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Abstract
Universal semantic tagging is the recently proposed task of assigning certain semantic

categories (semantic tags or sem-tags) to each token in a given text fragment. These
semantic tags are designed to individually represent the meaning contribution of each
token, and are independent to the characteristics of any particular language. Because of
their special properties, semantic tags provide various advantages over Part-Of-Speech
(POS) tags when considering problems that involve semantic analysis, and are suitable
for cross-lingual semantic parsing. At the time of writing, the most recent version of
the Universal Semantic Tagset consists of 73 fine-grained semantic tags grouped into 13
meta-tags or coarse-grained semantic tags.

Possibly due to its short-lived existence, there are not many established results for
universal semantic tagging, and its usefulness has not yet been quantitatively measured.
Thus, in the first part of this thesis, we are concerned with formulating neural models for
universal semantic tagging building on recent research results for tagging tasks and the
annotated data provided by the Parallel Meaning Bank (PMB). The customizable software
tool implemented to do so is able to obtain a performance on the task superior to other
approaches and constitutes a solid baseline for future research.

In the second part of this thesis, we explore the potential of semantic tags for Recognizing
Textual Entailment (RTE), which is the problem of discovering whether an entailment
relationship exists or not between a given text and a given hypothesis in natural language.
To that effect, we employ existing parsing and inference systems and replace all lexical
information and POS tags with semantic tags. These modifications achieve state-of-the-art
performance on the FraCas dataset, and pave the way for using the same approach on
similar more sizable datasets.
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1 INTRODUCTION

1. Introduction

As opposed to other problems within the field of natural language processing such as
information extraction or summarization, semantic parsing seeks to obtain complete and
formal meaning representations of natural language sentences. Many well-performing ap-
proaches to obtaining these representations rely on the principle of compositional semantics,
which states that the meaning representation of a phrase is determined by appropriately
combining the meaning representations of its constituents [BCS+04, MMMB].

Nonetheless, finding the appropriate lexical semantics to assign to individual tokens is a
problem that goes far beyond the surface form of words or the syntactic purpose they serve.
For example, one can consider the token have in the following Part-Of-Speech (POS) tagged
sentences extracted from the Parallel Meaning Bank (PMB) [ABE+17], only to arrive at
the conclusion that the 3 occurrences have clearly distinct semantic contributions:

IPRP haveVBP anDT orangeNN andCC anDT appleNN . · (1.1)

WePRP haveVBP consumedVBN allPDT theDT natural~resourcesNNS . · (1.2)

IPRP haveVBP toTO repairVB theDT refrigeratorNN . · (1.3)

In sentence (1.1), the token have describes an event of possession, while denoting a
perfect aspect in sentence (1.2) and being part of a modal expression in sentence (1.3). In
contrast, the POS tag VBP is invariably assigned to all occurrences of have, indicating the
presence of a verb not in the third person singular form. The information provided by POS
tags can indeed assist in syntactically parsing each sentence, but a more precise source of
knowledge is needed for mapping word tokens to their individual lexical semantics.

Universal semantic tagging [AB17] is a recently proposed tagging task that attempts to
address the shortcomings of POS tags in semantic parsing. Each associated semantic tag
(or sem-tag) exclusively captures information related to the semantic contribution of each
token and is agnostic to less relevant aspects such as its grammatical function. The design
is such that telling the different meanings of have apart becomes straight-forward under
semantic tags:
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1 INTRODUCTION

IPRO haveENS anDIS orangeCON andGRP anDIS appleCON .NIL (1.4)

WePRO haveNOW consumedEXT allAND theDEF natural~resourcesCON .NIL (1.5)

IPRO haveNEC toNIL repairEXS theDEF refrigeratorCON .NIL (1.6)

Using this novel paradigm, it is possible to assign the sem-tag ENS to the token have in
sentence (1.4) in order to denote an event occurring in the present. The sem-tag NOW can
also be employed to identify the present tense contribution within the perfect aspect of the
token have in sentence (1.5). Finally, the token have in sentence (1.6) can be associated
to the sem-tag NEC to indicate necessity. The advantage of semantic tags is that tokens
mapped to the same sem-tag with the same syntactic function also have the same lexical
semantics, and one can manually define or otherwise learn this latter correspondence.

However, no matter how feasible it is to assign lexical semantics to word tokens according
to their associated sem-tags, a model that assigns the correct sem-tags to tokens in a given
text is still necessary. The present thesis proposes an implementation for such a semantic
tagger using the latest available research results and resources. In particular, the aim is to
conduct both an intrinsic and an extrinsic evaluation on the problem of universal semantic
tagging, defining the following 2 goals:

1. Engineer an optimal semantic tagger and analyze its performance.

2. Employ the proposed tagger in a way such that it can improve the performance of
an existing system for recognizing textual implications.

We begin by providing a more detailed formulation of tagging tasks in Chapter 2,
including POS tagging and universal semantic tagging. Chapter 3 contains an overview
of multiple approaches to tagging from traditional long-standing statistical models to
modern neural network architectures, with Chapter 4 describing our proposed neural
semantic tagger and its implementation. The following Chapter 5 is concerned with current
methods for compositional semantic parsing, while it also addresses the Recognizing Textual
Entailment (RTE) problem and how we employ the information provided by semantic tags
in a specific RTE task. Future research directions and overall conclusions from this work
are given in the closing Chapter 6.
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2 TAGGING TASKS

2. Tagging tasks

It is commonplace for natural language processing methods to adopt a sequential approach
in the form of a pipeline where the first steps attempt to extract information from basic
language units. In contrast, steps occurring later in the pipeline are concerned with a
higher-level linguistic analysis, attempting to capture the meaning of a given phrase or its
purpose [ID10]. Since the particular family of tagging tasks simply assigns an informative
label to each word token in a sequence, such tasks are performed as a prerequisite for
subsequent tasks more often than not.

The labels assigned to tokens are commonly known as tags, and their possible instances
differ according to their intended purpose. Let us briefly consider the problem of syntactic
parsing, which attempts to discover the underlying syntactic structure of a given phrase.
Because human language is inherently ambiguous, a token such as back can perform several
roles, acting either as an adverb, a noun, an adjective, or a verb, as illustrated respectively
by the following example sentences:

Tom put the book back on the shelf . (2.1)

The victim was clearly stabbed in the back . (2.2)

Anna entered by the back door . (2.3)

She knows that the goverment will back her . (2.4)

In cases like these, Part-Of-Speech (POS) tags provide valuable information by indicating
the lexical category of each associated token, which enables us to make assumptions about
the underlying syntactic structure [Man11]. Furthermore, POS tags are also employed in
other domains such as information retrieval or even speech synthesis [JM09].

Now considering the problem of semantic parsing, the nature of the meaning contribution
of each word token also suffers from ambiguity in the sense that we would like to differentiate
two given tokens semantically even when they both belong to the same lexical category.
Nonetheless, as we have already proved in Chapter 1, POS tags do not suffice as a source of
information that enables this distinction, and thus one might want to employ a completely
different set of semantic tags instead [AB17].
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2.1. Part-Of-Speech tagging

The argument that knowing the lexical category of a word is helpful when trying to
determine the syntactic structure of its surroundings is indeed a compelling one. For
example, nouns are usually preceded by determiners or adjectives, and tend to form
part of a larger noun phrase [JM09]. However, we must ask ourselves how is it possible
to determine a set of fine-grained POS tags that covers all different morphological and
syntactic behaviors which words can have within a sentence.

Without committing to any particular language, the linguistic community agrees that 3
major universal POS categories exist: nouns, verbs and adjectives. From there, various
secondary POS categories that present similar morphological or distributional properties
can be added. This being said, committing to a particular tagset is an issue subject to the
target language and multiple linguistic considerations beyond the scope of this work. In the
case of English, the Penn Treebank tagset [MMS93] is the most widely used [JM09].

The state-of-the-art POS tagging accuracy is over 97% for many languages, a score
that prompted many researchers to claim that POS tagging is essentially a solved problem
[Man11]. Nonetheless, we must mention that it is possible to obtain high tagging accuracies
using relatively simple methods, and that increasing still low sentence accuracy scores has
the potential to bring improvements in downstream tasks [ID10].

2.1.1. The Penn Treebank Part-Of-Speech Tagset

Most language processing applications for English employ the Penn Treebank POS tagset
[MMS93] shown in Table 2.1, which has been used to label a wide range of corpora [JM09].
As we discuss in Chapter 3, having access to tagged corpora is a necessary resource for many
classes of tagging models, particularly the ones that try to model statistical distributions.
The most notorious corpus for English is perhaps the Brown corpus [FK79], which contains
over a million words extracted from approximately 500 texts published in 1961. The
Wall-Street Journal (WSJ) corpus is also a notorious resource that contains a million words
from articles published in the Wall Street Journal in 1989 [JM09].
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2 TAGGING TASKS

Despite the moderate number of different tags in the Penn Treebank POS tagset, it is
possible to broadly classify them into closed class and open class tags. Closed class tags
represent a finite set of typically function words, such as determiners (DT ) or prepositions,
(IN ) that prominently serve a grammatical purpose and contain relatively little lexical
information. Open class tags, such as singular proper nouns (NNP ), represent sets can
accept an arbitrary number of potentially recently coined words.

CC coordinating conj.: and, but, or
CD cardinal number: one, two
DT determiner: a, the
EX existential there: there
FW foreign word: mea culpa
IN preposition & sub. conj.: of, in, by
JJ adjective: yellow
JJR comparative adjective: bigger
JJS superlative adjective: wildest
LS list item marker: 1, 2, One
MD modal: can, should
NN singular noun or mass: l lama
NNS plural noun: l lamas
NNP singular proper noun: IBM
NNPS plural proper noun: Carolinas
PDT predeterminer: all, both
POS possessive ending: ’s
PRP personal pronoun: I, you, he

PRP$ possessive pronoun: your, one’s
RB adverb: quickly, never
RBR adverb, comparative: faster
RBS adverb, superlative: fastest
RP particle: up, off
SYM symbol: +, %, &
TO "to": to
UH interjection: ah, oops
VB verb base form: eat
VBD verb past tense: ate
VBG verb gerund: eating
VBN verb past participle: eaten
VBP verb non-3sg present: eat
VBZ verb 3sg present: eats
WDT wh-determiner: which, that
WP wh-pronoun: what, who
WP$ wh-possessive: whose
WRB wh-adverb: how, where

Table 2.1: Penn Treebank POS tags excluding punctuation related tags [MMS93], with
example words extracted from [JM09].

2.2. Universal semantic tagging

Semantic parsing is the task of obtaining a meaning representation of a given phrase.
In this thesis, we assume that this analysis is performed by composing formal meaning
representations of lexical items [BCS+04] driven by syntactic derivations of Combinatory
Categorial Grammars (CCG) [Ste96]. We will also adopt λ-expressions as a means of
representing semantics and simply typed λ-calculus as our computational model of choice
[MMMB]. These topics are covered in depth in Chaper 5, but the main relevant topic at
this point is finding a way of assigning lexical semantics to tokens at a certain position
within a syntactic derivation tree.

6



2 TAGGING TASKS

One might decide to use the lexical information provided by POS tags in order to
associate lexical semantics to tokens. Such an example is shown in Equation 2.5, where
we consider the phrases glass window and clear window. The token window is assigned to
syntactic category N , denoting a nominal constituent. Similarly, both the tokens glass and
clear correspond to syntactic category N/N , indicating that they combine with a nominal
constituent of category N on its right to produce a larger constituent of category N .

glassNN / clearJJ

N/N

NN 7→ λEλFλx.E(x) ∧ F (x)
JJ 7→ λEλFλx.E(x) ∧ F (x)

, windowNN

N

NN 7→ λEλx.E(x)

(2.5)

In the example shown in Equation 2.5, we were able to specify a set of rules that
assign lexical semantics to tokens based on their syntactic categories and POS tags. Thus,
tokens with syntactic category N and POS tag NN will be mapped to the expression
λEλx.E(x). Likewise, tokens with syntactic category N/N will be mapped to the expres-
sion λEλFλx.E(x)∧F (x) when their associated POS tags are either NN or JJ . Note that,
in the leaf nodes of the syntactic derivation tree, we adopt the convention that the lexical
form of the corresponding token becomes the first argument of its semantics.

However, there are many situations were POS tags do not provide sufficient information
for assigning lexical semantics. The class of determiners constitutes an illustrative example
[AB17], as shown in Equation 2.6 by considering the phrases any restaurant and some
restaurant. Despite the fact that the tokens any and some must be associated to different
semantics, POS tagging labels them both as determiners (DT ). One must then decide on
the semantics of the token associated to a syntactic category NP/N by examining its
surface form. While feasible, such an approach is tedious, increases the complexity of
semantic parsing and fails to generalize across different languages

anyDT / someDT

NP/N

’any’ 7→ λEλF1λF2λF3. ∀x(F1(x)→ (F2(x)→ F3(x)))
’some’ 7→ λEλF1λF2λF3.∃x(F1(x) ∧ F2(x) ∧ F3(x))

, restaurantNN

N

NN 7→ λEλx.E(x)

(2.6)

7
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Furthermore, this is by far not the only situation where POS tags are not sufficiently
informative on the semantic dimension. Among many other cases of ambiguity, POS tags
do not distinguish between coordinating conjunctions nor commas with different semantic
functions; and they also fail to differentiate between auxiliary verbs and content verbs or
intersective and subsective adjectives [AB17].

Finally, another important aspect when considering lexical semantics is being able to
differentiate between different types of Named Entities (NE). This is because one might
want to assign different lexical semantics depending on whether such entities are persons,
organizations, locations, geo-political entities, events, artifacts, etc. Under POS tagging,
all proper nouns are either assigned to the tag NNP or the tag NNPS , without any other
useful fine-grained distinctions.

The Univesal Semantic Tagset and the task of universal semantic tagging [AB17] help
overcome the shortcomings of POS tags by suggesting a set of semantic tags (or sem-tags)
that are agnostic to the syntax and morphology of any given language and concerned only
with the meaning contribution of their associated tokens in the spirit of the principle of
compositional semantics.

2.2.1. The Universal Semantic Tagset

The Univesal Semantic Tagset [AB17] differs from any POS tagset because it is semantically
rich, data-driven, and not tied to a particular syntax. It was originally motivated via the
Parallel Meaning Bank (PMB) project, where it currently contributes to the cross-lingual
projection of semantic representations [ABE+17].

The most recent version of the universal semantic tagset is depicted in Table 2.2.
Similarly to the Penn Treebank tagset [MMS93], we can find closed tag classes and open
tag classes. In particular, the coarse semantic tags ATT , COM , NAM , EVE and UNE cover
both open and closed class tags, while the rest of the coarse tags cover mainly closed tag
classes. The semantic tags that model closed class tokens both disambiguate typically
highly ambiguous words and agglutinate cross-lingual spelling variants.

8



2 TAGGING TASKS

ANA
anaphoric

PRO anaphoric & deictic pronoun: I, her
DEF definite: the
HAS possessive pronoun: my, her
REF reflexive/reciprocal pronoun: each␣other
EMP emphasizing pronoun: himself

ACT
speech

act

GRE greeting & parting: hi, bye
ITJ interjection & exclamation: alas, ah
HES hesitation: err
QUE interrogative: who, which, ?

ATT
attribute

QUC concrete quantity: two, six␣million, twice
QUV vague quantity: millions, many, enough
COL colour: red, crimson, light␣blue
IST intersective: open, vegetarian, quickly
SST subsective: skillful surgeon, tall kid

PRI privative: former, fake
DEG degree: 2 meters tall, 20 years old
INT intensifier: very, much, too, rather
REL relation: in, on, ’s, of, after
SCO score: 3-0, grade A

COM
com-

parative

EQU equative: as tall as John, whales are mammals

MOR comparative positive: better, more
LES comparative negative: less, worse
TOP superlative positive: most, mostly
BOT superlative negative: worst, least
ORD ordinal: 1st, 3rd, third

UNE
unnamed

entity

CON concept: dog, person
ROL role: student, brother, prof., victim
GRP group: John {,} Mary and Sam gathered

DXS
deixis

DXP place deixis: here, this, above
DXT temporal deixis: just, later, tomorrow
DXD discourse deixis: latter, former, above

LOG
logical

ALT alternative & repetition: another, again
XCL exclusive: only, just
NIL empty semantics: {.}, to, of
DIS disjunction & exist. quantif.: a, some
IMP implication: if, when, unless
AND conjunction & univ. quantif.: every, and

NOT negation: not, no, neither, without MOD
modalityNEC necessity: must, should, have to

POS possibility: might, could, perhaps, can
SUB subordinate relation: that, because DSC

discourseCOO coordinate relation: so, {,}, {;}, and
APP appositional relation: {,}, which
BUT contrast: but, yet
PER person: Axl␣Rose, Sherlock␣Holmes NAM

named
entity

GPE geo-political entity: Paris, Japan
GPO geo-political origin: Parisian, French
GEO geographical location: Alps, Nile
ORG organization: IKEA, EU
ART artifact: iOS␣7
HAP happening: Eurovision␣2017
UOM unit of measurement: meter, $, %
CTC contact information: 112, me@rug.nl
URL URL: http: // pmb. let. rug. nl

LIT literal usage of a name: his name is John
NTH undefined name: table 1a, equation (1)
EXS untensed simple: to walk, is eaten EVE

eventsENS present simple: we walk, he walks
EPS past simple: ate, went
EXG untensed progressive: is running
EXT untensed perfect: has eaten

NOW present tense: is skiing, do ski, has skied TNS
tense &
aspect

PST past tense: was baked, had gone, did go

FUT future tense: will, shall
PRG progressive: has been being treated

PFT perfect: has been going/done

DAT full date: 27.04.2017, 27/04/17 TIM
temporal
entity

DOM day of month: 27th December

YOC year of century: 2017
DOW day of week: Thursday
MOY month of year: April
DEC decade: 80s, 1990s
CLO clocktime: 8:45␣pm, 10␣o’clock, noon

Table 2.2: Universal Semantic Tagset version 0.7 containing 73 semantic tags grouped into
13 meta-tags, as presented in [AB17].

In principle, semantic tags provide semantic information that treats adjectives and
adverbs uniformly and is disjunct from thematic roles, syntax and lemma. Due to this
level of abstraction, semantic tags are suitable for cross-lingual applications. We show that
we can use semantic tags to define semantic templates [MMMB] in Chapter 5. For now,
we will just show in Equation 2.7 that it is straight-forward to rewrite semantic rules for
the previously problematic Equation 2.6 using semantic tags.

9
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2 TAGGING TASKS

anyAND / someDIS

NP/N

AND 7→ λEλF1λF2λF3.∀x(F1(x)→ (F2(x)→ F3(x)))
DIS 7→ λEλF1λF2λF3.∃x(F1(x) ∧ F2(x) ∧ F3(x))

, restaurantCON

N

CON 7→ λEλx.E(x)

(2.7)

2.3. Tokenization and other challenges

In general, we assume that a tokenization process takes places before any tagging task.
Up until this point, we have been using the term token as a synonym for a meaningful
atom that is associated to a tag. However, and specially for semantic tagging, choosing a
method for tokenizing the input data should be a matter of special consideration.

One of the main challenges in tokenization is handling Multi-Word Expressions (MWE),
that is complex lexical units that expand over multiple words but where the properties
of the compound do not decompose over the components. If we consider expressions
such as ice cream or kick the bucket, the compound should only be assigned a single tag
corresponding to the associated noun or action, rather than different tags for each word.
Thus, MWEs should be identified and accounted for prior to or during the tagging process,
and this is a problem to which we will come back in Chapter 4.

Yet another challenge for tagging models comes in the form of unknown words. Unknown
words are words that either do not have an associated rule (in rule-based approaches) or
do not occur in the training data (in statistical approaches). As discussed in Chapter 3,
one needs a pragmatical solution to deal with them such as smoothing techniques or a
default tag to which such words can be mapped.

10



3 TAGGING MODELS

3. Tagging models

In order to formally discuss tagging problems, we need to first convene to a mathematical
notation. For the remaining part of this thesis, we will refer to a sequence of n untagged
tokens as wn1 , equivalent to w1, ..., wn. In a similar fashion, a sequence of n tags will be
written as either tn1 or t1, ..., tn. A potentially empty subsequence spanning from the i-th
to the j-th element of any sequence will be represented as wji or t

j
i .

This thesis generally assumes that the number of possible tokens and tags in a training
set is defined by a closed vocabulary and a tagset, which we will represent with the letters
V and T respectively. Thus, for any given sequence of n tokens, it holds that wn1 ∈ Wn;
and for any given sequence of tags we have that tn1 ∈ T n.

As we mentioned in the preceding Chapter 2, the goal of problems within the tagging
family is to find a sequence of tags t̂n1 that matches a given sequence of words wn1 such that
the posterior probability P (t̂n1 | wn1 ) is as high as possible:

t̂n1 = arg max
tn1∈T n

P (tn1 | wn1 ) (3.1)

Many techniques have been applied in order to solve these problems. Statistical taggers
try to learn probability distributions from a training corpus and use them to find the most
likely tag sequence. Rule-based taggers, as the name suggests, use a set of rules to assign
plausible tags. It is out of the scope of this work to provide an accurate description of
them all, and what we will give instead is sufficient background to understand the scope of
the experiments performed in the subsequent chapters and their implications.

The reader will note that we will often discuss Part-Of-Speech (POS) taggers, despite
POS tagging not being a central topic in this thesis. This is due to the long-sustained
attention that POS tagging has enjoyed on behalf of the research community [JM09],
and the fact that there are virtually no published results on universal semantic tagging.
Thankfully, POS tagging and universal semantic tagging are nearly identical problems
from a computational perspective, which means that successful techniques in one task are
easily transferable to the other and contrariwise.
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3 TAGGING MODELS

3.1. Discriminative and generative models

Human languages typically contain a large number of words and constructions. Because
of this variability, one realizes that it is impossible to accurately compute the posterior
probability P (tn1 | wn1 ) in Equation 3.1. Thus, statistical tagging models typically make some
simplifying assumptions. We will distinguish between models that attempt to estimate the
posterior probability directly, also known as discriminative models; and models that estimate
the likelihood and prior probabilities instead, also known as generative models.

The reasoning behind discriminative models starts by considering the definition of
conditional probability, which allows us to write:

P (tn1 | wn1 ) = P (tn1 , wn1 )
P (wn1 ) =

n∏
i=1
P (wn1 , ti1)

n∏
i=1

P (wn1 , ti−1
1 )

(3.2)

Furthermore, by using the chain rule of conditional probability and grouping the factors
present in Equation 3.2, we arrive at the following:

P (tn1 | wn1 ) =
n∏
i=1

P (ti | wn1 , ti−1
1 ) (3.3)

Equation 3.3 does not present a problem any simpler than Equation 3.2. However,
the formula is presented in a manner that allows for some independence assumptions
which make computing P (tn1 | wn1 ) as the product of approximable quantities feasible.
Traditionally, two assumptions are made in tagging problems. The first one is that each
ti is only dependent on wi and independent with respect to all other tokens. The second
assumption is that ti is only dependent on a certain number of previous tags, and we refer
to models that condition on the most recent k − 1 tags k-gram models.

P (ti | wn1 , ti−1
1 ) ≈ P (ti | wi, ti−1

1 ) (3.4)

P (ti | wn1 , ti−1
1 ) ≈ P (ti | wn1 , ti−1

i−k+1) (3.5)

12
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Finally, we can substitute Equation 3.4 and Equation 3.5 into Equation 3.3 to obtain
a product of terms representing the conditional probabilities of each tag given their
corresponding token and previous tags. Such terms can be approximated from a labeled
corpus using techniques such as Maximum Likelihood Estimation (MLE) or Expectation
Maximization (EM).

t̂n1 = arg max
tn1∈T n

P (tn1 | wn1 ) =
n∏
i=1

P (ti | wi, ti−1
i−k+1) (3.6)

The approach chosen by generative models is slighly different than the one of discrimina-
tive models. Considering again Equation 3.1, we can rewrite it using Bayes rule as shown
in Equation 3.7. Note that the normalization constant P (wn1 ) can be discarded since it
does not affect the result of our maximization problem:

t̂n1 = arg max
tn1∈T n

P (tn1 | wn1 )

= arg max
tn1∈T n

P (wn1 | tn1 )P (tn1 )
P (wn1 )

∝ arg max
tn1∈T n

P (wn1 | tn1 )P (tn1 )

(3.7)

It is once again unfeasible to estimate the likelihood and prior probabilities P (wn1 | tn1 )
and P (tn1 ) directly due to the dimensionality of the associated data. By adopting the same
independence assumptions which were presented in Equation 3.4 and Equation 3.5, and
further assuming that the probability of a token appearing at a certain position is only
dependent on the associated tag, we are able to write the following:

P (wn1 | tn1 ) =
n∏
i=1

P (wi | ti) (3.8)

P (tn1 ) =
n∏
i=1

P (ti | ti−1
i−k+1) (3.9)

Having empirically defined the likelihood and prior probabilities, the only remaining
step is to substitute these definitions into Equation 3.7 to arrive at the descriptive formula
for generative models shown in Equation 3.10.

13
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t̂n1 ∝ arg max
tn1∈T n

P (wn1 | tn1 )P (tn1 )

= arg max
tn1∈T n

n∏
i=1

P (wi | ti)
n∏
i=1

P (ti | ti−1
i−k+1)

= arg max
tn1∈T n

n∏
i=1

P (wi | ti)P (ti | ti−1
i−k+1)

(3.10)

3.2. Most Frequent Class taggers

The main difficulty of a tagging problem such as POS tagging is finding a method for
resolving the ambiguity that arises when a given surface form of a token can be assigned
to different tags depending on its context. Most surface forms such as proper nouns are
not ambiguous, but the ambiguous forms typically represent some of the most common
words in a language. In the case of English, between 55% and 67% of the tokens in a text
are ambiguous, as shown in Table 3.1.

WSJ Brown
Surface forms
Unambiguous (1 tag) 44,432 (86%) 45,799 (85%)
Ambiguous (≥ 2 tags) 7,025 (14%) 8,050 (15%)

Tokens
Unambiguous (1 tag) 577,421 (45%) 384,349 (33%)
Ambiguous (≥ 2 tags) 711,780 (55%) 786,646 (67%)

Table 3.1: The amount of tag ambiguity for token surface forms and tokens in a POS-tagged
version of the WSJ corpus and the Brown corpus [FK79], adapted from [JM09].

Nonetheless, the distribution of possible tags linked to a particular surface form is far
from uniform, with some tags being much more frequent than others. One could entertain
the idea of a simple baseline approach that merely maps each token to the tag with which
it is associated most often in the training data. These models are called Most Frequent
Class (MFC) taggers and, despite their simplicity, obtain tagging accuracies ranging from
80% to 90% depending on the dataset and language [ID10]. Thus, when assessing the
performance of more advanced models, it is important to consider taggers such as MFC in
order to gain some perspective on the significance of the evaluation metrics.

14
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3.3. Transformation-Based Learning

Early attempts at formulating POS tagging models employed a set of handcrafted rules
together with the vocabulary W in order to specify the conditions under which tags could
be assigned to tokens [ID10]. However, this required both extensive manual work and
linguistic knowledge, which made the approach impracticable in many situations.

Back in those days, a particularly revolutionary approach known as Transformation-
Based Learning (TBL) allowed for automatically learning the required linguistic rules
[Bri95]. In short, the algorithm assigns a tag to every token in the training corpus either
by using a rule from a set of known rules or randomly when no applicable rules exist.
Then, the algorithm tries to induce the template-based rule capable of correcting the most
mistakes, adds the rule found to the set of known rules and tags the training corpus again.
New rules keep being found until the error rate is not reduced anymore or until it falls
below a predefined threshold.

The TBL tagger stands the test of time and still today poses some advantages over more
modern statistical and neural approaches. This is the case because the rule templates used
can virtually utilize any source of information available to them, and the trained model is
easily interpretable by humans and not bound to overfitting. The TBL tagger was trained
and tested on the Wall-Street Journal (WSJ) corpus, achieving an accuracy of 96.6% and
learning 690 different rules.

3.4. Hidden Markov Models

Hidden Markov Models (HMM) constitute a widely studied statistical formalism for POS
tagging and fall under the umbrella of generative models described by Equation 3.10.
When considering a tagging problem, one can only observe the tokens of a given phrase
directly, which are generated by the emission probabilities P (wi | ti). Thus, the tags
associated to the tokens become hidden (non-observable) states of the model and the terms
P (ti | ti−1...ti−k+1) denote the transition probabilities between them.
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Training a HMM entails maximizing the probability of generating an observed sequence
of tokens. It is possible to approximate both the emission and transition probabilities
using MLE and a tagged corpus as shown in Equation 3.11. Note that, in our formulas,
C(wi, ti) denotes the number of times a word wi is labeled with the tag ti. Similarly,
C(ti+xi ) represents the number of occurrences of the tag sequence ti+xi .

P (wi | ti) = C(wi, ti)
C(tii)

P (ti | ti−1...ti−k+1) = C(tii−k+1)
C(ti−1

i−k+1)
(3.11)

t1 t2 tn-1 tn

w1 w2 wn-1 wn

Figure 3.1: Visual representation of a first order HMM defining a joint probability P (wn1 , tn1 ).
Transition probabilities are only conditioned on the previous hidden state (k = 2).

However, finding the most likely sequence of tags associated with an observed sequence
is a computationally complex problem, since there might be many possible state sequences
(or paths) that generate the observed tokens. In general, one is interested in obtaining the
path with the highest probability π̂ as defined in Equation 3.12.

P (wn1 | π̂) = arg max
π

P (wn1 | π) (3.12)

The Viterbi algorithm [JM09] is a dynamic programming procedure capable of computing
the path π̂. Assuming a starting state s and an ending state e, it computes the joint path
and emission probability as V (n, e), defined recursively in Equation 3.13. Furthermore, we
can build the path π∗ after all V (i, j) quantities have been computed by tracing back our
choices from V (n, e) to V (1, s).

Initialization: V (1, s) = 1

Recursion: V (i, j) = max
l
V (i− 1, l)P (tj | tlj−k+1)P (wi | tj)

(3.13)
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The TnT tagger is a system that employs the HMM formulation using a context window
of k = 3 tokens by default [Bra00]. This tagger also features other enhancements, such as
smoothing of the estimated prior probabilities using linear interpolation and the use of
a differentiated set of tags for uppercase and lowercase words. To increase the efficiency
of the tagger, beam search is used in conjunction with the Viterbi algorithm to prune
non-promising search paths while scanning a given sentence. The TnT tagger achieves an
accuracy of 96.7% on the Penn Treebank [MMS93].

3.5. Conditional Random Fields

The HMM architecture presented in the previous section is effective in the POS tagging
task [CKPS92], but some issues with the formalism exist. The most important shortcoming
is that HMMs only capture dependences between each tag and its corresponding token,
failing to take potentially informative previous and later tokens into account. Furthermore,
HMMs learn the joint distribution of tags and tokens P (wn1 , tn1 ), while in tagging tasks it
would be more convenient to learn the conditional probability P (tn1 | wn1 ) directly.

A Conditional Random Field (CRF) is an undirected probabilistic graphical model with
nodes denoting random variables and edges denoting dependencies between those variables
[LMP01]. They are an example of discriminative models defined by Equation 3.3 capable of
modeling the dependence between each tag and the entire sequence of tokens. Instances of
CRFs which only model the dependency between neighboring tags directly are called linear
chain CRFs and are typically used in tagging instead of more general forms [JM09].

t1 t2 tn-1 tn

w1
n

Figure 3.2: Visual representation of a linear chain CRF defining a conditional probability
P (tn1 | wn1 ). The entire observed sequence is available at any given state of the model.
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We can define the distribution P (tn1 | wn1 ) as shown in Equation 3.14 [LMP01]. In our
formulation, Z(wn1 ) is a normalization constant, φ denotes the set of feature functions, and
θ represents the set of model parameters which need to be estimated in training time.

P (tn1 | wn1 ; θ) = 1
Z(wn1 )

n∏
i=1

exp
(

K∑
k=1

θkφk(ti, ti−1, w
n
1 , i)

)

∝ exp
(

K∑
k=1

θk
n∑
i=1

φk(ti, ti−1, w
n
1 , i)

) (3.14)

The parameters of a CRF model can be computed using MLE by considering a training
set D = {(Wi, Ti) : i = 1, . . . , N} where each pair (Wi, Ti) contains a sequence of tokens
and its corresponding sequence of tags. The objective function shown in Equation 3.15
follows, where the penalty incurred by a training example is the negative log-probability of
the correct tag sequence and a regularization factor [GRDB07]. Then, one can employ the
back-propagation algorithm in order to obtain a set of optimal parameters [Hay98].

L(θ,D) = − log
(
N∏
i=1

P (Ti | Wi; θ) + C

2 ‖W‖
2
)

(3.15)

Finally, the decoding process on a CRF is simply the problem of finding a sequence
of tags that maximizes the conditional probability P (tn1 | wn1 ) given the set of optimal
parameters. This search can be solved efficiently using the Viterbi algorithm as in the
case of HMMs. Approaches that employed CRFs for POS tagging report accuracy scores
revolving around 97.0% for English on the Penn Treebank [SRLK14].

3.6. Artificial Neural Networks

Following important technological developments, Artificial Neural Networks (ANN) have
become a wide-spread representation learning technique which has given birth to some
of the best-performing systems in various areas. However, neural networks have not
consolidated as a popular modeling choice for POS tagging, possibly because of the not
entirely favorable trade-off between added complexity and performance improvement.
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ANNs are created by combining a number of basic components called perceptrons (or
units). A perceptron typically has an input vector x ∈ Rl, a weight vector w ∈ Rl, a bias
term b ∈ R, and an activation function f . The only duty that these units perform is to
compute an output ŷ ∈ R as a squashed weighted sum of the input vector:

ŷ = f (wx + b) (3.16)

Moreover, the output of a perceptron can be turned into a component of the input vector
of another perceptron. By considering a collection of ordered disjoint sets of perceptrons and
making the output of each perceptron in a given set become an input for each perceptron
in the next set, one can construct a type of feed-forward network known by the name of
Multi-Layer Perceptron (MLP) or simply deep neural network.

Input layer Hidden layer Output layer

Figure 3.3: Visual representation of an MLP containing 3 layers. The output of each
perceptron in a given layer is connected to all perceptrons in the next layer.

.

An MLP can approximate any continuous multivariate function to any degree of accuracy,
provided there are sufficiently many hidden perceptrons [HSW89]. Thus, it is possible to
make MLPs learn complex functions by selecting the appropriate values for the weight
and bias terms in each contained perceptron. This can be achieved using a process known
as backpropagation [Gur97], which iteratively presents training input examples to the
network and computes the resulting output. The mismatch observed between the output
and the desired value is propagated backwards in order to adjust the network parameters
via gradient descent according to Equation 3.17 and Equation 3.18.
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In our formulation, W(t−1) ∈ Rn×n is the previous weight matrix and W(t) ∈ Rn×n the
updated weight matrix at a time step t. The same superscript notation applies to the
bias vector b ∈ Rn. These values are updated according to the value of their gradient
with respect to a loss function E and the quantity γ(t), known as the learning rate. The
interested reader can check the entire derivation from a more detailed source [Hay98].

W(t) = W(t−1) − γ(t) ·
[
∂E

∂wij

]
wij∈W(t−1)

(3.17)

b(t) = b(t−1) − γ(t) ·
[
∂E

∂bi

]
bi∈b(t−1)

(3.18)

One of the earliest attempts at using an MLP for POS tagging is the Net-tagger system
[Sch94], which uses a wide-range of information sources such as the surface form of tokens
and their context as inputs to the network. In contrast, each unit in the output layer
is responsible for outputting the likelihood of a single POS tag. The results presented
show an accuracy improvement of approximately 2% over HMM models in the particular
dataset employed. It is worth mentioning that Net-tagger has inspired many similar tagging
architectures in languages other than English [Jan04, Bo08].

3.6.1. Recurrent Neural Networks

We will now consider another type of neural networks known as Recurrent Neural Networks
(RNN), which are able to capture the dynamics of sequences present in tagging problems
through loops in their structure [Lip15]. At each time step t, a hidden unit of an RNN
takes an input vector x(t) ∈ Rn and the output of the previous hidden unit h(t−1) ∈ Rm.
The next hidden state h(t) is then computed by applying the following recursive operation,
where W ∈ Rm×n, U ∈ Rm×m, and b ∈ Rm are the weight and bias parameters respectively,
and f is the activation function of the hidden unit [KJSR16].

h(t) = f(Wx(t) + Uh(t−1) + b) (3.19)
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A hidden state h(t) as currently formulated should be able to summarize all historical
information up to the time step t. However, this is not the case in practice, since numerical
approximation problems can make the transfered gradient value vanish or explode in long
sequences [BSF94]. This problem motivated the creation of gating units that replace the
function f and enable RNNs to memorize information even in sequences spanning over a
large number of time steps.
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xt−2 xt−1 xt xt+1 xt+2

yt−2 yt−1 yt yt+1 yt+2

Figure 3.4: Visual representation of a multi-layer RNN extracted from [ZSV14]. Each
hidden unit receives the output of the current input unit and the previous hidden unit,
and sends information to the next hidden unit and the hidden unit in the upper layer.

3.6.2. Gating mechanisms

Long Short-Term Memory (LSTM) units are an extensively studied gating mechanism that
allows RNNs to avoid the vanishing gradient problem [HS97]. An LSTM unit introduces
a cell state c ∈ Rn and computes the values h(t) and c(t) at each time step t by taking
into account the input vector x(t), the output of the previous hidden unit h(t−1), and its
previous cell state c(t−1). The interaction is described in detail in Equation 3.20, where
the terms i(t), f(t), o(t) are referred to as input, forget and output gates respectively, the
symbols σ and φ denote the application of element-wise sigmoid and hyperbolic tangent
functions, and � indicates element-wise multiplication [KJSR16].
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i(t) = σ(Wix(t) + Uih(t−1) + bi)

f(t) = σ(Wfx(t) + Ufh(t−1) + bf )

o(t) = σ(Wox(t) + Uoh(t−1) + bo)

c(t) = f(t) � c(t−1) + i(t) � φ(Wgx(t) + Ugh(t−1) + bg)

h(t) = o(t) � φ(c(t))

(3.20)

Furthermore, it is possible to extend both the vanilla RNN and LSTM architectures by
adding hidden units in additional layers. The procedure is similar to the process of building
MLPs and simply makes the units in the next layer accept the input h(t) from the previous
layer at each time step t, as shown in Figure 3.4. Nowadays, these deep architectures are
necessary in order to obtain state-of-the-art performance in various tasks [PGCB13].

Aside from LSTMs, other typologies of gating mechanisms exist and are used in the
literature. The most notorious ones are Gated Recurrent Units (GRU) [CvMG+14], which
are characterized by a reset gate r(t) and an update gate z(t). Intuitively, these two gates
attempt to control how much information from the previous hidden state and the current
input is taken into account. GRUs proceed using the following transformations:

r(t) = σ(Wrx(t) + Urh(t−1))

z(t) = σ(Wzx(t) + Uzh(t−1))

h(t) = (1− z(t))� h(t−1) + z(t) � φ(Wx(t) + U(r(t) � h(t−1)))

(3.21)

3.6.3. Bidirectionality

We have seen that LSTM networks can efficiently capture past information within an
arbitrary long sequence and use that information at any particular time step. However,
in tagging tasks, the information provided by future tokens and tags in a given phrase
can be as important as the past history. In a manner remarkably similar to HMMs, the
LSTM networks described up to this point fail to incorporate future events for modeling,
since the information always flows linearly from one time step to the next and never in the
opposite direction.
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Nonetheless, it is possible to design a network that can capture both past and future
information by considering two separate LSTM layers. While having both LSTM layers
connected to the input and the output layers, one can make the information in them
flow in opposite directions and create a Bidirectional LSTM network (BLSTM) [SP97].
Thus, the first layer incorporates the recurrent connections from past time steps, and
the second layer incorporates the recurrent connections from future time steps. Finally,
the output of the network can be computed as shown in Equation 3.22, where S denotes
the output activation function and ⊕ indicates element-wise addition or an otherwise
combining operation.

ŷ(t) = S(W ~h
~h(t) ⊕W~h

~h(t) + bŷ) (3.22)

The effectiveness of BLSTMs together with word embeddings for POS tagging has been
researched by [PSG16], concluding that they are superior to HMM and CRF models for
English and a variety of other languages. Other similar studies include a variation of the
BLSTM model which features a CRF in the output layer replacing the output activation
function as shown in Figure 3.5, and obtain accuracy scores of approximately 97.5% using
their respective training and test datasets [HXY15, MH16].

CRF layer

Forward layer

Backward layer

Input layer

Figure 3.5: Visual representation of a BLSTM neural network featuring a CRF in its
output layer. The block on the right illustrates the structure of each hidden LSTM unit.
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The model in [BPB16] further considers applying BGRU networks to the task of universal
semantic tagging. The structure of their suggested model is hierarchical and employs both
GRUs at an upper level and residual networks at a lower level [HZRS16]. While the version
of the Universal Semantic Tagset used differs from the one presented in Section 2, this
model achieves an accuracy of 83.64% when evaluated on the corresponding gold test data.
The underlying implication appears to be that, currently, universal semantic tagging is a
far more challenging task than POS tagging.

3.6.4. Residual Networks

It is often the case that deeper ANN models outperform shallower alternatives. However, it
has also been observed that one cannot simply keep adding layers since at some point the
training accuracy gets saturated and decreases. This numerical impossibility of learning an
optimal mapping in very deep networks is also know as the degradation problem, an it is
addressed by a neural architecture known as Residual Network (ResNet) [HZRS16].

Instead of making all layers in a neural network jointly learn a function y = G(x), one
can define a residual function F(x) such that y = F(x) + WFx for some parameters WF .
ResNets work under the hypothesis that the residual function F is easier to optimize than
the global function G by stacking residual blocks like the one shown in Figure 3.6.

3×3 convolution

3×3 convolution

x

ReLU

ReLU

Figure 3.6: Visual representation of a residual block containing two convolutional operations
using a 3× 3 filter and a shortcut representing the identity function.
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In this thesis, we will only consider residual blocks based on the identity mapping and
where the input and output dimensions are the same, which can be defined without the
need of additional parameters by Equation 3.23. Here, we employ term xi to represent the
input of a residual block and the term yi to refer to its output.

yi = Fi(xi) + xi (3.23)

The effectiveness of ResNets lies in the experimental evidence that learning a mapping
Fi(xi) ≈ 0 in unnecessary residual blocks is a computationally easier task that learning the
unreferenced mapping yi ≈ xi. Being able to learn these residual mappings effectively allows
ResNets to construct arbitrarily deep architectures and gain maximal representational
capabilities without incurring in degradation.
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4. Building a semantic tagger

A significant part of the present thesis focuses on building efficient and usable models for
the task of universal semantic tagging [AB17]. This is done by drawing on state-of-the-art
models for Part-Of-Speech (POS) tagging [HXY15, MH16] and universal semantic tagging
[BPB16], since both tasks share a similar formulation from a machine learning perspective
and published results are practically nonexistent for the latter. The resulting software tool
which we implemented is available from https://github.com/ginesam/semtagger, and
employs Keras with a Tensorflow backend [C+15] in order to represent neural models that
can have its parameters and architecture seamlessly customized.

We will next discuss a wide range of topics that are connected with the implementation
of such a tool from a technical perspective, such as the data used, preprocessing steps,
feature engineering, parameter optimization and other intrinsicalities. Finally, we compare
the performance of different typologies of models and identify some recurrent difficulties in
the task of universal semantic tagging.

4.1. The Parallel Meaning Bank

The data that we use to train and test our models comes exclusively from the Parallel
Meaning Bank (PMB) [ABE+17], which is a reasonably-sized semantically annotated par-
allel corpus for English, German, Dutch and Italian. It contains texts in raw and tokenised
formats, word senses, thematic roles, and formal meaning representations. Naturally, it
also contains tokenized and semantically tagged sentences that can be used for our purpose
of training a universal semantic tagger in a supervised manner.

The semantically tagged documents present in the PMB fall within 3 different categories
according to the quality of the associated tags: gold, silver and bronze. Gold documents
are manually tagged by semanticists and can be considered correct, albeit they might suffer
from inter-annotator disagreement. On the other end of the spectrum, bronze documents
are automatically tagged using the TnT tagger [Bra00]. Silver documents are essentially
bronze sentences that include at least one correction made by a human.
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Upon inspection, one can easily realize that the bronze data contains many mistakes,
rarely comprising any sentences where all semantic tags could be considered correct. The
same can be said about the silver data, since a typical silver document contains a single
correction. Because of these fundamental differences between different subsets of data, in
this thesis we decide to ignore the bronze data completely.

We further randomly split both the gold and silver subsets into training data and test
data, as shown in Table 4.1. Ideally, one would like to train a tagging model using only
gold training data, but this is infeasible due to the limited number of documents that the
gold subset contains. Thus, all tagging models presented in the current chapter of this
thesis are jointly trained using the gold and silver training splits, and separately evaluated
on each of the gold and silver test splits.

Parallel Meaning Bank (PMB) splits
Gold data Silver data

Training Test Training Test
4,894 544 56,465 6,274

Table 4.1: Number of documents in each of our generated splits of the PMB. Both training
splits account for approximately 90% of the gold and silver sentences respectively.

4.2. Document length normalization

There are further differences between the gold and silver documents in the PMB. Possibly
because manually tagging a document is a laborious task, gold documents tend to be
shorter than silver documents and are often comprised of a single sentence. Nonetheless,
silver documents usually contain many more sentences in comparison.

It is often the case that, when building recurrent neural models for POS tagging, one
limits the length of the input sequences forwarded to the network [BPB16]. This practice
attempts to make the tagging problem more consistent and to avoid issues associated with
very long sequences such as vanishing gradients, exploding gradients, or excessively dilated
training times [CZH+17].
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Figure 4.1: Distribution of document lengths in the gold and silver training splits combined
after dividing documents into sentences.The results reported in this thesis limit their input
length at the percentile 0.95 of this distribution (42 words).

This self-imposed length limitation is problematic because the combined gold and
silver training sets of the PMB present a document length distribution with a remarkably
elongated tail. Thus, many documents which could contain informative input sequences
would be truncated while training our models. In order to make better use of our data,
we split the PMB documents into sentences, and consider each resulting sentence as an
independent training item. This allows us to increase the number of non-truncated training
items from approximately 60,000 (Table 4.1) to over 110,000 (Figure 4.1).

4.3. Feature engineering

Neural models such as the ones that our software provides need to construct a numerical
tensor from the input tokens in order to train from the PMB using the backpropagation
algorithm. For the purpose of universal semantic tagging, we should find a function that
maps tokens to feature tensors such that tokens associated to the same semantic tag are
also assigned similar representations.
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4 BUILDING A SEMANTIC TAGGER

One possible way of obtaining an approximation to our desired features is by using
word embeddings, a technique popular in many natural language processing applications
which maps tokens to vector representations and captures several syntactic and semantic
properties [MCCD13]. In particular, our software employs pre-trained embedding matrices
using the GloVe model [PSM14] to construct 2-dimensional token-based representations of
the input sentences Fw ∈ Rls×dw , where ls represents the maximum sequence length and dw
the dimensionality of the representation. Note that special padding symbols are used when
the input sequence contains less than ls tokens, and that the input sequence is truncated
when the number of tokens is greater than ls.

CRF layer

Forward layer

Backward layer

Input layer

Word 
embeddings

Character 
features

book o kb o

Character 
embeddings

GloVe

Input token

ResNet
Residual 
network

Figure 4.2: Visual representation of a BLSTM neural network featuring a CRF in its output
layer. The block on the right illustrates the process of creating an input representation
combining both token and character-based features.

Apart from token-based representations, several researchers have also successfully em-
ployed sub-token-based representations for POS tagging and universal semantic tagging,
proposing hierarchical models that employ bidirectional Recurrent Neural Networks (RNN)
or Residual Networks (ResNet) in order to build representations from characters or bytes
[PSG16, BPB16]. Our software is also able to provide character-based representations by
employing ResNets within an overall hierarchical structure, in a manner inspired by the
models in [BPB16].
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4 BUILDING A SEMANTIC TAGGER

The procedure for building character-based representations entails defining some ran-
domly initialized character embeddings to construct 3-dimensional character-based repre-
sentations of the input sequence Fc ∈ Rls×lw×dc , with ls denoting the maximum sequence
length, lw the maximum length of a word, and dc the dimensionality of the character
embeddings. This representation is then used as the input of a low-level ResNet containing
residual blocks as shown in Figure 3.6, which is tasked with learning local features by
virtue of the convolution operations performed [DSZ14].

In our system, token and character-based features can be used in isolation or jointly.
In the latter case, the convoluted representation is reshaped into a 2-dimensional vector
Fŵ ∈ Rls×K , and concatenated with Fw. The resulting concatenation is thus a 2-dimensional
vector that contains information from both tokens and characters, and is used as input for
a high-level neural network in charge of learning the mapping from features to semantic
tags. This entire process is illustrated graphically in Figure 4.2.

4.4. Out-Of-Vocabulary tokens

All models that our implemented software tool can be configured to represent are trained
under a closed-vocabulary for both tokens and characters, which we will respectively denote
with the terms Vw and Vc. Since we employ pre-trained embeddings in order to featurize
input tokens, Vw is automatically defined by all the words present in the embedding matrix.
On the other hand, Vc is automatically build and contains all individual characters that
are present in the training data.

In some cases during the training process or when predicting semantic tags for a given
input, one might encounter tokens that are not contained in Vw. We will refer to these
tokens as Out-Of-Vocabulary (OOV) tokens. Note that it is also possible to encounter
characters that are not contained in Vc, which is a recurrent problem when working with
languages such as Japanese or Chinese. However, in the case of English, the set of characters
occurring within the training data is typically sufficient to represent nearly the totality of
tokens in the language.
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4 BUILDING A SEMANTIC TAGGER

OOV tokens pose a problem in models that use word embeddings. Since there is not a
correspondence between a given OOV token and an embedding vector, it is challenging
to make an accurate tag prediction. Furthermore, OOV tokens negatively affect the tag
predictions of the surrounding words and the training procedure. Our system addresses
such issues by introducing a special embedding vector that applies to all OOV tokens.

Moreover, there is a particular type of token that must be subject of special consideration
when becoming an OOV token. This is the case of Multi-Word Expressions (MWE), which
we will define from a practical perspective as groups of words that should be assigned the
same semantic tag. In general, our system assumes that MWEs are properly tokenized,
allowing users to input either ice cream or ice~cream/ice-cream depending on whether
they want to have one or two semantic tags associated with the expression.

Because of their nature, one can suggest non-linguistically motivated ad-hoc procedures
to deal with MWEs. In particular, our system attempts to split them into their constituents
and find an embedding for each resulting part, accepting variations of the new token such
as lowercased or uppercased versions. If the corresponding embeddings can be found, the
constituents are considered as if they were separate tokens. During the prediction phase,
the same splitting process takes places when appropriate, and the compound is assigned a
sem-tag decided via the majority voting result of the sem-tags of its constituents.

4.5. Semantic tag distribution

Another important aspect that we need to analyze in order to gain more insights on the
PMB data and to understand the results later presented in this chapter is the distribution
of semantic tags. We present this Zipfian distribution as extracted from the combined gold
and silver training data in Figure 4.3. The direct conclusion is that, while some semantic
tags are incredibly common, others seldom occur within a sentence.

One can observe that the most frequent sem-tag is CON , assigned to all concepts and
occurring nearly twice as much as the second most frequent sem-tag NIL , which denotes
empty semantics and is often assigned to tokens acting as linguistic glue. The sem-tags
denoting intersective attributes (IST ) and universal quantification (AND ) follow.
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4 BUILDING A SEMANTIC TAGGER

On the opposite side of the curve we find sem-tags denoting place deixis (DXP ), progressive
tense (PRG ) and groups of people (GRP ), among others connected to specific types of
attributes. While a priori we would not consider some of the associated tokens to be
extremely infrequent, they might prove challenging to tag for a model such as TnT [Bra00]
due to their ambiguity. One must keep in mind that a very significant percentage of the
silver data is tagged automatically after all.
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Figure 4.3: Distribution of semantic tags in the gold and silver training splits combined
after preprocessing, where approximately half of the possible semantic tags are virtually
unused. The corresponding vocabulary is defined by GloVe embeddings trained on the
Common Crawl corpus [PSM14], and the few semantic tags associated to OOV words are
shown in red.

Having such disparity between tags poses yet another challenge for estimating a neural
model. This is because neural models rely on large amounts of data and repeated pre-
sentation of the same information in order to effectively use gradient descent. In such a
setting as the PMB, it might prove challenging to capture the information associated to
the least frequent semantic tags. In fact, it is likely that trained models confuse those
rarely occuring semantic tags with more common ones.
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4.6. Hyper-parameter optimization

As described in Chapter 3, training a neural network entails learning its weight and bias
parameters with the support of a loss function. In the case of neural models implemented
with our system, the loss function employed is the categorical cross-entropy loss. The only
exception occurs when the last layer of the constructed network is a Conditional Random
Field (CRF), in which case the loss function shown in Equation 3.15 is used.

One can define the categorical cross-entropy loss H as shown in Equation 4.1 by once
again considering a reference training set D = {(Wi, Ti) : i = 1, . . . , N} where each pair
(Wi, Ti) contains a sequence of tokens and its corresponding sequence of tags. We use the
notation φ to denote the set of all network parameters, Tij to represent the desired class
for the j-th token of the i-th item in D as a one-hot encoded vector, and T̂ij to denote the
probability vector predicted by a tagging model.

H(θ,D) = −
N∑
i=1

|Ti|∑
j=1

Tij log(T̂ij) (4.1)

However, neural networks do also contain other parameters that are set before the
learning process begins and are not determined by training. These are denominated
hyper-parameters, and our software offers the possibility of estimating them by using a
brute-force exploration technique commonly referred to as grid search.

Thus, in order to choose the best possible set of hyper-parameters, we try to asses the
suitability of user predefined hyper-parameter combinations using k-fold cross-validation.
Our cross-validation approach first partitions the training data into k = 3 samples, and
uses a single one of these samples for evaluating the performance of a network trained under
a given combination of hyper-parameters on the other 2 samples. The cross-validation
process is repeated 3 times with the sample used for evaluation changing each time, and
the accuracy results on the different samples are averaged at the end. The hyper-parameter
combination with the best performance is then selected.
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Determining the parameter combinations to search is a yet another delicate issue. Since
training neural network models is often costly both in terms of time and computational
resources, it is infeasible to exhaustively explore the hyper-parameter combination space.
One must then, choose which hyper-parameters would be more reasonable to optimize
largely relying on experience. The results presented in this chapter correspond to models
where we chose to optimize within the following hyper-parameters and values:

• Number of training epochs ∈ {10, 15}.

• Bach size ∈ {150, 200}.

• Dropout rate ∈ {0.1, 0.3}, which is applied to both the input and recurrent weights
through the neural network [SHK+14].

• Number of hidden layers ∈ {1, 2}. This quantity refers to bidirectional layers in the
case of bidirectional models.

• Number of hidden states ∈ {200, 300}.

Similarity, all models presented in this chapter invariably comply with the following
fixed characteristics:

• Usage of the Adam algorithm for optimization [KB14].

• Usage of Rectified Linear Units (ReLU) as the default activation function in all layers
except the output layer [NH10].

• Application of batch normalization following every layer.

Finally, we randomly explored hyper-parameter combinations and setups outside the
values here described without much success. In particular, and as opposed to [BPB16], our
software does not employ a residual bypass or an auxiliary loss function, and we found that
these techniques results in worse or equal accuracy scores in our experiments. Increasing
the number of hidden layers over 2 or the number of hidden states over 300 also does not
seem to have a favorable impact in terms of results.
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4.7. Evaluation

Having provided the necessary technical details, we will now proceed to present the results
obtained after training and testing different models described in Chapter 3. While we
naturally consider neural network taggers implemented using the software tool associated
with the present thesis, we also employ taggers that rely on external implementations. In
particular, we assess the performance of the TnT tagger [Bra00] in its default configuration
and a CRF model trained using the CRFsuite software [Oka07]. In the latter case, the
chosen architecture considers all possible 1-gram, 2-gram and 3-gram attributes within the
window wi+2

i−2 at its i-th state.

This work explores neural network taggers in detail, and we evaluate unidirectional and
bidirectional Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models.
We also consider coupling recurrent architectures with a CRF output layer as shown in
Figure 3.5. The models for which we show results are all trained over 10 epochs using
a batch size of 150, a single potentially bidirectional layer, and 300 hidden states. The
dropout rate is set to 0.1 in LSTM-based models and to 0.3 in GRU-based models. Finally,
these models use 300-dimensional GloVe embeddings trained on the Common Crawl corpus
[PSM14] and 18-dimensional character embeddings initialized using the Glorot initialization
method [GB10].

The tagging accuracy results of several systems used in our experiments are shown in
Table 4.2. It can be seen that the Most Frequent Class (MFC) tagger delivers a reasonable
performance on both the gold and silver test splits. However, the notable difference between
the accuracy scores in those datasets is equally noticeable, with the silver test split showing
nearly a 5% accuracy improvement compared to its gold counterpart. This suggests that
despite the manual corrections, the silver test split still contains many mistakes favoring
the commonly assigned semantic tags for each token. Thus, it must also be the case that
a model performing remarkably well on the silver test split would not be so effective for
universal semantic tagging in a real setting. From our perspective, we regard the gold test
measure as being more reliable than any other for assessing the suitability of a tagger.
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Sem-tagging performance

Model Features Gold data Silver data
Train Test Train Test

MFC wn1 84.138 82.867 89.118 87.523
TnT wn1 90.633 90.049 94.624 93.459

CRFsuite wn1 93.178 89.126 98.045 92.387

LSTM
~w 92.759 90.858 92.383 89.039
~c 91.570 89.511 91.335 88.436

~w ⊕ ~c 94.935 91.591 93.683 89.469

GRU
~w 90.777 90.565 90.348 88.997
~c 89.371 89.774 88.969 87.601

~w ⊕ ~c 91.947 91.444 91.644 89.833

BLSTM
~w 95.414 91.327 95.473 90.874
~c 94.063 91.093 93.017 88.845

~w ⊕ ~c 97.249 92.118 95.928 90.819

BGRU
~w 92.436 91.679 93.085 91.118
~c 90.819 90.712 90.923 89.236

~w ⊕ ~c 93.503 92.441 93.567 91.088

BLSTM-CRF
~w 95.715 92.148 95.460 91.031
~c 94.376 91.650 93.413 89.055

~w ⊕ ~c 97.089 92.616 95.984 90.767

BGRU-CRF
~w 91.078 90.009 91.120 89.312
~c 90.420 90.214 91.524 89.787

~w ⊕ ~c 93.529 91.972 93.822 91.234

Table 4.2: Accuracy scores obtained using the different models described in Chapter 3
trained jointly on the gold and silver training splits of the PMB. All numerical values
represent the percentage of correctly predicted tags. The symbol ~w indicates the usage of
word-level features and ~c denotes character-level features.

Both the TnT and the CRFsuite taggers are able to surpass the MFC baseline and
obtain a very similar performance with approximately 90% accuracy on the gold test split.
While this is not an entirely fair comparison since a major proportion of the silver data
is actually tagged using TnT [ABE+17], it seems as if there is not really an advantage in
using a more powerful CRF instead of an HMM tagger in the current state of affairs.
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In turn, neural network taggers beat the non-neural models by a significant margin.
Both LSTM and GRU models show that adding extra features and a bidirectional layer
helps to obtain better scores. Furthermore, using a CRF in the output layer brings a clear
improvement to the BLSTM model, but does not help the BGRU model that much.

All in all, our best performing tagger in terms of 3-fold cross-validation accuracy is
the BLSTM-CRF model employing both word and character-level features, followed by
the BGRU-CRF model using the same features. The earlier obtains an accuracy score
of 92.6% on the gold test split, which represents an improvement of 8.7% with respect
to the previous state-of-the-art model [BPB16]. Nonetheless, both the architectures used
are similar in many ways, and the results are not directly comparable since [BPB16] uses
different data and an older version of the Universal Semantic Tagset.

To conclude, we will look more in detail into the predictions being made by our models.
To that effect, we consider the BLSTM-CRF model as shown in Table 4.2 and discuss its
confusion matrix on the joint gold and silver test data. This is depicted in Figure 4.4,
where the actual tags are shown in the vertical axis and the predicted tags in the horizontal
axis. The matrix rows are independently normalized, meaning that the more intense the
color of a semantic tag in the horizontal axis, the more often the colored semantic tag is
assigned to the corresponding semantic tag in the vertical axis.

The semantic tags appearing in the confusion matrix are also ordered based on their
frequency (Figure 4.3). Thus, the semantic tags appearing on top of the vertical axis and
on the left of the horizontal axis are the most common. One can see that common semantic
tags tend to be predicted perfectly and to not be confused with other tags. As the relative
frequency of semantic tags grows lower, they are increasingly mistaken for more common
semantic tags, which is an expected behavior given the nature of our data and tagger.

One can observe many low frequency NAM and TIM tokens being labeled as CON by our
tagger. Similarly, many ATT semantic tags are also confused with IST , showing that our
tagger is able to capture the coarse-grained information but struggles with making finer
distinctions. Additionally, EVE tags seem particularly challenging and it is often the case
that EXG and EXT are confused with EXS . Tokens with the semantic tag GEO are often
mistakenly labeled GPE and contrariwise, and the tag QUV is also confused with QUC .
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Figure 4.4: Confusion matrix produced by the BLSTM-CRF model in Table 4.2 when
jointly predicting the semantic tags for the gold and silver test splits. Confusion frequencies
are normalized by row, and semantic tags sorted according to they frequency. Grey regions
indicate tags that were found in training but did not occur in the data considered.

However, these mistakes that our BLSTM-CRF tagger makes seem almost under-
standable if one considers the word embedding features employed, which give similar
representations to tokens that have the same distributional properties. The conclusion
that can be made is that word and character embeddings are not enough, and that we
need other more specialized features which allow us to distinguish adjectival or eventual
information in a fine-grained manner.
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5. Semantic parsing and inference

Having described an implementation of a an accurate system for universal semantic tagging,
we now wish to prove that the information conveyed by semantic tags can be useful in
other natural language processing applications. We achieve this by using compositional
semantic parsing together with semantics tags in a textual entailment task.

The principle of compositionality states that the meaning of a complex sentence is a
function of the meaning of its parts [BB05]. Following this assumption, the compositional
semantics approach which we consider in this thesis aims at assigning a semantic representa-
tion to each lexical item in a given phrase and, using the syntax of the language, combining
those lexical semantics in order to create a complete meaning representation.

Such an approach requires 3 different components. First of all, one needs a formalism that
can be used to represent meaning. A syntactic formalism able to construct a hierarchical
structure that can guide the combination of meaning representations is also required [BB05].
Finally, one needs a computational model that defines the rules under which the very
same meaning combinations can be performed. In the present thesis, we decided to employ
λ-terms, Combinatory Categorial Grammars (CCG) [Ste96] and simply typed λ-calculus
in order to achieve such goals.

5.1. Lambda calculus

The λ-calculus is one universal model of computation in which every expression is considered
to be either a function or an variable, and where one can obtain reduced λ-terms by applying
functions to arguments. Specifically, assuming a countably infinite set of variables X ,
λ-terms can be constructed as follows:

Variables: If x ∈ X , then x is a λ-term

Function application: If A and B are λ-terms, then A(B) is a λ-term

Function abstraction: If x ∈ X and A is a λ-term, then (λx.A) is a λ-term

(5.1)
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Thus, the abstraction process allows us to bound a variable in a given formula by using
the λ operator. These bounded variables can be understood as markers that explicitly
indicate where we should substitute bits of information obtained during the course of
semantic construction [BB05].

Furthermore, λ-terms can be reduced using the rules shown in Equation 5.2. The
α-conversion rule allows to rename a bounded variable in the body of a λ-term in order to
avoid name collisions, and the β-reduction rule replaces a bounded variable in the body of
a λ-term with a provided argument.

α-conversion: (λx.A[x])→ (λz.A[z])

β-reduction: (λx.A)(B)→ (A[B/x])
(5.2)

In the untyped version of λ-calculus, application is unconstrained, and this means
that λ-terms can even be applied to themselves and create infinite loops. Such flexibility
comes at the expense of increasing computational intractability. However, one can restrict
application in simple typed λ-calculus by using typed λ-terms [Chu40]. In order to formally
introduce the latter, we will first consider a set of possible types Q and the definition of
pre-term in typed λ-calculus as outlined next:

Variables: If x ∈ X , then x is a pre-term

Function application: If A and B are pre-terms, then A(B) is a pre-term

Function abstraction: If x ∈ X , A is a pre-term, and T ∈ Q is a type,

then (λxT . A) is a pre-term

(5.3)

Pre-terms have the potential of becoming typed λ-terms after passing a set of typing
judgments which are expressed as shown in Equation 5.4. In our formulation, we denote a
partial function mapping variables to types as Γ : X → Q, and use the symbols T and A
to denote a particular type and pre-term respectively. In plain words, the left-hand side of
a judgment declares variables with potential occurrence in A and their associated types,
while the right hand side concludes that the type of the pre-term A must be T .
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Γ : X → Q ` A : T (5.4)

Considering the basic form of a judgment, we specify the conditions under which types
might be associated to pre-terms. These rules are commonly know as typing rules and
are collected in Equation 5.5. Every well-typed λ-term can have its type automatically
inferred by a type-checker via successive application of typing rules.

i ∈ [1, n]
x1 : A1, . . . , xn : An ` xi : Ai

Γ ` A : T → U Γ ` B : T
Γ ` A(B) : U (5.5)

Γ, x : T ` A : U
Γ ` λxT . A : T → U

5.2. Combinatory Categorial Grammars

Combinatory Categorial Grammars (CCG) define a syntactic formalism that accounts
for many linguistic phenomena and captures the inherent connection between syntax and
semantics [Ste96]. Typically, a CCG possesses a lexicon where each token is associated
with a category containing syntactic and semantic information. In this thesis, we employ
λ-terms as previously introduced in order to represent these categorical semantics.

In turn, we specify the categorical syntax of tokens using the leftmost notation, under
which a rightward-combining functor over categories of syntactic type β into categories of
syntactic type α is written as α/β, with the corresponding leftward combining functor over
the same domain written as α\β. It follows that a transitive verb such as borrow might
have a syntactic type (S\NP )/NP , taking as arguments an object and a subject in the
form of Noun Phrases (NP ) and heading a Sentence (S) category.
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CCGs use a set of combinators that receive either 1 or 2 categories in order to combine
them together into a larger category [Ste96]. Because these combinators apply simultane-
ously on both the syntactic and the semantic parts of each category, they can be used to
construct larger blocks of syntactic and semantic structure. The most basic combination
rules are the functional application rules, defined as follows:

A/B : f B : g → A : f(g)

B : g A\B : f → A : f(g)
(5.6)

The rules in Equation 5.6 are also known as forward application (>) and backward
application (<). They state that a category with syntactic type A/B can be combined
with a category of syntactic type B on its right or left to produce a category of syntactic
type A. The new semantics of this combination can be derived by applying f to g.

Several employees drink coffee
NP/N N (S\NP)/NP NP

λFλG.∃x(F (x) ∧G(x)) λx. employee(x) λQ1λQ2. Q2(λx.Q1(λy. drink(x, y))) λF. ∃y(coffee(y) ∧ F (y))
> >

NP S\NP
λG.∃x(employee(x) ∧G(x)) λQ2. Q2(λx.∃y(coffee(y) ∧ drink(x, y)))

<
S

∃x(employee(x) ∧ ∃y(coffee(y) ∧ drink(x, y)))

Figure 5.1: Simplified CCG derivation tree with its syntax and semantics corresponding to
the sentence Several employees drink cofee, inspired from an example in [MGMMB16].

.

Nonetheless, there is a number of linguistic phenomena which cannot be modeled by the
functional application rules. In order to gain more expressive power, we require another pair
of rules for functional composition. Forward composition (>B) and backward composition
(<B) rules are defined in the same fashion as function application:

A/B : f B/C : g → A/C : λx.f(g(x))

B\C : g A\B : f → A\C : λx.f(g(x))
(5.7)
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The next combination rules which we will consider are forward type raising (>T) and
backward type raising (<T), which are unary rules that allow to cast simple categories
into functions. These functions expect a third function that takes the original category as
its argument [JM09].

X : a→ T/(T\X) : λf. f(a)

X : a→ T\(T/X) : λf. f(a)
(5.8)

Finally, we can add yet another additional rule in order to address the syntactic
phenomenon of coordination, where two categories of the same type are joined together
and form a larger category, as it happens with the conjunctions and or or. The definition
of the coordination rule in its syntactic part is shown in Equation 5.9.

X conj X → X (5.9)

Additional combination rules have been suggested for CCGs in recent years, attempting
to include as much lexical information as possible in the lexicon [KKS15]. However, the
current thesis omits them in favor of succinctness.

5.2.1. Learning optimal grammars

Using CCGs to find the correct parse tree for a given sentence is a challenging problem,
since sentences and their corresponding logical forms can be potentially derived from a
large number of parse trees. In order to formalize the problem and discuss its possible
solutions, we will consider a probabilistic generalization of CCGs known as Probabilistic
Combinatory Categorial Grammar (PCCG) [ZC05].

The PCCG formalism defines the conditional probability P (L, T | S) over pairs (L, T )
of possible semantic representations and parse trees for a given sentence S. Assuming a
function f(L, T, S) ∈ Rd which maps triples to d-dimensional feature vectors and a set of
model parameters θ ∈ Rd, one can define the probability of a pair (L, S) in the log-linear
model as follows:
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P (L, T | S; θ) = ef(L,T,S)·θ∑
(L,T )

ef(L,T,S)·θ (5.10)

Next, after marginalizing out T by summing over all possible parse trees, we can express
the most probable semantic representation L̂ as shown in Equation 5.11. The solution L̂
can be found by using a combination of beam search and parsing algorithms relying on
dynamic programming such as the CYK algorithm, which is conceptually similar to the
Viterbi algorithm described in Chapter 3.

L̂ = arg max
L

P (L | S; θ) = arg max
L

∑
T

P (L, T | S; θ) (5.11)

Training a PCCG model of this form involves learning the parameters θ and perhaps
the lexicon. Given a dataset D = {(Si, Li) : i = 1, . . . , N}, we can define the log-likelihood
function shown in Equation 5.12 and find the optimal parameter values by using gradient
descent methods similar to the ones discussed in Chapter 3. The lexicon can also be learned
by re-estimating θ while successively adding lexical entries [ZC07], or otherwise extracted
from annotated data such as the CCGbank [HS07].

O(θ,D) =
N∑
i=1

logP (Li | Si; θ) =
N∑
i=1

log
(∑

T

P (Li, T | Si; θ)
)

(5.12)

5.3. Parsing systems (ccg2lambda)

The ccg2lambda system is a software tool that can construct higher-order logical represen-
tations of sentences by employing λ-calculus and CCG parse trees [MGMMB16] in the
manner which we described in the current chapter. The system employs popular CCG
parsing tools such as C&C [CC07] in order to automatically and reliably construct such
parse trees.
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However, ccg2lambda relies on manual specification of lexical semantics and on precise
indications on how to construct meaning representations. The hypothesis which we adopt
in this thesis is that the specification process could be made simpler by considering the
information provided by semantic tags.

5.3.1. Semantic templates

Linguistically motivated and manually defined semantic templates are employed in order to
define the semantics corresponding to CCG parse trees within ccg2lambda [MMMB]. Each
one of the rules contained in a semantic template needs to specify a valid CCG syntactic
type, which serves to identify lexical or internal nodes from CCG derivation trees in which
the rule applies. Similarly, each rule needs to provide the corresponding semantics at the
node of application in the form of a λ-term.

Needless to say, such a manual specification procedure is labor-intensive. Furthermore,
it suffers from the same problem which motivated the introduction of semantic tags in
Section 2. We will once more employ determiners in order to illustrate the inconvenience
of semantic templates by considering the 2 semantic template rules shown next:

Syntactic type: NP [nb]/N

Semantic type: λEλF1λF2λF3.∀x(F1(x)→ (F2(x)→ ¬F3(x)))

Surface form: ’no’

Syntactic type: NP [nb]/N

Semantic type: λEλF1λF2λF3. ∃x(F1(x) ∧ F2(x) ∧ F3(x)))

Surface form: ’the’

(5.13)

Both the rules in Equation 5.13 specify different semantics that a lexical node with
syntactic type NP [nb]/N in the CCG derivation can claim as its own. While the syntactic
type is the same on both rules, the lexical semantics that the tokens no and the convey are
the exact opposite of each other.
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Semantic template rules have the option of restricting their application by using different
kinds of information, such as Part-Of-Speech (POS) tags. However, in Equation 5.13 both
the tokens considered are mapped to the same POS tag DT , and thus one must list the
lexical form of the tokens in order to force enforce a differentiating restriction.

5.3.2. Semantically tagged templates

The information provided by semantic tags can help us simplify the process of writing
semantic templates. Not only semantic tags group together tokens that have similar
meanings, but they also provide fine-grained semantic distinctions, as discussed in Chapter
2. We will now consider the semantic template rules shown in Equation 5.13 and rewrite
them in Equation 5.14, this time using semantic tags for restricting rule application.

Syntactic type: NP [nb]/N

Semantic type: λEλF1λF2λF3.∀x(F1(x)→ (F2(x)→ ¬F3(x)))

Semantic tag: NOT

Syntactic type: NP [nb]/N

Semantic type: λEλF1λF2λF3.∃x(F1(x) ∧ F2(x) ∧ F3(x)))

Semantic tag: DEF

(5.14)

Rules which feature semantic tags allow us to subsume many other rules that apply to
other surface forms mapped to the same tag. For example, there is no further need to
specify a rule such as the one listed in Equation 5.15, since the token neither is already
associated to the semantic tag NOT in the given context and covered by the the first rule in
Equation 5.14. In the original templates, one must nonetheless list all such words, which is
not only a linguistic effort but also a procedure prone to errors by omission.
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Appendix A gives an exhaustive list of template rules based on the work of [MMMB]
which we created or modified from standard templates in order to introduce semantic tags.
In doing so, we were able to build a semantically tagged template containing 114 rules
with more expressive power than a standard template containing 137 rules.

Syntactic type: NP [nb]/N

Semantic type: λEλF1λF2λF3.∀x(F1(x)→ (F2(x)→ ¬F3(x)))

Surface form: ’neither ’(7→ NOT )

(5.15)

5.4. Recognizing Textual Entailment

An hypothesis which we entertain in the current thesis is that semantic tags can prove
useful when integrated to other systems not purely concerned with semantic parsing in an
end-to-end manner. Attempting to do exactly that also serves as a means to empirically
evaluate the usefulness of semantic tags. In this section we will consider the task of
Recognizing Textual Entailment (RTE) for such a purpose.

Textual entailment can be defined as a relationship between a given text T and a
hypothesis H. We will claim that T entails H when humans are likely to judge that the
meaning of H directly follows from the meaning of T . Thus, the RTE task requires systems
to decide automatically between 3 different verdicts for entailment pairs (T,H), either
stating that the entailment relation is present, is not present, or that a decision cannot be
made based on the facts appearing in T alone.

Successful approaches to RTE often use symbolic representations of the sentences both
in the text and the hypothesis [Abz15]. In particular, a system can be constructed by using
the higher-order logical representations produced by the ccg2lambda system [MGMMB16].
To do so, one can construct a theorem of the form shown in Equation 5.16, where we
assume the existence of a set of premises p1, . . . , pn and a single conclusion c without loss
of generality.

p1 → · · · → pn → c (5.16)
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The next step is to assign semantic types to the terms appearing within our represen-
tations, which we will accomplish by considering the two basic types E for entities and
Prop for propositions. Specific higher-order denotations described in [MMMB] and not
replicated here are assigned pre-defined types. For example, the predicates manage and
believe can be mapped to the type Prop→ E→ Prop.

Finally, we present our typed theorem to the Coq higher-order prover [BC10], which
automatically determines whether the entailment relationship exists (a yes verdict), whether
the entailment of the negation exists (a no verdict), or does not (an unknown verdict).

5.4.1. The FraCas Test Suite

The FraCas Test Suite contains a set of 346 inference problems which are designed to
specify the aspects of language that natural language inference systems should be able to
capture [CCE+96]. Each example contains 1 or 2 premises, a question, a hypothesis, and
a judgement of the relation between the premise and the hypothesis. A summary of the
dataset can be seen in Table 5.1.

Topic Total count Percentage Single-premise
Quantifiers 80 23% 50
Plurals 33 10% 24
Anaphora 28 8% 6
Ellipsis 55 16% 25
Adjectives 23 7% 15
Comparatives 31 9% 16
Temporal 75 22% 39
Verbs 8 2% 8
Attitudes 13 4% 9

Table 5.1: Distribution of inference problems in the FraCas Test Suite according to their
topic. For each topic we show the number of problems, the percentage it represents with
respect to the entire dataset, and the number of associated problems with a single premise.

We will shown next an example of a problem containing multiple premises and a yes ver-
dict. As explained previously, these problem premises and verdicts can be transformed into
typed higher-order logical expressions and be automatically verified for entailment.
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fracas-027 answer: yes

p1 : A few committee members are from Sweden.

p2 : All committee members are people.

p3 : All people who are from Sweden are from Scandinavia.

c : At least a few committee members are from Scandinavia.

(5.17)

5.4.2. Performance comparison

The suggested system for the RTE task based on ccg2lambda and Coq [MGMMB16] is
evaluated on the FraCas dataset both by using a standard semantic template and its
corresponding semantically tagged translation suggested by us and given in Appendix A.
The results are grouped by relevant topics on Table 5.2, where we measure the accuracy
on the entailment decisions yes, no, and unknown.

Topic Standard template Sem-tag template
Quantifiers 78% 76%
Plurals 67% 67%
Adjectives 68% 68%
Comparatives 48% 48%
Verbs 62% 62%
Attitudes 77% 77%
Total 69% 68%

Table 5.2: Performance comparison between a standard semantic template [MGMMB16]
and its semantically tagged equivalent suggested in this thesis.

We can observe that the performance of our template is very close to that of the original
template, which represents the current state-of-the-art [MGMMB16]. In fact, despite our
template having less rules, the only noticeable difference is the non-existential interpretation
of the quantifier few in the original template versus the existential interpretation given by
the semantically tagged template. We consider that this is a positive result that shows
the potential future capabilities of semantic tag-based approaches in natural language
processing applications.
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5 SEMANTIC PARSING AND INFERENCE

Finally, it is worth noting that many of the mistakes that our modified system suffers
from are caused by either tokens being assigned incorrect semantic tags or incorrect CCG
syntactic types. The fact that we are employing 2 statistical models as preprocessing
steps prior to semantic parsing increases the risk of being exposed to errors in a given
sentence. Thus, it might be advantageous to consider approaches with the least error rate
per sentence instead of per word.
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6. Conclusions and future work

In this work we analyzed the topic of universal semantic tagging [AB17], on which we
conducted an intrinsic and an extrinsic evaluation. On the one hand, we showed that it is
possible to use state-of-the-art techniques in sequence tagging in order to design reliable
models capable of assigning semantic tags to word tokens. On the other hand, we were
able to employ the implemented models and the expressiveness of semantic tags jointly
with other systems, creating a pipeline able to effectively solve a separate task.

Thus, the first half of this thesis is concerned with building a software tool implementing
various tagging models1 using the data from the Parallel Meaning Bank (PMB) [ABE+17].
Our best performing model is a bidirectional Long Short-Term Memory (LSTM) neural
architecture [HS97] coupled with a Conditional Random Field (CRF) [LMP01] that uses
both word-level and character-level features. Compared to other neural semantic taggers
like [BPB16], this model obtains competitive results2. We believe that our work constitutes
a useful tool providing a solid baseline for future research.

On the second half of this thesis we analyze the usefulness of semantic tags from a
practical perspective by applying them to the Recognizing Textual Entailment (RTE)
problem. Using simply typed λ-calculus as a computational model, we were able to write
semantic templates that define how to build higher-order logical representations from
syntactic derivation trees produced by Combinatory Categorial Grammars (CCG) [Ste96].
Because our semantic templates employ semantic tags, they present a wider coverage than
previous attempts while also containing fewer rules [MMMB].

Finally, we integrated our novel semantic templates within the ccg2lambda system in
order to perform compositional semantic parsing of natural language sentences into the
defined logical representations [MGMMB16]. By also employing the Coq theorem prover in
order to determine whether entailment relations between sets of these logical representations
exist [BC10], we were able to obtain state-of-the-art results in the RTE task associated to
the FraCaS dataset [CCE+96].

1Our implementation is available from https://github.com/ginesam/semtagger.
2The results obtained from our experiments are not comparable to those in [BPB16], since the

training/test data and the version of the semantic tagset used differ.
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6 CONCLUSIONS AND FUTURE WORK

Notwithstanding the exploratory nature of the work here presented, we believe that ours
is a contribution that shows the real possibility of starting to introduce universal semantic
tagging as an auxiliary task in natural language processing applications. In the future, we
would like to continue exploring in the direction of RTE by defining semantic templates
using neo-Davidsonian event semantics [Dav67] or dynamic semantics [Kam81]. Similarly,
we would like to measure the performancce of our modified system in datasets other than
FraCaS which contain more lexical variability, such as the SICK dataset [MMB+14].

From where we stand, it is also expected that the work on universal semantic tagging
and the PMB will continue in the upcoming years, providing more data that will allow to
train more precise semantic taggers, and updating the dataset in order to increase coverage
and to simplify the learning process, while keeping in mind the suitability of semantic tags
for cross-lingual applications. In turn, we hope that these developments bring together
improvements to other areas such as natural language question answering, entity linking
or even machine translation.

52



Bibliography

[AB17] Lasha Abzianidze and Johan Bos. Towards Universal Semantic Tagging. In
Proceedings of the 12th International Conference on Computational Seman-
tics (IWCS 2017), pages 1–6, 2017.

[ABE+17] Lasha Abzianidze, Johannes Bjerva, Kilian Evang, Hessel Haagsma, Rik van
Noord, Pierre Ludmann, Duc-Duy Nguyen, and Johan Bos. The Parallel
Meaning Bank: Towards a Multilingual Corpus of Translations Annotated
with Compositional Meaning Representations. In Proceedings of the 15th
Conference of the European Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers, pages 242–247. Association for Com-
putational Linguistics, 2017.

[Abz15] Lasha Abzianidze. A Tableau Prover for Natural Logic and Language. In Pro-
ceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 2492–2502. Association for Computational Linguistics,
2015.

[BB05] Patrick Blackburn and Johan Bos. Representation and Inference for Natural
Language. A First Course in Computational Semantics. CSLI Publications,
2005.

[BC10] Yves Bertot and Pierre Castran. Interactive Theorem Proving and Program
Development: Coq’Art The Calculus of Inductive Constructions. Springer
Publishing Company, Incorporated, 1st edition, 2010.

[BCS+04] Johan Bos, Stephen Clark, Mark Steedman, James R. Curran, and Ju-
lia Hockenmaier. Wide-coverage Semantic Representations from a CCG
Parser. In Proceedings of the 20th International Conference on Computa-
tional Linguistics, COLING ’04. Association for Computational Linguistics,
2004.

[Bo08] Egwin Boschman and Hendrikus J.A. op den Akker. A Neural Network Based
Dutch Part of Speech Tagger. In Proceedings of the twentieth Belgian-Dutch
Artificial Intelligence Conference (BNAIC 2008), pages 217–224. Twente
University Press (TUP), 2008.

53



[BPB16] Johannes Bjerva, Barbara Plank, and Johan Bos. Semantic Tagging with
Deep Residual Networks. In Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics, pages 3531–3541. Associ-
ation for Computational Linguistics (ACL), 2016.

[Bra00] Thorsten Brants. TnT: A Statistical Part-of-Speech Tagger. In Proceedings
of the Sixth Conference on Applied Natural Language Processing, ANLC ’00,
pages 224–231. Association for Computational Linguistics, 2000.

[Bri95] Eric Brill. Transformation-based Error-driven Learning and Natural Lan-
guage Processing: A Case Study in Part-of-speech Tagging. Comput. Lin-
guist., 21(4):543–565, 1995.

[BSF94] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term
dependencies with gradient descent is difficult. IEEE Transactions on Neural
Networks, 5(2):157–166, 1994.

[C+15] François Chollet et al. Keras. https://keras.io, 2015.

[CC07] Stephen Clark and James R. Curran. Wide-coverage Efficient Statistical
Parsing with CCG and Log-linear Models. Comput. Linguist., 33(4):493–552,
2007.

[CCE+96] Robin Cooper, Dick Crouch, Jan Van Eijck, Chris Fox, Josef Van Genabith,
Jan Jaspars, Hans Kamp, David Milward, Manfred Pinkal, Massimo Poesio,
Steve Pulman, Ted Briscoe, Holger Maier, and Karsten Konrad. Using the
Framework, 1996.

[Chu40] Alonzo Church. A Formulation of the Simple Theory of Types. Journal of
Symbolic Logic, 5(2):56–68, 1940.

[CKPS92] Doug Cutting, Julian Kupiec, Jan Pedersen, and Penelope Sibun. A Practical
Part-of-Speech Tagger. In Proceedings of the Third Conference on Applied
Natural Language Processing, ANLC ’92, pages 133–140. Association for
Computational Linguistics, 1992.

54

https://keras.io


[CvMG+14] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bah-
danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning
Phrase Representations using RNN Encoder–Decoder for Statistical Machine
Translation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 1724–1734. Association
for Computational Linguistics, 2014.

[CZH+17] Shiyu Chang, Yang Zhang, Wei Han, Mo Yu, Xiaoxiao Guo, Wei Tan, Xi-
aodong Cui, Michael Witbrock, Mark A Hasegawa-Johnson, and Thomas S
Huang. Dilated Recurrent Neural Networks. In Advances in Neural In-
formation Processing Systems 30, pages 77–87. Curran Associates, Inc.,
2017.

[Dav67] Donald Davidson. The Logical Form of Action Sentences. In The Logic of
Decision and Action. University of Pittsburgh Press, 1967.

[DSZ14] Cícero Nogueira Dos Santos and Bianca Zadrozny. Learning Character-
level Representations for Part-of-speech Tagging. In Proceedings of the 31st
International Conference on International Conference on Machine Learning
- Volume 32, ICML’14, pages II–1818–II–1826, 2014.

[FK79] W. Nelson Francis and Henry Kucera. The Brown Corpus: A Standard
Corpus of Present-Day Edited American English, 1979. Brown University
Liguistics Department.

[GB10] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training
deep feedforward neural networks. In In Proceedings of the International
Conference on Artificial Intelligence and Statistics (AISTATS’10). Society
for Artificial Intelligence and Statistics, 2010.

[GRDB07] Samuel S. Gross, Olga Russakovsky, Chuong B. Do, and Serafim Batzoglou.
Training Conditional Random Fields for Maximum Labelwise Accuracy. In
Advances in Neural Information Processing Systems 19, pages 529–536. MIT
Press, 2007.

[Gur97] Kevin Gurney. An Introduction to Neural Networks. Taylor & Francis, Inc.,
Bristol, PA, USA, 1997.

55



[Hay98] Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice
Hall PTR, 2nd edition, 1998.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural
Comput., 9(8):1735–1780, 1997.

[HS07] Julia Hockenmaier and Mark Steedman. CCGbank: A Corpus of CCG
Derivations and Dependency Structures Extracted from the Penn Treebank.
Comput. Linguist., 33(3):355–396, 2007.

[HSW89] Kurt Hornik, Maxwell B. Stinchcombe, and Halbert White. Multilayer
Feedforward Networks Are Universal Approximators. Neural Netw., 2(5):359–
366, 1989.

[HXY15] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional LSTM-CRF Models for
Sequence Tagging. CoRR, abs/1508.01991, 2015.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 770–778, 2016.

[ID10] Nitin Indurkhya and Fred J. Damerau. Handbook of Natural Language
Processing. Chapman & Hall, 2nd edition, 2010.

[Jan04] Artur Janicki. Application of Neural Networks for POS Tagging and In-
tonation Control in Speech Synthesis for Polish. In Soft Computing and
Intelligent Systems (SCIS 2004), 2004.

[JM09] Daniel Jurafsky and James H. Martin. Speech and Language Processing.
Prentice-Hall, Inc., 2nd edition, 2009.

[Kam81] Hans Kamp. A Theory of Truth and Semantic Representation. In Formal
Methods in the Study of Language, volume 1, pages 277–322. Mathematisch
Centrum, 1981.

[KB14] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. CoRR, abs/1412.6980, 2014.

[KJSR16] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush. Character-
Aware Neural Language Models. In 30th AAAI Conference on Artificial
Intelligence, AAAI 2016, pages 2741–2749. AAAI press, 2016.

56



[KKS15] Marco Kuhlmann, Alexander Koller, and Giorgio Satta. Lexicalization and
Generative Power in CCG. Comput. Linguist., 41(2):215–247, 2015.

[Lip15] Zachary Chase Lipton. A Critical Review of Recurrent Neural Networks for
Sequence Learning. CoRR, abs/1506.00019, 2015.

[LMP01] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Condi-
tional Random Fields: Probabilistic Models for Segmenting and Labeling
Sequence Data. In Proceedings of the Eighteenth International Conference on
Machine Learning, ICML ’01, pages 282–289. Morgan Kaufmann Publishers
Inc., 2001.

[Man11] Christopher D. Manning. Part-of-speech Tagging from 97% to 100%: Is
It Time for Some Linguistics? In Proceedings of the 12th International
Conference on Computational Linguistics and Intelligent Text Processing -
Volume Part I, CICLing ’11, pages 171–189. Springer-Verlag, 2011.

[MCCD13] Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Efficient
Estimation of Word Representations in Vector Space. CoRR, abs/1301.3781,
2013.

[MGMMB16] Pascual Martínez-Gómez, Koji Mineshima, Yusuke Miyao, and Daisuke
Bekki. ccg2lambda: A Compositional Semantics System. In Proceedings of
ACL-2016 System Demonstrations, pages 85–90. Association for Computa-
tional Linguistics, 2016.

[MH16] Xuezhe Ma and Eduard Hovy. End-to-end Sequence Labeling via Bi-
directional LSTM-CNNs-CRF. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 1064–1074. Association for Computational Linguistics, 2016.

[MMB+14] Marco Marelli, Stefano Menini, Marco Baroni, Luisa Bentivogli, Raffaella
bernardi, and Roberto Zamparelli. A SICK cure for the evaluation of
compositional distributional semantic models. In Proceedings of the Ninth
International Conference on Language Resources and Evaluation (LREC-
2014). European Language Resources Association (ELRA), 2014.

57



[MMMB] Koji Mineshima, Pascual Martínez-Gómez, Yusuke Miyao, and Daisuke
Bekki. Higher-order logical inference with compositional semantics. In Pro-
ceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2015.

[MMS93] Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Build-
ing a Large Annotated Corpus of English: The Penn Treebank. Comput.
Linguist., 19(2):313–330, 1993.

[NH10] Vinod Nair and Geoffrey E. Hinton. Rectified Linear Units Improve Re-
stricted Boltzmann Machines. In Proceedings of the 27th International
Conference on International Conference on Machine Learning, ICML’10,
pages 807–814. Omnipress, 2010.

[Oka07] Naoaki Okazaki. CRFsuite: A fast implementation of Conditional Ran-
dom Fields (CRFs), 2007. URL: http://www.chokkan.org/software/
crfsuite/.

[PGCB13] Razvan Pascanu, Çaglar Gülçehre, Kyunghyun Cho, and Yoshua Bengio.
How to Construct Deep Recurrent Neural Networks. CoRR, abs/1312.6026,
2013.

[PSG16] Barbara Plank, Anders Søgaard, and Yoav Goldberg. Multilingual Part-of-
Speech Tagging with Bidirectional Long Short-Term Memory Models and
Auxiliary Loss. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), pages 412–418.
Association for Computational Linguistics, 2016.

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove:
Global Vectors for Word Representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP),
pages 1532–1543. Association for Computational Linguistics, 2014.

[Sch94] Helmut Schmid. Part-of-speech Tagging with Neural Networks. In Pro-
ceedings of the 15th Conference on Computational Linguistics - Volume 1,
COLING ’94, pages 172–176, 1994.

58

http://www.chokkan.org/software/crfsuite/
http://www.chokkan.org/software/crfsuite/


[SHK+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. Journal of Machine Learning Research, 15:1929–1958,
2014.

[SP97] Mike Schuster and Kuldip K. Paliwal. Bidirectional Recurrent Neural
Networks. Trans. Sig. Proc., 45(11):2673–2681, 1997.

[SRLK14] Miikka Silfverberg, Teemu Ruokolainen, Krister Lindén, and Mikko Kurimo.
Part-of-Speech Tagging using Conditional Random Fields: Exploiting Sub-
Label Dependencies for Improved Accuracy. In Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pages 259–264. Association for Computational Linguistics,
2014.

[Ste96] Mark Steedman. Surface Structure and Interpretation. Linguistic inquiry
monographs. MIT Press, 1996.

[ZC05] Luke S. Zettlemoyer and Michael Collins. Learning to Map Sentences
to Logical Form: Structured Classification with Probabilistic Categorial
Grammars. In Proceedings of the Twenty-First Conference on Uncertainty
in Artificial Intelligence, UAI’05, pages 658–666. AUAI Press, 2005.

[ZC07] Luke Zettlemoyer and Michael Collins. Online Learning of Relaxed CCG
Grammars for Parsing to Logical Form. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-CoNLL), 2007.

[ZSV14] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent Neural
Network Regularization. CoRR, abs/1409.2329, 2014.

59



A. Semantically tagged template rules

Here we list a collection of rules appearing in the semantic templates used to perform the
entailment experiments described in Chapter 5. These rules are based on those already
being used in the ccg2lambda system [MGMMB16, MMMB], with occasional variations
and the incorporation of semantic tags. Note that the list here is not exhaustive, since we
only report the rules that contribute to defining the meaning of semantic tags.

Semantic tags in this appendix group nodes from Combinatory Categorial Grammar (CCG)
[Ste96] derivation trees where we consider that they can be used to further advance in
the construction of a meaning representation. The notations (1), (2) and (∗) respectively
indicate that the corresponding semantic tag must be associated to the left child, the right
child or any children of the given node in order for the rule semantics to apply. Features
appearing within syntactic types follow the ones used in the CCGbank [HS07].

DEF =
{

(1)NP [nb]/N 7→ λEλF1λF2λF3. ∃x(F1(x) ∧ F2(x) ∧ F3(x))
}

HAS =

 (1)(NP [nb]/N)\NP 7→ λEλQλF1λF2λF3.∃x((Q(λw.>, λy. rel(x, y)) ∧ F1(x))
∧ F2(x) ∧ F3(x))



IST =
{

(1)S[adj]\NP 7→ λEλQ.Q(λw.>, λx.E(x))
}

SST =
{

(1)S[adj]\NP 7→ λEλQ.Q(λw.>, λx.E(x))
}

REL =
{

(1)((S\NP )\(S\NP ))/S[dcl] 7→ λEλSλV λQ.E(S, V (Q))
}

EQU =
{

(1)NP\NP 7→ λLλQ1λQ2λF1λF2. (Q2(F1, F2) ∧Q1(F1, F2))
}
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UNE =
{

(1)N 7→ λE.E
}

GRP =
{

(1)NP\NP 7→ λLλQ1λQ2λF1λF2. (Q2(F1, F2) ∧Q1(F1, F2))
}

LOG =
{

(1)N/N 7→ λEλX.X
}

ALT =
{

(1)(S\NP )/(S\NP ) 7→ λEλV λQ. V (Q)
}

NIL =



(1)S 7→ λLλS. S

(1)NP 7→ λLλR.L

(1)S\NP 7→ λLλR.L

(1)NP\NP 7→ λLλQ1λQ2λF1λF2. (Q2(F1, F2) ∨Q1(F1, F2))

(1)S\S 7→ λLλS. S

(1)· 7→ λSλX.X



DIS =



(1)S\S 7→ λLλS1λS2. (S1 ∧ S2)

(1)NP\NP 7→ λLλQ1λQ2λF1λF2. (Q2(F1, F2) ∨Q1(F1, F2))

(1)N/N 7→ λLλF1λF2λx. (F1(x) ∨ F2(x))

(1)N\N 7→ λLλF1λF2λx. (F1(x) ∨ F2(x))

(1)(N/N)/(N/N) 7→ λLλM1λM2λFλx.M1(M2(F ), x)

(1)(N/N)\(N/N) 7→ λLλM1λM2λFλx. (M1(F, x) ∨M2(F, x))

(1)NP [nb]/N 7→ λEλF1λF2λF3. ∃x(F1(x) ∧ F2(x) ∧ F3(x))

(1)(S\NP )\(S\NP ) 7→ λLλV1λV2λQ.Q(λw.>, λx. (V1(λF1λF2. F2(x))
∨ V2(λF1λF2. F2(x))))



IMP =
{

(1)(S/S)/S[dcl] 7→ λEλS1λS2. (S1 → S2)
}
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AND =



(1)S\S 7→ λLλS1λS2. (S1 ∧ S2)

(1)NP\NP 7→ λLλQ1λQ2λF1λF2. (Q2(F1, F2) ∧Q1(F1, F2))

(1)N\N 7→ λLλF1λF2λx. (F1(x) ∧ F2(x))

(1)(N/N)\(N/N) 7→ λLλM1λM2λFλx.M1(M2(F ), x)

(1)(N/N)/(N/N) 7→ λLλM1λM2λFλx.M1(M2(F ), x)

(1)NP 7→ λEλF1λF2.∀x(F1(x)→ F2(x))

(1)NP [nb]/N 7→ λEλF1λF2λF3.∀x(F1(x)→ (F2(x)→ F3(x)))

(1)NP/NP 7→ λEλQλF1λF2. ∀x(Q(λw.>, λy. ((x = y)
∧ F1(y)))→ F2(x))

(1)NP\NP 7→ λEλQλF1λF2. ∀x(Q(λw.>, λy. ((x = y)
∧ F1(y)))→ F2(x))

(1)(S\NP )/(S\NP ) 7→ λEλV λQ.∀x(Q(λw.>, λy. (x = y))→ V (λF1λF2. F2(x)))

(1)(S\NP )\(S\NP ) 7→ λEλV λQ.∀x(Q(λw.>, λy. (x = y))→ V (λF1λF2. F2(x)))



NOT =



(∗)NP 7→ λCλF1λF2.¬∃x(C(x) ∧ F1(x) ∧ F2(x))

(1)NP [nb]/N 7→ λEλF1λF2λF3. ∀x(F1(x)→ (F2(x)→
¬F3(x)))

(1)((S\NP )\(S\NP ))/(S[ng]\NP ) 7→ λEλV1λV2λQ.Q(λw.>, λx. V1(λF1λF2.

(V2(λG1λG2. G2(x)) ∧ ¬F2(x))))

(1)(S\NP )\(S\NP ) 7→ λEλV λQ.Q(λw.>, λx.¬V (λF1λF2. F2(x)))

(1)(S[adj]\NP )/(S[adj]\NP ) 7→ λEλV λQ.Q(λw.>, λx.¬V (λF1λF2. F2(x)))



DSC =
{

(1)(S/S)/S[dcl] 7→ λEλS1λS2. (S1 ∧ S2)
}

COO =

 (1)(S\NP )\(S\NP ) 7→ λLλV1λV2λQ.Q(λw.>, λx. (V1(λF1λF2. F2(x))
∧ V2(λF1λF2. F2(x))))



NAM =

 (1)N 7→ λE.E

(∗)NP 7→ λEλF1λF2.∃x(x = E ∧ F1(E) ∧ F2(E))



EVE =

 (1)(S\NP )/S[em] 7→ λEλSλQ.Q(λw.>, λx.E(x, S))

(1)(S\NP )/S[qem] 7→ λEλSλQ.Q(λw.>, λx.E(x, S))


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EXG =

 (1)S\NP 7→ λEλQ.Q(λw.>, λx.prog(E(x)))

(1)(S\NP )/NP 7→ λEλQ1λQ2. Q2(λw.>, λx.Q1(λw.>, λy.prog(E(x, y))))



TNS =


(1)(S[dcl]NP )/PP 7→ λEλFλQ.Q(λw.>, F )

(1)(S\NP )/(S[adj]\NP ) 7→ λEλX.X

(1)(S[dcl]\NP )/(S[b]\NP ) 7→ λEλV. V



PST =
{

(1)N/N 7→ λEλFλx.E(F (x))
}
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