedo-parallel corpus using acoustic clustering when working with non-parallel data
(Lorenzo-Trueba et al. 2018; Sundermann et al. 2006).

Other aspects that need to be considered as discussed by Mohammadi and Kain (2017)
include whether the data is text-dependent or text-independent. Text-dependent cor-
pora indicate that the data has word or phonetic transcription, which can ease the align-
ment process during training, while systems using text-independent data would need to
find similar speech segments, using a method like acoustic clustering before training.
Finally, one minor aspect that is not considered often is the languages of the source
speaker and target speaker. Although many systems tend to focus on voice conversion
between two native speakers of the same language, systems that aim to convert between
two speakers speaking in different languages would have to be wary of potential map-
ping issues between sounds. This is especially important to consider in terms of accent

conversion, which will be discussed in the following section.

Aside from considering these aspects of the corpora, the type of features extracted from
the waveforms heavily impact the quality of the conversions. In investigating the most
salient features of speaker individuality, previous researchers have concluded that the
average spectrum, formants, and average pitch level are the most relevant. Concretely,
the average spectrum, or the average of the spectral envelopes/curves in the frequency-
amplitude domain is particularly useful for speaker individuality as it captures voice
quality/timbre information. That is to say, while the general shape of the spectra may
be somewhat similar for a single utterance due to the equivalent sounds, the spectra
would also contain nuanced information on Aow an utterance was pronounced. Simi-
larly, formants, the concentration of energy around certain frequencies, are useful for
capturing speaker characteristics as although they retain mostly similar spacing be-
tween frequencies across phonemes, they can also be affected by physical features such
as the length of a speaker’s vocal tract. This means that although a certain sound may
be most typically represented by 3 formants separated by 1000Hz each, one speaker
may pronounce it with the formants at S00Hz, 1500Hz, and 2500Hz, and another may
pronounce it at 1000Hz, 2000Hz, and 3000Hz.

Following these conclusions, most VC systems focus on converting these features, and
often work at the frame-level (windows of ~20ms), with the assumption that the frame
represents a stationary sound. From these frames, there are a number of common lo-
cal features that are extracted to represent the signal. These include the cepstrum, line
spectral frequencies (LSF), and the aforementioned spectral envelope and formants.
Like the spectral envelope, line spectral frequencies represent a speech signal in the
frequency-amplitude domain, while the cepstrum can capture characteristics of indi-

vidual sounds in the source-filter model of speech. We describe the cepstrum in greater
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detail in section 2.3 alongside the feature extraction process.

On top of these local frame-based features, contextual features can be considered as
well as the local features alone are often limited in what they can model. These contex-
tual features can be as simple as adding delta and delta delta features, although methods
such as event-based encodings have been tested as well. With event-based encodings,
a sequence of local features are separated into different event targets and transitions
to model an utterance. However, this method faces the challenge of properly defin-
ing events within the sequence. Thus, although many algorithms and methods exist
to model a signal, most systems focus on working with mel-frequency cepstrum co-
efficents (MFCCs) and deltas/double deltas, as they are very standard in most speech
synthesis and recognition systems in general. The extraction process of MFCCs and

deltas/double deltas are described in in section 2.3.

After the chosen features are extracted, the features between the source speaker and tar-
get speaker have to be matched to prepare them for conversion. In parallel conversion,
this means that each sound in an utterance has to be mapped between the speakers,
which can be done manually but more often is done using an algorithm such as dy-
namic time warping (DTW), which looks for the shortest path to match similar sounds

regardless of duration.

Although this is usually an effective algorithm to find the best alignment, there can be
issues in aligning the sounds as it assumes that the same phonemes of the speakers have
similar features (Mohammadi and Kain 2017). This can be improved upon by adding
phonetic transcription, or using methods such as forced alignment, but these methods

may also have other limitations.

With non-parallel voice conversion, the alignment process becomes more complex as
utterances from the source and target speakers have to be broken down into individual
phonemes, and then the desired sounds must somehow be collected and synthesized to
produce the converted speech. This can be done using methods like unit-selection text-
to-speech (TTS), but this requires a large amount of annotated training data. Algorithms
such as INCA can be used in addition to work without annotation by iteratively search-
ing for the best frame pairs. Further information on the various alignment methods are
detailed within Mohammadi and Kain (2017).

When the best frames between the source and target speakers are finally matched, a
method has be to chosen to map the relationship between the frames. This has tradition-
ally been done by using Gaussian Mixture Models, although neural networks have also
become prevalent as well as they become ubiquitous throughout computational model-
ing. A detailed but accessible explanation of these algorithms and how they function is

provided in section 2.3.
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Figure 2.1: The training and conversion processes of a typical VC system. Taken from
Mohammadi and Kain (2017).

A visual representation that summarizes the voice conversion process can be seen in

Figure 2.1.

2.2 Accent conversion

Like voice conversion, accent conversion is dedicated to convert the speech of a source
speaker into sounding like a rarget speaker. However, accent conversion is specifically
focused on morphing the accent of the speech signal, as opposed to sounding directly
like the target speaker. Succinctly stated, “Accent conversion seeks to transform sec-
ond language L2 utterances to appear as if produced with a native (L1) accent,” (Aryal
and Gutierrez-Osuna 2014a). Because the confusion that can arise from using the ter-
minology source speaker and target speaker, the source speaker is often referred to
as the native or L1 speaker, while the target speaker is referred to as the non-native
or L2 speaker. This seems somewhat counter-intuitive, but this allows for us to create
a voice that retains the non-native speaker’s identity and the native speaker’s accent
(Zhao, Sonsaat, Levis, et al. 2018).

Accent conversion poses a further challenge on top of voice conversion as the audio
of the source speaker and target speaker cannot simply be forced-aligned due to the

fact that the voice quality and accent of the target speaker would remain (Aryal and
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Gutierrez-Osuna 2014b). This means that accent conversion may require more spe-
cialized alignment methods beyond standard frame-by-frame alignment that can help
preserve the right speaker information while suppressing the other undesired informa-
tion. This is further discussed in the examination of previous work in accent conversion

in section 3.4.

2.3 Technical Background

2.3.1 Mel-frequency cepstrum coefficients

Before any actual speech processing can happen, the speech signal needs to be broken
down into sizable and meaningful representations. This is most traditionally done by
using mel-frequency cepstrum coefficients (MFCCs) to create vectorized representa-
tions of the acoustic information. Although MFCCs can be extracted fairly easily using
a number of tools or available packages, there are a number of steps required before
a speech signal can be represented as a sequence of N number of MFCC vectors. As
the feature extraction process is heavily related to standard signal processing as well
as acoustic and articulatory phonetics, the motivation and ideas utilized to extract fea-
tures from speech signals can be extended into one large body of work itself. In order
to succinctly describe the MFCC extraction process, we reference Jurafsky and Martin
(2009).

The most common first step in feature extraction for speech signals is referred to as
pre-emphasis. When we produce various sounds, the energy that each sound contains
is often concentrated around the lower frequencies, which causes information in the
higher frequencies to be obstructed. This is referred to as spectral tilt and is caused
by the physiological nature of the speech production system. In order to balance the
energy in the speech signal, the speech signal is passed through a filter which boosts
the amount of energy in the higher frequencies. In terms of signal processing, this filter
is referred to as a first-order high pass filter and can be represented using the formula

seen in Equation 2.1 where x[n] refers to the original signal and o is 0.9 < 1.0.

y[n] = x[n] — ax[n —1] (2.1)

After the speech signal goes through pre-emphasis, the speech signal can be separated
into smaller parts such as phones or subphones. Because the speech signal usually
contains a whole word or utterance, it is desirable to capture consistent or ‘stationary’

points of the signal. This is done by going over the speech signal using a process called
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Figure 2.2: The windowing process. A reduplication of an image from DeMarco
(2015).

windowing, where each window is assumed to contain a non-changing part of the signal.
These windows usually contain between 10ms to 30ms of speech, and usually overlap
about 30% - 50% with the previous window in order to retain all of the necessary
information from each part of the signal. After the windowing process, the speech
signal is said to be split up into N number of frames. The windowing process can be
represented using the formula seen in Equation 2.2 where the signal s[n| is multiplied
by the window value w(n| at each time n. A visual representation of the windowing

process recreated from DeMarco (2015) can be seen in Figure 2.2.

yln] = win]s[n] (2.2)

Even though the word ‘window’ might suggest that its shape would be a rectangle, a
rectangular window on its own most often leads to distorted information because of the
sudden cuts that occur on the edges of the signal. In order to address this problem,
special windowing functions such as the Hamming window, are used to decrease the
values on the ends of a frame. An example of windowing can be seen in Figure 2.3,
where the hamming window can be seen tapering off on the edges compared to the

rectangular window.

After the signal is separated into different windows, the spectral information can be ex-
tracted using a special tool or formula known as the Discrete Fourier Transform (DFT).

This allows us to find how much energy is in specific frequency bands. By passing

10



60
—— rectangular

hamming
50
40 J

30
20

10

-10

Figure 2.3: An example of the rectangular window vs. the Hamming window on a
signal. Taken from Le Bourdais (2015).

the windowed discrete signal through the Discrete Fourier Transform, we can get a
complex number that contains the magnitude and phase for each frequency component.
After the Discrete Fourier Transform, the frequencies are converted onto the mel scale,
using a set of filters called mel filter banks. The purpose of the mel scale is to repre-
sent human hearing, which is more sensitive to lower pitch sounds (under 1000Hz) as
compared to higher pitch sounds. In the mel scale, sounds below 1000Hz are placed
on a linear scale, while sounds above 1000Hz are on a logarithmic scale. The mel filter

banks can be seen in Figure 2.4.

Afterwards, the cepstrum is calculated in order to separate source information from fil-

ter information. From a high level, the source-filter theory says that all sounds come
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o ™
T

Amplitude

o o o
o N S
O e

il L
2000 2500
Frequency

Figure 2.4: Mel-filter banks. Taken from Fayek (2016).
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Figure 2.5: The waveform to spectrum to cepstrum process.

from the glottis (the area around our throat) and below, which contains information
common to all speech sounds, such as the fundamental frequency (or pitch) of some-
one’s voice, as well as glottal pulse information. This is compared to the filter, which
says that adjusting the vocal tract (e.g. moving the tongue and other articulators) de-
fine each individual sounds. By retaining just the filter information, we can model an
individual phone. In terms of the given cepstral values, the first 12 cepstral values
are taken as they neatly represent the filter information. In terms of signal process-
ing, the cepstrum is calculating by using the ‘inverse discrete Fourier Transform of the
log magnitude of the DFT of a signal’.The formula for calculating the cepstrum can
be seen in Equation 2.3, where x[n] represents our initial signal, e represents Euler’s
number (~ 2.718), j represents an imaginary power, N represents the number of time
samples from the signal, n represents the current sample, and k represents the current
frequency between 0 and N — 1 Hertz (Azad 2017). While the Fourier Transform is

challenging to follow mathematically, Figure 2.5 succinctly summarizes the process.

N—-1

Zx eJAJ/Ik”

)eJ Fkn (2.3)

Z log(

Even though these steps alone could be used to model a speech signal, additional infor-
mation is often added to further better model each frame. Among this information is
energy, which can help us further distinguish a sound, as vowels and sibilants (‘breathy’

sounds like /s/ or /f/) have more energy compared to stops (‘hard’ sounds like /k/ or /p/).
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Figure 2.6: The extraction of sequence 39-dimensional MFCC vectors from a wave-
form. Taken from Jurafsky and Martin (2009).

Energy is calculated using the formula seen in: Equation 2.4 where x represents the sig-

nal and ¢ represents a point in time.

9}
Energy = Z X2[f] (2.4)

=1

On top of the 12 MFCC features and 1 energy feature, features known as deltas and
double deltas are often added to represent the change in the speech signal frame to
frame. Concretely, deltas can be used to model changes in formants or a change from
stop closure to stop release. Double deltas are then added to represent the changes
between deltas, which provide further precision in modeling an utterance. In total, this
gives us 39 MFCC features from:

12 cepstral coefficients

12 delta cepstral coefficients

12 double delta cepstral coefficients
1 energy coefficient

1 delta energy coefficient

1 double delta energy coefficient

A visual representation of the whole MFCC extraction process can be seen in Fig-
ure 2.6.

2.3.2 Gaussian mixture models

A Gaussian mixture model is a type of probablistic model that aims to represent nor-
mally distributed groups within a set. This is based on the idea of the normal, or Gaus-
sian distribution, which can be see in Figure 2.7. The Gaussian distribution is char-
acterized by two main features: the mean (the arithmetic average of the data) and the
variance (the spread of the data from the mean). The Gaussian distribution is the most
important distribution used in probablistic modeling as it has been theorized that the
average of independent random variables would look like a normal distribution (McG-
onagle et al. 2016).
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Figure 2.7: The Gaussian distribution with different means (i) and standard deviations
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Gaussian mixture models are based on the principle that if a unimodal (one ‘peak’)
dataset can be fit with a Gaussian distribution, then a multimodal (multi ‘peak’) dataset
is just a ‘mixture’ of smaller Gaussian distributions. A common example given to
understand the Gaussian distribution and Gaussian mixture models often references
height. It is often said that men are taller than women on average, with men being
178cm (5 foot 10 inches), and women being 165cm (5 foot 5 inches). If we used two
separate Gaussians to model each gender, we could ‘mix’ them to model the likelihood
of a certain data point (e.g. person) being a male or a female (McGonagle et al. 2016).
For example, using a hypothetical example with the averages previously mentioned, we
could see that the likelihood of a person that is 168cm is more likely to be a male than
a female. This is demonstrated in Figure 2.8. The probabilities are calculated as the
following: the Male is P(66in) = .065 / (.065 + .104) = .38 and the Female P(66in) =
.104 /7 (.065 + .104) = .62, meaning that that for someone 66 inches, it would be much
more likely that they are a woman.

However, as simple as this sounds the most advantageous point of the Gaussian mixture
model is the fact that it is an unsupervised model that can be used when the subpop-
ulations of the data are unknown. Thus, following the previous example of height, a
Gaussian mixture model could be used to model the height of the two genders without

knowing the gender of each data point.

Because it is an unsupervised model, it requires a special method to estimate the ap-

propriate parameters. The most common method used for this is known as expectation
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Figure 2.8: An example of a GMM using male and female height. The likelihoods for
each gender for someone 168cm (66in) tall is calculated using the percentage of men
and women in the dataset from the vertical axis.

maximization. This algorithm is used for maximum likelihood estimation. In mathe-
matical terms, this can be represented by observing the average log-likelihood to know
whether the GMM is modeling a set of vectors R well. A higher average log-likelihood
indicates that the GMM is performing well. The formula from calculating average log-
likelihood, taken from Kinnunen and Li (2009), can be seen in Equation 2.5 where M
represents the number of components, K represents the number within the codebook, m
describes the m™ Gaussian component, P,, is the prior probability of the m™ Gaussian

component, X, represents the co-variance matrix and (,, represents the mean vector.

1 K M
LLgyg(RA) = e Zlog Y PuN(rel thn, Zm) (2.5)

In other words, this algorithm tries to find the most appropriate group for each data-
point by calculating the probability of it being in a certain group and selecting the most
likely one. This is done iteratively by initializing reasonable values, and then calculat-
ing the probability of membership in each cluster (the expectation step) and updating
each clusters location, normalization and shape using the probabilities calculated (the
maximization step) until the algorithms converge (VanderPlas 2016). A visual example

of the convergence process can be seen in Figure 2.9.

Due to the complexity of the formulas, the mathematical representations for the

expectation-maximization steps are taken from the discussion of DeMarco (2015)
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Figure 2.9: Gaussian Mixture Model convergence using the Expectation-Maximization
algorithm. Taken from McGonagle et al. (2016).
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which in turn cites Rose and D. Reynolds (1990). The formulas are represented as

follows.

1. The E-Step: The posterior probabilities are calculating for all of the training

vectors of a given class model A using Equation 2.6.

PN (7| m, 2
?il PiN(rn’.u'i?Zi)

2. The M-Step: The M-Step utilizes the posterior probabilities from the E-Step to

P(m|r,,A) =

(2.6)
estimate model parameters using Equation 2.7,Equation 2.8 and Equation 2.9.
1 K
Pm= 2} P(mlr,A) @7
K k=1

A Zg:lp(ka’)’)rk

m = 2.8
o = K Pl A) &9

$ o Yr P(m|re, A) (ri — i) (i — )T
Y P(mlre, )

3. Set P, = P, Wn = My, and X, = ¥, and repeat the E-step and M-step until

(2.9

convergence.

This model can be compared to the k-means clustering algorithm, as both can be used
to cluster different subgroups. Like the k-means algorithm, GMMs also require us
to specify a number of components, which usually indicate the number of subgroups
we hope to cluster. However, k-means suffers from not using a probablistic model
to assign clusters, which means that data points can only be assigned to exactly one
cluster. The cluster shape of k-means is also limited to only circles, which makes it
inadequate to model data with different distributions. GMMs manage to address these
issues by using the expectation-maximization algorithm to calculate the probabilities
of cluster assignment and by allowing for different covariance types which permits for
different cluster shapes beyond the circle. Aside from being useful as an unsupervised
classification algorithm, GMMs can also be seen as a generative algorithm as it models
the overall distribution of the data (McGonagle et al. 2016). This means that a GMM

can be used to generate new data points following the distribution of the given data set.

In the case of speech, Gaussian mixture models are most often used to model individual
sounds using MFCC feature vectors. The usage of Gaussian mixture models to classify
vocal features became popularized through the work and success of D. A. Reynolds

(1995) . Because MFCC feature vectors are multi-dimensional (~39-dimensions), the
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Figure 2.10: A visual representation of the perceptron.

Gaussians within the model are also multi-variate. However, the same principles de-
scribed above still stand, and allow us to calculate the probability of a sound from a
given frame. More formally, the most likely class for a an utterance can be described
using the formula seen in Equation 2.10 taken from O’Shaughnessy (1999), where T is
the test utterance and A" is the GMM.

P n
N* =argmax P(A"|T) = argmaxw

(2.10)
1<n< 1<n< P(T)

2.3.3 Neural networks

As indicated by its name, neural networks or more formally, artificial neural networks
are said to be based on the architecture of the brain’s neurons. Like the human decision
making process, neural networks take in a certain amount of information or input, to
make a decision, or more formally, to give an output. This idea can be easily understood

by taking a look at the perceptron, the most simple form of an artificial neuron.

A perceptron takes in a number of binary inputs (represented in the image by x;,x>,x3)
and outputs a single binary output (Nielsen 2015). The output is determined by whether
the inputs are less than or greater than a defined threshold, and each input can be
weighted to represent the importance of that input in determining the output. Math-
ematically, this can be represented as the following where w represents the weight and

X represents a particular value:

0 if ) ;wjx; < threshold
output =
1 if };wjx; > threshold

To provide a concrete example, we can use a yes-no question (with O representing ‘no’,

and 1 representing ‘yes’) such as:
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“Will I watch another episode of this TV show?”
As ‘inputs’, we can use the following questions:
1. Do I like this show?
2. Is it still before my bedtime?
3. Am I free tomorrow?

To decide the weights of these ‘inputs’, we can consider how important we think each
question is. Perhaps the most important question is Question #1, and thus we can assign

a weight of 4, while the other 2 may receive a weight of 2 and 1 respectively.

Finally, we need to define a threshold to determine whether we output a 0 (no) or a
1 (yes). Evidentally, the lower the threshold, the more likely we’re going to watch
another episode. For example, with the given weights and a threshold of 2, we have the

following possible outputs for each question:
1.4*1=40R4*0=0
2.2*%1=20R2*0=0
3.1*1=10R1*0=0

We can see that we would end up with a final output of 1 (yes) in the case that it is
still before our bedtime (2 points) and/or if we like this show (6 points/4 points), and

regardless of whether we are free tomorrow.

Even though the previous notation of the perceptron is more simple, the perceptron, and
more generally speaking, the neuron is more often described in the following notation
where w represents a vector of the weights, x represents a vector of the inputs, and b

represents bias, to replace the threshold.

0 ifwxx+b<0
out put =
1 ifwxx+b>0

The bias can be understood as being equivalent to -threshold. It can also be understood
in terms of the neuron metaphor of how easy it is to get the neuron to ‘fire’. That is
to say, the bigger the bias, the more likely we output a 1, and the smaller the bias, the
more likely we output a 0.

Although perceptrons are very simple to understand, they tend to not function well in
more complex situations due to their structure. In particular, a small change in the

weights could easily cause the output to go from a 1 to 0 and vice versa. Of course,
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Figure 2.11: An example of a neural network.

in the case of the example above, this may not matter too heavily, but in training large
systems, this property is too afflicting to be reliable (Nielsen 2015).

Instead, the most basic neuron used in machine learning is the sigmoid neuron, which as
the name indicates, utilizes the sigmoid function to decide the threshold. This prevents
the neuron from being affected by small changes like the perceptron, as the decision
function is no longer linear. The sigmoid neuron is also much more flexible, as it no
longer requires a binary input and can instead take on any values between O and 1.
Aside from the sigmoid, there are other non-linear functions that can be used, such
as the tanh function or another known as the rectified linear unit (ReLU) which can
offer slight improvements over the sigmoid depending on the task. In general, these
non-linear functions are what give neural networks their vast power to ‘learn’ (Nielsen
2015).

While a single neuron may be able to make very basic decisions, it is through a com-
bination of them that we can make more complex systems that do tasks such as named
entity recognition, object detection and voice conversion. From here, we get the name

of neural network. In Figure 2.11, we see an example of a more typical neural network.

In the example above, we have three inputs and two outputs, and a new concept known
as a hidden layer. The hidden layer is said to be able to ‘uncover’ more additional
information about the input in order to better decide the output. While the current
example only has one hidden layer, the currently popular ‘deep learning’ comes from
adding multiple hidden layers to create a large neural network structure. Like hidden
layers, the number of inputs and the number of puts can vastly vary depending on the
dataset. For example, in the case of part-of-speech tagging, we would like the input
and output size to be the same per sentence, as we need to have a part-of-speech tag
applied to each word. The output layer can the output the probability of each possible

part-of-speech tag (noun, verb, adjective, etc.) per word, and we can select the most
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probable as that word’s part-of-speech.

While neural networks are described at a high level here in order to facilitate general
understanding of this work, more complex neural network architectures and features
are not addressed here. Further reference regarding neural networks can be found in
Nielsen (2015), the main reference for the description here, and Goldberg (2017), which
provides both an overview on neural networks and discussion of their use in natural

language processing.

Neural networks in the context of voice/accent conversion will be further described in

section 3.4.
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Chapter 3
Literature Review

This section provides a brief overview of second language acquisition and education
in order to frame the challenge of pronunciation and to motivate the potential usage
of technology in language learning. We point to some previous research in spoken
language technology used in the domain of language education, including discussion
on computer assisted pronunciation (CAPT) systems in order to shed light on where
accent conversion could be applied, and then detail some important pivotal work done

in both voice and accent conversion.

3.1 Theoretical and educational motivations

Linguists have long debated over the possibility of whether second language (L2) learn-
ers (e.g. adult learners) could ever acquire a language to the extent of a native speaker.
Some still cite ideas like the Critical Period (CP) Hypothesis and neuroplasticity which
claims that learners cannot acquire language (at least as well as a native speaker) after
a certain point in time due to the loss of plasticity in the brain (Lenneberg 1967; Scovel
1988). This theory has been particularly cited in reference to pronunciation, perhaps
due to the obvious difficultly in overcoming the L1 negative transfer (e.g. effect of our
native language) that many, if not all, language learners experience in speaking a new

language.

Since the emergence of the CP hypothesis, many linguists have investigated the rela-
tionship between a number of variables such as age, motivation, and language use, that
interact with the level of language acquisition. Piske et al. (2001) and Lengeris (2012)
present an excellent review of different literature that investigates the interactions be-
tween these various variables and their effects on foreign accent. They discuss that

although many L2 foreign accent studies do support the idea that the earlier a language
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learner learns a language, the better their accent would be, there isn’t strong enough in-
dication to support the notion of a ‘critical’ period. They do concede that many studies
do indicate that there is a linear correlation between age and foreign accent, but this
only indicates a ‘sensitive’ period, not a ‘critical’ period, a distinction that some fail to
acknowledge. That is to say, following advocates of the CP, the critical period should
end roughly around 12 years old (Scovel 1988), or no later than 15 years old (Patkowski
1990), and beyond this point, there would be “a sharp drop-off in a learner’s abilities”
(Lengeris 2012), indicating that a learner could not acquire a native-like accent beyond

this period.

Other researchers such as Long (1990) suggested that an L2 learner could speak accent-
free if they learned the language before 6 years old but not after 12 years old. Although
this notion also has been supported through a number of studies, there has also been
counter-evidence found in other studies that found that there were learners younger than
6 who had detectable traces of a foreign accent. In other studies that examined learners
of English who started beyond 12 years old, they also found evidence of learners with
no detectable foreign accent. For example, in Flege et al. (1995), it was found that 6%
of 120 native speakers of Italian who started learning English after the age of 12 years
old had native-like pronunciation, and in Bongaerts et al. (1995), it was found that 5
out of 11 speakers were rated comparable to the native English control subjects. Thus
Piske et al. (2001) conclude that while there is evidence that earlier learners can learn
an L2 with less chance or degree of a foreign accent, this does not necessarily support
the CP hypothesis or the idea that the loss of plasticity in the brain leads to an inability

to acquire language.

Aside from the issue of whether or not language learners could ever achieve native-like
performance, another question that arises is whether or not there is even a need for
learners to aim so high. In Munro and Derwing (1999), they discuss the interaction
between foreign accent, comprehensibility and intelligibility and point out that the goal
for many L2 learners is to communicate and not necessarily sound like a native speaker.
Thus while there are unique groups of learners like those from Bongaerts et al. (1995)
that do achieve native-like pronunciation, Munro and Derwing (1999) point out that
most learners strive for effective communication. In order to observe the interaction
between foreign accent, comprehensibility and intelligibility, a they conduct a percep-
tual study on the performance of native Mandarin speakers. Following this study, they
found that despite the fact that some speakers may have what some consider a ‘heavy
accent’, this does not automatically mean that they are unintelligible. However, they do
cite that some accents may cause longer processing times than others. When observing
the interaction of variables such as phonemic errors and intonation with intelligibil-

ity and comprehensibility, they found that intonation was the most influential factor
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in comprehensibility, while phonemic errors affected intelligibility. This substantiates
the concepts of comprehensibility and intelligibility themselves, as intelligibility is the
degree a speaker is understood without involving interpretation (e.g. “What did they
say?”), while comprehensibility is the degree a speaker is understood in terms of mean-
ing (e.g. “What do they mean?”). Thus, they suggest that successful communication
requires attention to both sounds and prosody for better comprehensibility and intelli-
gibility.

While linguists make these discoveries and observations of L2 learning, it seems that it
takes a lot of effort for them to trickle down to the foreign language classroom. In Darcy
et al. (2012), they find through a small survey of 14 teachers that although teachers tend
to find pronunciation to be ‘very important’, the majority do not teach it at all. When
asked why they do not teach it, they cited reasons such as ‘time, a lack of training
and the need for more guidance and institutional support’. Even though the number of
teachers surveyed may be significantly small, this gives us a glimpse through the lens
of what language teachers themselves experience in relation to pronunciation. We see
that even though teachers would like to address it, this would require a restructuring in
their curriculum and training— something that would undoubtedly take even more time
before students get more pronunciation attention. Compounded with the issue of time
and the fact that not all learners need or want equal amount of pronunciation training,

it may be unlikely to see such change in second language curriculum so soon.

This points to the potential solution of employing a technology-based system to im-
prove pronunciation as learners could individually address their needs outside of the

classroom.

3.2 Spoken language technology for education

Over the decades, as speech technology has slowly evolved and started to show its po-
tential, many researchers have tried to test its limits by innovating a number of systems
to address the challenge of pronunciation. Included in these systems are systems such
as computer-assisted pronunciation training (CAPT) systems which attempt to tutor
pronunciation through explicit teaching as well as more modern gamified techniques,
which attempt to coerce language learners in to practicing pronunciation by making the

process more engaging.

Among the two, CAPT systems have had more history due to the extra development
and testing gamified techniques require. In fact, gamified systems can be considered
a subclass of CAPT systems, as both require a fundamental setup in order to assist

the language learner. In general, these systems utilize some form of automatic speech
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recognition (ASR) to record a speaker and compares their recordings (usually) with a
native speaker gold standard. They also usually include a feedback mechanism with
a combination of pitch contours, spectrograms or audio recordings to help the user
adjust their pronunciation, with gamified systems including at least a point mechanism

to motivate the user.

In order to understand the connection between language education and spoken language
technology, we take a look at Neri et al. (2002) where we are presented with a through
overview between the two areas. Here, we see that aside from the classroom, there
seems to be an issue in relating the findings of linguistics/language pedagogy with
technology. Part of the reason, they suggest, stems from the fact that there are not ‘clear
guidelines’ on how to adapt second language acquisition research and thus many CAPT
systems ‘fail to meet sound pedagogical requirements’. They emphasize the need for
the learners to have appropriate input, output, and feedback and exhibit how the systems
available at the time were lacking. For example, they criticize some CAPT systems
that were prevalent at the time including systems like Pro-nunciation and the Tell Me
More series for utilizing feedback systems that give the users feedback in waveforms
and spectrograms, which cannot be easily interpreted without training. Further, they
argue that although visual feedback has its merits, this kind of feedback suggests to
the user that their utterance must look close to what is shown on the screen, which
is not the case. An utterance can be pronounced perfectly fine, but look completely
different from a spectrogram, and especially a waveform due to the number of features
represented in each visualization, such as the intensity, which will indefinitely vary
from user to user and the given examplar. They conclude their article by making it
a point to discuss recommendations for CAPT systems, by stating that they should
integrate what has been found in research from second language acquisition, and to
train pronunciation in a communicative manner to give context to the learners. They
also point to the problematic area of feedback and advise that systems provide more
easily interpretable feedback with both audio and visual information, and propose that

systems give exercises that are ‘realistic, varied, and engaging’.

While Neri et al. (2002) makes solid recommendations in improving CAPT systems,
building pronunciation systems that take all of the previous suggestions into consider-
ation requires adept planning and expertise, and can be demanding for most research
groups. Instead, some of have tried to adapt already existing technology and build a
small architecture around it. For example, (Tejedor-Garcia et al. 2017) experiment with
utilizing synthetic voices for corrective feedback in a pronunciation training tool. In
their study, they use Google’s offline Android text-to-speech (TTS) system as feedback
for B1 and B2 Spanish learners of English, and have them focus on the six most dif-

ficult pairs of vowels. In order to train the users, the researchers first had them watch
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videos that describe the articulatory/perceptive features of the vowels, and had them
listen to a number of minimal pairs produced by the TTS system in succession. After-
wards, they were asked to discriminate minimal pairs in a listening task and then asked
to pronounce them. From this study, they conclude that making use of commercial
TTS systems are beneficial for users and instructors alike as indicated by both the im-
provement in performance by the users and the feedback given by those involved in the
experiment. However, because the study was limited to individual words and only six
pairs of vowels, further experimentation needs to be conducted in order to understand

whether these learners can generalize their training.

While a brief overview, it is evident that there is a large potential for appropriately
adapting technology to guide and help language learners and teachers alike. Yet, in
order to provide long-standing worthwhile results, further consideration needs to be
given to the suggestions and evidence of previous research and should be integrated in
the design and implementation of future systems. This implies that the appropriate time
and resources may need to be dedicated in order to push the boundaries of technology

and its application in language education.

3.3 Voice conversion

There have been a number of efforts to design voice conversion systems using various
methodologies. Much like the rest of the speech technology field, earlier voice con-
version systems began with utilizing MFCCs and GMMs for conversion and slowly

evolved towards utilizing more advanced features and adaptation techniques.

In particular, a variation of GMM voice conversion set forth by Toda, Black, et al.
(2007) has become what appears to be the standard set-up. Following their reasoning,
they argue that although regular GMMs perform fairly well in voice conversion, they
also lead to the deterioration of speech quality. Instead, they propose that by using a
maximum-likelihood estimation of the spectral parameter trajectories, issues that cause
the loss of quality such as oversmoothing of the spectral features can be avoided. They
provide detailed theoretical evidence to support their method which can be further ob-

served by taking a look at their paper.

GMMs have long been used for voice conversion alongside other speech tasks, but more
recently another method— or more accurately another feature in place of MFCCs, known
as i-vectors have taken off. To put concisely, i-vectors are akin to word embeddings in
text-based natural language processing tasks in the sense that i-vectors encapsulate any
type of desired speech information in a vectorized fashion. This may be confusable

with MFCCs, which also vectorize speech information; however MFCCs specifically
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vectorize individual speech sounds from frames, while i-vectors tend to vectorize more

large-scale, dynamic speech information.

The usage of i-vectors have proven to be successful in a number of tasks, such as
speaker verification, language identification, and native accent identification. They have
become especially popular due to the fact that they work well with unlabeled acoustic
data. Referring back to the overview of voice conversion in the previous section, it is
mentioned that labeled acoustic data often leads to better results in the conversion, but
is also often unavailable. Thus i-vectors are able to fill this gap in the lack of available

labeled data and the loss of conversion quality.

In the instance of voice conversion, i-vectors are made of speaker super-vectors trained
on GMMs and low dimensional features that represent an individual speaker’s features
(J. Wu et al. 2016). This is extracted per utterance and then averaged to form an i-
vector that represents an individual speaker. In this way, a source speaker’s i-vector can
be approximated towards a target speaker’s i-vector by a mapping function using neural

networks, gaussian mixture models, or other appropriate algorithms.

The usage of i-vectors in voice conversion has been seen in works such as J. Wu et
al. (2016) and Kinnunen, Juvela, et al. (2017). Following Kinnunen, Juvela, et al.
(2017), the usage of i-vectors in voice conversion aligns perfectly with the task as it
is highly similar to speaker verification; however instead of being a classification task
(e.g. 1s this said speaker or not), voice conversion is a regression task. In J. Wu et al.
(2016), they test and compare the performance of using plain mel-cepstral coefficients
(MCCs) against i-vectors by training a variety of systems. Among their systems, they
utilize a strategy known as the average voice model, which models what an average
speaker would sound like by utilizing a large amount of parallel utterances, which also
allows for conversion between two speakers without having parallel utterances. In or-
der to compare MCCs vs. i-vectors, they train systems using MCCs as features with a
deep bi-directional long-short term memory neural (DBLSTM) network architecture, a
DBLSTM combined with an average voice model (DBLSTM + AVM), and a DBLSTM
combined with an average voice model retrained on some paralleled data from the test-
ing source-target speakers (DBLSTM + RM). They then train another system with i-
vectors using the DBLSTM and average voice model (DBLSTM + AVM + i-vectors).
In order to evaluate these models, they provide both an objective evaluation using a
measure known as mel-cepstral distortion (MCD) and a subjective evaluation rated on

quality and similarity, which was decided by the votes of 20 listeners.

Following the results of the objective evaluation, they find that the system with the low-
est mel-cepstral distortion (e.g. the best system) is the DBLSTM + RM model, followed
by the DBLSTM + AVM model, with the regular DBLSTM system and DBLSTM +
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AVM + i-vector system performing roughly the same. They note that the DBLSTM +
RM system likely performed the best because of the inclusion of parallel data from the
test dataset, while the DBLSTM + AVM outperformed the regular DBLSTM likely due
to the size of the training data. However, they do not give much indication as to why
the DBLSTM + AVM and DBLSTM + AVM + i-vectors perform similarly. Based off
of the MCD alone, it would seem that i-vectors do not provide much benefit; however
they emphasize that the DBLSTM + RM system does include parallel data while the
DBLSTM + AVM + i-vectors system does not.

In the subjective evaluation, they compare the four systems by using an ABX prefer-
ence test to compare: DBLSTM + RM vs. DBLSTM, DBLSTM + AVM + i-vectors
vs. DBLSTM + RM and DBLSTM + AVM + i-vectors vs. DBLSTM + AVM. With
each pair, they have the listeners evaluate 10 sentences for a total of 200 votes for each
system. Following the results, they find that the DBLSTM + AVM + i-vectors sys-
tem outperforms the DBLSTM + AVM system in both the speech quality and speaker
similarity categories with statistical significance, which shows that the average voice
model without i-vectors (e.g. MCCs only cannot capture speaker specific information.
They also find that the DBLSTM + RM system outperforms the plain DBLSTM system
with statistical significance, indicating that the average voice model is not only useful,
but also helps reduce the amount of parallel training data required to improve the per-
formance. Finally, they find that the DBLSTM + AVM + i-vectors system was rated
slightly higher in quality, but opposite in similarity. However this was without statis-
tical significance, indicating that they perform roughly the same. From this study, J.
Wu et al. (2016) concludes that the DBLSTM + AVM + i-vectors method has potential
as it allows for great flexibility to generate the target speaker spectrum without using

parallel data.

DeMarco and Cox (2013), present a through analysis of the usage of i-vectors in clas-
sifying native British accents using the same ABI corpus utilized in one of the exper-
iments of this work. When comparing more traditional classifiers such as a universal
background GMM, a support vector machine with GMMs, GMMs with unigrams/bi-
grams to various i-vector configurations, DeMarco and Cox (2013) found that utilizing

i-vectors outperformed the traditional methods by as much as 25%.

Even though systematic objective and subjective evaluation against older methods do
indicate that recent methods have improved upon the older ones, comparing the perfor-
mance of these systems against a true human voice, or perhaps more fairly, against other
recent systems in other areas of speech technology, these systems still seem to leave a

lot left to be desired. For example, in listening to the audio of J. Wu et al. (2016)! it

IVisit http://www.nwpu-aslp.org/vc/apsipa-jiewu-demo.pptx to hear samples.
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is apparent that regardless of the low quality of the original source and target audios,
the quality of the converted audio sounds muffled. This can be attributed to the various

nuanced steps and features required to have high quality voice conversion.

For example, in a shared task dedicated to voice conversion, appropriately called The
Voice Conversion Challenge where many leading research groups involved in speech
technology around the world have submitted systems in attempts to tackle the issue. In
the second iteration of the challenge Lorenzo-Trueba et al. (2018), the organizers pro-
posed both a parallel and non-parallel version of the task, both of which were evaluated

on natural and similarity using crowdsourcing.

The type of systems submitted to the 2018 edition of the task displays the current state
of voice conversion and perhaps machine learning research in general as this year saw
a huge increase in the number of systems using neural networks. However, it does not
go without saying that there were indeed systems that used more traditional statistical
methods, such as Gaussian Mixture Models (GMM) and one of its variations, differen-
tial GMM (DIFFGMM).

In order to evaluate the systems, a group of roughly 300 listeners were gathered to carry
out a perceptual evaluation. The systems were evaluated on two main measures: nat-
uralness, which was evaluated on a scale of 1 (completely unnatural) to 5 (completely
natural); and similarity, which was evaluated using a same/different paradigm. Follow-
ing the results, only one system, referred to as N10, was able to outperform the baseline
in terms of naturalness (alongside the original source and target audios). When observ-
ing the performance of other systems in terms of similarity, we see about 5 our of 23
submitted systems outperforming the baseline. From this, we can conclude that it easier
to create a system with high similarity than high naturalness, which is consistent with

other common systems.

In discussing the results of the N10 system, the authors credit the success of the system
to the hundreds of hours of external speech data that was utilized to train a model to
recognize content-related features, as well manual fine-tuning. The creators of this
system also made use of WaveNet, a novel high-fidelity vocoder and dozens of hours
of clean English speech, which could also explain the success of their results. Thus,
as previously discussed, we can conclude that creating a high-fidelity voice conversion
requires not only appropriate fine-tuning of the data, but also a large amount of external

data to support the system.

Thus, even though many systems were neural network based, only one neural network
based system was able to outperform the sprocket GMM-based baseline, which could

suggest that NN-based methods require proper fine-tuning of the hyperparameters.

30



Although we see limitations in the systems presented in The 2018 Voice Conversion
Challenge, there have been other efforts to present high quality voice conversion sys-
tems in works such as and Nguyen et al. (2016) and Fang et al. (2018). For example,
in Fang et al. (2018), they leverage a cycle-consistent adversarial network (CycleGAN)
architecture, a variation of the recently trending generative adversarial network (GAN)

architecture, which was originally used for unpaired image-to-image translation.

While not necessarily directly related to the standard idea of voice conversion, there
have also been some incredible breakthroughs in systems set forth by research teams
at Google Brain. One such system involves the Tacotron end-to-end system, which has
been proposed to replace the current set-up of text-to-speech systems by reducing the
amount of components (decoder, vocoder, etc.) into one piece. The researchers working
on this system have recently revealed a impressive system that also takes advantage of
deep neural networks to encode speaker characteristics into embeddings, which are then
utilized to transfer style (Wang et al. 2018). They show how their system is capable of
transferring a variety of emotions and accents, making the synthesized audio sound

more human-like. Samples of these audios can be found at the following link?.

Even though the these systems created by Google Brain are highly impressive, it is
evident that the reason for the success of their systems is due to very fine-grained pa-
rameter tuning and the availability of large-scale, high quality data that many research
institutions likely do not have access to or have funding for. For example, if we jux-
taposed the audio from the Google Brain systems to the best performing system of the
Voice Conversion Challenge 2018, we can still observe some disfluencies in the audios
of the best system of the VCC 2018. Thus, it may be a long while before the general
public has the ability to completely replicate such systems and before this work trickles

in to the domain of accent conversion.

3.4 Accent conversion

Due to the specialized nature of accent conversion as compared to voice conversion,
there are fewer articles and systems available for reference. In fact, most of the recent
articles that are easily accessible on accent conversion were all published by the same

group of researchers at Texas A&M University.

However, before the work of these researchers, works such as Yan et al. (2004) and
Huckvale and Yanagisawa (2007), explored manipulating various features in order to

observe their relationship with a perceived accent. In Yan et al. (2004), they manipulate

2Visit https://google.github.io/tacotron/publications/global_style_tokens/ to hear samples.
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spectral features, intonation patterns and duration in order to observe their correlation
across British, Australian and American accents. Through an ABX perceptual test,
they found that 75% of the synthesized utterances were evaluated as having the native

accent, highlighting the potential for segmental accent conversion.

In Huckvale and Yanagisawa (2007), they examine the relationship between intelli-
gibility and the of morphing various segmental and suprasegmental features such as
pitch, rthythm and segments of an English TTS system designed to speak ‘accented’
Japanese. This TTS system was designed by creating a custom dictionary and mapping
the Japanese sounds to their closest English counterpart. They found through native
speaker evaluation that morphing pitch and rhythm individually had no effect, and sim-
ilarly modifying segments alone only gave a small improvement. However, they dis-
covered that combining the morphing of all of these features created a large increase in
intelligibility, with intelligibility going up from 57% as seen in their lowest-performing
system to 84%. The results emphasize the need to consider the interaction between

segmental and suprasegmental in the conversion task.

In one of the earliest works from the Texas A&M research group, and perhaps a key
influential paper to this work, Felps, Bortfeld, et al. (2009) examines the potential of
using a method known as Pitch-Synchronous Overlap and Add (PSOLA) for accent
with the motivation of applying it in the context of language learning. Specifically, they
utilize a specialized PSOLA method known as Fourier-domain PSOLA (FD-PSOLA),
as it performs best in preventing spectral distortion when modifying the pitch. In order
to conduct the conversion process, they separate the converting of the segments and the
converting of the prosody into two separate parts, with both parts evaluated individually
and combined. In evaluating their method, they measured the accentedness, acoustic
quality and identity of each converted audio using auditory tests given to a number of
speakers. Similar to Huckvale and Yanagisawa (2007), they observe that the combina-
tion of prosodic and segemental transformation lead to a large improvement in reducing
foreign accent. However, in terms of quality, they found that all transformations led to
lower ratings, which likely indicates the loss of some spectral information. The identity
ratings proved to be the most interesting as Felps, Bortfeld, et al. (2009) find that the
listeners indicate a ‘third’ speaker. In other words, the converted audio sounds neither
like the source or target speaker. Thus Felps, Bortfeld, et al. (2009) concludes that while
accentedness is reduced by their system, their proposed system also loses the necessary

information needed to retain the speaker’s identity.

In other works done by this group of researchers such as Aryal and Gutierrez-Osuna
(2014b), they continue to make efforts to address this challenge. Throughout their
research, they test a variety of methodologies, including accent conversion through

voice morphing and articulatory synthesis. In Aryal and Gutierrez-Osuna (2014b), they
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propose a variation to standard forced alignment techniques used in voice conversion
to pair frames based on acoustic similarity.This particular paper serves as the main
basis for the experiments and research conducted in this work due to its relative ease

compared to some of their earlier and later work.

Following their methodology, they first use dynamic time warping (DTW) to align par-
allel utterances from the L1 and L2 speakers in order to apply vocal tract length normal-
ization to dampen the differences in pitch. They then extract sequences of 24 MFCCs
per utterance, and cluster the MFCC vectors into 512 clusters using the k-means al-
gorithm to easily find the most acoustically similar sound for each frame. The most
acoustically similar frames are then calculated by finding the closest L2 cluster, and
then selecting the most similar frame within the cluster. After the closest vectors are

paired, they map the conversion using a GMM.

In order to evaluate their system, they had a group of 13 participants rate 12 utterances
from the test set for their perceived accent (Which utterance was less accented?) and
perceived speaker identity (Does utterance X sound more similar to A or B?). This
system was compared to a standard voice conversion system that uses standard forced
alignment and trained using GMMs. They found that comparing the AC system to the
original L2 audio resulted in participants rating the converted audio as sounding less
accented 86% of the time, while the VC system compared to the original L2 audio was
rated at 91% of the time. However, when the converted audios from both systems were
compared, participants rated the AC system to be less accented compared to the VC
system 59% of the time. It was also concluded that the AC system was more successful
in retaining speaker identity, as the participants found the converted audio more similar
to the L2 speaker 78% of the time. More interestingly, they found that the AC system
was especially effective in converted utterances that are harder for the L2 speaker to
pronounce. This was measured by examining the relationship between the number of
phonemes that do not exist in the L2 language (in this case Spanish), and the number
of listeners who judged the converted speech as sounding less accented.They found
that there was a 0.86 correlation, indicating the robustness of the AC system. Thus, it
appears that adjusting the alignment method to align acoustically similar sounds is a

good start for accent conversion systems.

In Aryal and Gutierrez-Osuna (2014a) and Aryal and Gutierrez-Osuna (2015), we see
a more novel method that looks beyond acoustic features to perform accent conversion.
Citing the results of their previous work, they motivate the usage of articulatory gesture
information in accent conversion reasoning that acoustic-based systems often struggle
in the challenge of separating accent from speaker identity, which causes the accent
converted audio to sound like a combination of the L1 speaker and L2 speaker. In or-

der to test this idea, in Aryal and Gutierrez-Osuna (2015), they propose a system that
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combines both the more standard acoustic information like aperiodicity, pitch and en-
ergy from the L1 speaker with articulatory information recording using an electromag-
netic articulograph (EMA). Like many recent works, they test a DNN-based mapping
function between the L1 and L2 data, which they compare to the previously popular
GMM-based system.

In the evaluation of their system, they again use crowdsourced efforts to rate their sys-
tem based on intelligibility, accentedness, and speaker identity. According to their sam-
ple size of 15 participants, they find that the DNN-based system was rated to have a 4.3
out of 7 in terms of intelligibility as compared to 3.84 out of 7 for the GMM-based sys-
tem, proving that including articulatory gesture information and DNNs are more robust
in this instance. The participants also rated the DNN-based system to be more native-
like in 67% of cases as compared to the GMM-based system. With that said, the test
set was only 15 sentences, which indicates that 10 out of 15 sentences were better with
the DNN system; thus the test set used may be too small to draw hard conclusions. The
most important conclusions drawn from their experiments was that of the voice identity
assessment. In asking the participants to rate whether an MFCC compression and AC
audio from the DNN and GMM-based systems, they found that the participants were
fairly confident that the two audios were from the same person with both systems, with
the DNN-based system outperforming the GMM-based system as before at a score of
4.3 out of 7 on average, and the GMM-based system at a score of 4.0. However, this is
difficult to compare to more common acoustic-only accent conversion systems, as this
is not including in their evaluation. With that said, it may be possible to conclude that
this would outperform acoustic-based systems, as they proposed this system to tackle

flaws in their previous work.

Evidentally, although including articulatory gesture information seems to improve the
performance of accent conversion systems, as discussed in the closing remarks of their
paper, recording articulatory gesture information can cost a great deal of money and
time (Aryal and Gutierrez-Osuna 2015). Most publically (and privatized) speech cor-
pora also do not include this type of information, meaning that experimenting with it
in accent conversion at a broader scale is unfeasibile. Thus, it is ambitious to accept
adding articulatory information to accent conversion systems and further work needs to

be done in order to scale standard audio-based speech corpora.

Departing from utilizing articulatory gesture information, Zhao, Sonsaat, Levis, et al.
(2018) returns to a more simpler method similar to Aryal and Gutierrez-Osuna (2014b).
However, instead of matching frames based on their acoustic similarity, they test match-
ing frames based on their phonetic similarity. They do this by mapping the frames of
each source and target speaker into something referred to as a phonetic posteriorgram.

Following Hazen et al. (2009), a phonetic posteriorgram is ‘a time vs. class matrix that
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Figure 3.1: An example posteriorgram representation for the spoken phrase ‘basket-
ball and baseball’. The x-axis represents the time across the utterance and the y-axis
represents the possible phonemes. Taken from Hazen et al. (2009).

represents the posterior probability of each phonetic class for each time frame’. An
example of a phonetic posteriorgram taken from Hazen et al. (2009) can be seen in

Figure 3.1.

The phonetic posteriorgrams are computed using a native English speaker-independent
acoustic model and then the most similar source and target frames are matched by cal-
culating something known as the Kullback-Leibler divergence (0 indicating similar or
same behavior, 1 indicating completely different) between the source and target pos-
teriorgrams. After matching the frames, they train GMMs with 128-mixture compo-
nents to model the distribution of the MCEPs to convert the speech. The performance
of this proposed system is then compared to a standard voice conversion system us-
ing dynamic time warping to align the frames and the system described in Aryal and
Gutierrez-Osuna (2014b).

Like the previous works of Aryal and Gutierrez-Osuna (2014b) and Aryal and
Gutierrez-Osuna (2015), this work also approaches evaluation using a perceptual lis-
tening test to evaluate acoustic quality, speaker identity and accentedness. However,
in this work, they evaluate over 50 test utterances using 30 participants, which bet-
ter substantiates their results compared to the evaluation of 10-15 utterances by 10-15

participants in some of their older studies.

In terms of acoustic quality, they found that their proposed posteriorgram method re-

ceived a score of 3.0 on a Mean Opinion Score scale of 1 to 5 (with 1 being ‘bad’
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and 5 being ‘excellent’), as compared to a score of 2.6 using the method from Aryal
and Gutierrez-Osuna (2014b) and 2.5 for standard voice conversion, meaning that their
system here was able to vastly improve in terms of acoustic quality. Following the av-
erage scores for speaker identity, they were also able to determine that the participants
were ‘confident’ that the converted audio files were the same speaker, with a voice sim-
ilarity score of 3.5 (on a scale of -7 to 7, with 7 being ‘definitely the same speaker’).
Finally, in order to assess the accentedness of their posteriorgram-based converted au-
dio, they utilized a preference test to compare standard voice converted audios with
frames matched using Dynamic Time Warping, accent converted audios with frames
acoustically matched as in Aryal and Gutierrez-Osuna (2014b), and their posteriorgram
method. They found that the participants evaluated the posteriogram method to make
the L2 audios sound more native like with a mean of 98%, and agreed that the posterior-
gram method outperformed the standard voice conversion method with a mean of 69%
in agreement, and a mean of 72% when compared to the previous accent conversion
method. This means that currently, the posteriorgram method is the best peforming
method for accent conversion as it outperforms previous methodologies in all three

evaluation criteria.

Aside from the work conducted by the research group at Texas A&M University, it
appears to be that there are not many, if any other researchers currently working in
this subarea of accent conversion. This may be because voice conversion still leaves a
lot to be desired itself, suggesting that most researchers may want to focus on perfect-
ing standard voice conversion before attempting to tackle something more fine-grained.
However, as research in voice conversion continues to expand, it also creates the poten-
tial to apply methodologies from voice conversion to accent conversion. Following the
general methodologies of voice conversion, we hypothesize that it should be plausible
to convert accents in a similar fashion and eventually apply more recent innovations to

propose state-of-the-art methods.
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Chapter 4
Design and methodology

In this chapter, we introduce the dataset and tools utilized in the experiments, and detail
the procedures carried out to conduct the accent conversion process. We also go over
the evaluation criteria for accent conversion systems following standards set forth by
by previous work Aryal and Gutierrez-Osuna (2014b), Mohammadi and Kain (2017),
and Zhao, Sonsaat, Levis, et al. (2018).

4.1 Data

The main datasets utilized in the following experiments are the Carnegie Mellon Uni-
versity (CMU) ARCTIC corpus (Kominek and Black 2004), the L2-ARCTIC corpus
(Zhao, Sonsaat, Silpachai, et al. 2018), a non-native English counterpart to the CMU
Arctic corpus and the Accents of the British Isles (ABI) corpus (D’ Arcy et al. 2004).

4.1.1 CMU ARCTIC corpus

The CMU ARCTIC corpus is an older corpus that originates from sometime in 2004,
following the publication date of the corpus’ description. It was was originally designed
to have good phonetic (specifically diphone) coverage for speech synthesis and aimed
to be cleanly recorded and matched the intended domains. The corpus itself contains
roughly 1200 read utterances per speaker taken from Project Gutenburg, which contains
a number of modern short stories and novels. The corpus is distributed with 16KHz

waveforms with full phonetic labeling and simultaneous EGG signals.

The CMU ARCTIC corpus contains 4 US English speakers, with speakers bdl and slit

being experienced voice talents. It also comes with 14 other speakers with varying
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Accent | Sex Speaker ID

UusS male aew
US male bdl
US female | clb
US female | eey
[N} female | jm
US female | Inh
usS male rms
UusS female | slt
Scottish | male awb
Irish male fem

Indian male aub
Indian female | axb
Indian male gka
Indian male ksp
Indian female | slp
German | male ahw
Dutch male rXr
Candian | male | jmk

Table 4.1: A complete list of the ARCTIC speakers, their accents and speaker IDs.

accents, including Canadian, Scottish, and Indian. A full list of the speakers and their

speaker IDs can be seen in Table 4.1.

4.1.2 L2-ARCTIC corpus

The L2-ARCTIC corpus was recently curated by researchers as a joint collaboration
between the Texas A&M University and Iowa State University with the intention of
distributing the corpus for research in voice conversion, accent conversion and mis-
pronunciation detection. At the time of writing, the L2-ARCTIC corpus contains 20
non-native speakers of Hindi, Korean, Mandarin, Spanish and Arabic, with a male and
female speaker for each language, but the researchers have indicated that there may be
other speakers in the future.

The original audio was sampled at 44.1 kHz, with each recording at roughly 3.7 sec-
onds on average. In total, the duration of the corpus is 11.2 hours, with each speaker
recording an average of 67 minutes of audio, or the complete ARCTIC sentence prompt
list of 1,132 utterances. However, some speakers did not read all of the sentences and

some recordings were removed as they did not have appropriate quality.

In addition to the audio files, the corpus also includes word and phoneme-level tran-

scriptions and manually annotated errors for a 150-sentence subset of the corpus, de-
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signed to be used in computer-assisted pronunciation training tools. Within the subset,
there are 100 sentences uttered by all speakers, and 50 sentences that contain phonemes
that are considered to be difficult based on a speaker’s L1. This also includes phone ad-
dition, phone substitution, and phone deletion annotations in ARPAbet format, as well

as optional comments left by the annotators.

4.1.3 Accents of the British Isles (ABI) corpus

The ABI corpus was originally designed and collected to support efforts in systematic
studies of the relationship between various accents in the British Isles and speech tech-
nology. At the time of its creation, there was no appropriate corpus that existed that
could be used for this type of research. One of the largest obstacles in designing a suc-
cinct corpus to capture the varieties of accents across the British Isles was deciding how
to define accent. As mentioned in the introduction to this work, the authors had diffi-
culties finding suitable subjects as some people associated their accent not only with

their geographic region but also their own social backgrounds.

Nonetheless, the authors of the corpus chose to define 14 regions known for their as-
sociated accents and selected towns or cities that were representative of each accent.
At each location, 20 people were recorded, for a total of 10 female and 10 male. The
creators of the corpus also mandated that the subjects needed to be born and have lived

in that location all of their lives.

The corpus contains a variety of utterances, including word lists to contrast the different
vowels across accents (e.g. ‘heed’, ‘had’, ‘hide’, etc. ), short phrases such as ‘roll of
wire’ or ‘thin as a wafer’, and long phrases that are cut up from the readings of short
‘accent diagnostic’ stories. The audio was recorded at a sample rate of 22.5KHz per

second with 16 bit resolution.

The accents contained in the ABI corpus can be seen in Table 4.2:

4.1.4 Experimental data set-up

Using the corpora described above,we split them into two sets of experiments, with the
ARCTIC corpora used in one set of experiments and the ABI corpus used in another

set of experiments.
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Region Towns/Cities | Code
Standard Southern English | n/a sse
Midlands Birmingham | brm
Wales Denbeigh nwa
Scottish Highlands Elgin shl
Republic of Ireland Dublin roi
East Yorkshire Hull eyk
Lancashire Burnley lan
Ulster Belfast uls
NE England Newcastle ncl
Scotland Glasgow gla
Inner London n/a ilo
NW England Liverpool lvp
East Anglia Lowestoft ean
West Country Truro crn

Table 4.2: The regions of the British Isles and their corresponding cities where the ABI
corpus was recorded, as well as their corresponding codes in the corpus.

4.2 Experiments

4.2.1 CMU ARCTIC Corpus

As discussed in the introduction of this work, accent conversion has been proposed as
better-suited feedback mechanism for accent training systems. These two corpora are
specifically used to test how effective accent conversion is on minimizing the effects of

non-native speech.

Following Zhao, Sonsaat, Levis, et al. (2018) who also works with the ARCTIC cor-
pora, only 150 parallel utterances or roughly 9 minutes of data, following the L2-
ARCTIC average are utilized, with the utterances from the L2-ARCTIC corpus down-
sampled to 16 kHz to match the quality of the CMU ARCTIC corpus. During the
selection of the 150 utterances, any phrases not recorded by all of the speakers chosen
for the experiments were not considered in order to maintain the parallelness of the
experiments. The data used in this experiment was also text-independent as the CMU
ARCTIC corpus does not contain labeled utterances. Out of the 150 utterances, 100
were randomly chosen as training utterances while the other 50 were used test utter-

ances.

Although the sample size is very small compared to the actual size of the corpora, a
small sample is chosen to acknowledge the fact that often only a little amount of data
is available or acquirable in building these systems. This is done similarly in the Voice

Conversion Challenge 2018 as well Lorenzo-Trueba et al. 2018.
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The speakers utilized in the experiments are also limited to speakers BDL (male) and
CLB (female) from the CMU ARCTIC database, who are the native reference speak-
ers, while the non-native speakers chosen from the L2-ARCTIC corpus are the native
Korean speakers (HKK, male; YDCK, female), Hindi speakers (RRBI, male; TNI, fe-
male), and Spanish speakers (EBVS, male; NJS, female). This is mostly similar to
the datasets in Zhao, Sonsaat, Levis, et al. (2018), with the exception of the Korean
female speaker (YDCK) in place of the male Korean speaker (YKWK), which is not
included in the current release (at the time of writing) of the L2-ARCTIC corpus, and
the replacement of the native male Arabic speaker (ABA) with the two native Spanish

speakers.

4.2.2 ABI Corpus

Accent conversion systems have also been mentioned as a possible solution to chal-
lenges that current speech recognition systems may have. However, the few accent con-
version studies (Aryal and Gutierrez-Osuna 2014a; Aryal and Gutierrez-Osuna 2014b;
Aryal and Gutierrez-Osuna 2015; Zhao, Sonsaat, Levis, et al. 2018) conducted by those
from the Texas A&M research group have focused on accent conversion between non-
native and native speakers, and voice conversion studies such as the Voice Conversion
Challenge 2016 and 2018 (Lorenzo-Trueba et al. 2018; Toda, Chen, et al. 2016) have
mainly investigated conversions between US speakers. Thus, in order to see the effects
of accent conversion between native speakers and to include other varieties of English,

the ABI corpus was chosen.

Although the ABI Corpus contains a total of 14 accents, only 4 accents were selected,
with the Southern Standard English (SSE) accent used as the source accent (the ‘native’
accent) and the East Anglia (EAN), Glasgow (GLA), Lancashire (LAN) used as the tar-
get accent (the ‘non-native’ accent) to match the structure of the CMU ARCTIC corpus
experiments. These accents were chosen based on their dissimilarity from the Southern
Standard English accent. Although phonological and other linguistic information could
have been used to quantitatively measure the level of dissimilarity between the accents,
we measured the level of dissimilarity following the word error rate of using an ASR
system for each accent in the ABI corpus as seen in Najafian et al. (2014). After orga-
nizing the word error rate for each accent from high to low, the Glasgow, Lancashire,
and East Anglia accents were repsectively chosen for having the worst word error rate,
to being in the middle, and being fairly close to Standard Southern English.

The ABI Corpus had more coverage in terms of the number of speakers available per
accent and gender, as well as variation in the recording environment and quality. Con-

cretely, some speakers were much more quieter than others, while others spoke at a
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much more rapid pace than others, or enunciated much less than others. Thus, during
the speaker selection process, we manually listened to a sample of each speaker, either
from the ‘shortphrases’ or ‘shortsentences’ folder, and chose based on these criteria.
Some of the chosen speakers had recorded some of the same words and/or phrases,
mostly due to production errors such as stumbling or reading the wrong word. In the
case that a chosen speaker had repeated recordings,we removed the malformed record-
ings in order to keep the experimental corpus as parallel as possible. The utterances

were also not labeled, making this experiment also text-independent.

The experiments for the ABI corpus are set up similarly to the ARCTIC experiments in
terms of the proportion of training and test set utterances. However, unlike the ARCTIC
corpus, the total amount of data available for the ABI corpus was roughly 5 minutes per
speaker. Because the ABI corpus also contains a mixture of word lists and phrases/sen-
tences, this made it more difficult to randomize all of the audio into separate training
and test sets. Thus, in order to maintain a similar proportion of audio like the ARCTIC
experiments, we chose to use all of the word lists as the training set and the phrases and
sentences as a test set. Utilizing the phrases and sentences as a test set also made more
logical sense as this allowed for better comparison to the ARCTIC results and because
converting the accents for a single word appeared to be more trivial in both usage and

evaluation.

4.3 Tools and set-up

In order to understand more traditional mapping methods used in voice and accent
conversion, we follow the Gaussian mixture model method described in Toda, Black,
et al. (2007) for voice conversion by reimplementing the method described in Aryal and
Gutierrez-Osuna (2014b) which utilized frame matching based on acoustic similarity.
In reimplementing the methodology of Aryal and Gutierrez-Osuna (2014b), we checked
for the optimal number of components for the Gaussian mixture model. We tested a
variety of set-ups from 64, 128, and 256 components and found that like Aryal and
Gutierrez-Osuna (2014b), a GMM of 128 mixture components sounded best. We also

represented each utterance as a sequence of 24 MFCCs with deltas.

In reimplementing Aryal and Gutierrez-Osuna (2014b), certain features were removed—
namely vocal length tract normalization and prosody modification. Although it is dis-
cussed that vocal tract length normalization allows for better frame matching, it was
assumed that converting audio between speakers of the same gender would have less
impact from differences in vocal tract length. Inspection of preliminary conversion au-

dio without these features compared to conversion with these features as offered by
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Package Version
bokeh 1.0.3
holoviews 1.11.0
jupyterlab 0.354
librosa 0.6.2
nnmnkwii 0.0.17
numpy 1.154
pandas 0.23.4
pysptk 0.1.14
scikit-learn 0.20.2

Table 4.3: A list of the core packages and their versions used in this work.

Zhao, Sonsaat, Levis, et al. (2018) also suggested little to no impact.

In order to conduct the experiments, we utilize a 2013 Macbook Pro and Python version
3.6.6 alongside Jupyter Lab to manage all of the experiments, calculate the results and

generate graphics.

For the experiments, we utilize the nnmnwkii! Python package which provides fast and
easy functions to train voice conversion systems conveniently based on Toda, Black,
et al. (2007). Alongside this package, we also utilize a number of other packages
that nnmnkwii is dependent on, including pysptk, a Python wrapper for the Speech
Processing Toolkit, pyworld, a Python wrapper for WORLD, a well-known tool for
high-quality speech analysis and acoustic feature extraction, librosa, another pack-
age for audio analysis, and the common scikit-learn machine learning package for
GMM training. In addition, we use a custom method written to find the most acousti-
cally similar for each frame and convert the corresponding frames instead of the frames
matched using dynamic time warping. This was done just as in Aryal and Gutierrez-
Osuna (2014b) by clustering the source and target frames into 512 clusters using the
k-means algorithm and then finding the most acoustically similar target frame for each

frame in the source utterance and vice versa.

In order to calculate the results of the experiments discussed in ??, we utilize the
pandas package to manage the data from the survey and calculate statistical measures
such as t-test and z-test using the standard scipy package. Graphics are generated

using the bokeh package generated using the holoviews wrapper package.

The specific versions of the key packages used in the experiment and result calculating

process can be seen in Table 4.3.

'Found at: https:/github.com/r9y9/nnmnkwii
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4.4 Evaluation

Voice conversion and accent conversion systems can be evaluated using either: a) ob-
jective measures or b) subjective measures. With objective measures, evaluation can
be challenging as it often requires intricate formulas that do not necessarily extrapolate
across datasets or even individual audios (Felps and Gutierrez-Osuna 2010). With sub-
jective methods, it is often simpler as evaluation can be conducted by simply gathering

participants and asking them to rate certain criteria.

In both cases, accent conversion systems are often evaluated on three features: the
acoustic quality, speaker identity, and accentedness of each converted audio. With
acoustic quality, the goal is to ensure that the audio does not deteriorate from the origi-
nal and source audios, while speaker identity aims to ensure that the target speaker still
sounds like themselves and not the source speaker. Accentedness is the most straight-
forward measure of the three, as accentedness aims to measure how much the accent of
a target speaker is reduced or to measure how similar the accent of the converted audio

is to the source speaker.

In the case of the experiments here, we choose to evaluate using a perceptual study due
its reliability and because of the complexity of using objective measures. we adapt the
method utilized in Zhao, Sonsaat, Levis, et al. (2018), which in turn was adapted from
Aryal and Gutierrez-Osuna (2014b), another previous work from the same research
group. Specifically, we gather a group of 36 listeners to listen to 40 test samples with
20 taken from the experiment done with the ARCTIC corpus and 20 taken from the ABI
corpus. 10 test samples are used for each evaluation criteria. The participants include
a number of students that are a part of the Erasmus Mundus Language and Communi-
cation Technology Master’s, as well as some local students from the University of the
Basque Country, the University of Malta and other acquaintances of the author. The
survey was also posted on Reddit under the /r/SampleSize subreddit and distributed by
some participants recruited directly by the author to other acquaintances of the partici-

pants.

The number of listeners were decided by recruiting roughly 40 people with the antici-
pation of collecting enough results so that each speaker in both sets of corpora would be
evaluated by at least 5 listeners. At the close of the survey, only the female East Anglia
speaker (EAN F) from the ABI experiments and the female Korean speaker from the
ARCTIC experiments had less than 5 evaluators, at a total of 4 and 3 respectively. The
distribution of evaluators per speaker in the ARCTIC experiments and the ABI exper-
iments can be seen in Figure 4.1. This graph is organized so that the colors shown in

the key represent the selected speaker from either the L2-ARCTIC corpus (e.g. blue
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Figure 4.1: The distribution of speakers in each experiment.

for the East Anglian male speaker) or the ABI corpus (e.g. blue for the Hindi female
speaker). The 36 speakers are then divided into their appropriate groups per experiment
to represent how many participants evaluated each speaker. For example, there were 6
participants who evaluated the GLA F speaker in the ABI experiment as this part of the
graph ranges from 16 - 22.

The survey was uploaded on to Google Forms, with the audios embedded on a separate
page found on a GitHub Page associated with the GitHub repository for this work. All
listeners were asked to evaluate 1 speaker from the CMU ARCTIC experiments and 1
speaker from the ABI experiments using headphones/earphones. The speakers that each
evaluator assessed were decided upon randomly using the ‘shuffle option order’ embed-
ded in Google Forms. The audios embedded on the GitHub page were in PCM signed
16-bit .wav format, which were converted from the original audio files outputted by the
accent conversion system. The original audios were converted using the command line
interface of ffmpeg version 4.0.2 in order to better support in-browser playback as the

original .wav format was not compatible with current HTMLS standards.

The participants in the survey were first asked to evaluate ten (10) converted audios on
their perceived accent similarity using an ABX format to decide whether audio X is

more similar to audio A or audio B. Audio A and audio B were randomly distributed to
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same speaker? different speaker?

(a) Perceived Accent task (b) Speaker Identity task

Figure 4.2: The structure of the evaluation questions.

be either the source speaker or the target speaker, and Audio X was the converted audio.
The aim of this experiment was to observe whether the participants would evaluate the
converted audio (audio X) as sounding most similar to the desired audio in terms of

accent.

After this task, the participants were then asked to evaluate the speaker identity of the
converted audios on a voice similarity score ranging from -7 representing ‘definitely
different speakers’ to +7 representing ‘definitely same speaker’. This was done by
asking the participants to listen to ten (10) pairs of audio files and ask them to evaluate
each pair on this scale. Out of the ten pairs, five pairs were chosen to be the same
speaker and five pairs were chosen to be different speakers. In order to cut down on
the amount of time needed to complete the survey, the participants were not asked to
assess the acoustic quality, as the acoustic quality was the most likely to be stable across

audios and corpora. A complete reduplication of the survey can be found in section 7.1.

In terms of demographic information, they were asked to indicate whether or not they
consider themselves native speakers of English to observe whether or not there are
any particular differences between the two populations in their evaluations on accent
conversion. Beyond this, all other participant information was anonymized as no other

information was collected.

A visual summarization of the perceived accent task and speaker identity task can be

seen in Figure 4.2.
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Chapter 5

Results

In this chapter, we present the results of the perceptual study which evaluated the per-
formance of the systems in terms of perceived accent and speaker identity. We then

discuss the results and point to potential reasons for the outcome.

51 CMU ARCTIC Corpus

5.1.1 Perceived Accent

In order to assess the performance of the participants on the perceived accent task, we
compared their answers to the ABX questions to the ‘correct’ or desired accents. Ac-
cording to the distribution of their scores, the accuracy of the evaluators on the task
varied from being only 30% accurate to 100% accurate, with evaluators being 92.2%
accurate on average. Following the median score, the participants were 100% accu-
rate at identifying the ‘correct’ accent of the converted audio. The distribution of the
participants’ scores on the perceived accent task can be seen in Figure 5.1. The range
of the plot starts from 30% in order to better see the highly skewed data. The various
data points display the outliers found in the data, which is calculated using the standard

formula of 1.5 times the interquartile range below the lower quartile.

Although the evaluators had a very high mean and median, a z-test was conducted to
observe whether the performance of the evaluators on this task was statistically signifi-
cant. As expected, the z-test gave us a p-value of 0.007, proving that their performance
was better than chance. This suggests that the evaluators were able to assess the accent

of the converted audio X with a high level of confidence.

After evaluating the performance of the participants on the Perceived Accent task as a
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Figure 5.1: The distribution of correct answers on the Perceived Accent task for the
ARCTIC Corpus per participant.

ARCTIC Speaker | Correct %
Hindi F 86.66%
Hindi M 100.00%
Korean F 100.00%
Korean M 91.66%
Spanish F 84.00%
Spanish M 96.25%

Table 5.1: The mean accuracy on the PA task for the ARCTIC experiment across ac-
cents.

whole, we also took a look at each accent individually to investigate if there were any
particularities. From the mean scores of the PA task across accents, it appears that the
evaluators had the most trouble with the Spanish female and Hindi female accents, with
average scores of 84.00% and 86.00% respectively. However, following the p-value of

0.47 given from a one-way ANOVA test, there were no statistically relevant differences.

In order to confirm that there were no differences in the scores of the native speakers
vs. the non-native speakers, we ran a t-test. Examining the mean scores for both groups
showed that they likely performed similarly, as native speakers had a mean accuracy of
92.94%, and native speakers 91.57%. Both groups had a median score of 100%. As
expected, there was no statistically significant difference between the performance of

the native and non-native speakers with a high p-value of 0.80.

5.1.2 Speaker Identity

As discussed previously, the Speaker Identity task consisted of 10 pairs of audio, those

of which include accent converted audios with the original native audio (AC-Native)
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Figure 5.2: The distribution of the mean voice similarity scores on the Speaker Identity
task per participant.

and accent converted audios with the original L2 audio (AC-L2). During the calcula-
tions of the means, it was noted that one question was left blank by an evaluator for
the Korean M speaker, so the value was imputed using the average score of the other

Korean M evaluators rounded to the nearest integer.

An examination of the results showed that the evaluators found the voice similarity
score to be on average, around 3.9 for the AC-Native pairs, suggesting that they were
‘confident’ that the AC audio and the native audio were the same speaker. Similarly, the
evaluators found the speaker identity score to be on average, around -3.7 for the AC-
L2 pairs, suggesting that they were ‘confident’ that the AC audio and the native audio
were two separate speakers. The distribution of the voice similarity scores for both pair
type can be seen in Figure 5.2. The range starts from -7 and goes to 7 to represent the
scale used in the evaluation task. The median score does not appear in the boxplot as it

coincides with the max score.
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ABI Speaker | AC-Native Mean | AC-L2 Mean
Hindi F 2.8 -4.3
Hindi M 33 -6.2
Korean F 5.0 -3.9
Korean M 4.0 -1.7
Spanish F 4.7 -3.4
Spanish M 4.4 -3.3

Table 5.2: The average voice similarity score on the Speaker Identity task for the ARC-
TIC corpora across accents

In order to confirm that there were no statistically relevant differences for the speaker
identity scores across accents, we utilized a one-way ANOVA test. As hypothesized,
there were no statistically relevant differences between the mean voice similarity scores
for both the AC-Native pairs and the AC-L2 pairs with a p-value of 0.87 and 0.16
respectively. Finally, to verify any potential differences between the assessment of the
native English speaking evaluators and non-native English speaking evaluators, we ran
a t-test. Similar to the ANOVA, there was no statistical difference found with a p-value
of 0.77 and 0.91 for the AC-Native and AC Non-native questions. The average voice

similarity score across accents can be seen in Table 5.2.

5.2 ABI Corpus

5.2.1 Perceived Accent

Like the CMU ARCTIC experiments, we compared the participants responses to the
ABX questions with the ‘correct’ or desired accents. From taking a first glance at
the results, the participants varied greatly in their responses ranging from being 100%
correct about what accent the converted audio X was closest to, to being 0% correct.
Following the average score, the participants were right about 81% of the time. How-
ever, when considering the median performance of the subjects, the users were able to
identify the correct accent 100% of the time. A z-test using these results showed that
the performance of the participants was nearly significant, with an alpha of 0.05 and
a p-value of 0.051. This would suggest that the performance of the subjects were not
better than chance. However, when re-running the z-test without the 0% correct score,
we get a p-value of 0.025, thus indicating that the reviewers were able to assess the

perceived accents of the converted audios with statistical significance.

The distribution of the scores on the Perceived Accent task can be seen in the boxplot

of Figure 5.3. Here, the boxplot ranges from 0 to 100% as there were scores of 0% con-
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Figure 5.3: The distribution of correct answers on the Perceived Accent task for the
ARCTIC Corpus per participant.

ABI Speaker | Correct %
EAN F 22.50%
EANM 87.77%
GLAF 100.00%
GLAM 100.00%
LANF 68.00%
LANM 84.28%

Table 5.3: The mean accuracy on the PA task for the ABI corpus across accents.

tained in this dataset. The median score does not appear in the boxplot as it coincides

with the maximum score.

After examining the performance of the reviewers on the perceived accent task as a
whole, the performance of the reviewers was evaluated across each individual accent
to observe if the lower scores were caused by a particular accent. As described in the
experimental set-up, the Glasgow, Lancashire, and East Anglian accents were chosen
based on their level of similarity to the Standard Southern English accent. As hypothe-
sized, the mean percentage of correct answers were the highest for the Glasgow accent
at 100%— the most dissimilar accent to the Standard Southern English accent, while
the mean percentage of correct answers for the East Anglian female was the lowest at
22.5%. The mean accuracy on the Perceived Accent task across speaker can be seen in
Table 5.3.

A one-way ANOVA test based on the mean scores per accent shows that the low re-
sults for the East Anglian female speaker was not a result of chance, with a p-value
of .000002. This indicates that there were significant issues for the conversion of this
accent to the Standard Southern English accent. A one-way ANOVA test was also ran

for the rest of the accents, but as predicted, no statistical difference was found given a
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p-value of 0.07.

A t-test was also ran to compare the performance of the native speakers vs. the non-
native speakers. A quick glance at the mean and median scores of the native speakers
vs. non-native speakers showed that both groups performed about the same, with native
speakers getting the accent of the converted audio correct on average 79.4% of the time,
and non-native speakers getting the accent of the converted audio on average 82.1% of
the time. Both groups also had a median score of 100.0%. Naturally, following the
results of the t-test, both the native and non-native speakers performed equally on the
task as the t-test returned a p-value of 0.79, a value much higher than an alpha of 0.05.

5.2.2 Speaker Identity

Like the CMU ARCTIC corpus, the speaker identity task for the ABI Corpus also
consisted of 10 pairs of audio. However, in this case, because the speakers are all native
speakers, the paired audios are better described as accented converted audios paired
with the original source audio, and accent converted audios paired with the original
target audio. With this said, because of the confusion nature between source vs. target
audio (e.g. source speaker being the native speaker and target speaker being the non-
native speaker as in the ARCTIC experiment), and to keep in tune with the ARCTIC
experiment, they will still be referred to as AC-Native and AC-L2 pairs in the discussion
here.

Following the results, the evaluators scored the AC-Native audios to have a voice sim-
ilarity score of 2.6 on average, indicating that they were ‘somewhat’ certain that the
AC audios were the same person as the native audios. They also scored the AC-L2
audios to have a voice similarity score of -3.2 to indicate that they were ‘confident’ that
the AC audios were not the same person as L2 audios. The distribution of the overall
speaker identity means per question type (AC-Native and AC-L2) can be observed in
Figure 5.4. Similarly, these boxplots range from -7 to 7 to represent the possible scores

in the evaluation task.

Similar to the perceived accent evaluation criteria, a one-way ANOVA test was run to
compare whether there were any statistically relevant outliers for the speaker identity
scores across accents. When running the ANOVA test on the AC-Native mean scores
for all speakers used in the ABI experiment, there were no statistically relevant outliers,
with a p-value of 0.055. However, the ANOVA test on the AC-L2 mean scores for all
speakers gave a p-value of .00000694, indicating that there were indeed accents that
were significantly different from the other accents. From re-running the ANOVA with

various groups of accents, it was found that EAN F and LAN F were significantly
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Figure 5.4: The distribution of the mean voice similarity scores on the Speaker Identity
task for the ABI corpus per participant.

53



ABI Speaker | AC-Native Mean | AC-L2 Mean
EANF -1.3 3.2
EANM 2.7 -4.4
GLAF 4.2 -4.9
GLAM 54 -4.9
LANF -0.3 -0.7
LANM 34 -4.4

Table 5.4: The average voice similarity score on the Speaker Identity task for the ABI
COrpus across accents.

different from the other accents, with a p-value of .0000563 for the EAN F accent
compared to the other accents with LAN F removed, and a p-value of 0.024 for the
LAN F accent compared to the other accents with EAN F removed. The average voice

similarity score across accents can be seen in Table 5.4.

A t-test was also used in order to observe any potential differences between the as-
sessment of the native English speaking evaluators and non-native English speaking
evaluators, but there was no statistical difference found with a p-value of 0.93 and 0.77
for the AC-Native and AC Non-native questions respectively. This suggests that both
native speakers and non-native speakers were able to evaluate for speaker identity with

the same level of confidence.

5.3 Discussion

Following the results of the survey, there are two main points to focus on. In both
the ARCTIC and ABI experiments, speakers indicated that they were very confident
that the converted audios indeed had the desired accents, with both experiments having
median scores of 100%. However, the results from the speaker identity task were quite
contrary, with the averages for the ARCTIC corpus being 3.9 for the AC-Native pairs,
and -3.7 for the AC-L2 pairs; the ABI corpus had an average of 2.6 for the AC-Native
pairs, and -3.2 for the AC-L2 pairs. Referring back to the evaluation criteria, -7 on the
voice similarity scale indicates that the two pairs of audio are ‘definitely’ 2 separate
speakers, while 7 indicates that the two pairs of audio are ‘definitely’ the same speaker.
Thus, with the AC-Native pairs, the ideal score would be closer to -7, and with the AC-
L2 pairs, they should be closer to 7. This indicates that there was an issue retaining the

identity of the speaker during conversion.

However, interestingly, there were a few statistically relevant outliers with speakers
from the ABI corpus. Taking a look again at the mean scores in the perceived accent

task, the East Anglian female had the lowest percentage correct at 22.5%. The voice

54



similarity scores of the Lancashire and East Anglian female accents also stood out as
well, with the Lancashire female having a voice similarity score of -0.7 and the East
Anglian female having a mean voice similarity score of 3.2 in the AC-L2 pairs— the
only positive voice similarity score. This means that the East Anglian female accent
was the only accent from both experiments to have scores that were the exact mirror of

the other accents.

When considering why the East Anglian female accent sticks out as compared to the
other accents, there are a number of possible explanations. For one, when referring
back to the selection of accents used in the experiments, the East Anglian accent was
also the most similar accent to the Standard Southern English accent. This could mean
that the evaluators may have had a hard time judging the distinctions between the East
Anglian and Southern Standard English accents. This hypothesis also holds true when
examining the other two accents, as the evaluators had a mean score of 100% for both
the male and female Glasgow speakers, and a mean score of 68% and 84% on the
Lancashire speakers. This means that the evaluators were able to identify the accents
of the converted audios more or less in the order of the varience of accents from the

Standard Southern English accent.

Upon investigating why the Lancashire and East Anglian female accents had distinct
voice similarity scores, their converted audios compared with their original source and
target audios gave good indication. In both cases, the speakers sounded very similar. In
other words, although the source and target speakers were indeed two separate speak-
ers, the voice quality of both speakers in each pair sounded fairly similar. This was
particularly evident when listening to the original source and target audios of the East
Anglian pairs. This likely explains the low mean score on the perceived accent task and

the high voice similarity score on the speaker identity task.

Compared to previous work such as Zhao, Sonsaat, Silpachai, et al. (2018) which also
utilizes an almost similar approach as a baseline, the performance of the current system
is somewhat worse as the perceived accent and speaker identity scores from their sys-
tems are higher. However, this could possibly be attributed to the removal of the vocal

tract length normalization step during conversion.

While this work does not point to any advances towards to improvement of accent
conversion as a whole, it does begin the path in investigating native to native conversion.
Although the results of the perceptual study do not allow us to make any concrete
conclusions, the somewhat more successful results of the ABI experiments may allow
us to suggest that there are more subtle nuances that may not be captured or converting
using this more traditional approach to accent conversion. This would have to be further

investigated in order to be confirmed.
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Chapter 6

Conclusion and future work

6.1 Conclusion

In this work, we investigated how effective traditional MFCC and Gaussian Mixture
Model accent conversion worked for both non-native to native and native to native
accents while retaining speaker identity following the work of Aryal and Gutierrez-
Osuna (2014b). Alongside this, we tried to answer whether this traditional methodology

worked differently for non-native to native conversion vs. native to native conversion.

From the results of the perceptual evaluation, we found that most participants agreed
that the accent converted audio did match with the desired accent in almost all cases in
both experiments except for the East Anglian female speaker in the ABI experiments.

This difference was found to be statistically relevant following a one-way ANOVA test.

With that said, even though the accent converted audios were assessed to have the de-
sired accents, most participants also indicated that the converted audios were more
similar to the source speaker (e.g. the ‘native’ speaker) in terms of speaker identity,
suggesting that the accent conversion process had difficulties maintaining the speaker
identity of the target speaker (e.g. the ‘non-native’ speaker.) This indicates that this
methodology was not successful at retaining speaker identity in either experiment. This
may be due to the removal of the vocal tract length normalization feature and possibly
the limitations of MFCCs as they are limited in the amount of information they hold
especially as compared to the methods found in more recent work such as the use of

posteriorgrams in Zhao, Sonsaat, Levis, et al. (2018).

While we observed similar performance with the current method of accent conver-
sion for both sets of experiments, neither experiment was successful in retaining the

speaker identity of the target speaker, which makes it challenging to observe whether
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the same method of accent conversion works differently for non-native to native con-
version vs. native to native conversion. However, the small difference in scores between

the two experiments may hint that some difference may exist.

6.2 Future Work

In the future, it may be beneficial to have a more stringent selection process for the
perceptual study. While we were able to gather a good amount of participants, their
backgrounds varied greatly, which may have made it challenging for some of the par-
ticipants to properly identify any variation between the audios, especially in the ABI
perceived accent task. Ideally, for evaluation of the ABI experiments, it would be good
to gather those more acute towards accents in the British Isles as they would likely
be much more sensitive to changes in accents. Unfortunately, the experiments were

restricted on time, and thus the recruiting process had to be more relaxed.

In the original brainstorming process for this project, a number of ideas were brought
up for consideration, including a gamefied approach to improve pronunciation and test-
ing more advanced methods for accent conversion. In particular, during the preparation
period for the experiments, i-vectors were heavily considered as it has been shown that
i-vectors are particularly successful at classifying accents (DeMarco and Cox 2013)
and with voice conversion (Kinnunen, Juvela, et al. 2017; Z.-Z. Wu et al. 2010). Neural
networks were also considered as research in NLP and in voice conversion has found
particular success with them (Chen et al. 2014; Chorowski et al. 2017; Lorenzo-Trueba
et al. 2018). However, despite the advantages that i-vectors and neural network archi-
tectures could provide, working with i-vectors proved to be much more challenging
than anticipated due to the obstacle of using the Python package, sidekit for extract-
ing them and the challenge of understanding the theory behind how they work. Thus, it
was decided upon using more traditional methods to better understand the basis of ac-
cent conversion. Thus, in the future, it would be rewarding to work with using i-vectors
as a feature and utilizing a neural network architecture in place of Gaussian mixture

models as results have shown that both would likely bring further improvements.

In a larger context, it would be highly beneficial to observe how robust accent conver-
sion systems are in aiding language learners and automatic speech recognition systems—
two of the main targets mentioned for accent conversion. It would be particularly use-
ful to run a study to observe whether accent conversion systems actually do provide
language learners with the appropriate feedback and compare it to other methods of
feedback, as there appears to be little to no work done so far in this cross-section.

The current state-of-the-art of accent conversion would not likely compete well against
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other well-researched solutions to the speech recognition of non-standard accents, but
it would be good to compare the performance of using accent conversion against meth-
ods such as speaker adaptation or developing accent-specific systems in a similar vain
to Najafian et al. (2014). With all of this said, as a budding subfield of voice conversion
(which in turn is another subfield of speech technology and etc.), accent conversion
has plenty of room for growth and improvement in the forthcoming years. Should ac-
cent conversion gain more traction and more researchers, it is very likely that there will
be vast gains in the area that will eventually aid language learners, automatic speech

recognition systems, and other areas as intended.
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Chapter 7
Annexe

This section contains mainly a reduplication of the evaluation survey that was dis-

tributed to the participants.

7.1 Annex 1: Evaluation Survey

Thank you for participating in this survey. This survey will have you evaluate various
audios from speakers where their accents have been converted to sound more like the
accent of another speaker. You will be evaluated two (2) speakers from two different (2)
corpora on two (2) different evaluation criteria. This survey is estimated to take 10-15

minutes to complete. It is recommended that you listen to the audio with headphones.
1. Do you consider yourself a native speaker of English?
e Yes

e No

7.1.1 Accent of British Isles (ABI) Speaker Selection

2. The audio files used in this section are located on a separate webpage. Please
click the link in the FIRST option. Your selected audios are determined randomly
as they are shuffled using the ‘Shuffle order option’ included here in Google

Surveys.
e LANF

e EANM
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GLAF

e GLAM
e LANM

e EANF

7.1.2 ARCTIC Corpus Speaker Selection

2. The audio files used in this section are located on a separate webpage. Please
click the link in the FIRST option. Your selected audios are determined randomly
as they are shuffled using the ‘Shuffle order option’ included here in Google

Surveys.
e KOREANF

HINDIM

SPANISH M

SPANISH F

HINDI F

KOREAN M

7.1.3 Perceived Accent

For this section, you will use the audio files found under the ‘Perceived Accent’ section
on the page you clicked in the previous section. You will listen to an audio clip (X) and
compare it to 2 other clips (A and B) to decide which clips (A and X/B and X) are more
similar in their ACCENTS.

For example, if you listen to ‘X’, and decide that ‘X’ sounds more similar in accent to

‘A’, select ‘A’. If you decide that ‘X’ sounds more similar in accent to ‘B’, select ‘B’.
1. Group #1: Is clip X most similar to A or B?
o A
e B
-repeated until 10th question-

2. Group #10: Is clip X most similar to A or B?

62



o A

e B

7.1.4 Speaker Identity

For this section, you will use the audio files found under the ‘Speaker Identity’ section
on the page you clicked in the first section. For each question, you will listen to 2 audio
clips (A and B) and indicate how confident you are whether they are the same speaker
or two different speakers on a scale of -7 (definitely different speakers) to 7 (definitely

same speakers).

For example: If you are definitely sure that clip ‘A’ and clip ‘B’ are the SAME speaker,
select “7°. If you are definitely sure that clip ‘A’ and clip ‘B’ are two DIFFERENT

speakers, select -7°.
These audio clips have been REVERSED so please do not be alarmed.

1. Pair #1: Rate the pair of audio clips on a scale of -7 (definitely a different speaker)
to 7 (definitely the same speaker).

Definitely a different speaker Definitely the same speaker
-7 6|-5|-4]-3]-2|-1]0]|1|2]3|4]5]|6 7

Similarity

-repeated until 10th question-

10. Pair #10: Rate the pair of audio clips on a scale of -7 (definitely a different
speaker) to 7 (definitely the same speaker).

Definitely a different speaker Definitely the same speaker
-7 6|-5(-4|-3|-2|-1({0|1[2]3]|4|5]|6 7

Similarity
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