
MASTER THESIS

Vinit Ravishankar

Parsing of Texts with Code-Switching

Institute of Formal and Applied Linguistics

Supervisor of the master thesis: RNDr. Daniel Zeman, Ph.D.
Study programme: Computer Science

Study branch: Computational Linguistics

Prague 2018

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In Prague date 20/07/2018 Vinit Ravishankar

i

This thesis would not have been possible without the support of my family and
friends, and it would have been a lot worse without fruitful discussion with
Mostafa and Artur – the MGAD lads – whom I learnt a lot from and had a
great time with. I would also like to thank Memduh and Fran for their top-notch
linguistic and political banter (and advice) that always kept me motivated. I am
also very grateful to my supervisors, Dr. Daniel Zeman and Dr. Albert Gatt,
who always had valuable advice and feedback for me.

My master’s study has largely been funded by the Erasmus Mundus Language
and Communication Technologies grant, without which I would be infinitely more
broke than I am.

ii

Title: Parsing of Texts with Code-Switching

Author: Vinit Ravishankar

Institute: Institute of Formal and Applied Linguistics

Supervisor: RNDr. Daniel Zeman, Ph.D., Institute of Formal and Applied Lin-
guistics

Abstract: The aim of this thesis is twofold; first, we attempt to dependency
parse existing code-switched corpora, solely by training on monolingual depen-
dency treebanks. In an attempt to do so, we design a dependency parser and
experiment with a variety of methods to improve upon the baseline established
by raw training on monolingual treebanks: these methods range from treebank
modification to network modification. On this task, we obtain state-of-the-art
results for most evaluation criteria on the task for our evaluation language pairs:
Hindi/English and Komi/Russian. We beat our own baselines by a significant
margin, whilst simultaneously beating most scores on similar tasks in the liter-
ature. The second part of the thesis involves introducing the relatively under-
studied task of predicting code-switching points in a monolingual utterance; we
provide several architectures that attempt to do so, and provide one of them as
our baseline, in the hopes that it should continue as a state-of-the-art in future
tasks.

Keywords: parsing dependency parsing treebank universal dependencies code
switching

iii

Contents

Introduction 3

1 Prior Work 6
1.1 Dependency Annotation . 6

1.1.1 Universal Dependencies . 6
1.1.2 ‘Universal’ features . 7

1.2 Dependency Parsing . 8
1.2.1 Transition- vs graph-based approaches 8
1.2.2 Statistical vs neural approaches 9
1.2.3 Evaluation . 9

1.3 Code switching . 10
1.3.1 Description . 10

1.4 Computational processing of code-switching 10
1.4.1 Resources . 10
1.4.2 Methods . 12

2 Dependency Parsing 14
2.1 Artificial neural networks . 14

2.1.1 Artifical neurons . 14
2.1.2 Forward propagation . 14
2.1.3 Backpropagation . 15

2.2 Embeddings and representations 17
2.2.1 Task-specific embeddings 18
2.2.2 Pretrained embeddings . 19

2.3 Recurrent neural networks . 19
2.3.1 Naive RNNs . 19
2.3.2 Vanishing gradients, and onward 20
2.3.3 Long short-term memory 21
2.3.4 Character-level RNNs . 23

2.4 Multi-task learning . 24
2.5 Dependency parser . 26

2.5.1 Architecture . 26
2.5.2 Implementation . 28
2.5.3 Hyperparameters and optimisation 29

3 Parsing for Code-Switched Languages 30
3.1 Data and baselines . 31

3.1.1 Treebanks . 31
3.1.2 Code-switching statistics 31
3.1.3 Constructing a baseline . 33

3.2 Word representations . 35
3.2.1 Mapped embeddings . 35
3.2.2 Cross-lingual dependency parsing 36
3.2.3 Embeddings and methods 37

3.3 Treebank-level modifications . 40

1

3.3.1 Algorithms . 41
3.3.2 Evaluation . 42

3.4 Network alterations . 44
3.4.1 Language ID . 44
3.4.2 Multi-task learning . 47
3.4.3 Domain shift . 50
3.4.4 Development weight learning 53

4 Predicting code-switch points 57
4.1 Background . 57
4.2 Evaluation . 57

4.2.1 Motivation . 57
4.3 Pre-processing and data . 58
4.4 Evaluation . 59
4.5 Analysis . 60

Conclusion 63

Bibliography 67

List of Figures 76

List of Tables 77

2

Introduction
This thesis primarily presents a thorough investigation into the phenomenon of
code-switching, and the relevance of phenomenon to the task of dependency pars-
ing. The nature of this research makes it rather cross-domain; as such, we em-
phasise both the crucial linguistic phenomena that are apparent through code-
switching, whilst simultaneously providing a rigid mathematical and computa-
tional analysis of the systems we designed to deal with the task.

Whilst both dependency parsing and code-switching are tasks, or phenom-
ena, that have been studied by computer scientists and by linguists alike, their
intersection is a fairly modern phenomenon. We posit that this is due to several
factors. One of these is undoubtedly the rapidly increasing relevance of depen-
dency parsing as a rigid, cross-linguistically valid downstream NLP task. This
is, in part, due to the success of the Universal Dependencies project [Nivre et al.,
2016] - a multilingual, yet cross-linguistically consistent dependency treebank
annotation project. Universal Dependencies (also referred to with the abbrevia-
tion ‘UD’), consists of a large number of consistently annotated treebanks: 122
treebanks in 71 languages, as of v2.2. Many attempts to parse these treebanks
have been made, ranging from transition- to graph-based, and from statistical to
neural. These attempts are often the result of shared tasks, the first (and most
recent) of which is the CoNLL shared task on dependency parsing [Zeman et al.,
2017], held in 2017.

We defer more detailed explanations of dependency grammars, and depen-
dency parsing, to a later section: however, a brief definition is that dependency
grammars are an annotation system that, fundamentally, attempt to capture rela-
tions between words in a sentence, rather than recursively decompose a sentence
into its constituent chunks, as in constituency parsing. Dependency parsing is,
therefore, the task that “solves” dependency grammars: it involves learning two
elements from gold-standard data: specifically, the dependency tree structure -
which is fundamentally a connected acyclic graph, where every word represents
a node in the graph, and arcs in the graph represent relations between the words
- and the nature of these relations, specifically annotated according to UD stan-
dards.

There are two major approaches to dependency parsing: transition- and
graph-based parsing. The former (predominantly; minor variations do exist) at-
tempts to represent the building of a tree as a sequence of transitions, and learn
a set of operations to apply iteratively to a stack and a buffer, until a valid parse
tree is obtained. The algorithm, therefore, never truly learns how a tree looks: it
learns how to build one from a series of transitions that assign arcs.

Graph-based parsing, on the other hand, attempts to directly predict a graph
structure that may or may not obey tree constraints: later, these graphs are
reduced to their minimum (or, rather, expressed as log probabilities, maximum)
spanning trees [Chu and Liu, 1965b, Edmonds, 1967].

We go into more detail on dependency parsing and our approach to this task
in a later section.

Code-switching is a fascinating linguistic phenomenon that has been exten-
sively studied, historically and today, albeit primarily by linguists [Auer, 2013,

3

Milroy and Muysken, 1995]. Whilst all-inclusive, simple definitions of this phe-
nomenon do not strictly exist, code-switching is, in most situations, a phe-
nomenon where multilingual speakers generate utterances that include compo-
nents from all or some of their languages. Components, in this context, does
not necessarily mean words: it can also refer to clauses, or even sentences. This
phenomenon is visible in different forms in large parts of the world.

Computational processing of code-switched language has also picked up in
recent years; this has touched upon several downstream tasks, such as POS tag-
ging, though many remain as yet unstudied, or relatively understudied. One of
the most interesting aspects of this computational processing is the question of
the necessity of corpora. Whilst unsupervised techniques for most NLP tasks
have existed for years, these rarely, if ever, outperform supervised tasks, making
the existence of an annotated corpus essential. Whether, and to what degree,
these corpora are essential for code-switched languages is a complex issue, and a
large part of our research question.

Research goals
The combination of these two distinct themes leads to several research goals,
which we attempt to summarise and enumerate:

1. Given annotated monolingual corpora in the two (or more) ‘constituent’
languages that make up a code-switched treebank, what techniques can be
leveraged to best utilise these, and to obtain what sorts of results?

2. Can models trained on these multiple monolingual corpora, if sufficiently
well-resourced, outperform models that were trained using state-of-the-art
monolingual techniques on relevant code-switched corpora? To what extent
is this true?

3. And, finally, can computers learn to predict, given code-switched sentences,
when a switch is going to occur? i.e., can they model human switching
patterns and behaviour?

Our research touches upon all four of these questions; however, we focus
primarily on the first, which is on creating techniques that specifically improve
results on code-switched tasks.

4

Structure
This thesis is divided into several chapters, each with a separate, specific focus,
that ties to our research questions.

I Prior Work
In this chapter, we provide a thorough background to all the numerous constituent
elements of this thesis; both from a linguistic and a computational perspective, as
well as a review of prior work on computational processing of code-switched lan-
guage, that may or may not be relevant specifically to the problem of dependency
parsing.

II Dependency Parsing
This section provides a solid background on neural networks, as relevant to our
task; it also provides a background on dependency parsing, including the prag-
matics behind our implementation of a dependency parser.

III Parsing for Code-Switched Languages
This section, as the ‘main’ part of this thesis, elaborates on the different methods
we follow in an attempt to optimise our parser’s performance on code-switched
data, in the absence of relevant code-switched training data.

IV Code-switching Point Detection
Whilst not the primary focus of this thesis, this section outlines the task of
detecting code-switching points in text streams. It also highlights some of the
possible uses of this task, and provides a thorough evaluation of multiple neural
architectures to a task that has not been revisited in the recent past.

Future Work and Conclusions
In this section, we analyse our experiments from the previous chapters, and dis-
cuss their implications, both on parsing and on code-switched data. We also
discuss possible future avenues for further research.

5

1. Prior Work

1.1 Dependency Annotation
Dependency syntax annotation has existed in some form or other for centuries
[Percival, 1990]. Put very simply, dependency parsing is opposed to constituency
parsing, in that it is a set of formalisms for parsing sentences that, rather than
recursively decompose sentences into phrase-based structures, instead directly
annotate relations between words. Nivre provide an excellent review on the dis-
cipline, along with relevant history.

For some brief background on dependency annotation relevant to our work,
we provide an overview of the largest and most well-known efforts in dependency
annotation, and their relevance to UD.

One of UD’s direct ancestors, the Stanford Typed Dependencies representa-
tion for English [de Marneffe and Manning, 2008], was a large-scale effort that
attempted dependency parsing for English, as a resource for Stanford’s textual
entailment systems; this system eventually began to be adapted to other lan-
guages. Independent annotation projects for other languages also did exist; no-
table efforts include, for instance, the comprehensive Prague Dependency Tree-
bank [Hajič et al., 2017] for Czech, and SynTagRus [Boguslavsky et al., 2000]
for Russian. Other resources relevant to the establishment of UD as a standard
include the original Google Universal dependencies treebank [McDonald et al.,
2013], Google’s universal part-of-speech tagset [Petrov et al., 2011], and, crucially,
the Interset tagset conversion system [Zeman, 2008], for enabling reusable tagset
conversion utilities.

Universal Dependencies originated as a means to unify all these various strands
of annotation under a cross-linguistically consistent umbrella. It has seen multi-
ple releases, each more comprehensive than the last: our data follows the UDv2.0
syntactic annotation guidelines.

1.1.1 Universal Dependencies
In this section, we provide a brief description of the CoNLL-U format used in
the Universal Dependencies schema. CoNLL-U files fundamentally consist of
ten-column lines, each line denoting a word: every column serves to indicate a
specific feature of the word.

1. ID: the word index within the sentence; begins at 1. Multiword tokens are
expressed via ranges.

2. FORM: the surface form of the word as it appears in running text.

3. LEMMA: the lemmatised or stemmed form of the word; lemmatisation
standards vary across treebanks.

4. UPOS: the universal part-of-speech tag of the word.

5. XPOS: the language-specific part-of-speech tag of the word; these are de-
fined per language, with underscores used if they are not available.

6

Figure 1.1: Universal dependency relations as of v2.0; source
universaldependencies.org/u/dep/

6. FEATS: the morphological features of the word; the morphology is drawn
from the universal set of morphological features, or language-specific exten-
sions.

7. HEAD: the index of the head of the current word; 0 if the word is the root.

8. DEPREL: the specific universal dependency relation between the word
and its head. Optional subtypes for specific languages are allowed.

9. DEPS: optional enhanced dependency relations with one or more other
tokens in the sentence. These are absent from most treebanks.

10. MISC: miscalleneous information, represented with key-value pairs. This
is exceptionally useful to us, as we represent language in this field.

Each sentence is expected to begin with a raw, untokenised version of the
sentence as a comment, preceded by a #, along with metadata information for
that sentence. Sentences are separated by blank lines.

1.1.2 ‘Universal’ features
As was mentioned in the previous section, Universal Dependencies includes a set
of POS tags (UPOS), a set of morphological key/value pairs (FEATS) and a set
of dependency relations (DEPREL) that are considered ‘universal’, i.e. they are
expected to apply to all languages within UD.

These include a set of universal features, described in Figure 1.1. Each feature
can be optionally subtyped for a specific language, however, this is avoided as far
as possible, to retain the ‘universalness’ of the feature space. Constraining the
size of the feature space also allows for easier parsing.

7

universaldependencies.org/u/dep/

1.2 Dependency Parsing
Fairly obviously, dependency parsing is the task of predicting, given a sentence
and some variable amount of training data, the valid dependency parse for that
particular sentence. Whilst modern systems require parsers to produce the correct
parse, according to some human-annotated evaluation set, for a parse to be con-
sidered correct, proposals to relax these constraints have been made [Søgaard,
2017]. In this section, we provide a quick overview of some of the different
paradigms in dependency parsing, although we would like to mention that this
is by no means comprehensive: we leave out several sorts of parsers (such as, for
instance, rule-based parsers).

1.2.1 Transition- vs graph-based approaches
Transition-based parsing

Transition-based dependency parsing has long been the predominant method used
to produce dependency parses. It has its roots in shift-based parsing, used for
parsing programming languages [Aho and Ullman, 1972]. Transition-based pars-
ing systems, rather than attempting to directly produce parses, instead rely on
reducing parses to sequences of transitions. A parsing system then attempts to
learn how to produce a sequence of transitions, rather than how to immediately
predict a tree.

There are a variety of ‘transition systems’ in use, the most well-known (and
simplest) of which is Nivre’s arc-standard parsing model, which uses three transi-
tions: namely, shift, left arc and right arc. The first of these merely moves
a token from the stack to the buffer; the other two assign a parent to a particular
node, with the transition determining the direction. One of its obvious flaws is its
inability to deal with non-projectivity, or crossing arcs, within a sentence; there
have been numerous proposed fixes for this, such as introducing newer transitions
such as the swap transition.

The sequence-prediction fundamentals give transition-based parsing an in-
stant advantage: it can guarantee a well-formed tree in the output.

Graph-based parsing

Graph-based parsers are a relatively new parsing method; unlike transition pars-
ing, graph parsers require significantly more complex features. The advent of
neural networks and their ability to model complex feature spaces in arcs has led
to a resurgence in the popularity of graph parsing systems, that are, conceptually,
much simpler than transition-based ones.

Fundamentally, graph-based parsers attempt to learn the arc probability be-
tween every pair of words in the sentence, essentially generating a fully-connected
graph, with edges weighted by arc probabilities. If a dependency ‘tree’ is unnec-
essary - which can be the case for certain downstream applications - the highest
weighted edges are naively selected. If, however, a tree constraint is necessary,
the minimum (based on distances; maximum based on weights) spanning tree of
the graph is obtained, giving us the optimal parse tree.

8

1.2.2 Statistical vs neural approaches
Statistical parsing

Statistical dependency parsing is also, often, referred to as ‘data-driven depen-
dency parsing’: this is not to imply that neural parsing models do not use data,
but was a term used more to distinguish statistical models from rule-based ones
(that are beyond the scope of this thesis). Statistical dependency parsers use com-
plex, often human-defined, feature functions, that attempt to extract information
from either tokens, or transitions - depending on the specific model of parsing
being used - to supply to a learning system that attempts to align features to
parses. One of the more famous examples of traditional data-drives parsers is
MaltParser [Nivre et al., 2007], which used files consisting of complex feature
definitions - such as, for instance, the ‘child of the second element on the buffer’.
The use of statistical parsers has been on the wane lately, with the advent of
neural parsing systems.

Neural parsing

The rapid adoption of neural networks by the NLP community in recent years,
owing largely to their success in fields like image recognition [Lopez and Kalita,
2017] is also a phenomenon that is visible in dependency parsing. A variety of
approaches to parsing using neural networks have been attempted, ranging from
convolution [Zhang et al., 2016] to reinforcement learning-based networks [Zhang
and Chan, 2009].

In principle, however, every method relies on reducing informative elements
– such as tokens, or POS tags, either as inputs or as stack/buffer elements – to
some form of numeric representation, typically dense vectors. These vectors are
then embedded into some form of neural architecture that is capable of learning
to produce labelled dependency parses from them.

We provide more background on the principles of neural networks, and their
application to dependency parsing, in Chapter 2.

1.2.3 Evaluation
Dependency parsers are, in a modern setting, generally evaluated on the basis
of two solid metrics - the unlabelled attachment score (that we refer to as the
‘UAS’), and the labelled attachment score (‘LAS’). Fundamentally, the UAS is the
proportion of dependency arcs that our parser successfully managed to predict,
whilst the LAS is the proportion of arcs that our parser successfully predicts,
along with the labels associated with those arcs [Buchholz and Marsi, 2006].

Most parser evaluation is, today, conducted within the constraints of the Uni-
versal Dependencies project; comprehensive efforts at parser evaluation include
the highly successful series of CoNLL shared tasks on dependency parsing [Zeman
et al., 2017], where multiple parsers are rigidly evaluated against most UD tree-
banks. Other variants on the standard UAS/LAS metric have been introduced,
such as the weighted LAS (wLAS) – which downsamples the contribution of ‘easy’
dependency relations (like punctuation) to the final score – or the morphologi-
cally aware LAS (mLAS) – which weights predictions based on their performance

9

on morphological analysis. Throughout this thesis, we use UAS, LAS and wLAS
as our key evaluation metrics.

1.3 Code switching

1.3.1 Description
Code-switching is a fairly common, yet computationally relatively understudied,
linguistic phenomenon, that occurs predominantly due to some form of language
contact. Fundamentally, it is described by multilingual speakers switching be-
tween two or more languages at least within a single conversation. Code-switching
is, understandably, a very hazy phenomenon that is hard to accurately describe
in a way that covers all social contexts in which it occurs.

Several ways of quantifying code-switching exist, one such method including
different levels of code-switching. For instance, code-switching at a token level
is a fairly common phenomenon (albeit hard to discern from lexical borrowing;
see Myers-Scotton [1992]). Partly due to globalisation and the Internet, a lot of
languages that lack historical ties to the English language have begun displaying
code-switching with English tokens, such as German [Zhiganova, 2016] and Dutch
[Dongen, 2017].

Apart from the modern use of internet slang across languages, code-switching
is particularly visible in a post-colonial context [Ferguson, 2003]. This is a
phenomenon common enough in many former British colonies, such as the In-
dian subcontinent, where Hindi/English code-switching is often referred to as
‘Hinglish’ [Sailaja, 2011, Si, 2011], or in Malta, with ‘Maltenglish’ [Francesconi,
2010, Camilleri, 1996]. These language often also, for instance, exhibit code-
switching at a clausal or morphological level.

1.4 Computational processing of code-switching
Despite code-switching being a well-studied field, applications of insights from
NLP to parse code-switched data are relatively fairly limited. We hypothesise
that this is largely due to the lack of relevant data, which, in part, is a result of
economic conditions, as well as due to code-switching often being looked down
on by language purists. In this section, we provide an overview of work done
on computational processing of code-switched language, particularly relevant to
dependency parsing, and how we intend to build on this work.

1.4.1 Resources
Unannotated corpora

The gathering and annotation of corpora is a laborious task that involves a sig-
nificant amount of human effort. There exist, however, several - fairly recent -
corpora, for code-switched language. Unfortunately, most of these corpora are
merely raw text streams, without any sort of annotation - however, the variety
and availability of these corpora is rapidly growing.

10

Unannotated code-switched corpora exist for several language “pairs”. One
of the earliest efforts is the creation of an Hindi/English code-switching corpus
[Dey and Fung, 2014], which involved the creation and transcription of student
‘interviews’ on informal themes. Lyu et al. [2015] describe a Mandarin-English
code-switched corpus, which was also built on recordings and transcriptions of un-
scripted conversations. Hamed et al. [2018] provide a corpus of Egyptian Arabic-
English data, also obtained through interviews.

There also exist pairs that do not include English as one of the languages:
for instance, Cotterell et al. [2014] provide a transcribed corpus of Arabic-French
code-switching, consisting mainly of newspaper text. Relevant to this thesis is a
corpus of spoken Komi-Russian1 [Partanen et al., 2018]; another relevant corpus
is an annotated German-Turkish corpus [Çetinoğlu, 2016].

The diversity of reasons for the existence of code-switching in all the above
pairs is quite significant: ranging from colonialism to globalism to immigration,
to mixtures of the three to varying extents.

Annotated corpora

Creating annotated corpora is significantly more effort than merely assembling
multilingual corpora, as it requires significantly more human effort. Despite this,
there exist several annotated corpora for a variety of tasks, the most common
of which is (understandably) part-of-speech (or POS) tagging [Vyas et al., 2014,
Solorio and Liu, 2008b, Çetinoğlu and Çöltekin, 2016, Nelakuditi et al., 2016].
POS tagging is a fairly ‘basic’ downstream NLP task, that involves predicting
annotations of tokens with specific parts of speech, according to a certain schema.
The task is, therefore, a fairly simple sequence labelling task.

Extremely relevant to our task are corpora that have been annotated specif-
ically for dependency parsing. These, specifically, include a Hindi/English code-
mixed treebank [Bhat et al., 2017], and a Komi-Russian one [Partanen et al.,
2018]. Neither of these treebanks is what could be considered large: the treebank
for Hindi/English consists of a total of 6,789 tokens (divided into development
and test sets of 3,467 and 3,322 tokens respectively). Komi-Russian datasets are
even smaller: 105 sentences, 80 of which are adapted variants of a monolingual
corpus to try and reflect code-switching that would occur in normal conversations.
Given that the minimum treebank size for inclusion into the CoNLL-2017 shared
task [Zeman et al., 2017] was a total of 10,000 tokens, it is clear that neither of
our code-switched treebanks is particularly large.

It is crucial to mention, at this point, the existence of a substantially larger
Hindi/English code-switched corpus [Bhat et al., 2018]; one that includes suffi-
cient data for a training set. We do not use this dataset in our experiments, as
the whole point of our work is to evaluate techniques for improving parsing per-
formance in the absence of much code-switched data; however, we use the results
presented in this work as an ‘upper baseline’, as it were: one that we hope, but
do not expect, to beat.

1Komi is a minority Uralic language spoken in the Komi Republic, in Russia

11

1.4.2 Methods
There has been a not-insignificant amount of work on computational processing
of code-switched language in recent years, particularly with Indian languages and
English. A variety of tasks have been studied, and we attempt, in this section,
to outline the work done on some of them. For brevity, we expect the reader to
be broadly familiar with each of the following tasks in a monolingual setting, and
provide a review of the literature as relevant to code-switching.

POS tagging

Part-of-speech tagging, or POS tagging, is a task that can absolutely be consid-
ered a ‘core’ NLP task. There have been several POS taggers that were specifically
either evaluated on code-switched data, or specifically adapted for code-switched
data. Ghosh et al. [2016] describe a CRF-based POS tagger for code-switched
data in Bengali, Hindi and Tamil, with English; this was submitted to a shared
task on parsing code-switched Indian languages. Whilst their results are signifi-
cantly above the baseline, they also have access to annotated code-switched data
for training, as do other competitors in the shared task(s). AlGhamdi et al. [2016]
provide several more interesting architectures, evaluated on Spanish/English, and
Modern Standard Arabic (MSA)/dialectal Arabic. Their first architecture at-
tempts language identification first, then uses two monolingual taggers to tag
the entire sentence: each tagger tags a relevant chunk for its particular language.
Their second model obtains two tag sequences over complete sentences, by apply-
ing either monolingual tagger to the whole sentence: it then attempts language
identification, and then interpolates the language data with the monolingual tag
sequences to obtain the relevant language tag. Their third system uses confi-
dence scores output by each tagger, for each tag, to choose the tag that has
higher confidence associated with it. Finally, their last system teaches a classifier
(specifically, an SVM) to choose which tag to output.

One of the most widely cited works on POS tagging code-mixed text is Solorio
and Liu [2008b], for English/Spanish; an interesting contribution they make is
the use of hand-crafted heuristics, such as making use of the ‘foreign’ POS tag
output by their monolingual English or Spanish taggers, and forcing their system
to output the opposite language tag if one of the two languages results in a
‘foreign’ POS tag. Patel et al. [2016] provide a more modern approach to POS
tagging, and use character-level RNNs: however, they, too, have access to code-
switched training data. Finally, Bhat et al. [2018] train a tagger2 jointly with
their parser, using character-level RNNs: however, they also use their parsing
loss to train the shared tagger and parser layers. These sorts of architectures are
explained in greater detail in Section 2.4.

Language identification

Language identification, which is (rather obviously) the task of identifying the
language of each token in a sentence, is a task that has seen excellent results,
with the exception of scenarios where code-switching is across languages that are

2Note that this paper was made public towards the end of this thesis being written.

12

extremely similar, such as modern standard Arabic (MSA) and dialectical Ara-
bic (DA). Rather conveniently, Molina et al. [2016] provide a concise overview for
their second shared task on language identification in code-switched language: the
languages the shared task focussed on are MSA/DA and Spanish/English. Their
data sets for both languages are drawn from Twitter. Whilst all the submitted
systems beat their baseline for Spanish/English by a significant margin, the best-
performing system [Shirvani et al., 2016] used logistic regression and several exter-
nal resources, such as named entity recognition systems. The next best perform-
ing system, which also happened to be the best performing system for MSA/DA
[Samih et al., 2016], used recurrent neural networks (specifically LSTMs) for lan-
guage identification. Finally, whilst by no means the best-performing system on
either pair, Jaech et al. [2016] provide a fascinating language identification model
using convolutional neural networks.

Dependency parsing

To the best of our knowledge, there exist, as of now, only two works on depen-
dency parsing code-switched language, both of which were written during the
compilation of this thesis. Whilst we have referenced both these papers in 1.4.1,
here, we describe the methods they have used, rather than their datasets.

The first of the two, Partanen et al. [2018], fundamentally relies on modify-
ing the dependency parsing architecture described by Lim and Poibeau [2017] to
include multilingual word representations; they then provide this system with
mapped embeddings, à la Artetxe et al. [2016], and attempt to parse their
Komi/Russian code-mixed corpus.

More comprehensively, Bhat et al. [2018] provide an end-to-end system for
segmentation, language identification, text normalisation, POS tagging and de-
pendency parsing. In doing so, they use a transition-based parser, where their
POS tagger and parser act as stacked components.

It is important, here, for us to constrain the aim of this thesis: whilst an end-
to-end system is, indeed, an extremely useful system, we choose to focus solely
on the task of dependency parsing. Our rationale behind this is manifold:

1. There has been significant enough research into other tasks on code-switched
data that it would take significant amounts of effort to beat existing states-
of-the-art.

2. An end-to-end system can, in theory, be constructed by simply stacking
individual states-of-the-art3; there is nothing (again, in theory) that would
stop one from doing so with our parser.

3. The relative lack of focus on dependency parsing as a task implies that we
can realistically run several experiments that, even if unsuccessful, would
be informative for future research as a negative paper.

3Although recent innovations in the domain of multi-task learning show that such systems
may not prove to be the most optimal ones

13

2. Dependency Parsing
In this section, we describe the broad architecture of our dependency parser. The
architecture of our parser broadly follows the architecture followed by Dozat and
Manning [2016], with several changes: and, indeed, modifications, in an attempt
to capture code-switching well. Our parser predominantly uses neural networks
to learn to parse; we therefore preface this section with a large introduction to
neural networks and their specific use in parsing.

2.1 Artificial neural networks
Artificial neural networks, despite their broad acceptance by the NLP community
being less than a decade old, are, conceptually, fairly old. Initial research in the
application of neural networks to computing (and not biology) date back to the
1940s [McCulloch and Pitts, 1943]. Major breakthroughs include the design of
the perceptron [Rosenblatt, 1958], a simple addition/subtraction based model.
Significant improvements in the feasibility of neural networks were realised by
the development of the backpropagation algorithm [Rumelhart et al., 1985].

In recent years, neural networks have rapidly gained acceptance largely due to
their new-found tractability, thanks to advances in parallel computing and GPUs;
the most significant recent work, that firmly established the use of neural networks
in image recognition, was the deep convolutional network AlexNet [Krizhevsky
et al., 2012].

It is important to note that a lot of what we know of neural networks was built
standing on the shoulders of giants; significant amounts of insight from classical
machine learning are still extremely valuable.

2.1.1 Artifical neurons
Fundamental to artificial neural networks is the ‘neuron’; despite the arcane name,
inspired by neuroscience and the structure of the brain, a neuron is fundamentally
a ‘node’ that composes multiple inputs into a single output, typically with the
neuron introducing a non-linearity.

Composition at a neuron merely involves multiplying an input with a weight
(and optionally adding a bias) associated with the input and that particular
neuron: the output is then transformed by a non-linear function.

Figure 2.1 demonstrates the transformation of four inputs by a neuron (with-
out biases): each input is multiplied by its corresponding weight at that neuron,
and a non-linear function f is applied to their linear combination. It is imme-
diately obvious why f is necessary in deep networks: series of linear operations
on input data can trivially be composed to single linear operations, making non-
linearities essential.

2.1.2 Forward propagation
Typically, neural networks consist of a series of neurons composed into a single
layer, and multiple such layers (hence the term ‘deep’). This, fundamentally,

14

Figure 2.1: A basic example of a neuron with four inputs

results in a series of non-linear transformations to the input data.
Figure 2.2 is a fully connected neural network with a single hidden layer with

three neurons: each neuron in the hidden layer applies a non-linear transformation
to a weighted combination of the four inputs, x1 and x2. The outputs of these
neurons are then recombined to form a single output, y.

This, fundamentally, is the ‘forward propagation’ step: weights and biases are
first initialised randomly, usually following some sort of normal distribution [Glo-
rot and Bengio, 2010]. Inputs are then transformed using these weights and biases,
and an output is obtained. The ‘loss’ of this output relative to the gold-standard
output is calculated, and weights and biases are reset by backpropagating these
losses.

2.1.3 Backpropagation
Fundamental to the design of neural networks is the principle of backpropagation,
which is, essentially, the standard way neural networks learn to correct their
weights and biases. Backpropagation fundamentally involves using a variant of
gradient descent to optimise weights and biases. Past the forward propagation
step, there needs to be a way to correct, or nudge, the weights and biases forward
to get a better representation.

15

Figure 2.2: A neural network with one hidden layer and two inputs

Gradient descent

In order to understand why backpropagation works the way it does, it is, first,
crucial to understand gradient descent. Given a loss function L, and a set of
parameters1 θ for which the loss is to be calculated, i.e. a function that returns
how ‘off’ a prediction is compared to a gold standard, it is obvious that L(θ) has
its minima where L′(θ) = 0. Gradient descent, in its most simplified and naive
form, involves subtracting the slope of L(θ) from θ: the slope, here, being, funda-
mentally, a signed value indicating the magnitude and direction of the gradient
at that point. This subtraction is typically scaled by a ‘learning rate’ α. Thus,
with straightforward, naive gradient descent, we can reset our parameters (using
the vector derivative operator ∇) as:

θ ← θ − α∇θL(θ)

Calculating derivatives

It is clear from the previous section that our parameters need to be adjusted
based on the value of the slope of some loss L, relative to the specific parameter,
generalised to all parameters with θ. The chain rule from elementary calculus
proves exceptionally useful in calculating these derivatives.

Consider, for instance, the same simple single-hidden-layer network in Fig-
ure 2.2; let us assume all neurons are unbiased, for simplicity. It is clear that we
need to calculate several weight parameters: the weights between every input and
every hidden neuron, and every hidden neuron (with activation function f) and
the single output. Let the weighted combination of inputs at a hidden neuron n
be represented by in, and the output of the non-linearity applied at that neuron
by hn. Let us assume our loss is a simple mean-squared error (MSE) loss:

1‘Parameters’ merely refers to the weights and biases etc. used in a network

16

L = (ygold − y)2

Assuming we need to calculate the derivative of the loss w.r.t. weight w1, we
have:

∂L

∂w1
= ∂L

∂y

∂y

∂w1

= ∂L

∂y

∂y

∂h1

∂h1

∂w1

= ∂L

∂y

∂y

∂h1

∂h1

∂i1

∂i1

∂w1

All these individual derivatives are easy to calculate:

∂L

∂y
= 2(ygold − y)

∂y

∂h1
= ∂

∂h1
h1w7 = w7

∂h1

∂i1
= f ′(i1)

∂i1

∂w1
= x1

And our equation thus composes to:

∂L

∂w1
= 2(ygold − y) · w7 · f ′(i1) · x1

the value of which is then subtracted from w1.
This series of forward- and backpropagation is computed for every input ele-

ment; typically, the inputs are grouped into ‘batches’, to prevent erratic fluctu-
ations in gradients. The operations are then, typically, repeated over the same
input data: each iteration of forward propagation followed by parameter recalcu-
lation via backpropagation is called an epoch.

2.2 Embeddings and representations
Fundamental to the use of neural networks for most NLP applications is the
principle of embeddings. Embeddings are a further innovation in word represen-
tations, which derives from the oft-quoted Firth [1957] - you shall know a word
by the company it keeps.

The intuition behind this is fundamentally that words with similar meanings
are likelier to occur in similar contexts simultaneously. Thus, words like ‘dog’
and ‘cat’ are likely to occur in very similar contexts, bar certain differences:
and assigning them arbitrary relative positions in an n-dimensional vector space,

17

Figure 2.3: Generation of a dense (size 3) embeddings matrix from a four-word
sentence, with a vocabulary size of 5.

along with other words, would mean that this meaning similarity or difference is
adequately captured.

More formally, an embedding is a transformation from sparse word index
vectors to dense vector word representations. Thus, initially, words are repre-
sented using one-hot vectors - these are fundamentally sparse vectors, that are
the size of the complete relevant vocabulary or some subset of it. The specific
word being considered then has its index set to a one in this sparse vector. A
fully-connected layer then transforms these one-hot representations into the most
appropriate dense representations for the downstream task. It is important to
mention, at this point, how these embeddings are trained (which, fundamentally,
means how the mappings are learnt). There are two broad approaches to training
embeddings.

2.2.1 Task-specific embeddings
Depending on the task, it is obvious that embeddings can capture different sorts
of distributional information, geared specifically optimising performance on the
task they are trained on. Thus, intuitively, it makes more sense that they be
trained specifically for a certain task, which is trivial to implement in a deep
neural architecture; Figure 2.3 describes the architecture of this sort of learning
system.

A significant disadvantage with using task-specific embeddings, however, is
that a large number of tasks simply do not contain enough data to have ideal
word representations: intuitively, mapping from one-hot vectors to dense rep-
resentations ought to require large amounts of data, which most tasks cannot

18

provide. This often leads to more inconsistencies and poorer learning than de-
sirable in the embeddings. This has led to the widespread use of pretrained
embeddings.

2.2.2 Pretrained embeddings
Pretrained embeddings were popularised by the creation of the word2vec algo-
rithm [Mikolov et al., 2013]. Fundamentally, pretrained embeddings consist of
embeddings that have been trained independent of the task they are being used
in: typically, they are trained on language modelling tasks, although embeddings
trained on eg. dependency-parsed corpora do exist [Levy and Goldberg, 2014].
This is advantageous as language modelling tasks do not need any specific sort
of annotation - just a large corpus is sufficient, and Wikipedia is often a fairly
usable corpus. Training for language modelling is typically done one of two ways:

Continuous bag-of-words

The continuous bag-of-words (CBOW) model consists of trying to output proba-
bilities for a target word, given a context window. For instance, given a sentence -
say the quick brown fox jumps over the lazy dog - and a window size of 2 words to
either side of the target - the algorithm attempts to predict the probability of, for
instance, fox, given quick brown and jumps over as the relevant context. Back-
propagation then attempts to fit these probabilities to resemble empirical ones
sampled from the corpus as well as possible: thus, intuitively, our network learns
the appropriate weights for every predicted word, and words in similar contexts
would result in similar weights being used. Our weights layer is, therefore, our
‘embeddings’ matrix.

Skip-gram

The skip-gram embedding training system is the opposite of CBOW - it attempts
to model the probabilities of certain words occuring in the context of a given word.
The advantage of the skip-gram model is that it works better for infrequent words:
there is no averaging as in the CBOW model. However, the lack of averaging also
means that it is considerably slower to train. Figure 2.4 shows the architecture
of both the skip-gram and the CBOW model.

2.3 Recurrent neural networks

2.3.1 Naive RNNs
The evolution of neural network architecture to support extremely deep architec-
tures has led to the widespread use, particularly in NLP and related domains, of
recurrent neural networks. These are, as is fairly evident from the name, recur-
rent structures: a recurrent layer consists of an element called a cell, as shown in
Figure 2.5. Each cell feeds its own output to the next cell, which combines the
output from the previous cell (hence the ‘recurrent’) and an independent input,
into an output: this output is both accessible as an independent value, and is
fed as one of the inputs to the next cell. Formally, if the output state (called the

19

Figure 2.4: CBOW vs. skip-gram models for a vocabulary of size 5, context of
size 3 and embedding dimension of size 3

hidden state) of a cell at time step t is given by h(t), and the input at time step
t by x(t), we have:

h(t) ← f(h(t−1), x(t); θ)
where f is an activation function, the neuron for which is parameterised by

some θ.
An RNN is thus, unlike regular deep layers, capable of retaining some sense

of context: it is immediately clear why RNNs are useful in NLP, as context is
often very important to represent constructions made of a sequence of elements,
such as words (composed of letters) or sentences (composed of words). RNNs
do not completely neglect history, but instead pass it along: the composition of
this passed-along history with the current input results in representations that
are highly advantageous to many tasks.

The architecture of an RNN layer ought to make it instantly obvious that
their left-to-right nature is far from inherent: indeed, it is possible to flip recur-
sive layers to pass context backwards, or, far more commonly, to combine both
directions to obtain bidirectional element representations.

There is, however, a significant flaw with naive RNNs that improved architec-
tures have attempted to alleviate.

2.3.2 Vanishing gradients, and onward
The famous vanishing gradient problem [Pascanu et al., 2013, Hochreiter, 1998]
- or, indeed, its counterpart, the exploding gradient problem - is a significant
stumbling block that recurrent neural networks face. Put succinctly, the issue is

20

Figure 2.5: Simple RNN block with three RNN cells; h0 is the initial hidden state
which can either be learnt or initialised randomly

this: most commonly-used activation functions, such as the hyperbolic tangent
(tanh) activation, have derivatives in the range (0, 1). Given that gradients for
backpropagation are calculated by means of the chain rule, it becomes fairly
obvious that a series of such activation functions would, very often, result in
rapidly shrinking gradients, as numbers ≤ 1 are continuously multiplied with
each other. This results in the cells that appear later along the recurrent chain to
train relatively extremely quickly, whilst the cells along the back train extremely
slowly, sometimes not at all.

Clearly, the fix for this is to retain some sort of unchanging ‘memory’ of the
previous state, i.e. an element with a derivative of 1; this is known as a ‘constant
error carousel’. The name is fairly self-explanatory: picture a carousel that carries
information forward from the previous cell, with relatively stable derivatives that
do not decompose to massive chains of products. Recurrent layers with such a
carousel possess, in addition to a hidden state, a ‘cell state’ - which is a state that
carries relatively unchanged information down the recurrent chain. Interactions
with the cell state are linear, which allows the cell state to learn without suffering
from vanishing gradients.

2.3.3 Long short-term memory
Long short-term memory networks, or LSTMs, were first described by [Hochreiter
and Schmidhuber, 1997], in an attempt to solve the vanishing gradient problem
(which they do admirably).

Whilst seemingly significantly more arcane than naive RNNs, LSTMs are
fairly simple, conceptually. As is visible from Figure 2.6, there are several non-
linearities (that we refer to, here, as ‘gates’) that are applied within an LSTM cell.
These are fairly intuitively named: the input gate (i), the output gate (o) and the
forget gate (f). Each of these gates initially calculates a combination and non-
linear transform over the previous hidden state and the current input, similar to
naive recurrent networks: f(h(t−1), x(t)), which expands (assuming both weights

21

Figure 2.6: Architecture of an LSTM cell. Flow is indicated with arrows; lines
are labelled appropriately with intersecting text

and biases exist) to g(Wh(t−1) + V x(t) + b), where g is a non-linear activation
function. The weights and biases used at every gate are, obviously, different (this
is indicated in the formal maths).

Typically, the activation function used for each gate is the sigmoid function
σ: the reason is made clear below.

The way every gate functions is, fundamentally, to output a value between 0
and 12 - the range of the sigmoid function - to ‘control’ the amount of a certain
variable. Consider, initially, the forget gate. Its output, post the application of
a sigmoid function with range (0, 1), is multiplied with the cell state from the
previous cell: this scales the cell state, and defines how much information from
the previous cell is to be retained.3 Outputs closer to 1 in the forget vector
indicate that that particular element is worth remembering, whilst outputs closer
to 0 indicate that they ought to be forgotten.

Next, the input gate applies a similar sigmoid, whilst also simultaneously
applying another independent tanh. The input sigmoid is then multiplied by the
input tanh. This is also a fairly intuitive step: the sigmoided inputs learn how
much of the input ought to be remembered, whilst the inputs that pass through
tanh define what is to be remembered. tanh is used largely because of the stability
of its derivative. The product of the two is then added to the cell state.

Finally, the cell state passes through a tanh - merely to introduce an essential
non-linearity - and is then multiplied by the sigmoided value of the output gate.
This output is then considered the hidden state of that particular LSTM cell.
The tanh, therefore, serves purely to transform the cell state into the hidden

2Note that, whilst not explicitly mentioned, these gates do learn what to output to optimise
performance

3Neither the forget gate’s output, nor the previous cell state, are integers: they are vectors

22

state via a non-linearity, whilst the sigmoid serves to indicate what parts of that
transformed cell state are truly relevant and ought to be captured in the hidden
state.

This can formally be expressed by a set of equations; at a particular time step
t:

i(t) ← σ(Wix
(t) + Vix

(t) + bi)
o(t) ← σ(Wox

(t) + Vox
(t) + bo)

f (t) ← σ(Wfx(t) + Vfx(t) + bf)
c(t) ← y(t) · c(t−1) + i(t) · tanh(Wyx(t) + Vyx(t) + by)
h(t) ← o(t) · tanh(c(t))

Note that, in these equations, the suffix i indicates parameters relevant to the
input gate, o to the output gate, f to the forget gate and y to the input gate’s
tanh transform.

2.3.4 Character-level RNNs
Character-level RNNs are an improvement on character-level language models, à
la Kim et al. [2016]. Fundamentally, a character-level language model attempts
to augment an existing word-level model with character-level ‘information’; i.e.
by representing words as compositions of vectors that represent the constituent
characters in the word. The biggest advantage of this is instantly visible for
morphologically complex languages: augmenting these systems with character-
level information allows for some semblance of similarity in representations of
words that are distinct in word space, if they are grammatically similar: similar
affixes would lead to their vectors being pushed closer to each other.

Where character-level models really shine, however, is where the word em-
bedding vocabulary is restricted, and smaller than the vocabulary of the actual
test data. In these situations, rather than using an (often randomly initialised)
‘unknown’ vector, utilising character level information helps provide some infor-
mation, based, often, solely on affixes, that unknown vectors certainly do not
provide. Whilst most character-level models in the literature use some variety
of convolutional network [Chiu and Nichols, 2015, Zhang et al., 2015, Vosoughi
et al., 2016], we instead rely on multiple levels of a recurrent neural network, à
la Dozat et al. [2017].

Fundamentally, it is important to remember that there needs to be some
element in our architecture that compresses the output per character into a single
vector; whilst convolutional architectures work well for this sort of compression,
so do recurrent architectures. We therefore pass our character embeddings - which
are calculated similar to word embeddings, but with other characteres as context
- into an LSTM, the last state of which is concatenated to self-attention over the
rest of the hidden states4 passed to a multi-layer perceptron. The vector that
this MLP outputs is what we consider representative of the ‘composition’ of the
characters in our word or token. This is exemplified in Figure 2.7.

4An explanation of various forms of attention is beyond the scope of this thesis; we refer the
reader to Bahdanau et al. [2014] and Lin et al. [2017] for further reading.

23

Figure 2.7: A composition of characters for the word ‘like’ being fed upstream to
our parser (which is described better in Figure 2.10)

2.4 Multi-task learning
A fairly significant part of this thesis relies on the principle of multi-task learning.
The recent Ruder [2017] is an excellent overview of the domain and the state-
of-the-art in the field; however, we summarise key learnings from MTL briefly
here.

Fundamentally, multi-task learning relies on the intuition that humans use
information and knowledge from tasks they already know to accomplish other
tasks. This can transfer to deep learning: by sharing layers in a network across a
variety of tasks, the shared layers attempt to adapt to each task. This adaptation
winds up providing the shared layers with information that, in turn, winds up
heavily influencing performance on the first task.

In its most basic setting (Figure 2.8), typically referred to as ‘hard parameter
sharing’, layers are shared across tasks: each shared layer learns representations
that benefit both tasks, whilst task-specific layers allow these representations to
specialise to that particular task.

Soft parameter sharing (Figure 2.9), on the other hand, has independent net-
works for each task: the parameters that are meant to be shared are then regu-

24

Figure 2.8: Hard sharing parameters for two tasks

Figure 2.9: Soft parameter sharing for the same tasks

25

larised using some form of distance metric.
There are other proposed architectures for multi-task learning, many of which

improve on the hard/soft-parameter sharing paradigm. Worthy of note are, in
particular, cross-stitch networks [Misra et al., 2016] and sluice networks [Ruder
et al., 2017a]; we do not, however, implement either of these networks due to their
effectivity being more visible with tasks that involve sharing more layers than we
do.

Bingel and Søgaard [2017] provide a review of specifically what tasks help,
and attempt to quantify how much they help, when jointly learnt in a multi-task
environment. We attempt to extend on this work by evaluating certain tasks that
are possible only within the domain of code-switching, and attempt to quantify
their usefulness.

2.5 Dependency parser

2.5.1 Architecture
Our dependency parser is, more or less, a reimplementation of the graph-based
parser created by Dozat and Manning [2016]. Reimplementing the parser, whilst
seemingly unnecessarily tedious, allows us to modify the architecture to take
advantage of a variety of our code-switching specific settings.

Figure 2.10: Architecture of our dependency parser; colours indicate specific
tokens

Figure 2.10 is the broad architecture of the dependency parser. Whilst seem-
ingly complex, the way it functions is fairly intuitive.

Initially, our input tokens - both word forms and POS tags - are passed
through an embeddings layer, that converts their one-hot representation to dense

26

embeddings. These embeddings are then (as is the norm for a large number of
NLP tasks) passed through a bidirectional LSTM, which generates vectors that
take context into account. Note that this is a multilayer LSTM: fundamentally,
this works the same as a deep neural network, with the ‘deepness’ being both
a horizontal phenomenon (multiple layers for multiple time-steps) and a vertical
one (multiple LSTMs stacked on top of each other).

The hidden state of every LSTM cell in the final LSTM layer is then passed
to two separate MLP5. For each cell (each of which is meant to represent a
token), one MLP is meant to ‘learn’ representations of that token as the head
of a dependency relation between two words, whilst the other is meant to learn
representations of the token as a dependent.

Next, a bilinear transformation is then applied to the stacked outputs of each
series of MLP. A bilinear transformation is, in principle, similar to a linear one,
but relies on transforming multiple matrices with a single weight and bias. Put
more formally, the bilinear analog to the linear transformation Wx+b is x1Wx2 +
b.

The bilinear transformation fundamentally results in a square matrix, with
each element representing the probability of a token (represented by the row)
being the head of the token (represented by the column). This is demonstrated
in Figure 2.10 using colours: each colour represents a particular word. A softmax
layer is then applied to obtain numerically stable probabilities for arcs for every
possible (head, word) pair.

Having obtained these arc probabilities, we then attempt to obtain deprel
probabilities. The network is fundamentally the same until after the MLP stage
(note that two different MLPs are used here, as the representations learnt for
labels are not necessarily the same as those learnt for heads). The bilinear step is
rather different: we do not need to combine every possible token (as head) with
every possible token (as dependent) as we already have the most likely heads.
We therefore populate the deprel vector after initially selecting the appropriate
most-probable head, and all dependents. We do not select the ‘most probable’
dependent as a single head can have multiple dependendents, and we calculate
the likeliest relation with all such dependents, eventually selecting the one that
represents the appropriate dependent.

Formally, our arc predictor can be represented by the equations:

si
(arc) = H (head)W (arc)h(dep)

i + H (head)b⊤(arc)

y ′(arc)
i = arg max

j
s(arc)

ij

The biaffine transformation used by the deprel predictor is more complex, and
is meant to use multiple biases:

5MLPs are fundamentally multiple layers of densely connected neurons

27

s(rel)
i = h⊤(head)

y′(arc)
i

U(rel)h(dep)
i

+ W (rel)(h(dep)
i ⊕ h⊤(head)

y′(arc)
i

)

+ b(rel)

y ′(arc)
i = arg max

j
s(arc)

ij

Having obtained matrices indicating the softmax probabilities of every pos-
sible arc (and the labels associated with each ‘best arc’, we draw the reader’s
attention to the fact that this sort of unstructured, element-by-element predic-
tion inherently fails to guarantee that any output would obey the tree constraint;
we are, fundamentally, predicting graphs (hence the name). We therefore attempt
to find a spanning tree through the graph: specifically, the maximum spanning
tree (as softmax probabilities are proportional to actual probabilities). To do so,
we employ the widely-used Chu-Liu-Edmonds algorithm [Chu and Liu, 1965a,
Edmonds, 1967], which recursively returns a spanning tree for a weighted graph;
our weights are our probabilities, and the specially designed root node is the head
of the tree.6

For our biaffine transforms, we referred to https://github.com/chantera/
biaffineparser for pragmatic implementation help.

2.5.2 Implementation
We re-implemented the parser in PyTorch [Paszke et al., 2017], specifically ver-
sion 0.3.1. Our main motivation in reimplementing it was to make it easier to
further augment the network with our own architectures. The source code for
our implementation is freely available for review on GitHub, at https://github.
com/vin-ivar/vinparser. We use several libraries to help make dealing with
CoNLL files easier, primarily the excellent torchtext library7, built specifically
for vectorising raw text; as it deals only with specific file formats, we wrote several
converters to convert our CoNLL-U files to the relevant CSVs. To ensure repli-
cability of our initialised hyperparameters, we fix all internal random number
generation seeds to the numeric value 1337.

6We use CLE code from the original parser implementation: https://github.com/tdozat/
Parser-v1

7https://github.com/pytorch/text

28

https://github.com/chantera/biaffineparser
https://github.com/chantera/biaffineparser
https://github.com/vin-ivar/vinparser
https://github.com/vin-ivar/vinparser
https://github.com/tdozat/Parser-v1
https://github.com/tdozat/Parser-v1
https://github.com/pytorch/text

2.5.3 Hyperparameters and optimisation

Parameter Value

Embedding dim. 100
LSTM hidden state dim.* 500

LSTM layers 3
Arc MLP dim. 400

Label MLP dim.* 200
Dropout 33%

Batch size* 40
Epochs* 10

Learning rate* 1 ∗ 10−3

Char. embedding dim. 100
Char. LSTM dim.* 150

LSTM dropout 33%
Attention dropout* 0%

Table 2.1: Hyperparameters for our parser; ones that differ from the original are
indicated with asterisks

We retained most of the hyperparameters used in the original Dozat and Manning
[2016] parser, albeit with certain modifications that we optimised towards using
grid search. Our hyperparameters for an additional character-based LSTM layer
[Dozat et al., 2017] were also similar. Whilst the original hyperparameters were
optimised for monolingual parsing on English, we used them only as a starting
point, then added several tweaks to measure downstream performance on our
datasets. Other differences primarily involve training: whilst the original parser
uses minibatches determined by token counts, we use sentence counts. Further,
we fix our training period to ten epochs, and do not implement early stopping
or annealing. Our hyperparameters are described in Table 2.1. Our character
hyperparameters were more optimal with significantly smaller recurrent hidden
state dimension sizes: 150 instead of 300. We hypothesise that this is due to the
fact that Devanagari for Hindi has more rigid grapheme-to-morpheme mappings
than Latin for English.

29

3. Parsing for Code-Switched
Languages
In this chapter, we outline our approaches to modifying our dependency parser
to work with code-switched languages. As such, this chapter is broadly divided
into several ‘sub’-chapters.

i. Data and baselines
In this section, we describe the validation and test data that we use, along with
several baselines that we define: these baselines are fairly intuitive, but despite
this, as we shall observe in a summary of our results, they perform exceptionally
well.

ii. Word representations
In this section, we describe our experiments with a variety of word representations,
mapped to induce multilinguality. We compare several approaches to inducing
these mappings, and compare and analyse the results.

iii. Treebank-level modifications
Here, we describe a set of partially deterministic alterations that we apply to our
treebanks, in an attempt to simulate code-switching where it does not exist.

iv. Network alterations
By far the most significant contribution of this thesis, this section describes tech-
niques we use to alter our network to better cope with code-switched language.

30

3.1 Data and baselines
In this section, we describe the treebanks we are using, and provide some detailed
statistics on distributions of syntactic annotation in these treebanks.

3.1.1 Treebanks
Whilst we have referenced the data we intend to use in Section 1.4.2, we describe
this data in more detail here. Fundamentally, we evaluate all our parsing experi-
ments on two datasets: a Hindi/English code-switched dataset, and a Komi/Rus-
sian one. Once again, we wish to emphasise the main aim of our thesis, which is
relying on monolingual data for training. As such, our data fundamentally
decomposes into two ‘collections’:

1. Monolingual training data for both the languages that constitute the code-
switched pair

2. Code-switched development/test data

Further, several of the approaches that we describe involve augmenting mono-
lingual training data with some development data; it thus becomes important for
us to have separate dev/test splits.

For our Hindi/English suite, we use the data described in Bhat et al. [2017];
for Komi/Russian, we use the data described in Partanen et al. [2018]. Whilst
our Hindi/English data comes pre-divided into dev/test sets, we lack develop-
ment data for Komi. Indeed, our Komi test data is divided into three sections:
a monolingual Komi corpus, a code-switched corpus created by transcribing spo-
ken Komi, and another code-switched corpus created by manually modifying a
monolingual Komi corpus. We ignore the first of these three splits for all our
experiments. Further, we append the rest of these splits to create a single test
corpus. Finally, we do not use development data to fix hyperparameters for
Komi: we fix our hyperparameters on our Hindi/English development data and
use the same for Russian/Komi. For tasks where we require a development fold
(described later), we use the spoken Komi corpus as our dev set: this is primarily
motivated by the fact that it is smaller, and a larger test set gives us a more
confident evaluation.

Note that our Hindi/English data comes pre-transliterated; as most of the data
in the code-switched corpus was scraped from Twitter or Facebook, the original
sentences follow a non-standardised transliteration scheme (Romanagari).

There are several analytical statistical metrics that apply to both monolingual
and cross-switched treebanks; most of these are rather intuitive, and are provided
without explanation in Table 3.1. Note that these stats do not necessarily match
those supplied on the Universal Dependencies website, as we only use the training
split of our monolingual treebanks.

3.1.2 Code-switching statistics
In this section, we draw the attention of the reader to Guzmán et al. [2017],
who introduce several excellent analytical metrics that attempt to describe code-
switched corpora. In this section, we briefly describe these metrics; we leave out

31

Metric en-hi kpv-ru
English Hindi Bilingual Russian Komi Bilingual

Sentences 12k 13k 448 3.8k 40 105
Tokens 204k 281k 6.7k 76k 363 893

Table 3.1: Basic analytical statistics for our treebanks (combined dev and test
splits

mathematical formalisms for brevity, and urge the reader to refer to the original
instead.

Language normalisation

Prior to calculating our metrics, we introduce modified variants of our corpora, by
introducing what we call language normalisation; this, fundamentally, involves us
replacing all our ‘extra’ language labels – such as labels that mark punctuation,
or foreign words, or linguistically ambiguous words – with the previous ‘valid’
language tag, if it exists, or the next, if not (such as when these tokens are
sentence-initial).

Metrics

Note that as the sentences in our treebanks are not necessarily contiguous, we
cannot consider the entire treebank a fixed corpus, and instead average our met-
rics over a sentence level, where relevant. Briefly, therefore, our metrics are:

1. M-index: the multilingual (or M-) index ‘quantifies the inequality of the
distribution of language tags in a corpus of at least two languages’. Intu-
itively, it is bounded by 0, indicating a monolingual corpus, and 1, indicat-
ing that every language in the corpus has the same number of tokens in the
corpus.

2. Language entropy: this metric relies on the well-known concept of Shan-
non entropy [Shannon, 2001], and extends it to calculate the entropy over
the languages in the corpus, i.e. the number of bits needed to represent
the language distribution. It is bounded by 0 and log2(k), where k is the
number of languages in the corpus.

3. I-index: the probability of switching; the I-index is a fairly simple metric
that averages the number of switches over the number of tokens.

4. Burstiness: one of the more complex metrics we use, burstiness funda-
mentally describes the divergence of code-switching behaviour in a corpus
from a Poisson process, i.e. from completely random code-switching. A
value closer to the lower bound of −1 indicates periodic code-switching be-
haviour, whilst values closer to the upper bound of 1 indicate randomness
in switching.

5. Span entropy: a modification of language entropy, span entropy instead
describes how many bits are necessary to describe the distribution over
language spans, i.e. contiguous monolingual chunk lengths.

32

Cross-linguistic arc fertility

In this section, we introduce a concept we name ‘cross-linguistic arc fertility’. Put
quite simply, this refers solely to the existence of deprels across languages. It is
very apparent, intuitively, that given the monolingual nature of every sentence in
our baseline1, that our parser should never see arcs across tokens that belong to
different languages. This is, obviously, an issue: real-world code-switched data,
when appropriately annotated, is bound to have cross-linguistic arcs. Indeed,
as we demonstrate below, cross-linguistic arcs are remarkably frequent, in the
vicinity of almost 50% of all our arcs.

It quickly becomes clear, from these figures, that one of our key focuses ought
to be improving our parser’s ability to recall arcs across languages, or, to use our
newly coined term - to demonstrate greater cross-linguistic arc fertility.

They are presented for both our standard corpora and our language-normalised
corpora in Table 3.1.2. We do not normalise our Komi/Russian data as there are
no extra language labels; indeed, we have only one language marker in our data,
for Russian tokens: the assumption is that every unmarked token is in Komi.

en-hi kpv-ru
Orig. dev Norm. dev Orig. test Norm. test Test

M-index 0.35 0.97 0.44 0.98 0.42
Language entropy 1.68 0.99 1.65 0.99 1.03
I-index 0.43 0.24 0.43 0.25 0.36
Burstiness -0.03 0.10 -0.03 0.11 -0.21
Span entropy 1.60 1.73 1.38 1.45 1.14
Cross-linguistic arc fertility 0.61 0.45 0.61 0.50 0.42

Table 3.2: Code-switching statistics for our treebanks; note that Komi/Russian
have only a single unified, normalised test treebank

These metrics, interestingly, seem to indicate that our Russian/Komi corpora
function very similarly to our Hindi/English ones wrt code-switching, although
they also seem to indicate that code-switching in Komi appears to be more pre-
dictable. These metrics also, pleasingly, appear to be similar to the metrics for
the Killer Crónicas corpus mentioned in the source paper [Guzmán et al., 2017],
which is a corpus of emails written in ‘Spanglish’ (Spanish/English).

3.1.3 Constructing a baseline
Our baseline (which, as we demonstrate, is surprisingly intelligent), consists of
what is fundamentally a naive concatenation of the monolingual treebanks cor-
responding to the code-switched data in our corpus. For Hindi/English, there-
fore, these are the monolingual corpora, unexcitingly named UD English and
UD Hindi. For Komi and Russian, we use the standard UD Russian corpus; for
Komi, we use the 40 sentence training dataset prepared by Partanen et al. [2018].

We then proceed to train our baseline parser on this concatenation; we further
compare the performance of our parser both with and without character-level
features included. Our results are outlined in Table 3.3.

1Our baseline training data is multilingual, but never at a sentence level

33

UAS LAS wLAS

en-hi 76.05 60.15 52.27
en-hi [+char] 73.57 56.84 48.55

ru-kpv 64.95 52.86 49.68
ru-kpv [+char] 65.40 53.08 49.97

Table 3.3: Baselines, with and without character representations included

It is interesting to note, here, that our performance on Komi/Russian improves
with the addition of character features, whilst the performance on Hindi/English
heavily deteriorates (and this, indeed, is a recurring theme through our experi-
ments). We hypothesise that this is due to the difference in scripts in English and
Hindi; our parser is unable to learn any useful morphological information it can
leverage. The use of the Cyrillic script in both Russian and Komi, along with use
of Komi affixes with Russian tokens during code-switching, make character fea-
tures significantly more helpful: not only do they learn to observe patterns across
both languages, they also learn to use morphological information that occurs
monolingually.

34

3.2 Word representations
In this section, we describe our experiments with word representations, more
specifically with mapped word embeddings. We begin with an explanation of
precisely what mapped embeddings are, along with some background literature,
in Section 3.2.1. We then explain our motivation for using mapped embeddings
by referring to another experiment involving monolingual dependency parsing
using mapped embeddings2. Finally, we describe how we apply these mapped
embeddings to our own work, and our results.

3.2.1 Mapped embeddings
The concept of mapping embedding spaces fundamentally involves applying trans-
formations to a given embedding space E, to shift it to ‘align’ with another dis-
tinct space F . This is a practical implementation of the fundamental intuition
that embedding spaces are isomorphic: i.e., embedding spaces even for different
languages ‘look’ similar, based on the intuition that all languages convey the
same thematic information. Ruder et al. [2017b] provide a solid review of most
cross-linguistic embedding projection models that existed at the time of the pa-
per being written; however, there have been newer techniques that deal with even
more resource-scarce situations that have been proposed since.

Figure 3.1: Conneau et al.’s [2017b] approach to adversarially learning embedding
mappings

The main techniques for mapping that we draw the attention of the reader to
are the two ‘seminal’ works in the field - Conneau et al. [2017b] and Artetxe et al.
[2016]. The former propose using an adversarial learning system, that involves
one system attempting to ‘guess’ what language a particular embedding belongs
to, with the other attempting to align the spaces to prevent the guesser from
being successful. Figure 3.1 (taken from the original paper) briefly outlines how
this works.

Artetxe et al. [2016] attempt to do much the same thing, but with a much
simpler architecture; they attempt to learn, given word embedding matrices X
and Z , representing the ‘source’ and ‘target’ spaces, a transformation matrix W ,
which attempts to bring X as close to Z as possible.

More formally, they seek to minimise, for every element i in our seed list:
2This subsection was joint work with Artur Kulmizev and Mostafa Abdou, and is to be

published in the near future.

35

∑
i

||XiW − Zi ||2

i.e., evaluate
arg max

W

∑
i

||XiW − Zi ||2

Other techniques, also useful to us, attempt to model these transformations
in the absence of even the relatively small seed lists the latter of these techniques
requires; specifically, Artetxe et al. [2017] and Artetxe et al. [2018], which use
either easily available parallel data (like numbers), or no parallel data at all. We
compare both of these on our Komi/Russian treebank.

Recent research points out the limitations of Conneau et al.’s [2017b] work,
particularly relevant to underresourced languages [Søgaard et al., 2018]; we there-
fore restrict our analyses to the other mapping techniques described in this sec-
tion.

3.2.2 Cross-lingual dependency parsing
In this section, we introduce a novel experiment on cross-lingual dependency pars-
ing. Specifically, this task attempts to answer the question: how far can we get
with parsing a treebank, given treebanks for similar languages, and embedding
mappings? In order to evaluate this, we pick four treebanks for a UD language
family (say Romance languages). Amongst these languages, we select one (say
Catalan) to be our target ‘underresourced’ language. We then map word repre-
sentations from our other (source) languages of the same family (in this specific
example: Spanish, Portuguese and French) to the same space as the target lan-
guage. Finally, we attempt to see how far training on each individual source
language (or a combination of all three) gets us, with parsing our target lan-
guage. In doing so, we also gradually vary the size of target training data that
we augment our cross-lingual experiments with. This is similar in spirit to Am-
mar et al. [2016]’s work on parsing many languages based on leveraging linguistic
data, albeit with mapped embeddings replacing many of their features.

Our results for this experiment are quite positive, and outlined in Table 3.4.
Table 3.5 describes the baselines for parsing Catalan with the same fixed amount
of data, but no data from any other language.

Our motivation in evaluating cross-lingual embeddings on code-switched data
quickly becomes clear. Indeed, this is similar in spirit to experiments carried
out in Partanen et al. [2018], albeit evaluated on multiple mapping systems.
Fundamentally, mapping embedding spaces ought to increase our cross-linguistic
arc-fertility: to understand this, it is crucial to note that our parser never actually
sees a ‘word’ – all it sees is an embedding representing the word. Mapping our
embedding spaces to overlap, therefore, means that our parser has absolutely no
way of knowing what language a word comes from, but only its distributional
representation – which, further, the parser has no way of knowing what language
it belongs to. Assuming (and, indeed, relying on the fact) that our embedding
graphs for both languages are isomorphic, we expect our parser to treat code-
switched data as a valid vector-space combination of both languages.

36

Catalan proportion
0 1/16 1/8 1/2 1

Spanish UAS 0.57 0.83 0.86 0.90 0.92
LAS 0.36 0.76 0.80 0.86 0.88

French UAS 0.30 0.82 0.86 0.90 0.92
LAS 0.12 0.73 0.79 0.86 0.88

Portuguese UAS 0.29 0.82 0.86 0.90 0.92
LAS 0.10 0.74 0.80 0.85 0.88

All UAS 0.34 0.85 0.87 0.90 0.91
LAS 0.19 0.77 0.80 0.85 0.87

Table 3.4: Results for parsing Catalan with various levels of training data aug-
mentation

Catalan proportion
0 1/16 1/8 1/2 1

UAS - 0.58 0.72 0.85 0.90
LAS - 0.35 0.59 0.79 0.85

Table 3.5: Results for parsing Catalan without other mapped training data

3.2.3 Embeddings and methods
The specific embeddings that we use are size 300 fastText embeddings [Bo-
janowski et al., 2017], trained on Wikipedia for Komi, Russian and English; for
Hindi, our embeddings are trained on a combination of Wikipedia and Common
Crawl data [Grave et al., 2018]. This is largely due to the size of the Hindi
Wikipedia: we obtain significantly improved performance by augmenting it with
Common Crawl data. Whilst we would have preferred to do the same for Komi,
we did not have easy access to Common Crawl data in Komi, and had to rely on
the (admittedly poor) Wikipedia-learnt embeddings.

At this point, one discrepancy might stand out: in Section 2.5.3, we mentioned
that our parser used size 100 word embeddings. This is true; we add a compression
layer that we did not mention in the implementation section, that compressed our
size 300 fastText vectors into vectors of length 100. These are then added and/or
concatenated with other vectors as described in Section 2.5.1. We describe results
for both our compressed and uncompressed embeddings here; note, however, that
we use compressed embeddings for all further experiments.

We use three forms of mappings: for Hindi/English, we use the supervised
embedding mapping method (that uses a seedlist) described by Artetxe et al.
[2016]. The Apertium project [Forcada et al., 2011], a collection of rule-based
machine translation pairs, uses XML dictionaries for lexical transfer from one
language to another. We convert the parallel wordlist from the Apertium Hindi
→ English translation pair, and use this as a seed for our mapping; our wordlist
consists of 40, 305 word pairs, well above the recommended minimums. Our
motivation for not using the ground-truth dictionaries provided by Conneau et al.
[2017b] is that they are exceptionally bad, for Hindi/English: a quick pass through
the dictionary reveals that very few of the word pairs are accurate.

37

For Komi/Russian, we do not have parallel wordlists; we therefore use the
mildly supervised method [Artetxe et al., 2017], that relies on identical words:
these ought to, in theory, occur across languages that display code-switching with
each other. We also refer to this method as ‘mapped’, despite the method being
different to Hindi/English. Another mapping system we evaluate Komi/Russian
on is a completely unsupervised one, that tries to rely on the relative internal
structure of the embeddings [Artetxe et al., 2018].

To compare our results to another baseline, we use concatenated unmapped
embeddings: conveniently, PyTorch allows us to load embeddings stored in plain-
text rather than their binary variants, which means that the naive concatenation
of two embedding files is also a valid embedding file. Our results for each of
these mapping techniques are provided in Table 3.6; a similar evaluation with
uncompressed embeddings is presented in Table 3.7.

en-hi UAS LAS wLAS

Concatenated 76.93 61.61 53.81
Concatenated [+char] 76.72 60.91 52.49

Mapped 77.72 61.31 53.31
Mapped [+char] 75.75 59.48 51.33

ru-kpv UAS LAS wLAS

Concatenated 64.28 50.28 46.40
Concatenated [+char] 67.97 53.98 50.99

Mapped 66.52 52.63 48.89
Mapped [+char] 66.97 52.63 48.72

Unsupervised 65.29 51.96 49.34
Unsupervised [+char] 64.61 51.51 48.24

Table 3.6: (Compressed) embedding performance

Several things instantly stand out here. For one, both variants of embeddings
provide significant improvements over the baseline for Hindi; however, the dif-
ference between the two sorts is not clear, with variations across UAS and LAS;
indeed, the architecture with the best results for compressed embeddings is the
exact opposite to that for uncompressed ones.

For Komi, however, the difference is much clearer, with baseline concatenated
embeddings clearly outperforming other variants. We hypothesise that this is for
two reasons: first, the Komi embeddings are not good enough (note that we do
not have parallel Komi/Russian wordlists) to suffer from the further inevitable
degradation in performance when mapped, and that the mapping system itself
shows several flaws, similar to those pointed out in, for eg. Søgaard et al. [2018].
However, one thing is for certain: our raw concatenated embeddings are clearly
helpful: our performance is well over the baseline, with an almost 3% increase in
UAS, and a single percentage increase in LAS.

Whilst character features help with compressed embeddings, they do not help
much with uncompressed ones: this is likely due to the fact that a size 300 output
vector is too large to capture any meaningful character information.

38

en-hi UAS LAS wLAS

Concatenated 77.24 60.82 52.31
Concatenated [+char] 76.81 60.79 52.66

Mapped 77.21 61.43 53.22
Mapped [+char] 75.78 59.64 50.84

ru-kpv UAS LAS wLAS

Concatenated 67.08 53.75 50.79
Concatenated [+char] 63.83 50.17 45.32

Mapped 66.18 53.75 50.20
Mapped [+char] 61.37 48.82 44.84

Unsupervised 65.85 53.42 49.98
Unsupervised [+char] 59.01 45.91 41.67

Table 3.7: Comparable uncompressed embedding performance

39

3.3 Treebank-level modifications
In this section, we describe approaches to attempt to artifically induce code-
switching in our monolingual treebanks, using a set of rules we derive from sta-
tistical distributions from our development set.

Our intuition behind this section is the fact that it is significantly likely that
code-switches are governed by syntax, and therefore by dependency relations;
i.e., they are likelier to occur at specific dependency relations between words. We
evaluated our hypothesis by searching through our development data, looking
for dependency relations at specific code-switch points; our intuition bore out.
Table 3.8 summarises the frequencies of dependency relation labels at which code
switches occur, for both of our treebanks.

en-hi ru-kpv
Deprel Frequency Deprel Frequency
punct 13.95 punct 16.81
nmod 11.99 advmod 16.60

nsubj 10.03 nmod 9.70
case 9.48 nsubj 7.47
aux 6.98 case 7.32

advmod 6.54 obl 7.18
obj 5.47 cc 6.50

compound 5.27 amod 5.89
mark 3.40 xcomp 3.99

advcl 3.31 obj 3.65

Table 3.8: Deprel frequency per treebank

Having established that switches are overwhelmingly governed by certain
markers, we then attempt to sample which of these markers specifically involve
closed-class words: the intuition being that randomly sampling from the opposite
treebank ought to be easier with closed-class words due to the limited space.

It is important to note, however, at this point, that these relations are not nec-
essarily bidirectionally frequent, and any replacement strategy ought to take into
account the difference in edge distribution based on directionality. This means,
essentially, that our edges from L1 to L2 are not necessarily the same as those
in both directions: any algorithm ought to take this into account. Our original
statistics from Table 3.8 therefore expand into the more interesting distribution
found in Table 3.9.

A very interesting phenomenon is instantly visible through this table. To
highlight this better, all dependency relations where at least one of the depen-
dendents is typically closed-class word are written in red. It is instantly visible
that there is a very significant imbalance between the frequency of these closed-
class relations across languages in a pair. Thus, English tokens in Hindi/English
treebanks are overwhelmingly likelier to be governed by closed-class Hindi tokens
than the inverse; the opposite is true for Russian tokens being governed by Komi.

40

en-hi kpv-ru
→ ← → ←

case 14.18 nmod 17.04 punct 28.90 advmod 25.05
punct 11.39 nsubj 14.08 advmod 14.28 case 13.79

aux 10.81 compound 8.54 nmod 11.84 obl 11.12
nmod 9.68 punct 8.33 obl 6.43 nsubj 11.09

advmod 8.49 obj 7.82 nsubj 6.19 nmod 6.70
nsubj 7.91 amod 5.27 amod 4.90 amod 6.61
advcl 5.67 case 5.10 obj 3.93 obj 4.12

obj 3.68 advmod 4.14 xcomp 3.79 xcomp 3.38
mark 3.19 mark 3.86 case 3.45 acl 3.18

compound 3.14 det 3.62 discourse 2.76 conj 2.56

Table 3.9: Deprel frequency, decomposed by arc direction

3.3.1 Algorithms
We follow two approaches to artificially inducing sufficient code-switching. It is
important, first, to note that our motivation behind this approach is not to cre-
ate concrete code-switched examples artificially, but instead to encourage cross-
linguistic dependency arc fertility, particularly where cross-linguistic arcs are like-
liest to occur. Thus, given the case deprel as an example, we sample case tokens
from the treebank with the language with more closed-class children, swapping
out each closed-class token from the other treebank with a certain probability p
from these sampled tokens. Algorithm 3.3.1 is an example of how this looks in
practice.

Algorithm 1 Generate treebank
procedure GenTreebank(Tsrc, Tcs, p)

sample← ∅
for dep line in Tsrc do

if dep line.deprel = ‘case’ then
append dep line.form to sample:

end if
end for
for dep line in Tcs do

if dep line.deprel = ‘case’ then
if dep line.form /∈ sample then

dep line.form = Random(sample) with some probability p
end if

end if
end for
return Tcs

end procedure

Pragmatically, merely switching out tokens is likely to result in some issues:
given how recurrent neural networks function sequentially, it is likely that they
would face significant issues with case tokens that are in the wrong order relative

41

to their heads, for that particular language.
Given that Hindi is a strongly head-final language, and English strongly head-

initial, we therefore add an extra step for this pair: we deterministically reorder
chunks to ensure that the order of closed-class tokens is reversed for the two. In
doing so, we do not bother enforcing the tree constraint: graph-based parsers
ought not to worry about rigidity in tree-ness of training data. Algorithm 3.3.1
illustrates how these swaps function.

Algorithm 2 Generate treebank with reordering
procedure FixEdits(Tcs, edits)

for edited line in edits do
parent← edited line.parent
Swap(edited line, parent)
Swap(edited line.id, parent.id)
for dep line in Tcs do

if dep line.parent = edited line.id then
dep line.parent = parent.id

else if dep line.parent = parent.id then
dep line.parent = edited line.id

end if
end for

end for
end procedure
procedure GenTreebank(Tsrc, Tcs, p)

sample← ∅
edits← ∅
for dep line in Tsrc do

if dep line.deprel = ‘case’ then
append dep line.form to sample:

end if
end for
for dep line in Tcs do

if dep line.deprel = ‘case’ then
if dep line.form /∈ sample then

dep line.form = Random(sample) with some probability p
append dep line to edits

end if
end if

end for
return Tcs

end procedure

3.3.2 Evaluation
Table 3.10 tabulates our results for stochastic switching, with switch probabilities
of 0.25, 0.33, 0.50 and 1. As with all parts of our implementation that involve
some sort of stochasticity, we set our internal RNG seed to 1337.

42

1/4 UAS LAS wLAS
en-hi 75.90 60.30 53.08
en-hi [reorder] 75.78 60.24 51.96

kpv-ru 65.51 53.42 50.65

1/3 UAS LAS wLAS
en-hi 74.96 60.21 52.83
en-hi [reorder] 76.63 60.94 53.11

kpv-ru 65.51 51.74 47.90

1/2 UAS LAS wLAS
en-hi 75.78 59.58 52.38
en-hi [reorder] 75.24 60.00 51.61

kpv-ru 64.50 52.63 49.53

Full UAS LAS wLAS
en-hi 71.50 56.21 48.55
en-hi [reorder] 64.16 48.04 45.16

kpv-ru 67.19 54.20 51.45

Table 3.10: F1 scores for our stochastically generated scrambling system

Two things stand out here: first, we obtain our best-yet Komi/Russian LAS,
at 54.20. Further: our scores have virtually no correlation to the proportion of
scrambling, as is visible from the fact that our best performing rows are all from
tables with different scrambling proportions. This phenomenon seems to indicate
that whilst our particular implementation of manual treebank modification was
successful to varying extents, the concept itself is not inherently flawed. There
are several improvements to our algorithm that we can envision for future work:
one being a more rigid form of sampling, where the probability of substitution is
not hard-coded, but deterministic, depending on context.

43

3.4 Network alterations
In this section, we describe a set of alterations that we apply to our baseline
neural network architecture to capture code-switching.

3.4.1 Language ID

Figure 3.2: Two variable methods to supply language information: dense embed-
dings and language IDs, for the sentence ‘this is a grapefruit’

The purpose of this section is to introduce a field with the language of the
token mentioned, and test whether this influences parsing in any way. We mod-
ify our network as shown in Figure 3.2; this allows it to either directly pass the
language ID, or to generate (size 100) embeddings for the language ID, which are
then concatenated to our word and POS tag embeddings. We compare results
with both direct language IDs and the relevant embeddings: the intuition behind
using embeddings is that they would capture at least some semblance of context
with the way languages are distributed: note that we do not have just two lan-
guage ID tags per treebank, as most treebanks also have separate ID annotations
for foreign tokens, or universal tokens like punctuation.

44

Our motivation for adding language ID is simple: it is plausible that, knowing
what language a particular token is in, the parser could ‘remember’ its knowledge
of how that langauge ought to parse, as our training data is also annotated with
language tokens. This, in turn, ought to increase performance on parsing chunks
in that particular language, as the softmax probabilities are ‘biased’ in favour of
arcs and deprels seen only in that monolingual treebank.

Further, apart from merely using language IDs, we also try to scramble our
language tokens. This is seemingly the exact opposite of the previous step, how-
ever, the intuition behind it is very different. If our parser did not know the
language of a particular token - or, more importantly (as it sufficient to not in-
clude language IDs at all for it to not know the language of a token), think that
the language of a token was the other language - it would bias the softmax prob-
abilities of arcs across languages. These probabilities are likely to be extremely
low, given that they do not exist in training data - our training treebanks, outside
of our synthetic treebank experiments, are monolingual, meaning there are code-
mixed sentences and therefore no sentences with any sort of dependency relation
across tokens in two languages. ‘Fooling’ the parser into thinking that two tokens
from different languages are from the same language offsets this inherently low
probability and allows the parser to marginally boost probabilities of arcs where
they would otherwise be low.

Evaluation

Tables 3.11 and 3.12 describe our results using language IDs, and language em-
beddings respectively.

ID UAS LAS wLAS
Gold langid 77.03 61.12 53.48

Scrambled langid 76.97 60.76 52.63

Embeddings UAS LAS wLAS
Gold langid 77.91 61.94 53.88

Scrambled langid 76.90 60.94 53.05

(norm) ID UAS LAS wLAS
Gold langid 77.09 61.82 53.65

Scrambled langid 77.91 62.22 53.95

(norm) Embeddings UAS LAS wLAS
Gold langid 77.27 60.76 51.99

Scrambled langid 76.27 60.91 53.05

Table 3.11: F1 scores for Hindi/English

45

ID UAS LAS wLAS
Gold langid 65.29 49.94 46.76

Scrambled langid 65.29 51.96 48.21

Embeddings UAS LAS wLAS
Gold langid 65.40 50.28 46.17

Scrambled langid 66.52 52.18 47.79

Table 3.12: F1 scores for Komi/Russian

Further, with Hindi, we repeat our experiment with normalised language IDs
(normalisation being the deterministic elimination of non-language IDs, such as
punctuation).

Discussion

Our language IDs appear to function extremely well: indeed, we obtain our state-
of-the-art LAS for Hindi/English with scrambled language IDs. There are, how-
ever, several puzzling phenomena that we observe.

1. Without normalisation, Hindi/English language IDs function the exact op-
posite to Komi/Russian ones: parsing is aided by provided gold standard
language IDs rather than scrambled ones. When normalisation is intro-
duced, however, this phenomenon reverses, with scrambled language IDs
functioning better for both, indicating that lying to the parser seems to
work well.

2. Embeddings appear to work better for unnormalised Hindi/English, and
Komi/Russian, whilst direct language IDs work better with normalised
Hindi/English. We posit that this difference is purely due to the unpre-
dictability of neural networks, a phenomenon that does not vanish even
with consistent hyperparameter initialisation.

It is clear from these results that supplying language IDs does appear to help
parsing, at least to the point that further research into the field is warranted.
Encoding language embeddings via different neural structures would make for a
decent point of departure for further analysis on the theme. A more detailed error
analysis is also a valid future direction: one that attempts to investigate why our
Hindi/English results flip. One takeaway, however, appears to be both fairly solid,
and fairly positive: ‘over-annotation’ of corpora appears to be unnecessary, and
borderline harmful; expanding the language ID space to cover all forms of tokens,
ranging from punctuation to foreign words, whilst informative if the downstream
is token language identification itself, appears to hurt performance in at least this
downstream task.

46

3.4.2 Multi-task learning
Multi-task learning and dependency parsing

Again, whilst not strictly relevant to the phenomenon of code-switching, we at-
tempt to motivate our use of multi-task learning with our results from another
parallel experiment involving jointly learning to parse dependencies, and perform
semantic tagging.3 As this is not related to our main task (but an important
side-experiment), we keep descriptions brief.

Semantic tagging [Abzianidze and Bos, 2017, Bjerva et al., 2016] is, fundamen-
tally, the task of assigning (language-independent) semantic categories to words:
akin to POS-tagging, but more informative. It is, therefore, similar to other forms
of tagging, a sequence-labelling task. By adding this sequence labelling task as an
auxiliary task, along with the main task of dependency parsing the English UD
treebank, we obtain several improvements in results that we outline in Table 3.13.
Our results indicate that sharing every part of the parser network with the se-
mantic tagger network, upto the LSTM layer, provides not-insignificant parsing
score gains.

Method UAS LAS

Baseline 84.81 80.24
Shared LSTM 85.54 81.03
Dual LSTM 85.81 80.20

Table 3.13: Sharing semantic tagging with dependency parsing; ‘dual’ LSTMs
refer to LSTMs that have both shared and unshared components

These results motivate us to use other sequence tagging tasks, particularly
ones that may well be more relevant to parsing code-switched language, as aux-
iliary tasks to be shared with our main parsing task.

Multi-task learning and code-switching

In this section, we introduce an obvious fit for an auxiliary task: that of, of course,
language identification. In spirit, this is very similar to the approach described
in the previous section; however, this is a more sophisticated approach to using
language ID information to aid dependency parsing.

Similar to Section 3.4.1, we use both regular language tokens and scrambled
tokens during training; however, we attempt, in this situation, to instead jointly
learn to identify the language of a token. This, fundamentally, reduces to a multi-
task learning problem: we share layers (typically embeddings and LSTM layers),
and use those to both predict the language of a token, and to learn to predict
dependency relations.

The intuition behind this approach is similar to that in Section 3.4.1. However,
we invert the problem: instead of having the language ID as an actual feature
input to the parser, we make it a feature that the parser is required to simultane-
ously predict. The intuition works both ways: being able to predict the language

3This research was also jointly conducted with Mostafa Abdou and Artur Kulmizev, and is
(at the time of this submission) under review at EMNLP-2018

47

of a token ought to improve parsing performance on chunks in that token’s lan-
guage, whilst not being able to predict the language (or, rather, being able to
predict the wrong language) improves parsing performance on cross-linguistic
chunks.

Implementation

Predicting language IDs is a simple sequence prediction task, akin to the well-
known task of POS tagging, albeit with a significantly smaller set of output labels.
Interestingly, preliminary experiments on our development data (that we do not
repeat here, for brevity) indicate two things:

• Unlike with our experiments semantic tagging, sharing the LSTM winds up
hurting downstream performance; the most ‘ideal’ sharing setting is hard
sharing of the embeddings layer, which modify the word representations
directly, without modifying any higher-level abstractions of these words.

• Our multi-layer perceptron, that attempts to predict language tags, func-
tions significantly better with three layers (two non-linearity introducing
layers and one output layer) than it does with two.

Figure 3.3 is a diagram showing a concrete implementation of this network;
Table 3.14 describes our hyperparameters for the language identification part of
the network; ‘input’ is in quotes as our input layer is, of course, not a generic
input layer, but the first unshared layer for this particular downstream task. We
use standard cross-entropy loss after calculating (log) softmaxes over our output
layer.

Parameter Value

‘Input’ layer 150
Hidden layer 100

Dropout 33%
Activation fn. ReLU
Learning rate 1 ∗ 10−3

Table 3.14: Hyperparameters for the language prediction section of our network

Evaluation

Note that unlike in the previous experiment, we do not really use language em-
beddings: this is quite pointless, as prediction tasks typically use one-hot vectors
as target outputs. Further, note that all our language IDs are inherently nor-
malised: during test time, we do not care about the language of the token, as
language IDs are only useful for learning our internal parameters during training.
Thus, this method is less ‘needy’ than the previous, that requires language IDs
as an input feature at test time. Our results are tabulated in Table 3.15.

48

Figure 3.3: Architectural block diagram of our MTL system; the output of our
embeddings layer propagates both to our parser and to a multi-layer perceptron
that attempts to predict language

en-hi UAS LAS wLAS
Gold langid 77.60 61.12 52.66

Scrambled langid 76.87 60.73 52.58

ru-kpv UAS LAS wLAS
Gold langid 65.40 50.28 46.17

Scrambled langid 65.85 52.07 48.71

Table 3.15: F1 scores for language IDs supplied as embeddings

Discussion

This section also shows the same rather curious disparity in performance as the
previous: Komi/Russian seems to perform better on all metrics when supplied
with scrambled language IDs (albeit with less stark a difference here), whilst
Hindi/English performs better with ‘honest’ language IDs. The replicability of
this result indicates that it cannot be merely a coincidence: the phenomenon
clearly seems like an interesting avenue for future study.

49

3.4.3 Domain shift
An interesting way to treat the problem of dependency parsing code switched
language is to picture code-switched language as a shift in domain from regular
language. There has been considerable prior work on handling domain shift
[Ruder and Plank, 2018, Ganin et al., 2015, Pei et al., 2018] we base our approach
largely on handling domain shift via backpropagation, à la Ganin and Lempitsky
[2014].

Put succinctly, the idea behind representing domain shift with backpropaga-
tion is simple: by making the network incapable of predicting the domain of a
particular sentence, the network begins to learn representations that are domain-
invariant. Thus, in principle, this involves unlearning the domain of a sentence,
which is fundamentally a tag stating whether the sentence is monolingual or
multilingual. Whilst in theory we could reduce our sentence-level domains to
L1/L2/multilingual domains, this is unnecessary as both L1 and L2 are ‘foreign’
domains that we do not care about.

Architecture

Concretely, this is implemented by adding a domain prediction network (similar
to the auxiliary setting in Section 3.4.2). Unlike in Section 3.4.2, our loss function
does not add the label prediction loss, but subtracts a scaled variant of this loss.
Figure 3.4 describes the architecture of our system.

Figure 3.4: Domain prediction system; arrows indicate direction of backpropaga-
tion

More formally, given a set of parameters θy for the unshared parts of our
dependency parser, a set of parameters θd for the unshared parts of our domain
predictor, and a set of parameters θf for the shared parts of both subnetworks,
Li subscripted appropriately for the appropriate loss for example i, and assuming
stochastic gradient descent as our optimiser, we define our backpropagation step
as:

50

θf ← θf − µ

(
∂Li

y

∂θf

− λ
∂Li

d

∂θf

)

θy ← θy − µ
∂Li

y

∂θy

θd ← θd − µ
∂Li

d

∂θd

Whilst the unshared parts of the network clearly follow standard stochastic
gradient descent (with a learning rate µ), the interesting part is the gradient
descent step for the shared layers; note two interesting facts:

1. We subtract the loss from the domain classifier from the total loss (and
therefore add it to the gradient step). The reason for this is obvious: we
do not want our parser to be able to learn to tell domains apart. This is,
in spirit, similar to shuffling language tokens, albeit more rigid.

2. We scale our domain classification loss down by a factor λ. This is essential,
as an unscaled classification loss would result in our network merely using
two disparate representation spaces for both domains. Practically, we fol-
low similar hyperparameter principles for λ as in the paper, and gradually
change its value from 0 to 1, following the formula:

λ = 2
1 + e−γp

− 1

where p is the fraction of the current batch that has been processed, and γ
is a scaling factor (set to 10).

Augmentation with dev

This is the first of our adapatations that involves augmenting our training data
with development data.

Whilst this is slightly regrettable - as dev data ought to be used solely for
hyperparameter optimisation - it makes sense to see how ‘far’ it is possible to get
when training data is augmented with a minimal number of annotated sentences
from the relevant domain, i.e. code-switched sentences. ‘Dev’ data, in this con-
text, is a bit of misnomer - what was once our ‘dev’ data is now a part of our
training data, and we refer to it as such hereafter.

UAS LAS wLAS

en-hi 79.54 65.58 57.13
kpv-ru 67.54 53.11 49.85

Table 3.16: Baselines for standard parsing with additional dev data

It is clear that there ought to be separate baselines, given this augmentation -
it is a bit unfair to compare our methods with our naive baselines, given that our
baselines do not have all this extra data, which, even if minimal, is informative.

51

We therefore create a new set of baselines specifically to compare these experi-
ments to: this new baseline is evaluated fundamentally the same way as our old
baselines; we evaluate a parser trained on a concatenation of both monolingual
treebanks and the multilingual ‘development’ data. These results are outlined in
Table 3.16, and are relevant for both this section and the next.

Domain specification

As mentioned above, we annotate our domains two ways - at a word level, and
at a sentence level. Domain shift via backpropagation requires data from both
domains during train time, though these domains may differ in distribution dur-
ing test. We therefore use our multilingual training data as one class, and our
monolingual as another.

At a word level, our labelling is fundamentally the same as in Section 3.4.2.
We outline our results in Table 3.17.

UAS LAS wLAS

en-hi 69.26 49.35 40.19
kpv-ru 67.05 50.33 46.88

Table 3.17: Results for our domain shift system

Discussion

Unfortunately, our results massively underperform basically every other system
that we have evaluated. This hints to - even if it does not confirm - the fact that
code-switching cannot necessarily be seen as a distinct domain to monolingual
text. Why this is the case is curious: we propose that this is due to domain being
a sentence level phenomenon, which is insufficient to modify representations of
words within the sentence, to better represent code-switching. Further experi-
ments are, however, necessary before a solid conclusion can be drawn; an area of
interest, if our hypothesis holds true, would be to evaluate other code-switching
tasks using sentence-level representations [Kiros et al., 2015, Logeswaran and Lee,
2018, Conneau et al., 2017a], which are fundamentally an extension of the prin-
ciple of word embeddings to complete sentences. They have been used in several
downstream tasks in the past, many of which have been gathered into evaluation
sets, such as SentEval [Conneau and Kiela, 2018]; we propose generating simi-
lar datasets for code-switched language as an initial step towards evaluating the
effects of domain shift on sentence representations over code-switched data.

We also suggest experimenting with different values of λ, on the (minor) off-
chance that the scaling method described in the paper does not apply to our
specific problem.

52

3.4.4 Development weight learning
Architecture

In this section, we outline the most ‘interesting’ of our network modifications,
one that we call dev-weight learning; this, to the best of our knowledge, is an
architecture that has not been used in any form of NLP task in the past, and we
hope to motivate it and its use in other NLP tasks, as relevant.

The name ‘development’ weight learning is a bit of a misnomer; fundamentally,
the essence of what we propose is a system that can to more effectively parse
code-switched data, given some additional ‘development’ data (which, in real-
world scenarios, would be considered small amounts of additional training data).
Our system works by introducing, along with our standard final head prediction
softmax-value matrix, an additional weight matrix that, essentially, learns weights
that are element-wise multiplied to the softmax predictions, in order to have them
more realistically resemble code-switched data.

The motivation behind this being an improvement over merely learning using
code-switched data is the relative simplicity of the model: by shifting our weights
slightly above or below 1 (our initial value for every weight element), our soft-
max probabilities are also altered. The architecture of our model is presented in
Figure 3.5.

Fundamentally, our algorithm works in three steps:

• Initially, we learn from training data, similar to in our original model. The
stacked MLP outputs from our original parser (represented by H (dep) and
H (head) here), however, are passed through two biaffine layers with indepen-
dent internal parameters; the first of these attempts to predict the softmax
probabilities of the heads, whilst the second attempts to shift all its in-
ternal parameters to generate a weights matrix with all 1s. Over every
epoch in our training phase, the output of this layer is moved closer to
predicting all ones. At this phase, the Hadamard product represented by
S (arc) ◦W (train) ≈ S (arc) Note that while teaching our second biaffine layer,
we freeze all network parameters except the parameters of the layer itself.
We are not attempting some form of multitask learning; indeed, the idea
that learning to predict a matrix where every element is 1 can lead to rep-
resentations that improve dependency parsing is a bit silly.

• Next, we learn from our development data. This step involves learning
weights that correspond more to the actual dependencies being predicted
during the development phase. As such, we replace our all-ones matrix
with a matrix where existing dependency relations are indicated by 1s, and
others by 0s: in theory. In practice, however, we find that using 0s for all
non-existent arcs winds up having our network rapidly converge to obtain 0s
for some weight values; this is unacceptable, as it causes problems with our
post-Hadamard softmax, leading to cycles within sentences. We therefore
either set either all 0s to a value λ < 1, or set all 1s to a value λ > 1 (and
simultaneously set all 0s to 1).
Learning from dev data thus allows our weights matrix to shift from being
a matrix that is approximately all ones, to being a matrix that is still full of

53

Figure 3.5: Learning from development data in three steps

54

values close to one: but further away than earlier, and more ‘informatively’
divergent.

• Finally, during our prediction phase on unseen test data, we use our param-
eters that we attempted to train to the point of usefulness, on development
data, to predict a weights layer relevant to our current sentence. Our in-
tuition is that despite never having seen the softmax probability matrix
S (arc), applying some sort of composition function f(S (arc), W (test)) ought
to, without any learning involved, result in a weighted softmax prediction
that more adequately captures code-switching: the likelihoods are, funda-
mentally, weighted up by seen code-switching data.

Concretely, we use the same hyperparameters for learning W (train) that we do
for learning S (arc) in our original parser (‘same’ implying similar dimensions and
initialisations, not them being shared). Note that we use a mean-squared error
loss instead of our standard cross-entropy loss.

Evaluation and results

For our λ values, we perform two experiments. One involves gradually increasing
the value of λ from 0 to 1; we use the same increase method described in 3.4.3,
albeit without a scaling γ (due to our test being too small to justify it), given by:

λ = 2
1 + e−p

− 1

where p represents our training progress as a fraction of the current batch.

Evaluation

Our dev-learning results are not necessarily the most promising: we present them
in Table 3.18. Note that these results also ought to be compared to our baselines
from Section 3.4.3; we are, after all, using dev data in training.

We evaluate our system with three settings: one with our weights attempting
to backpropagate existing deprels to 1 and non-existent ones to 0.5; one attempt-
ing to backpropagate existing deprels to 1.5 and non-existent ones to 1; and
finally, one fixing existing deprels to 1 and scaling up the non-existent deprels
from 0 to 1.

Our 0.5 setting did not result in valid CoNLL-U files for Hindi/English; this
implies that the multiplication by 0.5 resulted in some softmax weights taking on
values close to 0, thus confusing our spanning tree algorithm.

Discussion

We believe that there is significant potential in improving on this method; there
are several modifications that could be made to this architecture to help it to
learn better, that we could not evaluate due to time constraints. For instance,
the system could literally just learn the additional matrix via backpropagation,
evaluating the gradients by backpropagating through the Hadamard product ev-
ery step:

55

0.5 UAS LAS wLAS

en-hi - - -
ru-kpv 61.15 48.20 45.43

1.5 UAS LAS wLAS

en-hi 77.60 62.19 54.37
ru-kpv 66.89 51.97 48.93

Variable UAS LAS wLAS

en-hi 73.54 58.21 50.62
ru-kpv 62.95 49.67 46.53

Table 3.18: Development learning results for different values of λ

∂(X ◦ Y)
∂θ

= Y
∂X

∂θ
◦X

∂Y

∂θ

Our experimental results also clearly indicate that overweighting the existing
dependency arcs, rather than underweighting non-existing ones, performs signifi-
cantly better. This has several implications, the first and most obvious one being
the fact that we need to spend more time on hyperparameter optimisation, 1.5
being an arbitrary setting. More concretely, it might make sense to introduce
some sort of scaling value, that instead of scaling up from 0 to 1, does so from 1
to 2.

Finally, regarding the actual success of the method itself: an interesting future
avenue for evaluation is with domain adaptation itself.

56

4. Predicting code-switch points
An additional task that we introduce as part of this thesis is the task of predicting
code-switch points; we motivate this with several potential directions for future
research that can make use of systems that perform well at this task.

It is crucial to define at this point precisely what a code-switch point really is:
fundamentally, we define a code-switch point as any point in a running stream of
text where the next token is going to be from a different language.

4.1 Background
The task of predicting code-switching points is not entirely novel; one of the first
papers to adequately tackle this topic, for Spanish-English, was Solorio and Liu
[2008a], which is far from being a ‘modern’ paper; one of the disadvantages of
this paper is their relatively complex feature function, something that was under-
standably necessary in 2008, prior to the advent of neural networks. Papalexakis
et al. [2014] also attempt to predict code-switching points in a Dutch/Turkish
corpus: they use an even more complex set of features, often boolean, such as
the presence/absence of emojis in a trigram sequence. There are, to the best of
our knowledge, no modern papers that attempt to predict code-switching points
using any form of neural architecture.

It quickly becomes very intuitive to describe this task as a sequence prediction
task, akin to, as we mentioned earlier, POS tagging, and the task of predicting
language IDs for the current token that we described in Chapter 3. One extremely
significant difference is, however, is the fact that this is a time-shifted sequence
prediction task: we are required to predict the ‘label’ for the next token, given
information from the current token and its tag history, along with some form of
sentence model built from preceding/succeeding tokens.

4.2 Evaluation
Evaluation metrics for this particular task are by no means consistent: Solorio
and Liu [2008a], for instance, use human judgements as an evaluation metric.
The unfortunate side-effect of this lack of consistency is that our results are not
directly comparable to others; however, we hope to establish these results as, if
not a competitive system, at least a significant baseline for future efforts.

We define our evaluation metric on the basis of two factors: simplicity and
motivation. Specifically, our metric derives from our definition of the task as a
time-shifted sequence prediction task: we merely evaluate the number of language
tags (which, fundamentally, act as a proxy for the boolean ‘switch occurred’ tag)
that have been predicted correctly, akin to, for instance, POS tagging.

4.2.1 Motivation
It is important, at this point, to take a moment to describe precisely what the
point of this task is, and how we envision it being used in the future. Our goal

57

is to predict code-switching points specifically from the perspective of being able
to ‘easily’ generate code-switched corpora from word-aligned parallel corpora. To
motivate the validity of this method, we make two assumptions:

1. The information conveyed by parallel sentences in multiple languages is the
same; this is a fairly obvious assumption.

2. For all parallel sentences in languages L1 and L2 that convey the same
information, there exists a sentence that can be constructed using non-zero
length chunks from both L1 and L2, that conveys the same information as
the L1 and L2 equivalents.

From these assumptions, we posit that it ought to be possible, given certain
language pairs, to generate a multilingual sentence that not only conveys the
same information as the monolingual sentences, but is, further, ‘grammatical’,
according to the intrinsic grammar of all multilingual sentences over L1 ∪ L2.

We propose the use of a predicted code-switching point to impose this ad-
ditional grammaticality construct. Whilst by no means deterministic, we posit
that our prediction, combined with word-alignments, ought to allow for adequate
construction of code-mixed sentences.

4.3 Pre-processing and data
For our treebanks tagged with multiple language IDs, including eg. special tags
for punctuations and foreign words, we experiment with two settings, one where
we also try to model predictions for these tags, and another where we do not: we
assign each extra, non L1/L2 token the language tag of the previous token with
a language associated with it, or the next token with a language associated with
it, if the token to be re-tagged is word-initial. We evaluated our systems on both
these models.

Note that this task explicitly does require annotated code-switched data for
training (although just POS annotations are sufficient, for the most part). We
therefore use the Hindi/English dataset annotated (both with dependency rela-
tions and with POS tags) by Bhat et al. [2018]. Statistics for both these corpora
are provided in Table 4.1; note that these are statistics for all three folds (train
+ test + dev) for German/Turkish.

Metric en-hi de-tr

Sentences 1309 1029
Words 18k 17k

Table 4.1: Naive corpus statistics for both our training corpora

For Russian-Komi, on the other hand, we do not have sufficient data to train
any sort of functional system for this task: indeed, the size of the corpus (40
sentences) is the same as our batch size for other tasks. In order to introduce a
more meaningful language pair, therefore, we refer the reader to a Twitter-based,
POS annotated German/Turkish code-switching corpus [Çetinoğlu and Çöltekin,

58

2016]. We present more interesting corpus statistics for both these corpora (the
extra Hindi/English corpus, and the German/Turkish corpus) in Table 4.3. We
omit cross-linguistic arc fertility as it is irrelevant to this task.

en-hi de-tr
Orig. train Norm. train Orig. train Norm. train

M-index 0.44 1.00 0.16 0.16
Language entropy 1.66 1.00 1.83 0.76
I-index 0.41 0.22 0.43 0.11
Burstiness 0.01 0.16 -0.20 0.03
Span entropy 1.40 1.47 0.58 0.61

Table 4.2: Code-switching statistics for our treebanks; note that Komi/Russian
have only a single unified, normalised test treebank

de-tr
Orig. dev Norm. dev Orig. test Norm. test

M-index 0.24 0.64 0.23 0.61
Language entropy 1.90 0.82 1.77 0.81
I-index 0.47 0.14 0.40 0.12
Burstiness -0.63 0.23 -0.08 0.18
Span entropy 0.23 1.88 0.67 0.63

Table 4.3: Code-switching statistics for our treebanks; note that Komi/Russian
have only a single unified, normalised test treebank

4.4 Evaluation
We evaluate multiple architectures on our task. Note that as the task involves
predicting the probability of a code-switch at a future token, we cannot run
our language IDs into a bidirectional LSTM: indeed, in the sentence-composition
domain we envisage this system being used, we would not even have access to
‘accurate’ future language IDs: we (initially) run our system on monolingual sen-
tences, which means that future language IDs would be meaningless information.
This results in several architectures that we compare:

• No information on current token language (Figure 4.1)

• Single unidirectional LSTM for form, POS tag and language ID (Figure 4.1)

• Bidirectional LSTM for form and POS tag, unidirectional LSTM for lan-
guage ID (Figure 4.2)

• Bidirectional LSMT for form and POS tag, direct language ID embedding
(Figure 4.2)

Our architectures are thus conceptually very similar to previous architectures
we have used throughout this work for sequence labelling tasks. We describe our
hyperparameters in Table

59

Parameter Value

Embed dim. 100
LSTM dim. 100
LSTM layers 3

Input MLP dim. 200
Hidden MLP dim. 100

LSTM dropout 50%
Dropout rate 33%
Learning rate 1 ∗ 10−5

Table 4.4: Hyperparameters for our code-switch predictor

System en-hi de-tr
Raw Normalised Raw Normalised

No lang. 41.4 43.41 50.58 73.25
(uni)LSTM 36.65 7.87 2.47 5.72

(uni + bi)LSTM 28.95 50.20 50.59 21.03
(bi)LSTM + embed 57.39 70.45 47.80 83.1

Table 4.5: Results for our four systems for code-switch prediction

4.5 Analysis
One thing immediately stands out from these results of ours: the fact that uni-
directional LSTMs wind up ruining performance, to the point that without some
form bidirectional LSTM in our architecture (model 2), it just completely fails
at parsing our data, except for unnormalised Hindi/English. We suggest that
this is due to the specific initial internal parameters based on our seed, and not
representative of the system in general.

Having accepted the unreasonable effectiveness of bidirectional LSTMs, the
next that is visible is the usefulness of language ID labels, particularly post nor-
malisation, where gains are more significant than without normalisation, to the
point that our German/Turkish model without language IDs outperforms the one
with.

Whilst there are numerous architectures that can be evaluated in this scenario:
one possible alternative is using auxiliary losses, à la Plank et al. [2016], or even
experimenting with multi-task learning settings as we did in our previous task.
There are a vast number of potential architectures that we should have liked
to evaluate but could not due to time constraints; we take this opportunity to
provide our best results for our architectures, however, in the hope that they serve
as a baseline for future efforts with this task, whether as independent research or
even as a shared task at a conference.

60

Figure 4.1: Architectures for supplying no language information, and unidirec-
tional LSTMs

61

Figure 4.2: Uni+biLSTMs, and biLSTMs + embeddings

62

Conclusion

Results
For brevity, we summarise all our best results obtained with each method in a
single table here, before proceeding to analyse it and draw conclusions. We define
our ‘best’ result for a particular set of experiments as the result with the best
LAS: realistically, this is the most important score that we have, as far as most
downstream tasks are concerned. These results are tabulated in Table 4.6.

en-hi UAS LAS wLAS

Baseline 76.05 60.15 52.27
1/3 + reorder 76.63 60.94 53.11

Compressed + concat. 76.94 61.61 53.81
Scrambled langid + norm. 77.91 62.22 53.95

MTL + gold 77.60 61.12 52.66
Baseline with dev. 79.54 65.58 57.13

Domain shift 69.26 49.35 40.19
Weight learning 77.60 62.19 54.37

kpv-ru UAS LAS wLAS

Baseline + char 65.40 53.08 49.97
1 67.19 54.20 51.45

Compress + concat. + char 67.97 53.98 50.99
Scrambled langid. 66.52 52.18 47.79
MTL scrambled 65.85 52.07 48.71

Baseline with dev. 67.54 53.11 49.85
Domain shift 67.05 50.33 46.88

Weight learning 66.89 51.97 48.91

Table 4.6: Brief descriptions per experiment for the configuration with the best
relevant result

We compare these to the original results obtained by the two original papers
we based our work on, in Table 4.7.

Paper UAS LAS

(en-hi) Bhat et al. [2017] 74.40 64.11
(kpv-ru) Partanen et al. [2018] 66.32 53.89

Table 4.7: Competitive results; Komi results are the weighted average of the two
splits presented in the original paper

Whilst we do not have the state-of-the-art LAS for Hindi/English, this is easily
explained by the fact that our parser architecture likely performs relatively poorly

63

at recalling deprels; this says nothing, of course, about our augmentation meth-
ods. It is harder to directly compare our Komi/Russian results to the original,
due to the fact that the authors decided to evaluate separately per constituent
treebank; however, weighting their independent results by the corresponding cor-
pus sizes and averaging them out gives us their combined scores, that we manage
to beat both on UAS and on LAS.

We would, nonetheless, like to emphasise that, whilst an excellent additional
bonus, beating other people’s baselines was never our original goal, as that would
have involved spending significant amounts of time on our baseline parser archi-
tecture. Our goal has always been to beat our own baselines, which, as Table 4.6
demonstrates, we clearly did.

Discussion
Our results without dev augmentation are extremely encouraging: virtually all
of them outperform our baseline. There are several tangible takeaways that we
would like to mention, based on these results:

• There is no one-size-fits-all solution that works with both languages. Whilst
we would have loved to have more annotated code-switched dependency
treebanks to evaluate this hypothesis more rigidly, we feel fairly confident
in making this particular call. In particular, the biggest difference between
our Hindi/English and Komi/Russian treebanks was the relative sizes of
the monolingual treebanks, and other data: whilst Hindi is not the best-
resourced language, Komi is relatively extremely underresourced, and there
is thus an inherent disparity in parsing results on both.

• Focusing excessively on parser architectures often results in neglecting train-
ing data: often, it is quite possible to obtain improved results by – instead
of fixating on the best architecture – thinking about the data instead. In-
deed, the fact that our relatively unsophisticated token swapping method
is our state-of-the-art for Komi indicates that it might, perhaps, be easier
to improve performance in a wide-range of code-switching tasks (not nec-
essarily just dependency parsing) by attempting to generate code-switched
data with monolingual data.

• Embedding mapping systems are not necessarily as groundbreaking as they
seem, for languages that differ syntactically, or for languages that are un-
derresourced; indeed, this is fundamentally just a reiteration of Søgaard
et al.’s [2018] similar claim, which we posit holds true even with different
embedding mapping systems, for completely different downstream tasks.

• Language information always helps, whether scrambled or gold-standard.
Whilst the fact that gold-standard language data helps sometimes whilst
scrambled language data helps at other times might seem a bit strange, we
offer a perfectly logical explanation for this: our gold-standard language
tokens work best in a multi-task learning setting; we believe that this is
due to the fact that learning the language of a token simultaneously, despite
pushing the two vector spaces apart, provides more structure to them by

64

constraining their potential variance with language as a ‘clamping factor’
during training.

• Perhaps a naive approach to learning from additional domain-relevant data
does indeed work best: our baseline for our system augmented with devel-
opment data significantly outperforms the alternatives, providing a strong
motivation for simplicity above all else.

Research questions
Relevant to the research questions that we posed at the start of this work, there-
fore: the answer to whether there exist techniques by means of which baseline
results can be optimised is clearly positive. Designing, evaluating and describing
some of these potential techniques is a key part of this thesis, and results for
many of these experiments are positive, while some fail.

As to the more difficult second question – whether our models, trained on
large amounts of monolingual data, can beat models trained on smaller code-
switched corpora – we present in Table 4.8 the results obtained by Bhat et al.
[2018] for their parser, trained on the training set we described in Chapter 4.
These are (perhaps understandably) significantly better than any of our results,
which forces us to conclude that, unfortunately, there is no way to improve parsing
results over training on actual, annotated code-switched data.

UAS LAS

82.73 73.38

Table 4.8: Results for parsing Hindi/English when trained on an actual training
split

And finally, we draw the reader’s attention to the task on predicting code-
switch points: clearly, this is something that is absolutely possible. Whilst we
do not claim to have reached an ‘unbeatable’ state-of-the-art, our results could
serve as a starting point for future research in the domain.

Future work
Whilst not a focus of this thesis, it quickly becomes extremely clear how annotated
evaluation sets for code-switched data are essential, for future work in the domain.
Annotating some of the many existing POS-tagged corpora with dependency
labels is an excellent way to supplement existing treebanks and encourage research
in the field.

One of the key takeaways of this thesis – the fact that manually altering mono-
lingual data to generate code-switched data – needs to be studied in more rigid
detail, with linguistic and grammatical insights. Whilst simulating code-switched
corpora has been done before [Wick et al., 2015], these are relatively naive and
rely on uninformed random sampling – as our results show, reordering chunks to
simulate linguistic properties such as head directionality can help significantly.

65

Finally, there are several exciting possibilities with the task of predicting code-
switch points; as we have already mentioned, generating code-switched corpora
based on parallel corpora is one of these. We intend to continue with research in
this direction, and attempt to evaluate the more interesting downstream task of
generating these corpora.

Apart from these suggestions, that we believe are high priority, most other
task-specific future avenues of research have already been mentioned in the rele-
vant sections for the specific tasks.

66

Bibliography
Lasha Abzianidze and Johan Bos. Towards universal semantic tagging. In Pro-

ceedings of the 12th International Conference on Computational Semantics
(IWCS 2017) – Short Papers, pages 1–6, Montpellier, France, 2017.

Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation, and
Compiling. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1972. ISBN
978-0-13-914556-8.

Fahad AlGhamdi, Giovanni Molina, Mona Diab, Thamar Solorio, Abdelati
Hawwari, Victor Soto, and Julia Hirschberg. Part of Speech Tagging for
Code Switched Data. In Proceedings of the Second Workshop on Computa-
tional Approaches to Code Switching, pages 98–107, Austin, Texas, November
2016. Association for Computational Linguistics. URL http://aclweb.org/
anthology/W16-5812.

Waleed Ammar, George Mulcaire, Miguel Ballesteros, Chris Dyer, and Noah A.
Smith. Many Languages, One Parser. arXiv:1602.01595 [cs], February 2016.
URL http://arxiv.org/abs/1602.01595. arXiv: 1602.01595.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. Learning principled bilingual
mappings of word embeddings while preserving monolingual invariance. In
Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, pages 2289–2294, Austin, Texas, November 2016. Association for
Computational Linguistics. URL https://aclweb.org/anthology/D16-1250.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. Learning bilingual word em-
beddings with (almost) no bilingual data. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 451–462, Vancouver, Canada, July 2017. Association for Com-
putational Linguistics. URL http://aclweb.org/anthology/P17-1042.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. A robust self-learning
method for fully unsupervised cross-lingual mappings of word embeddings.
arXiv:1805.06297 [cs], May 2018. URL http://arxiv.org/abs/1805.06297.
arXiv: 1805.06297.

Peter Auer. Code-Switching in Conversation: Language, Interaction and Identity.
Routledge, July 2013. ISBN 978-1-134-60673-3.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473, 2014.

Irshad Ahmad Bhat, Riyaz Ahmad Bhat, Manish Shrivastava, and Dipti Misra
Sharma. Joining Hands: Exploiting Monolingual Treebanks for Parsing of
Code-mixing Data. arXiv:1703.10772 [cs], March 2017.

Irshad Ahmad Bhat, Riyaz Ahmad Bhat, Manish Shrivastava, and Dipti Misra
Sharma. Universal Dependency Parsing for Hindi-English Code-switching.
arXiv:1804.05868 [cs], April 2018.

67

http://aclweb.org/anthology/W16-5812
http://aclweb.org/anthology/W16-5812
http://arxiv.org/abs/1602.01595
https://aclweb.org/anthology/D16-1250
http://aclweb.org/anthology/P17-1042
http://arxiv.org/abs/1805.06297

Joachim Bingel and Anders Søgaard. Identifying beneficial task relations for
multi-task learning in deep neural networks. arXiv preprint arXiv:1702.08303,
2017.

Johannes Bjerva, Barbara Plank, and Johan Bos. Semantic tagging with deep
residual networks. In Proceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Technical Papers, pages 3531–3541.
The COLING 2016 Organizing Committee, 2016. URL http://www.aclweb.
org/anthology/C16-1333.

Igor Boguslavsky, Svetlana Grigorieva, Nikolai Grigoriev, Leonid Kreidlin, and
Nadezhda Frid. Dependency treebank for russian: Concept, tools, types of in-
formation. In Proceedings of the 18th conference on Computational linguistics-
Volume 2, pages 987–991. Association for Computational Linguistics, 2000.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enrich-
ing word vectors with subword information. Transactions of the Association
for Computational Linguistics, 5:135–146, 2017. ISSN 2307-387X.

Sabine Buchholz and Erwin Marsi. Conll-x shared task on multilingual depen-
dency parsing. In Proceedings of the tenth conference on computational natural
language learning, pages 149–164. Association for Computational Linguistics,
2006.

Antoinette Camilleri. Language values and identities: Code switching in sec-
ondary classrooms in malta. Linguistics and education, 8(1):85–103, 1996.

Özlem Çetinoğlu. A Turkish-German Code-Switching Corpus. page 6, 2016.

Özlem Çetinoğlu and ÇağrıÇöltekin. Part of Speech Annotation of a Turkish-
German Code-Switching Corpus. In Proceedings of the 10th Linguistic Anno-
tation Workshop Held in Conjunction with ACL 2016 (LAW-X 2016), pages
120–130, Berlin, Germany, August 2016. Association for Computational Lin-
guistics.

Jason PC Chiu and Eric Nichols. Named entity recognition with bidirectional
lstm-cnns. arXiv preprint arXiv:1511.08308, 2015.

Y. J. Chu and T. H. Liu. On the shortest arborescence of a directed graph.
Science Sinica, 14, 1965a.

Y. J. Chu and T. H. Liu. On the shortest arborescence of a directed graph.
Science Sinica, 14:1396–1400, 1965b.

Alexis Conneau and Douwe Kiela. SentEval: An Evaluation Toolkit for Universal
Sentence Representations. arXiv:1803.05449 [cs], March 2018. URL http:
//arxiv.org/abs/1803.05449. arXiv: 1803.05449.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Löıc Barrault, and Antoine Bor-
des. Supervised learning of universal sentence representations from natural
language inference data. In Proceedings of the 2017 Conference on Empir-
ical Methods in Natural Language Processing, pages 670–680, Copenhagen,

68

http://www.aclweb.org/anthology/C16-1333
http://www.aclweb.org/anthology/C16-1333
http://arxiv.org/abs/1803.05449
http://arxiv.org/abs/1803.05449

Denmark, September 2017a. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/D17-1070.

Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic Denoyer,
and Hervé Jégou. Word Translation Without Parallel Data. arXiv:1710.04087
[cs], October 2017b. URL http://arxiv.org/abs/1710.04087. arXiv:
1710.04087.

Ryan Cotterell, Adithya Renduchintala, Naomi Saphra, and Chris Callison-
Burch. An Algerian Arabic-French Code-Switched Corpus. page 4, 2014.

Marie-Catherine de Marneffe and Christopher D. Manning. The Stanford typed
dependencies representation. pages 1–8. Association for Computational Lin-
guistics, 2008. ISBN 978-1-905593-50-7. doi: 10.3115/1608858.1608859.

Anik Dey and Pascale Fung. A Hindi-English code switching corpus. page 4,
2014.

Nina Dongen. Analysis and prediction of dutch-english code-switching in dutch
social media messages. 2017.

Timothy Dozat and Christopher D. Manning. Deep Biaffine Attention for Neural
Dependency Parsing. arXiv:1611.01734 [cs], November 2016. URL http:
//arxiv.org/abs/1611.01734. arXiv: 1611.01734.

Timothy Dozat, Peng Qi, and Christopher D Manning. Stanford’s graph-based
neural dependency parser at the conll 2017 shared task. Proceedings of the
CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal
Dependencies, pages 20–30, 2017.

Jack Edmonds. Optimum branchings. Journal of Research of the national Bureau
of Standards B, 71(4):233–240, 1967.

Gibson Ferguson. Classroom code-switching in post-colonial contexts: Functions,
attitudes and policies. AILA review, 16(1):38–51, 2003.

John Rupert Firth. Applications of general linguistics. Transactions of the Philo-
logical Society, 56(1):1–14, 1957.

Mikel L Forcada, Mireia Ginest́ı-Rosell, Jacob Nordfalk, Jim O’Regan, Ser-
gio Ortiz-Rojas, Juan Antonio Pérez-Ortiz, Felipe Sánchez-Mart́ınez, Gema
Ramı́rez-Sánchez, and Francis M Tyers. Apertium: a free/open-source plat-
form for rule-based machine translation. Machine translation, 25(2):127–144,
2011.

Sabrina Francesconi. Language habits, domains, competence and awareness: the
role and use of english in malta. English, But Not Quite: Locating Linguistic
Diversity, 1:257, 2010.

Yaroslav Ganin and Victor Lempitsky. Unsupervised Domain Adaptation by
Backpropagation. arXiv:1409.7495 [cs, stat], September 2014. URL http:
//arxiv.org/abs/1409.7495. arXiv: 1409.7495.

69

https://www.aclweb.org/anthology/D17-1070
http://arxiv.org/abs/1710.04087
http://arxiv.org/abs/1611.01734
http://arxiv.org/abs/1611.01734
http://arxiv.org/abs/1409.7495
http://arxiv.org/abs/1409.7495

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky.
Domain-Adversarial Training of Neural Networks. arXiv:1505.07818 [cs, stat],
May 2015. URL http://arxiv.org/abs/1505.07818. arXiv: 1505.07818.

Souvick Ghosh, Satanu Ghosh, and Dipankar Das. Part-of-speech Tagging
of Code-Mixed Social Media Text. In Proceedings of the Second Work-
shop on Computational Approaches to Code Switching, pages 90–97, Austin,
Texas, November 2016. Association for Computational Linguistics. URL
http://aclweb.org/anthology/W16-5811.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics, pages 249–256, 2010.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Armand Joulin, and Tomas
Mikolov. Learning word vectors for 157 languages. In Proceedings of the In-
ternational Conference on Language Resources and Evaluation (LREC 2018),
2018.

Gualberto Guzmán, Joseph Ricard, Jacqueline Serigos, Barbara E Bullock, and
Almeida Jacqueline Toribio. Metrics for modeling code-switching across cor-
pora. 2017.

Jan Hajič, Eva Hajičová, Marie Mikulová, and Jǐŕı Mı́rovskỳ. Prague dependency
treebank. In Handbook of Linguistic Annotation, pages 555–594. Springer, 2017.

Injy Hamed, Mohamed Elmahdy, and Slim Abdennadher. Collection and Analysis
of Code-switch Egyptian Arabic-English Speech Corpus. page 5, 2018.

Sepp Hochreiter. The Vanishing Gradient Problem During Learning Recur-
rent Neural Nets and Problem Solutions. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems, 06(02):107–116, April 1998.
ISSN 0218-4885. doi: 10.1142/S0218488598000094. URL https://www.
worldscientific.com/doi/abs/10.1142/S0218488598000094.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

Aaron Jaech, George Mulcaire, Mari Ostendorf, and Noah A. Smith. A Neural
Model for Language Identification in Code-Switched Tweets. pages 60–64. As-
sociation for Computational Linguistics, 2016. doi: 10.18653/v1/W16-5807.
URL http://aclweb.org/anthology/W16-5807.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. Character-
aware neural language models. 2016.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Anto-
nio Torralba, Raquel Urtasun, and Sanja Fidler. Skip-Thought Vectors.
arXiv:1506.06726 [cs], June 2015. URL http://arxiv.org/abs/1506.06726.
arXiv: 1506.06726.

70

http://arxiv.org/abs/1505.07818
http://aclweb.org/anthology/W16-5811
https://www.worldscientific.com/doi/abs/10.1142/S0218488598000094
https://www.worldscientific.com/doi/abs/10.1142/S0218488598000094
http://aclweb.org/anthology/W16-5807
http://arxiv.org/abs/1506.06726

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

Omer Levy and Yoav Goldberg. Dependency-based word embeddings. In Pro-
ceedings of the 52nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), volume 2, pages 302–308, 2014.

KyungTae Lim and Thierry Poibeau. A System for Multilingual Dependency
Parsing based on Bidirectional LSTM Feature Representations. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies, pages 63–70, Vancouver, Canada, August 2017.
Association for Computational Linguistics. URL http://www.aclweb.org/
anthology/K17-3006.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang,
Bowen Zhou, and Yoshua Bengio. A structured self-attentive sentence embed-
ding. arXiv preprint arXiv:1703.03130, 2017.

Lajanugen Logeswaran and Honglak Lee. An efficient framework for learning
sentence representations. arXiv:1803.02893 [cs], March 2018. URL http:
//arxiv.org/abs/1803.02893. arXiv: 1803.02893.

Marc Moreno Lopez and Jugal Kalita. Deep Learning applied to NLP.
arXiv:1703.03091 [cs], March 2017. URL http://arxiv.org/abs/1703.
03091. arXiv: 1703.03091.

Dau-Cheng Lyu, Tien-Ping Tan, Eng-Siong Chng, and Haizhou Li. Man-
darin–English code-switching speech corpus in South-East Asia: SEAME. Lan-
guage Resources and Evaluation, 49(3):581–600, September 2015. ISSN 1574-
020X, 1574-0218. doi: 10.1007/s10579-015-9303-x.

Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg,
Dipanjan Das, Kuzman Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar
Täckström, et al. Universal dependency annotation for multilingual parsing. In
Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), volume 2, pages 92–97, 2013.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems, pages 3111–3119, 2013.

Lesley Milroy and Pieter Muysken. One Speaker, Two Languages: Cross-
Disciplinary Perspectives on Code-Switching. Cambridge University Press, Au-
gust 1995. ISBN 978-0-521-47912-7.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-
stitch Networks for Multi-task Learning. arXiv:1604.03539 [cs], April 2016.
URL http://arxiv.org/abs/1604.03539. arXiv: 1604.03539.

71

http://www.aclweb.org/anthology/K17-3006
http://www.aclweb.org/anthology/K17-3006
http://arxiv.org/abs/1803.02893
http://arxiv.org/abs/1803.02893
http://arxiv.org/abs/1703.03091
http://arxiv.org/abs/1703.03091
http://arxiv.org/abs/1604.03539

Giovanni Molina, Fahad AlGhamdi, Mahmoud Ghoneim, Abdelati Hawwari,
Nicolas Rey-Villamizar, Mona Diab, and Thamar Solorio. Overview for the
Second Shared Task on Language Identification in Code-Switched Data. In
Proceedings of the Second Workshop on Computational Approaches to Code
Switching, pages 40–49, Austin, Texas, November 2016. Association for Com-
putational Linguistics. URL http://aclweb.org/anthology/W16-5805.

Carol Myers-Scotton. Comparing codeswitching and borrowing. Journal of Mul-
tilingual and Multicultural Development, 13(1-2):19–39, January 1992. ISSN
0143-4632. doi: 10.1080/01434632.1992.9994481.

Kovida Nelakuditi, Divya Sai Jitta, and Radhika Mamidi. Part-of-Speech Tag-
ging for Code Mixed English-Telugu Social Media Data. In Computational
Linguistics and Intelligent Text Processing, Lecture Notes in Computer Sci-
ence, pages 332–342. Springer, Cham, April 2016. ISBN 978-3-319-75476-5
978-3-319-75477-2. doi: 10.1007/978-3-319-75477-2 23.

Joakim Nivre. Dependency grammar and dependency parsing.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev, Gülşen Eryigit, San-
dra Kübler, Svetoslav Marinov, and Erwin Marsi. Maltparser: A language-
independent system for data-driven dependency parsing. Natural Language
Engineering, 13(2):95–135, 2007.

Joakim Nivre, Jan Hajic, McDonald Ryan, Christopher D Manning, Slav Petrov,
Sampo Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel Zeman. Universal
Dependencies v1: A Multilingual Treebank Collection. page 8, 2016.

Evangelos Papalexakis, Dong Nguyen, and A Seza Doğruöz. Predicting code-
switching in multilingual communication for immigrant communities. In Pro-
ceedings of The First Workshop on Computational Approaches to Code Switch-
ing, pages 42–50, 2014.

Niko Partanen, KyungTae Lim, Michael Rießler, and Thierry Poibeau. Depen-
dency parsing of code-switching data with cross-lingual feature representations.
In Proceedings of the Fourth International Workshop on Computatinal Linguis-
tics of Uralic Languages, pages 1–17, 2018.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the diculty of training
recurrent neural networks. page 9, 2013.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in pytorch. 2017.

Raj Nath Patel, Prakash B. Pimpale, and M. Sasikumar. Recurrent Neu-
ral Network based Part-of-Speech Tagger for Code-Mixed Social Media Text.
arXiv:1611.04989 [cs], November 2016. URL http://arxiv.org/abs/1611.
04989. arXiv: 1611.04989.

Zhongyi Pei, Zhangjie Cao, Mingsheng Long, and Jianmin Wang. Multi-
adversarial domain adaptation. 2018.

72

http://aclweb.org/anthology/W16-5805
http://arxiv.org/abs/1611.04989
http://arxiv.org/abs/1611.04989

W. Keith Percival. Reflections on the History of Dependency Notions in Linguis-
tics. Historiographia Linguistica, 17(1):29–47, January 1990. ISSN 0302-5160,
1569-9781. doi: 10.1075/hl.17.1-2.05per.

Slav Petrov, Dipanjan Das, and Ryan McDonald. A universal part-of-speech
tagset. arXiv preprint arXiv:1104.2086, 2011.

Barbara Plank, Anders Søgaard, and Yoav Goldberg. Multilingual part-of-speech
tagging with bidirectional long short-term memory models and auxiliary loss.
arXiv preprint arXiv:1604.05529, 2016.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review, 65(6):386, 1958.

Sebastian Ruder. An Overview of Multi-Task Learning in Deep Neural Networks.
arXiv:1706.05098 [cs, stat], June 2017. URL http://arxiv.org/abs/1706.
05098. arXiv: 1706.05098.

Sebastian Ruder and Barbara Plank. Strong Baselines for Neural Semi-supervised
Learning under Domain Shift. arXiv:1804.09530 [cs, stat], April 2018. URL
http://arxiv.org/abs/1804.09530. arXiv: 1804.09530.

Sebastian Ruder, Joachim Bingel, Isabelle Augenstein, and Anders Søgaard.
Learning what to share between loosely related tasks. arXiv:1705.08142
[cs, stat], May 2017a. URL http://arxiv.org/abs/1705.08142. arXiv:
1705.08142.

Sebastian Ruder, Ivan Vulić, and Anders Søgaard. A Survey Of Cross-lingual
Word Embedding Models. arXiv:1706.04902 [cs], June 2017b. URL http:
//arxiv.org/abs/1706.04902. arXiv: 1706.04902.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal
representations by error propagation. Technical report, California Univ San
Diego La Jolla Inst for Cognitive Science, 1985.

Pingali Sailaja. Hinglish: code-switching in indian english. ELT journal, 65(4):
473–480, 2011.

Younes Samih, Suraj Maharjan, Mohammed Attia, Laura Kallmeyer, and
Thamar Solorio. Multilingual Code-switching Identification via LSTM Re-
current Neural Networks, 2016. URL https://ai.google/research/pubs/
pub45676.

Claude Elwood Shannon. A mathematical theory of communication. ACM SIG-
MOBILE mobile computing and communications review, 5(1):3–55, 2001.

Rouzbeh Shirvani, Mario Piergallini, Gauri Shankar Gautam, and Mohamed
Chouikha. The Howard University System Submission for the Shared Task in
Language Identification in Spanish-English Codeswitching. In Proceedings of
the Second Workshop on Computational Approaches to Code Switching, pages
116–120, Austin, Texas, November 2016. Association for Computational Lin-
guistics. URL http://aclweb.org/anthology/W16-5815.

73

http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1804.09530
http://arxiv.org/abs/1705.08142
http://arxiv.org/abs/1706.04902
http://arxiv.org/abs/1706.04902
https://ai.google/research/pubs/pub45676
https://ai.google/research/pubs/pub45676
http://aclweb.org/anthology/W16-5815

Aung Si. A diachronic investigation of hindi–english code-switching, using bolly-
wood film scripts. International Journal of Bilingualism, 15(4):388–407, 2011.

Anders Søgaard. What i think when i think about treebanks. In Proceedings of
the 16th International Workshop on Treebanks and Linguistic Theories, pages
161–166, 2017. URL http://aclweb.org/anthology/W17-7620.

Thamar Solorio and Yang Liu. Learning to predict code-switching points.
page 973. Association for Computational Linguistics, 2008a. doi: 10.
3115/1613715.1613841. URL http://portal.acm.org/citation.cfm?doid=
1613715.1613841.

Thamar Solorio and Yang Liu. Part-of-speech tagging for English-Spanish code-
switched text. page 1051. Association for Computational Linguistics, 2008b.
doi: 10.3115/1613715.1613852.

Anders Søgaard, Sebastian Ruder, and Ivan Vulić. On the Limitations of Un-
supervised Bilingual Dictionary Induction. arXiv:1805.03620 [cs, stat], May
2018. URL http://arxiv.org/abs/1805.03620. arXiv: 1805.03620.

Soroush Vosoughi, Prashanth Vijayaraghavan, and Deb Roy. Tweet2vec: Learn-
ing tweet embeddings using character-level cnn-lstm encoder-decoder. In Pro-
ceedings of the 39th International ACM SIGIR conference on Research and
Development in Information Retrieval, pages 1041–1044. ACM, 2016.

Yogarshi Vyas, Spandana Gella, Jatin Sharma, Kalika Bali, and Monojit Choud-
hury. POS Tagging of English-Hindi Code-Mixed Social Media Content. pages
974–979. Association for Computational Linguistics, 2014. doi: 10.3115/v1/
D14-1105.

Michael Wick, Pallika Kanani, and Adam Craig Pocock. Minimally-constrained
multilingual embeddings via artificial code-switching. 2015.

Daniel Zeman. Reusable tagset conversion using tagset drivers. In LREC, volume
2008, pages 28–30, 2008.

Daniel Zeman, Martin Popel, Milan Straka, Jan Hajic, Joakim Nivre, Filip
Ginter, Juhani Luotolahti, Sampo Pyysalo, Slav Petrov, Martin Potthast,
Francis Tyers, Elena Badmaeva, Memduh Gokirmak, Anna Nedoluzhko, Sil-
vie Cinkova, Jan Hajic jr., Jaroslava Hlavacova, Václava Kettnerová, Zdenka
Uresova, Jenna Kanerva, Stina Ojala, Anna Missilä, Christopher D. Man-
ning, Sebastian Schuster, Siva Reddy, Dima Taji, Nizar Habash, Herman
Leung, Marie-Catherine de Marneffe, Manuela Sanguinetti, Maria Simi, Hi-
roshi Kanayama, Valeria dePaiva, Kira Droganova, Héctor Mart́ınez Alonso,
Çağrı Çöltekin, Umut Sulubacak, Hans Uszkoreit, Vivien Macketanz, Aljoscha
Burchardt, Kim Harris, Katrin Marheinecke, Georg Rehm, Tolga Kayadelen,
Mohammed Attia, Ali Elkahky, Zhuoran Yu, Emily Pitler, Saran Lertpradit,
Michael Mandl, Jesse Kirchner, Hector Fernandez Alcalde, Jana Strnadová,
Esha Banerjee, Ruli Manurung, Antonio Stella, Atsuko Shimada, Sookyoung
Kwak, Gustavo Mendonca, Tatiana Lando, Rattima Nitisaroj, and Josie Li.
CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal

74

http://aclweb.org/anthology/W17-7620
http://portal.acm.org/citation.cfm?doid=1613715.1613841
http://portal.acm.org/citation.cfm?doid=1613715.1613841
http://arxiv.org/abs/1805.03620

Dependencies. In Proceedings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies, pages 1–19, Vancouver,
Canada, August 2017. Association for Computational Linguistics.

Lidan Zhang and Kwok Ping Chan. Dependency Parsing with Energy-based
Reinforcement Learning. In Proceedings of the 11th International Conference
on Parsing Technologies (IWPT’09), pages 234–237, Paris, France, October
2009. Association for Computational Linguistics. URL http://www.aclweb.
org/anthology/W09-3838.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional net-
works for text classification. In Advances in neural information processing
systems, pages 649–657, 2015.

Zhisong Zhang, Hai Zhao, and Lianhui Qin. Probabilistic Graph-based Depen-
dency Parsing with Convolutional Neural Network. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 1382–1392, Berlin, Germany, August 2016. Association
for Computational Linguistics. URL http://www.aclweb.org/anthology/
P16-1131.

Anna V. Zhiganova. The Study of the Perception of Code-switching to English in
German Advertising. Procedia - Social and Behavioral Sciences, 236:225–229,
December 2016. ISSN 1877-0428. doi: 10.1016/j.sbspro.2016.12.011.

75

http://www.aclweb.org/anthology/W09-3838
http://www.aclweb.org/anthology/W09-3838
http://www.aclweb.org/anthology/P16-1131
http://www.aclweb.org/anthology/P16-1131

List of Figures

1.1 Universal dependency relations as of v2.0; source universaldependencies.
org/u/dep/ . 7

2.1 A basic example of a neuron with four inputs 15
2.2 A neural network with one hidden layer and two inputs 16
2.3 Generation of a dense (size 3) embeddings matrix from a four-word

sentence, with a vocabulary size of 5. 18
2.4 CBOW vs. skip-gram models for a vocabulary of size 5, context

of size 3 and embedding dimension of size 3 20
2.5 Simple RNN block with three RNN cells; h0 is the initial hidden

state which can either be learnt or initialised randomly 21
2.6 Architecture of an LSTM cell. Flow is indicated with arrows; lines

are labelled appropriately with intersecting text 22
2.7 A composition of characters for the word ‘like’ being fed upstream

to our parser (which is described better in Figure 2.10) 24
2.8 Hard sharing parameters for two tasks 25
2.9 Soft parameter sharing for the same tasks 25
2.10 Architecture of our dependency parser; colours indicate specific

tokens . 26

3.1 Conneau et al.’s [2017b] approach to adversarially learning embed-
ding mappings . 35

3.2 Two variable methods to supply language information: dense em-
beddings and language IDs, for the sentence ‘this is a grapefruit’ . 44

3.3 Architectural block diagram of our MTL system; the output of our
embeddings layer propagates both to our parser and to a multi-
layer perceptron that attempts to predict language 49

3.4 Domain prediction system; arrows indicate direction of backprop-
agation . 50

3.5 Learning from development data in three steps 54

4.1 Architectures for supplying no language information, and unidi-
rectional LSTMs . 61

4.2 Uni+biLSTMs, and biLSTMs + embeddings 62

76

universaldependencies.org/u/dep/
universaldependencies.org/u/dep/

List of Tables

2.1 Hyperparameters for our parser; ones that differ from the original
are indicated with asterisks . 29

3.1 Basic analytical statistics for our treebanks (combined dev and test
splits . 32

3.2 Code-switching statistics for our treebanks; note that Komi/Rus-
sian have only a single unified, normalised test treebank 33

3.3 Baselines, with and without character representations included . . 34
3.4 Results for parsing Catalan with various levels of training data

augmentation . 37
3.5 Results for parsing Catalan without other mapped training data . 37
3.6 (Compressed) embedding performance 38
3.7 Comparable uncompressed embedding performance 39
3.8 Deprel frequency per treebank . 40
3.9 Deprel frequency, decomposed by arc direction 41
3.10 F1 scores for our stochastically generated scrambling system . . . 43
3.11 F1 scores for Hindi/English . 45
3.12 F1 scores for Komi/Russian . 46
3.13 Sharing semantic tagging with dependency parsing; ‘dual’ LSTMs

refer to LSTMs that have both shared and unshared components . 47
3.14 Hyperparameters for the language prediction section of our network 48
3.15 F1 scores for language IDs supplied as embeddings 49
3.16 Baselines for standard parsing with additional dev data 51
3.17 Results for our domain shift system 52
3.18 Development learning results for different values of λ 56

4.1 Naive corpus statistics for both our training corpora 58
4.2 Code-switching statistics for our treebanks; note that Komi/Rus-

sian have only a single unified, normalised test treebank 59
4.3 Code-switching statistics for our treebanks; note that Komi/Rus-

sian have only a single unified, normalised test treebank 59
4.4 Hyperparameters for our code-switch predictor 60
4.5 Results for our four systems for code-switch prediction 60
4.6 Brief descriptions per experiment for the configuration with the

best relevant result . 63
4.7 Competitive results; Komi results are the weighted average of the

two splits presented in the original paper 63
4.8 Results for parsing Hindi/English when trained on an actual train-

ing split . 65

77

	Introduction
	Prior Work
	Dependency Annotation
	Universal Dependencies
	`Universal' features

	Dependency Parsing
	Transition- vs graph-based approaches
	Statistical vs neural approaches
	Evaluation

	Code switching
	Description

	Computational processing of code-switching
	Resources
	Methods

	Dependency Parsing
	Artificial neural networks
	Artifical neurons
	Forward propagation
	Backpropagation

	Embeddings and representations
	Task-specific embeddings
	Pretrained embeddings

	Recurrent neural networks
	Naive RNNs
	Vanishing gradients, and onward
	Long short-term memory
	Character-level RNNs

	Multi-task learning
	Dependency parser
	Architecture
	Implementation
	Hyperparameters and optimisation

	Parsing for Code-Switched Languages
	Data and baselines
	Treebanks
	Code-switching statistics
	Constructing a baseline

	Word representations
	Mapped embeddings
	Cross-lingual dependency parsing
	Embeddings and methods

	Treebank-level modifications
	Algorithms
	Evaluation

	Network alterations
	Language ID
	Multi-task learning
	Domain shift
	Development weight learning

	Predicting code-switch points
	Background
	Evaluation
	Motivation

	Pre-processing and data
	Evaluation
	Analysis

	Conclusion
	Bibliography
	List of Figures
	List of Tables

