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Abstract

When people talk, they focus their attention to the theme of their
conversation. As a dialogue progresses, they change their focus of atten-
tion and the dialogue theme accordingly. In this work, we investigate
the mechanism behind the changes of dialogue themes (i.e. thematic
changes) in a collaborative task-oriented dialogue. We introduce an ap-
proach to building a thematic structure which can describe these changes
and predict the next dialogue theme. A thematic structure of this kind
can be useful for various tasks such as for improving speech recognition
outputs or for helping to recognize the intention behind a user's utter-
ance. We aim at building a thematic structure which can also model
thematic changes in human-robot interactions.

Our approach uses a Markov Logic Network (MLN) as a probabilistic
logic model. For this model, we specify logical rules to characterize the
mechanisms of thematic changes. We train and test a number of MLN
models using a human-human dialogue data set which is considered sim-
ilar to human-computer dialogue data in USAR. The MLN models are
compared to two kinds of baselines, namely a random and an informed
baseline. The random baseline is a random choice over all possible dia-
logue theme, and the informed baseline is a basic focus prediction model
which always continues the dialogue themes of the previous utterance.
The experiment results show that the MLN models outperform both
baselines. Furthermore, we argue that our approach can be used for
structuring the dialogue themes in a human-robot collaborated dialogue
in performing an urban search-and-rescue (USAR) task.
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Chapter 1

Introduction

When people talk, they always talk about some topic, which is the theme of
their conversation. As their conversation progresses, they may continue talking
about the same theme or talk more about its details. Besides, they may change
the theme of their conversation. An utterance of a speaker always expresses
his/her intentions in saying what he/she says. In a collaborative task-oriented
dialogue, the intentions can be what a speaker intends to do, or what he/she
intends his/her hearer to do, in order to accomplish the goal of the task.

The work in this thesis investigates how the theme of a conversation changes,
speci�cally in a collaborative task-oriented dialogue. We attempt to model a
thematic structure for human-robot interactions in performing an Urban Search
and Rescue (USAR) task. A thematic structure is a structure of the themes
of dialogue segments in a dialogue. We are interested in using an intentional
approach to modeling a thematic structure.

The following sections of this chapter give an overview of our work. We
begin with a description of the motivation behind the work. Subsequently,
we describe the problem that is to be solved and the objectives of the work in
sections 1.2 and 1.3, respectively. In section 1.5, we highlights the contributions
of the work in this thesis. Finally, we end this chapter with an outline of the
thesis content in section 1.6.

1.1 Motivation

A conversation between two or more people always involves a joint activity
[Clark, 1996]. Two people converse to arrange an appointment, to solve a
problem or to perform a task. These people are engaged in one shared activity
and they both contribute to undertaking it. A joint activity usually comprises a
series of joint actions i.e. actions which the participants perform in coordination
with each other. In performing a joint activity, a participant may disagree with
the intention of another participant or they may negotiate to come up with the
best plan to achieve their joint-goal.

The conversation in which two or more people coordinate with each other in
order to accomplish a shared task, is designated as a collaborative task-oriented
dialogue. The short conversation (1.1.1) below is a collaborative task-oriented
dialogue wherein Bill and Ann coordinate with each other to set a meeting time.
They collaborate to attain a common goal - arranging a meeting time which

1
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works for both of them. This activity splits into two joint actions. Firstly,
they arrange the meeting day. Bill makes a suggestion to meet on Friday and
Ann simply accepts it. Secondly, Ann indicates her available time on Friday
afternoon and Bill proposes a speci�c time. Ann implicitly disapproves Bill's
proposal and suggests another time. The action ends with Bill agreeing on the
suggested time and giving Ann an explicit acknowledgement.

(1.1.1) Bill: Do you have time on Friday?
Ann: Yes, I will have some time in the afternoon.
Bill: At 2 pm?
Ann: How about 3?
Bill: Ok

What the participants intend to do, accounts for their joint action, and this
intention establishes a dialogue theme, i.e the main or the most salient entity
being talked about in a dialogue at a given point. The concept of dialogue
theme is similar to that of the focus of attention [Grosz and Sidner, 1986],
discourse focus [Sidner, 1979], global theme or global topic [Hirst, 1981]. The
intention of a speaker is a pragmatic phenomenon because it depends on the
context of a conversation. In the context of the dialogue (1.1.1), Bob has an
intention to meet Ann on Friday. For success in a collaborative communica-
tion, mutual understanding about what is being talked is necessary, and both
participants would have to agree on it. By asking �At 2 pm?�, Bob implicitly
agrees on Ann's intention to meet in the afternoon. Thus, they both now focus
their attention on the same entity �some time in the afternoon� and it becomes
the dialogue theme.

Note that, the level of a dialogue theme used in a system is determined by
the purpose of interpreting a dialogue. The whole dialogue (1.1.1) has a general
theme of �setting a meeting time�. This theme can be broken down into more
local dialogue themes (e.g. �appointment date�). An appointment scheduling
system, such as VERBMOBIL [Wahlster, 2000] and COSMA [Busemann et al.,
1994], requires the more speci�c dialogue themes. Since it aims to schedule
speci�c date and time for an appointment, it deals with the dialogue themes
�appointment date� and �appointment time�.

Having a common focus of attention ensures the participants' mutual under-
standing and enables them to perform a collaborative joint activity. Common
ground, mutually recognized shared information or beliefs [Stalnaker, 2002],
is a prerequisite providing the context of a conversation. Only with mutual
belief, the participants believe that they are talking about the same thing and
are taking part in the same joint action. Grounding (i.e. the process of cre-
ating, adding or modifying common ground) is an incremental process. As
a conversation progresses, dialogue participants add new information to their
common ground or modify the existing common ground. Also, the dialogue
participants' focus of attention changes according to their common ground. In
the sample dialogue (1.1.1), the theme of the conversation changes from �time
on Friday� to �some time in the afternoon�. In this example, the dialogue par-
ticipants shift their current focus of attention to a more speci�c property of
the current dialogue theme (i.e. the next dialogue theme). Therefore, there is
a zooming-in process in this thematic change.

Like human-human dialogues, human-computer dialogues contain dialogue
themes and they also change as the dialogues progress. Thus, a user and a
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computer agent also need a mutual understanding about the theme of their
conversation at each point of time. With mutual understanding and common
ground, they can then collaborate in a joint activity. To establish the common
ground, a computer agent should be able to recognize what a user is talking
about. When a user talks about a speci�c object mentioned before, it should
be able to recognize what the user refers to. A computer agent should also be
able to understand what a user would like to do, and what a user wants from it.
Additionally, the agent should give response about what the user has said. It
should be able to talk about dialogue themes. Thus, the conversation between
the user and the agent can keep going on, and they can achieve a joint-goal in
a joint-activity. Depending on the level of its autonomy, the agent might also
be able to suggest a plan and perform automatic movements without explicit
instructions by its user.

In practice, a dialogue data is often noisy. By noisy, we means the speech
may not be clear enough due to the background noise in a noisy environment.
Particularly, a dialogue in a USAR setting, is very likely to be noisy because
an accident site is not an isolated room. A damaged apparatus such as a gas
pipe may produce loud sounds disturbing the conversation of a rescue team.
Noisy speech is di�cult to recognize and a dialogue system usually tries to
recognize what a user said without any clue regarding the theme of the talk.
As a results, a speech recognizer tends to produce a lot of errors and irrelevant
words in its outputs. Moreover, in a dialogue system, the speech recognition
errors are likely to be exacerbated in other modules following the automatic
speech recognition (ASR) module.

A thematic structure which is also able to predict what a user will be likely
to talk about, will bene�t an ASR module. By predicting the themes which
are likely to appear in the next user utterance, it can expect what a user will
say. The predictions (i.e. predicted themes) can be used provide a context to
prime ASR outputs, especially in recognizing a noisy user utterance. Thus, the
speech recognition errors can be reduced by using this context [Lison, 2008].
Moreover, predicted themes can be used to help to recognize the intention of
a speaker. For these reasons, in this work, we would like to build a thematic
structure which does not only structures thematic changes, but can also predict
what the next theme could be.

1.2 Problem

The problem we attempt to solve in this work is the problem of structuring the
changes of a dialogue theme in a collaborative task-oriented dialogue. More-
over, we try to discover how to predict such a change, which we call a thematic
change. In this work, we speci�cally observe three types of thematic changes:

1. Continuation: a continuation of a dialogue theme of the last utterance
to the next utterance

2. Shift New : an appearance of a new theme in the next utterance

3. Shift Old : a re-appearance of a recent theme which has been talked about
before, but not in the last utterance
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We are interested in building a thematic structure that is able to predict the
next theme or what a user is likely to say next.

Existing approaches can be used to structure thematic changes to some
extent. However, some approaches can only describes thematic changes in a
dialogue and do not predict the next theme. Other approaches can be used
to predict thematic changes, but they can not predict all types of thematic
changes. Some approaches are not robust because they rely too much on a
well-structured representation of dialogue segments and their relations. On
the other hand, some other approaches do not accomodate a rich thematic
structure.

Grosz and Sidner [1986] have proposed a stack mechanism to structure the-
matic changes based on the dominance hierarchy of dialogue segment purposes
or speaker intentions. We argue that the stack mechanism is rather not �exible,
because the themes in the stack are not easily accessible without removing all
the themes on top of it. Therefore, it may not be suitable for a dialogue where
the dialogue participants change the themes frequently and not according to
the order in the stack.

The problem of structuring thematic changes can also be seen as structuring
the salience of dialogue segments. The term salience refers to the things which
are the most important or relevant compared to other things in a given context
of information [Chiarcos et al., 2011]. The salience of a dialogue segment is
very similar to the theme of a dialogue segment, because it also refers to the
central thing being talked about in a dialogue segment. Grosz et al. [1995]
introduced a framework to model the salience between discourse segments by
using centering theory.

Centering theory can model the continuation relationship between the di-
alogue themes in two neighboring utterances. However, people do not always
continue to talk about a theme. They may also talk about a new theme or a
theme older than the one of the last dialogue segment. The centering theory
models this as a shift transition, however, it can neither speci�cally predict
an appearance of a new theme nor can it connect the themes of two dialogue
segments which are not adjacent. Prince [1992] explained information status
which can be used to identify whether a theme in a dialogue segment is new or
old. However, she did not describe how to predict whether there will be a new
or an old theme in the next dialogue segment.

The problem of predicting the next theme is rather di�erent from that of
identifying a theme. When predicting the next theme, we are not informed
about the next utterance. When indentifying a theme, we observe the in-
formation in an utterance and take a bene�t out of it to identify the theme
expressed in the utterance. Anaphora resolution can be seen as an analog of
a theme identi�cation problem. A theme can be considered as an anaphoric
or referring expression, which refers to a theme in a previous utterance as its
antecedent or referent. By doing anaphora resolution, we can identify a theme
and eventually structure thematic changes. Nevertheless, anaphora resolution
requires knowledge about an anaphor to resolve in the next utterance. Thus,
it does not predict the next theme.

Segmented Discourse Representation Theory (SDRT) introduced by Las-
carides and Asher [2007] can be used for anaphora resolution and for describing
the thematic changes between discourse segments. However, SDRT works for
systems which require highly structured discourse context. Thus, it seems to be
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too complicated for other systems which only use simple structures. Moreover,
noisy dialogue data will be di�cult to model using SDRT due to its complex
structure. Therefore, SDRT may not be robust enough to model thematic
changes in noisy dialogue data.

Furthermore, thematic changes can be structured by using a knowledge-
based approach. A knowledge base may contain an ontology of activities, that
is a set of concepts describing how activities are performed step by step in
certain ways. An advantage of using a knowledge-based approach is that it
can explain why a dialogue develops towards a certain direction. Using a
knowledge base, we can predict how a dialogue may progress, and therefore we
can also predict thematic changes. This approach, however, su�ers from several
limitations. For instance, a knowledge-based approach is rather domain speci�c
because an ontology is dedicated to be used in a particular domain. Thus, a
knowledge-based approach requires di�erent ontologies to structure thematic
changes of dialogues from di�erent domains. Moreover, an ontology is not easy
to build and maintain, especially if it needs to be scaled up to many or to broad
domains. An ontology can represent a simple and well-structured dialogue well.
However, it may not be neat to represent a free-ranging dialogue or a dynamic
dialogue. The thematic changes in a dynamic dialogue do not follow a certain
order. Instead, dialogue themes can appear and re-appear in any order. An
ontology for such a dialogue would have a very complex structure.

Since the existing approaches still su�er from various drawbacks, we try to
come up with a new approach to structure thematic changes. We also attempt
to structure dialogue themes in human-robot interactions in a situated dialogue,
particularly in a USAR setting [Murphy et al., 2008]. A situated dialogue is a
dialogue happening at a certain time and place.

1.3 Objective

The objective of this thesis is to develop a dialogue structure which models
thematic changes in a collaborative and task-oriented dialogue. In such a dia-
logue, the participants work together to accomplish a well-de�ned task as their
shared-goal. Firstly, we would like to observe the aspects that account for the-
matic changes in a task-oriented dialogue. Secondly, we would like to observe
how intentional aspects can be useful for predicting thematic changes. In this
work, we try to build a thematic structure which is able to predict the three
types of thematic changes described in the previous section. Our approach
based on the intentional perspective on using language, therefore it works at
the intentional level rather than at the text level.

Furthermore, we attempt to build a thematic structure for human-robot
interactions in performing a USAR task. A USAR task typically consists of
well-structured strategies and many sub-tasks. For instance, in �re�ghting,
�re�ghters have a checklist of tasks they should to do in a certain order [Klaene
and Sanders, 2008]. In carrying a USAR task, an o�-site operator can work
remotely with a robot to explore a disaster area and locate victims. A rescue
robot plays a role as a member of a rescue team and gives support to the team.
It is typically useful for �rst exploring a disaster site which is probably still
dangerous for human rescuers to approach - for example, because of smoke and
high air temperature.
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(a) (b)

Figure 1.3.1: (a) Tunnel accident setup at the Scuola di Formazione Operativa
(SFO) in Montelibretti, Italy (b) Map of the setup

Figure 1.3.1 shows a tunnel accident setting which was built to investigate
how human rescuers work in reality and communicate with each other in a
performing a USAR task. In this setting, a lorry drove into a tunnel and lost
its load of barrels and pallets which caused an accident involving multiple cars.
A group of �re�ghters was employed to explore the accident and their conver-
sations were recorded. The transcripts show that the �re�ghters change their
focus of attention frequently during the exploration. Their focus of attention
changes in accordance with how the dialogue progresses at each point of time.
The focus of attention does not always refer to the most recent things being
talked about, but may also refer to something being talked about some time
ago. In this work, we attempt to build a thematic structure which re�ects such
dynamic thematic/focus changes.

Since a rescue robot plays a role as an assistant in a rescue team, it is
supposed to collaborate in a rescue mission. By predicting what the most
plausible next dialogue themes are, a rescue robot would be able to better
understand the conversation in a rescue team. Moreover, a rescue robot should
not only be able to determine what is being talked about in the team, but it
may also suggest a plan for accomplishing a rescue mission. For these reasons,
a dynamic thematic structure which can predict the next theme is necessary
for a dialogue system in this domain.

1.4 Evaluation

Evaluation of a thematic structure in a dialogue system is complex, because a
dialogue system itself is complex. A dialogue system consists of various mod-
ules, such as automatic speech recognition, natural language understanding,
dialogue management and natural language generation modules. A thematic
structure module may require inputs from other modules and provide its out-
puts as inputs to other modules. In practice, the evaluation of a thematic
structure module should involve the performance of the modules related to it.
The evaluation of a thematic structure in a human-robot dialogue system de-
pends on the performance of many modules including the mobility of the robot,
the level of automation, and so on.

Particularly in a situated dialogue, the evaluation may be highly in�uenced
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by the performance or the results of an image recognition module. This is
because a situated dialogue is in�uenced by spatial and temporal aspects. In
a situated dialogue, the dialogue theme at some point of time always depends
on the situation of the dialogue participants at that time. For instance, the
participants may talk about the speci�c things they see or hear in their current
location during the conversation. Therefore, in human-robot interactions, a
robot is required to be able to visually recognize its environment and objects
in the environment.

Ideally, evaluating a thematic structure requires measuring the performance
of the whole system. In a development stage, however, some of modules of the
system may have not been built yet. Therefore, we cannot really measure the
whole system's performance. Alternatively, we can simplify the evaluation by
performing unit or module testing, instead of testing the whole system. In this
work, we evaluate the thematic structure as a module of a system regardless
of other modules in the system.

Moreover, evaluating predictions of the theme in the next utterance is not
simple, because a successful prediction is not always easy to de�ne. In an
identical situation, two people may give di�erent responses expressing di�erent
dialogue themes. This suggests that there are multiple options for dialogue
themes at some point in time. Although a single theme can be the most suitable
for one to talk about, other themes may still be acceptable. An evaluation
against a gold standard, therefore, does not necessarily show an exact accuracy,
but only a result measured relative to the consulted annotation.

A thematic structure in a human-robot dialogue system can be evaluated
by using a large collection of data. However, human-robot dialogue data, espe-
cially in performing a USAR task, is not readily available and is furthermore
rather di�cult to collect. A common method widely used for collecting simu-
lated human-computer dialogue data is the Wizard of Oz method. In collecting
Wizard of Oz data, a user interacts with a human wizard who pretends to be
a dialogue system. Wizard of Oz data is rather not a pure human-computer
dialogue and it depends on how freely the wizard can communicate with the
user. Alternatively, human-robot USAR dialogue data can be collected by sim-
ulating an USAR task in a real setting, such as the experiment in the tunnel
accident setting in the previous section. Another option is to model the task
with virtual characters in a simulated environment, for instance, in an online
multi-player game.

Due to the lack of human-robot dialogue data, we use human-human dia-
logue data that has a similar setting as human-robot interaction in performing
a USAR task (see section 4.1). We use Apollo 17 journal transcripts1 which de-
scribes a collaborative dialogue in exploring an unknown environment by mul-
tiple agents [Jones, 1995]. Two of the three dialogue participants in the Apollo
17 dialogue are astronauts working directly on the moon site. The third one,
however, monitors the observation on the moon remotely from Earth. This
setting is similar to a rescue robot which is sent to a disaster site and operated
by a human operator remotely. Since Apollo 17 data re�ects partial uncertain
observation, it can be used for a basis data. Thus, we try to model a thematic
structure of human-robot interactions by using this Apollo 17 data.

A thematic structure for a situated task-oriented human-robot interaction

1http://www.hq.nasa.gov/alsj/a17/a17.html
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(HRI) should also deal with the challenges in HRI, for instance uncertainty.
Uncertainty is ubiquitous and it occurs frequently in HRI. We cannot be cer-
tain about the correctness of ASR outputs or about the interpretations of an
intention due to system limitations, for example. We discuss about this issue
and the di�erences between human-human and human-robot dialogue data. We
show how a thematic structure designed using human-human dialogue data can
be used for human-robot interaction scenarios.

1.5 Contributions of the Thesis

The main contributions of this thesis are:

1. introducing a new approach to structuring thematic changes using an
probabilistic logic model, namely a Markov Logic Network model, which
can be used to describe human-robot interactions,

2. providing a set of logical rules for characterizing the mechanisms of the-
matic changes and predicting the next theme, especially in a task-oriented
dialogue,

3. presenting a way to include intentional perspective in language use to
structuring dialogue/discourse themes or the focus of attention.

1.6 Structure of the Thesis

The rest of the thesis is structured as follows.

� Chapter 2 explains the background theories of the work in the thesis.
It explains the notion of discourse/dialogue theme and its relation to
meaning, belief and intentions. It also describes various approaches to
modeling thematic changes and the motivation for using Markov Logic
Network in our approach.

� Chapter 3 gives a short review of Markov Networks and First Order Logic.
Subsequently, the theory of Markov Logic Network is described.

� Chapter 4 describes the data we used and how we annotated it. It ex-
plains how the data is transformed into logical forms serving as inputs for
an MLN. The chapter also describes the �rst-order logic formulas used
for generating an MLN model capable of predicting thematic changes.
Finally, the inputs and the outputs needed for such an MLN model are
illustrated.

� Chapter 5 explains our methodology for evaluating an MLN model. We
describe how we split the data into training and test data sets. We show
the results of testing the MLN models. We present evaluation results
including the performance of an MLN model measure by precision, recall
and F1 score in comparison to two baselines. Moreover, we compare the
correct predictions of an MLN model to the test annotation, and present
an error analysis.



CHAPTER 1. INTRODUCTION 9

� Chapter 6 discusses how the work in the thesis is able to answer the
problems we try to solve, and what the shortcomings of the approach
are. We also discuss the application of an MLN model for structuring
thematic changes in a human-robot dialogue, especially in performing a
USAR task. Finally, we illustrates the applications of an MLN model to
help various modules of a dialogue system.

� Chapter 7 presents a conclusion of our work and some discussion about
future work.



Chapter 2

Literature

In this chapter, we present a survey of literature related to dialogue themes and
building a thematic structure. In section 2.1, we describe the notion of a theme,
particularly a dialogue theme. A theme in the dialogue level should not be
confused with a theme on the sentence level. Moreover, we describe the notions
of meaning, belief and intention in section 2.2. As mentioned in the previous
chapter, a theme may express the intention of a dialogue participant, so it
can be used for recognizing an intention behind what is said or for predicting
the intention of the speaker of the next utterance. In section 2.3, we describe
existing approaches that can be used for modeling thematic changes. We also
explain the shortcomings of these approaches and the motivation of using a
new approach based on Markov Logic Networks.

2.1 Dialogue Theme

Halliday and Matthiessen [2004] described the concepts of theme and rheme in
the notion of a clause as a message. Moreover, they explain that a theme is the
starting point of the message which gives the clause its context, and a rheme is
the rest of the message which elaborates on the theme and contributes to the
content of the message. A theme is also referred to as the topic of a sentence
and a rheme is the comment about the topic. In the example (2.1.1) below:

(2.1.1) She knits a sweater.

�she� is the theme of the sentence explaining what the sentence is about. More-
over, �knits a sweater� is the rheme of the sentence, that is the comment about
the theme. The theme of a clause can be identical to the rheme, as illustrated
in example (2.2) below:

(2.1.2) What she knits is a sweater.

where �what she knits� is the theme and �is a sweater� is the rheme. This kind
of clause is known as thematic equative.

So far in this thesis, the theme and rheme are discussed at the sentence
level. At the dialogue level, a theme expresses the main entity or idea of a
dialogue at a given point [Hirst, 1981]. The dialogue theme may coincide with
a sentence theme, but usually it does not. For instance in (2.1.3), Mary and
Jane are talking about �owers:
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(2.1.3) Mary: I'm fond of Lavender.
Jane: Lavender smells good.

In the �rst utterance, the sentence theme is �I� and the discourse theme is
�Lavender�. In the next utterance, the dialogue theme is unchanged from the
�rst utterance, while the sentence theme turns into �Lavender�. Both dialogue
and sentences themes are now identical. A dialogue theme represents a topic
in a more general scope than a sentence theme. As the dialogue level is higher
than the sentence level, a dialogue theme is more general than a sentence
theme. Sentential themes and rhemes provide the content or the details of
dialogue themes. For example in (2.1.3), the general topic or the dialogue
theme is �Lavender�. The themes and rhemes of the sentences explain what is
said about Lavender, i.e. the �rst utterance tells us that Mary is fond of it and
the second suggests that it smells good.

A dialogue theme is the dialogue participants' focus of attention, which is a
small portion of what each of them knows or believes [Grosz, 1981]. A speaker
gives clues to the hearer about her current focus and what she wants to focus
on next. What is focused on in�uences what is said, and what is said in�uences
focusing. For instance in (2.1.3), Mary is focusing on Lavender and thus she is
saying something about Lavender. Moreover, Mary proposes that the dialogue
continues to be about Lavender; either she continues talking about Lavender,
or she expects Jane to give a response about Lavender.

Entities being discussed in a dialogue can be represented in a hierarchical
associated structure [Sidner, 1979]. An entity in this hierarchy can be selected
as the dialogue theme of a dialogue segment (i.e. a unit of a dialogue). Another
entity can be selected for another dialogue segment. As a dialogue progresses,
the dialogue theme changes within the hierarchy. If (2.1.3) is followed imme-
diately by (2.1.4):

(2.1.4) Mary: What kind of �owers do you like?
Jane: I love Jasmine.

the dialogue theme will change from �Lavender� to �kind of �owers�, and then
to �Jasmine�. In the hierarchical entity structure of the dialogue, the dialogue
theme jumps one level up (zoom-out), and then jumps one level down again
(zoom-in).

As mentioned in section 1.4, the dialogue themes in a situated dialogue are
determined by temporal and spatial aspects. The themes depends on how the
dialogue progresses over time, and how the dialogue participants and the envi-
ronment changes. Moreover, it is also in�uenced by the dialogue participants'
beliefs and intentions about acting in the environment. The spatial setting of
a situated dialogue can be represented as a hierarchical graph, which is called
a topological abstraction by Zender et al. [2009]. When a dialogue participant
moves from one place to another, a new dialogue theme is evoked from the
new place. For example, a house contains two bedrooms, a bathroom, a living
room and a kitchen. When a robot drives from a living room to a kitchen,
it is expected to talk about something in the kitchen, not in the living room.
The temporal and spatial aspects seems to account for the structure of a task
involving movements in space and time.

The structure of a task-oriented dialogue, which aims at attaining a certain
goal, corresponds to the structure of the task or the plan to achieve the task
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goal. This task structure also gives clues to detect the changes of the dialogue
theme. A task typically comprises a number of sub-tasks/plans with sub-goals,
sub-sub-tasks/plans with sub-sub goals, and so on. These sub-tasks correspond
to sub-dialogues and each sub-dialogue is hold to achieve a sub-goal. In some
tasks, the order of sub-tasks can be hard-constrained (i.e. one sub-task must
be done before another. For example, to change an inner tube of a bike wheel,
one needs to take o� the outer tube �rst, replace the inner tube, and �nally
put on the outer tube again. The changes in the dialogue theme should be in
accordance with the accomplishment of the sub-tasks.

The structure and the execution of a task correspond to joint intentions. A
single-agent intention represented by individual utterances can not be expressed
purely in terms of joint intention, and vice versa [Levesque et al., 1990]. For
example, in a piano duet, each player plays his own part, but they perform the
same single musical piece together. Since individual intentions can be di�erent
from a joint intention, the task in a task-oriented dialogue is not simply a
collection of intentions.

2.2 Meaning, Belief and Intention

Meaning can be explained as a signi�cation (i.e. a signi�cance of something).
Grice [1957] distinguished meaning into 2 categories, natural and non-natural
senses. Clark [1996] used di�erent terminologies for these categories, natural
sign or symptom for natural sense, and signal for non-natural sense. Although
not all uses of meaning can be easily divided into one of these categories,
Grice argued that in most cases, our uses of meaning fairly strongly incline to
incorporate the use of one of these two categories.

Grice described natural sense as the meaning conveyed naturally by some-
thing or the natural signi�cance of something. Natural sense gives evidence
of the thing it describes. For example, the high body-temperature of Rachel
gives evidence or shows a symptom that she has a fever. On the other hand,
non-natural sense is a meaning of something which does not really come natu-
rally. Instead, somebody has an idea of the meaning in mind and expresses it
by giving a signal (e.g. an utterance, a gesture) which conveys their intention
behind the signal. For example, Keith called Rachel and asked her to go out.
Rachel gave a signal to Keith by saying �I have a fever� and by that, she meant
that she could not go out and needed a bed-rest.

Grice further divided non-natural sense into what Clark called speaker's
meaning and signal meaning. Speaker's meaning is what a speaker means
or intends with what he is presenting, while signal meaning is what a signal
means. The di�erence between speaker's meaning and signal meaning is not
obvious in English since the same word �mean� expresses 2 distinct senses.
However, the di�erence is straightforward in other languages such as Dutch,
where speaker's meaning is �bedoeling� and signal meaning is �betekenis�, and
in German, which has the words �Gemeintes� and �Bedeutung�, respectively.
In our previous example, what Rachel meant exempli�es a speaker's meaning
and the signal meaning is what is explicitly meant by her utterance �I have
a fever�, that is �she has a fever� or �she is in a condition of having a high
body-temperature (i.e. a signal or natural sense/sign)�. A speaker's meaning
is intriguing as it might not be identical to a signal meaning. This relates to
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the study of pragmatics, where speaker's meaning should be interpreted in the
context of the discourse.

A signal is important in a discourse because it is used to achieve a partici-
pant's goal and a joint-goal. A speaker introduces a shared basis to be added
to the speaker's and the hearer's common ground by means of a signal. The
speaker's meaning represents the intention of the speaker by presenting a sig-
nal, e.g. saying or doing something. The speaker also intends that her hearer
will induce a belief from what she is saying, and she intends that her utterance
is recognized as intended. Grice puts this notion in the following way:

�A meant something by x" is roughly equivalent to "A uttered x
with the intention of inducing a belief by means of the recognition
of this intention."

If the recognition does not play its part in inducing the belief as it is intended by
the speaker, the speaker's intentions may not be ful�lled. For example, Keith
may fail to recognize Rachel's intentions and gives a reply such as �What do you
mean you have a fever? You were just �ne this morning.�. Furthermore, the
hearer may recognize the speaker intention, but refuse to comply. For example,
Keith may give a response to Rachel �You'll get better soon, if you take a fever
medicine now. So, we can still go out tonight.�

The intention of a speaker re�ect her beliefs and the purpose of her utter-
ance. Intentions also describe what is being talked about by a speaker - her
focus of attention. The belief recognized by a hearer is important for establish-
ing a common ground between a speaker and a hearer. This common ground
accounts for determining a focus of a conversation or a dialogue theme. When
a speaker and a hearer have mutual beliefs (e.g. the hearer believes that the
speaker believes x), they are likely to talk about the same thing. When they
agree on talking about something at a given time, it becomes the shared-focus
of attention, the discourse theme, at that point in time.

Illocutionary Acts Description Actions

Assertive The speaker attempts to get the
hearer to believe a proposition
(something being the case)

comment, suggest,
boast, conclude,
notify, predict

Directive The speaker tries to get the
hearer to do something in the
future

ask, order, request,
invite, advise,
command

Commissive The speaker commits to do
something in the future

promise, plan, bet,
o�er

Expressive The speaker express a feeling or
emotion (physiological state)

thank, apologize,
congratulate

Declarative The speaker change or determine
a state of the world or the reality

�re, promote,
baptize

Table 2.1: Searle's categories of illocutionary acts

A speaker gets her hearer to recognize her intention by presenting a signal,
i.e. taking an action. Austin [1975] explained the acts of a speaker in order
to get the hearer to recognize the speaker's meaning as illocutionary acts, and
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the speaker's acts to get a hearer to do something as perlocutionary acts. The
hearer's recognition or understanding of speaker's illocutionary acts is called
illocutionary e�ect. The hearer's response to the speaker's perlocutionary acts
is called perlocutionary e�ect or perlocution. These acts are more generally
designated as speech acts, i.e. linguistic acts performed by a speaker to ex-
press his intentions behind his utterance [Searle, 1969]. Searle [1975] criticized
Austin's work and proposed an alternative structure of illocutionary acts. He
classi�es them into �ve categories, which are summarized in Table 2.1. Never-
theless, Clark [1996] argued that the scheme has many problems. He argued
that the categories do not generate all potential illocutionary acts. Moreover,
every illocutionary act only belongs to a single category, whereas an utterance
may encode more than one act.

Traum and Hinkelman [1992] introduced their theory of conversational acts,
which is more general than the speech act theory. In addition to the traditional
speech acts, conversational acts include turn-taking, grounding, and higher level
argumentation acts. Turn taking is terminology for a dialogue participant tak-
ing a dialogue turn. Conversational acts specify acts such as �take turn� and
�keep turn� for turn taking. Conversational acts for grounding include �ini-
tiate�, �continue�, �acknowledgement�, and �repair�. Argumentation acts are
higher level acts which combine traditional core speech acts such as �inform�,
�WH-question� and �Y/N-question�. For example, Q&A (Question and An-
swer) is a commonly used argumentation act for collecting information, and it
combines �WH-question� or �Y/N-question� with �answer� acts. Other argu-
mentation acts such as �elaborate�, �summarize� and �clarify� include �inform�.
Conversational acts denote a set of joint speaker-hearer actions. The perfor-
mance of the actions explains the meaning of a conversation and the meaning
is grounded to the satisfaction of both participants.

Modality Example

Declarative The weather is nice.
Yes/No question Did you order the book? Could

you pass the salt?
WH question Why is it the case?
Imperative Close the window!
Exclamatory I'm sorry! What a pity!

Table 2.2: Sentence modality in English

Furthermore, a speaker gets the hearer to recognize her speech act by using
a certain sentence modality. Sentence mood describes the use of a sentence
representing the propositional content and role in a discourse by using linguistic
means [Zae�erer, 1990]. Five modalities in English are illustrated in Table 2.2.
Declarative mood can be used to assert something (i.e. assertive act) and
exclamatory mood to perform an expressive act. A speaker can use Yes/No
questions or imperative moods to ask or command (i.e. directive act) the hearer
to do an action.
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2.3 Modeling Thematic Changes

A thematic structure of a dialogue should represent the relationship between
the themes of di�erent dialogue segments. The relationship between a theme
in a dialogue segment and a theme in the next immediate dialogue segment is
called a thematic change. A theme of a dialogue segment can be identical to or
di�erent from another dialogue segment. A thematic structure should demon-
strate how a dialogue theme changes from one dialogue segment to another.

We are interested in a thematic structure which is not only able to represent
a thematic change, but also to predict the theme of the next discourse segment.
As mentioned in section 1.2, predicting the next theme is di�erent from iden-
tifying the next theme. When identifying the next theme, we can observe the
next utterance and try to identify whether its theme is a new theme or not. If
the theme is not new, we try to resolve it to its referent. The task of identifying
the next theme is similar to anaphora resolution, when the theme in the next
utterance is expressed as a pronoun. When predicting the next theme, on the
other hand, we are not informed about the next utterance at all. We only used
the information from the utterances in a dialogue history to predict what the
theme in the next utterance could be.

An approach to identifying a dialogue theme is described in section 2.3.1.
We also describe several approaches to structuring discourse/dialogue theme.
Di�erent approaches structure the discourse themes in di�erent ways. In sec-
tion 2.3.2, we describe a stack model which structures discourse themes based-
on the dominance hierarchy of discourse segment purposes. Subsequently, in
section 2.3.3, we describe an information status model which explains the sta-
tus of a theme with respect to a hearer or a discourse. In section 2.3.4, we ex-
plain about centering theory which models the salient properties in a discourse.
We also discuss Segmented Discourse Representation Structure (SDRS) as a
thematic structure in section 2.3.5, and knowledge-based approaches in sec-
tion 2.3.6. Finally, we discuss the motivations of using Markov Logic Network
(MLN) in this work.

2.3.1 Theme Identi�cation

A discourse theme can be identi�ed by using linguistic clues that may be given
explicitly by certain words, or derived from sentential structure or rhetorical
relationships between sentences [Grosz, 1981]. Moreover, it can be derived from
shared knowledge about the relationships among the entities being discussed.
Sidner [1979] described an algorithm to determine a discourse theme by using
thematic relations and syntactic structure. Some possible discourse themes,
or defaults, based on semantic categories (i.e. a group of interrelated words
de�ning their meaning) are selected initially and then the expected discourse
theme is predicted. Although the prediction of the discourse theme can be
wrong, Sidner claimed that once the false prediction is recognized, the true
discourse theme can be found easily. She argued that the next sentence can
either con�rm or reject the expected discourse theme.

Cleft, pseudocleft and there-insertion sentences explicitly single their dis-
course themes out. The discourse themes are italicized in the examples below:

1. It was John who won the Nobel prize. (cleft-agent)
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2. It was the Nobel prize that John won. (cleft-object)
3. The one who won the Nobel prize was John. (pseudocleft-agent)
4. What John won was a noble prize. (pseudocleft-object)
5. There was a researcher who won a noble prize. (agent)
6. There was a noble prize which John won. (object)

A pronoun is a good indicator referring to the focus of the previous sentence.
Syntactic positions, such as subject or object positions, also provides a clue
to identifying a discourse theme. The object of an action is the default po-
sition among other verb positions for the expected discourse theme. In the
example (2.3.1) below, �a cake� is the direct object and the expected discourse
theme. The pronoun �it� in the second sentence co-speci�es �a cake� in the �rst
sentence.

(2.3.1) Jenn baked a cake. She gave it to Nick.

Another clue is a thematic relation, which is a relation between a noun phrase
and a verb, and a thematic position, i.e. the verb/noun phrase position repre-
senting the relationship of being a�ected by the action of the verb. A thematic
position appears most commonly as a direct object, but it may also appear
in other positions including an instrument, a goal, a location, and so on. For
example in (2.3.2),

(2.3.2) The car crashed into a tree.

�the car� is in the thematic position (i.e. as both subject and agent) and it
is the expected discourse theme. Agent is the last preferred thematic position
since it is not typical to be the main topic of a discussion, unless no other
entities have been mentioned.

The following is the expected discourse theme algorithm described in Sidner
[1979]. An expected discourse theme is chosen as follows:

1. The subject of a sentence for an is-a or there-insertion sentence.
2. The �rst element of a Default Expected Focus (DEF) list has this
order: thematic relation, other thematic positions with the agent last,
the verb phrase.

2.3.2 Stack Model

Grosz and Sidner [1986] discuss a dialogue theme as being the dialogue par-
ticipants' focus of attention. Moreover, they describe a thematic structure as
an attentional state - the abstraction of the focus of attention. An attentional
state is modeled as a stack of focus spaces containing the representations of
entities in the focus. A focus space also includes a discourse segment purpose
(DSP) indicating the intention conceived in a segment of a discourse. The di-
alogue themes of dialogue segments are structured in a focus stack, where its
entries are ordered by recency. The most recent theme is put on the top of the
stack and the oldest theme being talked about is found at the bottom of the
stack.

Two kinds of relations between DSPs, namely satisfaction-precedence and
dominance relations, are used for structuring the focus spaces in a stack model.
Satisfaction-precedence relation between two DSPs shows the order of DSP
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satisfaction. Before satisfying a DSP X, another DSP Y may be required to
be satis�ed �rst. In other words, the satisfaction of the DSP X requires the
satisfaction of DSP Y. The DSP X is hence said to dominate the DSP Y (i.e.
dominance relation). Focus spaces are pushed into and popped out of a focus
stack with respect to these two structural relations. A focus space is pushed into
the a focus stack when a DSP of a discourse segment contributes to the DSP
of the immediately preceding discourse segment. On the other hand, a focus
space is popped from the stack when a DSP of a discourse segment contributes
to some DSP higher in the dominance hierarchy of the DSPs. Before a new
focus space can be inserted into a focus stack, several focus spaces have to be
popped.

DSP1

DSP2

DSP3
Focus Space1

DSP1
Entity, Properties

Focus Space2
DSP2

Entity, Properties

DiscourseSegment Focus Stack DominanceHierarchy

DSP1dominates DSP2

DSP1

DSP2

DSP3
Focus Space1

DSP1
Entity, Properties

Focus Space3
DSP3

Entity, Properties

DSP1dominates DSP3

DSP1 dominates DSP2

Figure 2.3.1: An illustration of the mechanism of a stack model

A stack model is appropriate to model a very well-structured task-oriented
dialogue where the tasks have to be carried out in a certain order. If a dialogue
progresses according to this order, the DSPs of the dialogue segments can be
represented in a dominance hierarchy nicely. In practice, however, a dialogue
may contain dynamic thematic/focus changes, where the foci in the dialogue
and the DSPs of the dialogue segments are intertwined with each other. A
stack model is not �exible for modeling such cases because the stack model
cannot contain more than one focus space per level in a dominance hierarchy.
To talk about another focus at the same dominance level, the previous focus
at that level has to be popped �rst. This mechanism is illustrated in Figure
2.3.1. Focus space 2 and focus space 3 share the same level. Once the dialogue
participants stopped talking about focus space 2, it is popped out of the stack
and then focus space 3 can be pushed to the stack. Moreover, in the stack
mechanism, a focus space which has been popped from a stack is no longer in
the structure. Therefore, its re-occurrence in a dialogue cannot be explained
by the model.
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2.3.3 Information Status Model

Information status models the status of a theme being old or new. The notion
of information status can be categorized into hearer-old/new and discourse-
old/new regarding where the information status is considered [Prince, 1992].
A theme is considered as hearer-new, if it has not been known to a hearer yet.
On the other hand, it is considered as a discourse-new, if it has never been
introduced in a discourse so far.

Information status in the hearer's head depends on the speaker's beliefs
about the hearer's beliefs. For instance, in the short dialogue example (2.1.3)
Mary (the speaker) believes that Jane (the hearer) knows Lavender (i.e. Laven-
der is not something new to Jane). Therefore, Lavender is considered as hearer-
old (i.e Mary assumes Lavender is old information to Jane). On the other hand,
�I'm fond of� can be considered as hearer-new when the speaker assumes that it
has not already been known to the hearer. Hearer old/new accounts for ground-
ing, which is essential for establishing a discourse theme. As described in the
section 1.1, a collaborative dialogue requires mutual beliefs and understanding
of what is being talked about.

Information status can also be seen from the point of view of a dialogue
history being constructed during dialogue processing. In this case, Lavender is
discourse-new because it is a new piece of information in the dialogue history.
As the dialogue progresses to the second utterance, Lavender turns out to be
discourse-old since it has been mentioned before. Discourse old/new gives us a
clue about the status of a theme in a discourse.

Information status explains the new/old status of a theme. It explains how
the status of a theme changes from hearer-new to hearer-old, as well as from
discourse-new to discourse old. However, it does not explain how to predict
such status changes. It does not show when a theme is likely to be hearer-
old/new or a discourse-old/new theme in the next utterance.

2.3.4 Centering Model

Centering theory provides a framework to model the salience properties in a
discourse. It adopts Sidner [1979]'s focusing algorithm (see section 2.3.1) to
conduct the centering process. In centering theory, the entities which connect
one utterance to the other utterances are designated as centers. The centers
in an utterance are the elements of a set of forward looking centers of that
utterance. The forward looking centers are partially ordered to re�ect the
relative salience in the corresponding utterance. The centers are ranked in the
order in which they are listed. Moreover, the centers are ranked according
to their grammatical position [Grosz et al., 1995]. Subject position is ranked
higher than object position, which is ranked higher than other position. A
subject is considered to be more likely to be salient and to appear in the next
utterance. Besides grammatical position, information status can also be used
to rank the centers. Strube [1998] suggests that a hearer-old center should be
ranked higher than a hearer-new center.

A single backward-looking center in the next utterance Un+1 connects with
one of the forward looking centers. The backward-looking center is the most
highly ranked center in an utterance that is realized in the next utterance. The
more highly ranked a center in a set of forward looking centers is, the more
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likely it is to be a backward-looking center.
Centering theory models the relationship between the centers of two con-

secutive utterances. It speci�es the relationship between the backward-looking
center of the next utterance Cb(Un+1) and the backward-looking center of the
last utterance Cb(Un). Moreover, it relates the backward-looking center of
the next utterance and the most highly ranked center in the next utterance
Cp(Un+1). Three types of center transitions between two consecutive utter-
ances are de�ned as follows:

Center Continuation: Cb(Un+1) = Cb(Un) and Cp(Un+1) =
Cb(Un+1). A center is continued when it is realized in the
next utterance and is likely to be realized in subsequent ut-
terances (Un+2).

Center Retaining: Cb(Un+1) = Cb(Un), but Cp(Un+1) 6= Cb(Un+1).
A center is retained when it is realized in the next utterance,
but it is likely to be changed in the subsequent utterances.

Center Shifting: Cb(Un+1) 6= Cb(Un). A center is shifted when
it is neither continued nor retained.

Using these center transitions, centering theory can structure thematic changes
in a discourse. A dialogue theme can be considered as the most salient center
in an utterance. Strube and Hahn [1999] speci�es that Cp(Un), the highest
ranked center in a set of forward looking centers of an utterance, is what the
utterance is about. It is the focus of attention, or the dialogue theme, in that
utterance. Centering theory can predict the theme in the next utterance by
using the backward-looking center. That means it always continues the theme
of the last utterance.

Strube [1998] introduced an algorithm combining centering theory and
information-status. Strube's approach is based on functional information struc-
ture, so it is called functional centering. In functional centering, the set of
possible centers is ranked according to their information status. Particularly,
hearer-old centers are ranked higher than hearer-new themes. The set of pos-
sible centers contains the salient discourse entities in the next and the last
utterance. Strube illustrated his approach for anaphora resolution. Every time
an anaphoric expression is encountered, anaphora resolution using functional
centering is solved by testing the elements of the possible center set, until the
resolution succeeds. This approach is useful for identifying a theme in the next
utterance, but it is not able to predict the theme.

2.3.5 Segmented Discourse Representation Structure

Lascarides and Asher [2007] described an approach to structuring a discourse
using what they entitled Segmented Discourse Representation Theory (SDRT)
and dynamic semantics. SDRT uses a logical representation of syntax and se-
mantics of the language and rhetorical relations between utterances/discourse
segments to model the semantics or pragmatics interface. SDRT provides a
logic for representing and interpreting the logical forms of a discourse (i.e.
logic of information content), and a logic for constructing logical forms (i.e.
glue logic). The logic of information content de�nes a Segmented Discourse
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Representation Structure (SDRS), which is the discourse structure. It relates
speech act discourse referents (i.e. labels of discourse segments) by using dis-
course relations (e.g. elaboration, contrast, result).

An SDRS implements dynamic semantics to represent the meaning of a
discourse segment as a relation between an input and an output discourse
context. Dynamic semantics observes the e�ects of logical structure on various
kinds of anaphora (i.e. the use of one word to substitute another preceding
word), such as pronoun, tense and presupposition, in pragmatic phenomena.
An SDRS enables anaphora resolution. It can be used for recognizing, but not
predicting the theme of the next discourse segment.

By using discourse relations, SDRS can represent the relationship of the
themes of the discourse segments. Furthermore, we can model the thematic
changes throughout a discourse. However, an SDRS works for systems which
require highly structured discourse context, and therefore, it is deemed to be
too complicated for other systems which only use simple structures. Besides,
an SDRS does not seem to be robust enough for noisy data. For instance, the
relationships among discourse segments in an SDRS cannot be well-represented
for noisy data. Thus, SDRS cannot model thematic changes in noisy discourse
data.

2.3.6 Knowledge-Based Model

To structure a dialogue, a knowledge-based model makes use of an ontology of
entities, activities or plans. In performing an activity or a task, people often use
common knowledge, and their actions typically follow a certain pattern. Such
common knowledge and typical patterns can be described in a knowledge base.
For example, the appointment scheduling described in a section 1.1 re�ects a
pattern how people usually make appointments. People usually agree on a date
�rst and then, on a time on that date.

The speech-to-speech translation system VERBMOBIL [Wahlster, 2000]
accommodates cross-lingual appointment scheduling. COSMA (Cooperative
Schedule Management Agent) was also designed to assist in scheduling ap-
pointments among multiple participants [Busemann et al., 1994]. Both VERB-
MOBIL and COSMA use a knowledge-based approach to model how a dialogue
might progress in scheduling an appointment. VERBMOBIL makes use of a
taxonomy of a few speech acts (e.g. suggest, accept and reject) to track a nega-
tion process in making an agreement on a place and date. Moreover, it uses an
ontology of activities and plans. Plans in this ontology describe objects (e.g.
locations, temporal expressions), situations (e.g. events and activities) and
qualities (i.e. features of an object or situation) in the appointment scheduling
domain. The concepts in the ontology are related to each other. For instance,
the concept traveling is related to the concepts transportation and lodging.
Knowledge-bases are used in di�erent modules to predict the next dialogue act
or a potential sequence of dialogue acts. They are also used to construct an
intentional structure describing the plan for scheduling an appointment.

A knowledge-based model provides information on how a dialogue might
develop. Therefore, it can be used to predict thematic changes in a dialogue.
Furthermore, it gives us the advantage of explaining why a dialogue develops
in a certain direction. However, the approach su�ers from some limitations
as mentioned in section 1.2. Firstly, a knowledge-based approach is rather
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domain speci�c and thus, di�erent ontologies are needed to structure dialogues
in di�erent domains. Secondly, the scalability of a knowledge-base is limited
by its complexity. A knowledge-based model can deal with simple interactions,
but tends to fail at coping with more complex interactions. For instance, the
COSMA and VERBMOBIL systems work well to merely arrange a place and
time. However, they may fail quickly when people start talking about the best
way to reach the meeting location.

2.3.7 Discussion

In the previous sections, we described di�erent approaches to building a the-
matic structure. These approaches model a dialogue theme and its changes in
di�erent ways. Each approach has its advantages and disadvantages. A stack
model is able to model how a theme changes to another theme throughout a
discourse. Moreover, it models the theme and the thematic changes based on
the purpose of a discourse segment or the intention behind it. This approach
works for very well structured and ordered task-oriented dialogues. However,
it is considered in�exible because the theme prediction is restricted by the
dominance hierarchy of the themes. On the other hand, the information status
model is able to represent the status of a theme as being new or old information
to a hearer or in a discourse. However, it does not explain how to predict the
status changes of a theme.

Centering theory explains possible thematic changes of a theme. It can
be used for both recognizing and predicting a thematic change, but it always
predicts a continuation of a theme from the last utterance. In centering theory,
the prediction only depends on the last utterance and a centering model simply
continues the most highly ranked theme in the last utterance at all times. It
cannot predict multiple themes which can actually be expressed in a single
utterance. Since centering theory only consider the theme of the last utterance,
it cannot model a re-occurrence of a theme from an utterance prior to the last
utterance.

An SDRS is a rich discourse structure which can model the relationship
between the themes of two utterances. It also enables anaphora resolution
which can be used for recognizing the theme of the next utterance. However,
it cannot really predict an appearance of a new theme in the next utterance.
Moreover, it does not seem to be robust enough to model the thematic changes
in noisy dialogue data.

A knowledge-based approach seems to be promising, but it is domain spe-
ci�c and cannot deal with complex dialogue interactions. To deal with the
drawbacks of the existing approaches, we introduce a new approach using a
Markov Logic Network (MLN) model which uses both a knowledge base and
statistics. An MLN model combines logic and statistics to determine the ten-
dency of a logical rule and the probability of a prediction. By means of a set
of weighted logical rules, an MLN model can predict a continuation of a theme
from the last utterance or the occurrence of a new theme. Because it does
not only consider the last utterance, but also all other utterances in a given
dialogue, it can also predict re-occurrences of themes older than the theme of
the last utterance.

An MLN model is more �exible than a stack model because it always con-
siders all the themes of the previous utterances. It can cover more possibilities
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of dialogue moves than a knowledge-based model mainly guided by an ontology.
Since an MLN is not restricted by a certain pattern of dialogue progression, it
can deal with dynamic dialogue progression in which the thematic changes do
not follow a certain pattern. A knowledge-based model, on the other hand, is
constrained by the ontology it uses. It tends to fail at explaining dialogues that
are not well-structured or progress in a certain direction, but often jump from
one concept to a not closely related concept. Moreover, an MLN seems to be
robust to noisy data because it computes appearance tendencies of its logical
rules throughout a given dialogue data and models thematic changes based on
weighted logical rules.



Chapter 3

Markov Logic Network

In this chapter, we introduce a new approach to structuring a dynamic dialogue
using a Markov Logic Network (MLN) model. MLNs take advantages of both
logic and statistics. MLNs make use of uncertain knowledge expressed in �rst
order logic rules to make inference, and the uncertainty is handled by a prob-
abilistic approach. The mechanisms of thematic changes can be transparently
speci�ed in an MLN as �rst-order logic. Thus, MLN models can be used to
predict the dialogue themes/foci in the next utterance.

The �rst-order logic rules in an MLN create a network of probabilistic
dependency, which is a Markov network. Markov networks provide a way
to represent the joint distributions of its nodes. In an MLN, the nodes are
each possible grounding of formulas in �rst-order logic rules. An explanation
of Markov networks is given in Section 3.1. Section 3.2 describes the theory of
First-Order Logic, and �nally, we explain MLNs in section 3.3.

3.1 Markov Networks

A Markov network (also known as a Markov random �eld) is a dependency
model of context-dependent entities [Pearl, 1988]. It follows a Markov property
(i.e. memoryless property) which speci�es that the future states only depend
on the present state, and that the past states are irrelevant. The present state
in a Markov network is de�ned by means of random variables representing an
interconnected network of context-dependent entities.

A Markov network is represented as an undirected graph whose edges des-
ignate probabilistic dependencies of every adjacent node. Each node in the
graph represents a random variable and each clique (i.e. a subset of the graph
where every two nodes are adjacent to one another or connected by an edge) is
associated with a potential function characterizing the state of the clique (i.e.
clique potential).

The representation of dependencies in a Markov network is similar to that
in a Bayesian network [Pearl, 1988]. Markov and Bayesian networks are di�er-
ent from each other in terms of the dependencies they can represent. Markov
networks can represent circular dependencies (i.e. no valid order of which
node should come �rst), while Bayesian networks cannot. On the other hand,
Bayesian networks can represent induced and non-transitive dependencies which
cannot be represented by Markov networks. Since a Markov network connects
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two independent variables directly, it does not represent any independence.
The dependencies among nodes in a Markov network is characterized by

the joint distribution of the set of the random variables X = (X1, X2, . . . , Xn).
The probability of the joint distribution represented by a Markov network is
given by [Richardson and Domingos, 2006]

P (X = x) =
1

Z

∏
k

φk(xk) (3.1.1)

where φk is a potential function, that is a non negative real valued function
of the state of the k-th clique. Moreover, xk is the state of variables in the
k-th clique and Z =

∑
x∈χ

∏
k

φk(xk) is a normalizing constant called the partition

function. χ is the set of all possible states of variables in the Markov network.
A Markov network can be represented as a log linear model by computing

the clique potential as an exponentiated sum of weighted features of the state
as follows.

P (X = x) =
1

Z
exp

(∑
k

wkfk(xk)

)
(3.1.2)

where the weight wk of a possible state xk is logφk(xk) and fk(xk) ∈ {0, 1}
is the binary feature for xk

1. Since the formula will grow exponentially with
respect to the size of the cliques, the number of features should be minimized,
for instance by specifying a logical function of the state of a clique.

The Markov blanket of a node is the minimal set of nodes which enables it
to be independent of the remaining network. A Markov blanket of a node in a
Markov network is the set of its neighboring nodes.

3.2 First Order Logic

First-order logic or �rst-order predicate logic is a formal language which can
be used to represent objects in the real world and the relations between those
objects. By using �rst order logic, we can make inferences, which is to say, we
can derive logical conclusions from known premises (propositions) or premises
that are assumed to be true. First-order logic is similar to propositional logic,
but unlike propositional logic, quanti�ers are used in �rst-order logic. First-
order logic is used as the standard formal logic for describing axioms.

The syntax of �rst-order logic uses symbols of three types, namely a func-
tion, a predicate and a variable [Gamut, 1991]. A function maps a tuple of
objects to an object and a term is a function that has zero arguments. A term
can be a constant or a variable in a language. Constants refer to objects in the
domain of interest and variables are symbols which range over these objects.
We write variables in lowercase and the �rst letter of constants in uppercase. A
formula in �rst-order logic can be constructed by using terms and predicates.
A predicate represents a relation among objects (e.g. own signi�es a binary
relation of some object possessing some other object) or a property of an object
(e.g. pet signi�es the property of an object being a pet).

1A feature may be speci�ed di�erently, e.g. a real-valued function of the state.
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Text First-Order Logic Clausal Form

A pet is owned. ∀x pet(x)→
∃y own(y, x)

¬pet(x) ∨ own(y, x)

Somebody who owns a
pet, feeds it.

∀x∀y pet(x) ∧
own(y, x)→ feed(y, x)

¬pet(x) ∨ ¬own(y, x) ∨
feed(y, x)

Table 3.1: First-Order-Logic formulas

Interpretations of Terms
JαKM,g = VM (α)
JαKM,g = g(α)

Interpretations of Formulas
JP (t1, ..., tn)KM,g = T i�

〈
Jt1KM,g, ..., JtnKM,g

〉
∈ VM (P )

Jt1 = t2KM,g = T i� Jt1KM,g = Jt2KM,g

J¬ϕKM,g = T i� J¬ϕKM,g = F
Jϕ ∧ ψKM,g = T i� JϕKM,g = T and JψKM,g = T
Jϕ ∨ ψKM,g = T i� JϕKM,g = T or JψKM,g = T
Jϕ→ ψKM,g = T i� JϕKM,g = F or JψKM,g = T
Jϕ↔ ψKM,g = T i� JϕKM,g = JψKM,g

J∃xϕKM,g = T i� there is at least an a ∈ UM such that JϕKM,g[x/a] = T
J∀xϕKM,g = T i� for all a ∈ UM , JϕKM,g[x/a] = T

Figure 3.2.1: Interpretations of Terms and Formulas with respect to a model
structure M and a variable assignment g

De�nition 1. A term t is a function with zero argument, a constant or a
variable.

An atomic formula or an atom is the simplest formula. It is composed by
a predicate and its arguments, where each of the arguments is a term (e.g.
own(y, x) and pet(x)). A positive literal is an atomic formula and a negative
literal is a negation of an atomic formula. Formulas or well-formed formulas can
be constructed recursively from atomic formulas by using quanti�cation over
variables, negations and logical connectives (i.e. conjunctions, disjunctions,
implications, equivalence).

De�nition 2. P (t1, ..., tn) is a well-formed formula where P ∈ predicate . If
ϕ and ψ are well-formed formulas, then ¬ϕ,(ϕ ∧ ψ),(ϕ ∨ ψ),(ϕ → ψ),(ϕ ↔ ψ)
are well-formed formulas. If x ∈ variable and ϕ is a well-formed formula, then
∀xϕ and ∃xψ are well-formed formulas. All atomic formulas are well-formed
formulas.

A negation of a formula is a formula (e.g. ¬pet(x)). A disjunction of
formulas is a formula (e.g ∀x∃y pet(x)∧ own(y, x)). A conjunction of formulas
is a formula (e.g. ∀x pet(x)∨¬pet(x)). An implication of formulas is a formula
(e.g. ∀x pet(x) → ∃y own(y, x)). An equivalence of formulas is a formula (e.g.
own(y, x)↔ belongTo(x, y)). Every �rst-order logic formula can be converted
into a clausal form or conjunctive normal form (CNF). Table 3.1 exempli�es
�rst-order logic formulas and their corresponding clausal forms.
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A language L consists of a set of variables V = {V1, ..., Vn}, a set of constants
C = {Anna,Dog}, and a set of predicates P = {pet/1, own/2}.

The Herbrand Universe and Herbrand base of the language L are
HU = {Anna,Dog}
HB = {pet(Anna), pet(Dog), own(Anna,Dog), own(Dog,Anna)}

A possible Herbrand interpretation of the language L is
D = {Anna,Dog}
F = {Anna→ Anna,Dog → Dog}
R = {pet(Dog), own(Anna,Dog)}

Figure 3.2.2: A possible Herbrand interpretation

A term or a formula does not have a semantic meaning unless it is given
an interpretation. An interpretation is given with respect to a model structure
M and a variable assignment g, which assigns a variable to an element of UM .
Figure 3.2.1 depicts the formal de�nitions of the interpretation of terms and
formulas. The variable assignment g[x/a] assigns a to x and assigns the same
values as g to all other variables. g[x/a](y) = a if x = y and g[x/a](y) = g(y)
if x 6= y.

De�nition 3. M =< UM , VM >is a model structure when UM is a non-empty
set and VM is an interpretation function. VM (P ) ⊆ UMn where P is a n-ary
predicate and VM (c) ⊆ UM where c is a constant.

An interpretation of a term assigns the object that is represented by the
term. An interpretation of a formula assigns a truth value (i.e. true or false)
to the formula. A formula is satis�able if it is true under at least one interpre-
tation. ∀xϕ is true i� ϕ is true for every object x in the domain. ∃xϕ is true
i� ϕ is true for at least one object x in the domain. A negation of a formula
is true i� (i.e. if and only if) the formula is false. A conjunction of formulas
is true i� every formula is true. A disjunction of formulas is true i� there is a
formula whose value is true. An implication of formulas is true i� the formula
in the left hand side is false, or the formula in the right hand side is true. An
equivalence of formulas is true i� the formulas have the same truth values.

A ground term is a term that does not contain any variable. A ground
atom or ground predicate is an atomic formula where all of arguments are
ground terms. A ground formula is a formula where all of its arguments are
ground atoms. An atomic formula is grounded by replacing its variables with
constants.

A Herbrand interpretation is an interpretation which maps a constant to
itself and it determines the truth value of a ground atom. Formally, a Herbrand
interpretation HI of a language L has a domain D which is the Herbrand
universe HU of L (i.e. a set of constants), an identity function F , and a subset
R of the Herbrand base HB (i.e. the set of ground atoms) that is true. The
number of Herbrand interpretations is the size of the power set of the Herbrand
base. An example of a possible Herbrand interpretation is given in Figure 3.2.2.
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3.3 Markov Logic Network

A Markov logic network (MLN) is a probabilistic logic model which combines
Markov networks and �rst-order-logic [Richardson and Domingos, 2006]. It is
a combination of knowledge-based and statistical approaches. It uses a knowl-
edge base of logical rules and atomic formulas. Moreover, it consists of a set of
weighted �rst-order logic formulas and the weights are learned from a relational
database of ground atoms. In the following section, we describe the de�nition
of an MLN. In section 3.3.2, we describe how the weights of �rst-order logic
formulas in an MLN can be learned. In section 3.3.3, we explain how MLN
make an inference to answer a query.

3.3.1 De�nitions

An MLN consists of a set of weighted �rst-order logic formulas. The weight
attached to a �rst-order logic formula re�ects how strong a formula is as a con-
straint. First-order logic formulas have the restriction that a formula should
be consistent with a Herbrand interpretation. If it is inconsistent, then it has
zero probability. MLNs soften this restriction by allowing a formula to be in-
consistent with a Herbrand interpretation. The weight of a formula in an MLN
represents the di�erence in log probability between a Herbrand interpretation
that satis�es a formula and one that does not. The higher the weight, the
greater the di�erence is.

In an MLN, constants and variables are typed [Richardson and Domingos,
2006]. Typed constants can only represent objects in the speci�ed type. Typed
variables can range only over objects of the speci�ed type. For example, Dog,
Cat, and Fish are constants in an Animal domain. If the constant Dog is
typed as an Animal, it can only represent an animal object. If the variable x is
typed as an Animal variable, then it can only range over the Animal domain.

A Markov logic network L is de�ned formally as a set of pairs (Fi, wi) where
Fi is a �rst-order logic formula and wi is a weight. A �nite set of constants
C = {c1, c2, ...cn} represent objects in the domain. Together with C, an MLN
L generates a ground Markov NetworkML,C with respect to the grounding and
interpretation of its predicates. All possible groundings of a predicate in L are
obtained by replacing each variable of the predicate once with each constant in
C. Di�erent sets of constants will generate di�erent ground Markov Networks.
However, the grounding of the same formula in an MLN will have identical
weight in its di�erent ground Markov Networks.

Richardson and Domingos [2006] de�ne ML,C as follows.

1. ML,C contains one node for each possible grounding of each predicate in
L. If the ground atom is true, then the value of the node is 1. If it is
false, then the value is 0.

2. ML,C contains one feature for each possible grounding of each formula
Fi in L. The value of a feature is 1, if the ground formula is true, and 0
otherwise. The weight of the feature is the wi associated with Fi in L.

The ground Markov Network of the set of �rst-order-logic formulas L in
Table 3.1 and the set of constants C = �Anna�, �Dog� is given in Figure 3.3.1.
Each node in the ground Markov Network is a ground atom (e.g. pet(Dog)).
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pet(Dog)

own(Anna,Dog)

feed(Anna,Dog)

Figure 3.3.1: Ground MLN Example of First-Order Logic Formulas in Table
3.1 and the constants �Anna� and �Dog�

If two atoms appear together in some grounding of a formula in an MLN,
then, the atoms are connected with an arc. The arcs can be used to infer a
conditional probability of atoms (e.g. the probability of Anna feeds Dog given
Dog is a pet and Anna owns the Dog).

Each state in ML,C (i.e. a state from given by the nodes and their truth
values) represents a possible Herbrand interpretation. The probability distribu-
tion over a possible Herbrand interpretation x speci�ed by the ground Markov
network ML,C is given by

P (X = x) =
1

Z
exp(

∑
i

wini(x)) (3.3.1)

where ni(x) is the number of true groundings of Fi in x. The ground atoms
in MLNs are thus either 0 or 1, which makes it di�cult to model observation
uncertainty; see also [Lison et al., 2010].

3.3.2 Weight Learning

Weights for the set of �rst-order logic formulas in MLNs are learned from
databases of ground atoms. If a ground atom is not in the databases, it is
assumed to be false. A database is a vector of possible ground atoms x =
(x1, x2, ..., xn). xk is the truth value of the k-th ground atom where 1 < k < n.
The value of xk is 0, if the k-th ground atom is a negative literal in the database
or if it does not appear in the database at all. Otherwise, the value is 1.

Given a database x, MLN weights can be learned by computing the deriva-
tive of the log-likelihood in equation 3.1.2 with respect to its weight. The
derivation is given by [Richardson and Domingos, 2006]

∂

∂wi
logPw(X = x) = ni(x)−

∑
x′

Pw(X = x′)ni(x
′) (3.3.2)

where ni(x) is the number of true groundings in the database x for the i-th
formula. χ is the set of all possible databases. Pw(X) is the probability of the
joint distribution of ground atoms using the weight vector w = (w1, ..., wi, ...).
The i-th component of the gradient is the di�erence between the number of
true groundings of the i-th formula in the database and its expectation.

Richardson and Domingos [2006] argued that Equation 3.3.2 is not e�cient
due to an intractable counting of the number of true groundings of a formula
in a database and the expected number of true groundings. A more e�cient
approach is optimizing the pseudo-likelihood
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P ∗w(X = x) =

n∏
k=1

Pw(Xk = xk|M Bx(Xk)) (3.3.3)

where M Bx(Xk) is the state of a Markov blanket (i.e. the truth values of the
neighboring nodes) of Xk in the database. The gradient of the pseudo-log-
likelihood is

∂

∂wi
logP ∗w(X = x) =

n∏
k=1

[ni(x)− Pw(Xk = 0|M Bx(Xk))ni(xXk=0)

−Pw(Xk = 1|M Bx(Xk))ni(xXk=1)] (3.3.4)

where ni(xXk=0) is the number of true groundings of the i-th formula, when
Xk is forced to be 0, and similarly for ni(xXk=1).

3.3.3 Inference

Formulas in an MLN are typically converted into a more regular form, such as
clausal form or conjunctive normal form (CNF), to carry out an automatic in-
ference. An MLN can answer queries which ask for the probabilities of formulas
to hold, given that other formulas speci�ed in an MLN hold. In other words,
the queries ask how probable it is that the set of �rst-order logic formulas in
an MLN entails the queries.

The probability of formula F1 holds, given that formula F2 holds in ML,C ,
is [Richardson and Domingos, 2006]

P (F1|F2, L, C) = P (F1|F2,ML,C)

=
P (F1 ∧ F2|ML,C)

P (F2|ML,C)

=

∑
xεχF1

∩χF2
P (X = x|ML,C)∑

xεχF2
P (X = x|ML,C)

(3.3.5)

where χF1
is the set of Herbrand interpretations where F1 holds and P (x|ML,C)

is given by equation 3.3.1. P (F1|F2, L, C) can be estimated by using an Markov
Chain Monte Carlo (MCMC) algorithm. which does not allow any transition
to the states where F2 does not hold, and calculates the number of samples in
which F1 holds.

An MCMC algorithm generates samples using a Markov chain mechanism.
In a Markov chain, the transition probabilities between sample values are only
accounted by the most recent sample value. Examples of MCMC methods are
Gibbs sampling and slice sampling. Since the computation of an MCMC algo-
rithm is likely to be too slow for arbitrary formulas, Richardson and Domingos
[2006] proposed an inference algorithm for the case where F1 and F2 are con-
junctions of ground atoms. They argued that ground atoms are most commonly
queried in practice and that the algorithm for such queries is more e�cient than
a direct application of Equation 3.3.5.
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MLN-based Thematic Structure

We attempt to build a thematic structure that is able to describe the thematic
changes in a human-robot conversation, especially in performing a USAR task.
However, as mentioned in 5.4, due to the lack of human-robot dialogue data,
we make use of the Apollo 17 transcripts which contain human-human dialogue
data. In section 4.1, we describe the similarity between the data we use and
a typical human-robot USAR dialogue. We also explain how we annotate
the data. Then, we present a set of �rst-order logic rules to construct an MLN
model, in section 4.2.1. The hand-crafted logical rules describe the mechanisms
behind thematic changes observed from the Apollo 17 transcripts. These rules
enable an MLN-based thematic structure to predict the next dialogue theme.

4.1 Data

To structure the dialogue theme of a human-robot conversation, we should ide-
ally observe a human-robot dialogue. However, human-robot dialogue, espe-
cially in performing a USAR task, is not readily and easily available. Moreover,
it is di�cult, time consuming, and expensive to collect, because it requires hu-
man experts in the USAR area, a physical robot and a robotic dialogue system
that is able to properly communicate with a human. In practice, human-robot
dialogue data is typically needed in a development stage, while the robot is still
being developed. Alternatively, human-robot dialogue data can be collected by
using the wizard of Oz technique or simulating the real task. However, the
collected data is not purely human-computer dialogue.

Due to the lack of human-robot dialogue data, we use human-human dia-
logue data which is usable for the purpose of this work. The data collected in
the tunnel accident simulation described in section 1.3 is a conversation between
human rescuers. Although it does not demonstrate human-robot interactions,
it explains human behavior in performing a USAR task. This kind of data
could be used as a starter to model thematic changes in human-robot interac-
tions. Unfortunately, it only contains a short conversation (approximately 7
minutes) and therefore it is not su�cient to be used in this work.

Alternatively, we use the Apollo 17 journal transcripts which describe the
Apollo 17's mission to collect sample materials and to deploy some scienti�c in-
struments on the moon. The dialogue in the Apollo 17 transcripts involves three
people performing a joint activity of observing and taking samples at di�erent
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Figure 4.1.1: LMP 31 and CDR-29 tasks in Station 1

places. Two of the speakers, Eugene A. Cernan and Harrison H. Schmitt, were
astronauts working directly on the site. Cernan was the Commander (CDR)
and Schmitt was the Lunar Module Pilot (LMP). The third speaker, Robert
A. Parker, was monitoring the astronauts from Earth. This setting is similar
to a human-robot USAR activity, where a robot works together with a rescue
team in a disaster site. The robot may have some level of autonomy which
allows it to operate on its own, but it is still operated by a human operator
working remotely, away from the disaster site. The human operator, therefore,
observes the disaster site partially and with uncertainty. Since the Apollo 17
data also shows a partial uncertain observation, it is useful as basis data.

We annotated 1000 utterances from the transcript, particularly 524 utter-
ances from the Geology Station 1 part from minute 122:08:39 to 122:36:49 (i.e.
about 28 minutes in duration), and 476 from the Geology Station 2 part be-
tween minutes 142:52:53 and 143:17:49 (i.e. about 25 minutes in duration). In
total, the annotated data contains 564 turns. The data contains a lot of the-
matic changes which provide good examples for structuring the mechanisms of
thematic change.

Like a human-robot USAR dialogue, the dialogue in the Apollo 17 Journal is
a task-oriented dialogue and the tasks in the mission were very well-structured.
The CDR and LMP have separate checklists of tasks to accomplish. As shown
in Figure 4.1.11, CDR and LMP have identical checklists in Geology station
1 and 2. They collaborate and help each other to accomplish their shared-
tasks. Similarly, a rescue robot also co-operates with a human operator in
accomplishing a USAR task. The task of observing an area or a sample material
is similar to the task of a rescue robot to observe a disaster area and the entities
within it. However, a robot has limited capabilities compared to a human
rescuer. For instance, it might not be designed to perform a physical task such
as removing an obstacle, but only to observe and report what it sees.

Both human-robot USAR and the Apollo 17 dialogues are situated dialogues
that progress with respect to the changes in dialogue participants' actions, en-
vironment and time. The Apollo 17's mission is situated on the moon and the

1http://www.hq.nasa.gov/alsj/a17/cu�17.html
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astronauts had to observe di�erent places and perform di�erent tasks in di�er-
ent places. As a consequence, their conversation is relative to their location,
and the objects and tasks in the location. On the other hand, a USAR task is
typically performed in a stressful situation, where one must perform a task in
a dangerous place with limited time. A conversation in such a situation must
not be verbose, but short and concise. Likewise, the Apollo 17's mission is also
constrained by time. The CDR and LMP had limited time to collect samples
in one place and then they had to move to another place.

Our approach takes higher level inputs (i.e. at the intentional level, such
as speech acts) rather than raw ASR text output. For annotating the dialogue
data, we de�ne a set of annotation labels denoting semantic and pragmatic
meanings. The annotation labels are described in section 4.1.1. Moreover, since
an MLN model takes inputs in �rst-order logic, we convert the text dialogue
data into a logical representation as described in section 4.1.2.

4.1.1 Dialogue Annotation

An utterance is a sequence of words uttered by a speaker at some point in a
dialogue. It is a smaller unit than an exchange or a turn and is not necessarily
a sentence. A speaker can produce more than one utterance in a turn. As
described in section 2.1, an utterance contains a theme which refers to the
most important thing in the utterance and a rheme which explains the theme.
A dialogue theme represents the salience at a higher level than an utterance.
It expresses the most central thing that is focused on at the dialogue level. We
attempt to model the theme at the dialogue level, not at the utterance level.

A dialogue theme is not a word or a phrase, but a semantic or pragmatic
object being talked about at some point in time during the course of the dia-
logue. It may refer to an object in the real world which can be either concrete
(e.g. scoop, rake, bag) or abstract (e.g. a core at this site). We call such
an object Entity. Moreover, people do not only talk about objects, but also
about activities or tasks (e.g. get a sample). An activity can be a joint ac-
tivity (i.e. an activity performed by more than one person) or an individual
activity (i.e. an activity performed by a single person). In a task-oriented
dialogue, such as our dialogue data, the dialogue participants talk a lot about
joint activities or tasks they want to accomplish. They make plans on how
they are going to accomplish a task. A human-human conversation typically
involves a lot of problem solving and planning. This is not likely to be the
case in a human-robot dialogue. Human-robot interaction are simpler than
human-human interaction (see section 6.2).

For each utterance, we identify the most important object or/and task being
talked about and annotate them as an Entity or a Task respectively. Other
objects which are not in the dialogue participants' focus of attention are not
annotated. To identify and annotate Entities, we adopt Sidner's focusing
algorithm [Sidner, 1979] mentioned in section 2.3.1. By default, the object(s)
of an utterance is expected to be a dialogue theme. If a speaker does not use
the subject of his utterance to refer to himself and/or to his hearer (e.g I, we,
you), the subject is a dialogue theme.

A Task re�ects the intention of a speaker, for example what he is going to
do or what he wants the hearer to do. Therefore, a dialogue theme may convey
a pragmatic meaning with respect to the dialogue context. A Task usually
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Figure 4.1.2: Harrison H. Schmitt working with a lunar scoop next to a Gnomon
on a rock. (NASA photographs)

involves one or more Entities. When a speaker talks about a Task, he may
also talk about the Entities involved in the task. In Example (4.1.1),

(4.1.1) Schmitt: Got your gnomon, huh?

the speaker Schmitt asks his hearer whether the hearer has got his gnomon or
not. This utterance focuses on the Task �get a gnomon� which involves the
Entity �gnomon� (i.e. a device for calculating the skyline or the altitude of
the sun; see Figure 4.1.22). Therefore, both the task and the entity become the
dialogue themes of the utterance. Unlike Example (4.1.1), in Example (4.1.2)

(4.1.2) Cernan: Bob, you ready for a mark?

the speaker Cernan asks about the Task �marking�, (i.e. whether the hearer
Bob is ready to perform the task). However, Cernan does not actually talk
about the Entity �mark �.

When a speaker focus his attention to more than one object or task, there
is more than a single dialogue theme. These dialogue themes are not a list
of ranked Entities/Tasks, but only the most relevant (highly ranked) Enti-
ties/Tasks. Sometimes an utterance does not indicate a focus on any Entity
or Task, for instance because the speaker did not �nish his utterance or due to
a technical problem such as an ASR failure during the recognition of the utter-
ance. We annotate the dialogue theme of the utterance as Other. Example
(4.1.3) below,

(4.1.3) Schmitt: Gene, do you think...(Pause)

is annotated as Other, because Schmitt did not �nish his sentence and the
utterance does not focus on any particular Entity or Task. Besides, we use
Other to denote all other things that we abstract away from. We show a
sample of dialogue annotation of the Apollo 17 data in Table 4.1.

In addition to dialogue themes, we also annotate other cues which are ex-
pected to be useful for predicting the dialogue theme in the next utterance.
These cues are used to construct features in our MLN (see section 4.2). The
Apollo 17 transcripts contain Pauses as in Example (4.1.3). A Pause repre-
sents an act of not talking temporarily. As a dialogue is stopped temporarily

2http://www.apollomissionphotos.com/reissues/as1714522157r.jpg
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Dialogue Text Annotation

Schmitt: Bob, you're going to
want a core at this site?

Task: Want a core at this side
Entity: A core at this side
Question: Want a core at this side

Parker: Roger. Acknowledgement: Want a core at
this side
Answer: Want a core at this side

Parker: We'd like to get... Task: To get
Parker: Number 1 priority will
be some block samples,
including any dirt that was on
the blocks, if there is such.

Entity: Block sample
Entity: Priority

Parker: And then the second
priority is a rake soil sample;

Entity: Rake sample

Table 4.1: A dialogue annotation sample

in a Pause, the dialogue participants stop talking about the last theme. More-
over, they usually take some time to think, perform actions or carry out a task.
Implicitly, the dialogue participants focus their attention to the actions they
do in Pause. After a Pause, the dialogue participants are likely to talk about
the actions in the Pause or the results of the action. We suppose that these
actions and results can be of a di�erent theme from the last theme before the
Pause. Therefore, we use Pauses to characterize theme shifts.

Moreover, a speaker always perform a speech act which re�ects his/her
intention (i.e. what he actually means in his utterance). Speech acts can be
useful to characterize thematic changes. In this work, we use three kinds of
speech acts, namely Question, Answer and Acknowledgement.

Intuitively, a Question about something can be expected to be followed
by an Answer about what has been asked. Besides, from data observation,
we found that a Question might also be followed by another Question which
still has the same focus\theme as the �rst Question. Therefore, a Question
seems to be a good indicator for a continuation of a dialogue theme. On the
other hand, an Answer seems to indicate a shift of the dialogue theme. When
a Question is answered, we assume that there is a tendency that an anti-
climax occurs in the next utterance. Therefore, the dialogue participants are
likely to start talking about a new theme. Moreover, a Question expresses
the intention of a speaker to acquire information about some Task or En-
tity. For instance, the Question in Example (4.1.1) asks information about
�gnomon�, namely whether it has been fetched. A Question may also con-
vey the intention of a speaker to ask a hearer to perform some Task, such
as in Example (4.1.2). We annotate a Question or an Answer concerning
only a single Task or Entity. If a Task involves some Entity, the Task is
preferred in favor of the Entity.

In a conversation, people tend to acknowledge each other's contributions
in order to build common ground. Clark and Schaefer [1989] explain that an
Acknowledgement is needed to move on in a conversation. As we inspected
the dialogue data, we discovered that an Acknowledgement is likely to be
followed by a theme shift in the next utterance. Therefore, we take advan-
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tage of the occurrence of an Acknowledgement to predict a new theme. An
utterance is annotated as an Acknowledgement of some Task or Entity,
if the utterance expresses a recognition of the Task or Entity. Similar to
Questions, Acknowledgements represent intentions of the speaker, such
as agreeing on some information about an Entity or on performing a proposed
Task. In less frequent cases, some utterances may contain an Acknowledge-
ment about something Other. For example, an Acknowledgement refers
to some Task which is physically done on the site, but the Task is not explic-
itly mentioned in the dialogue. Example (4.1.4) below

(4.1.4) Cernan: (Putting the sample bags in Jack's SCB) Okay.

is an Acknowledgement with an Other theme. An Acknowledgement
is associated only to a single Task or Entity, where a Task is preferred to
an Entity.

Label Total

Task 94
Entity 142
Other 113

Table 4.2: The Number of Distinct Dialogue Themes

Table 4.2 shows the number of distinct Entities, Tasks and Others in
the data. The table shows that the data contains more distinct Entities than
distinct Tasks and a considerable number of distinct Others. Despite the
fact that Others may represent di�erent linguistics acts, in this work, we
simplify it into a single object. The total number of distinct dialogue themes
is smaller than that of utterances, which means that there are repetitions of
dialogue themes in the data.

Label Frequency

Question 82
Answer 60
Acknowledgement 150
Pause 83

Table 4.3: Frequency of Speech Act Annotations and Pauses

Table 4.3 shows the frequency of di�erent speech acts annotated in the data.
The data contains more Questions than Answers, suggesting that not every
Question is answered. Besides, the high number of Acknowledgements
suggests that Acknowledgements play a major role in performing a joint
activity, and that dialogue participants frequently do grounding to establish
common ground. Moreover, there are 83 occurrences of Pauses in the data
illustrating the dialogue participants frequently made a Pause in performing
their activity.
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4.1.2 Logical Forms

A text dialogue has to be transformed into a logical representation before it
can be used as an input for an MLN model. We carry out the transformation
according to the de�nitions of formulas in Figure 4.1.3. Each argument of
the predicates is a typed variable, which means that it can only be grounded
with a constant of its corresponding type. For instance, the arguments of
the predicate utterance are typed u (utterance-id) and s (speaker's name).
For each utterance in a dialogue, we generate ground atoms of the predicate
speaker, precede and utterance. The predicate precede is de�ned to specify the
order of two utterances, namely that the �rst argument precedes the second
argument. For instance, precede(U1,U2) means that the utterance U1 precedes
the utterance U2. We illustrate a sample of the logical representation of the
data in 4.4.

Utterance Question and Answer Pause
speaker(s) question(q) pause(p)
precede(u, u) questionIn(q, u) pauseIn(p, u)
utterance(u, s) questionAbout(q, u)

answer(ans)
Dialogue Theme answerIn(ans, u)
entity(e) answerAbout(ans, u)
entityId(e, u)
task(a) Acknowledgement
taskId(a, u) ack(ac)
other(o) ackIn(ac, u)
otherId(o, u) ackOf(ac, u)
themeIn(u, u)

Figure 4.1.3: MLN Atomic Formulas

As described in the previous section, a dialogue theme can be an Entity,
a Task or something Other. The argument e of the predicate entity refers
to an Entity which gives a description of an object (e.g an entity name) in a
domain. Similarly, the arguments a of the predicate task and o of the predicate
other, refer to a Task or an Other object respectively. Each Entity, Task
or Other is given a relative identi�er (id). The id is relative to the utterance-
id where the Entity, Task or Other has been introduced �rst. We use the
notion of relative identi�ers to avoid a sparse data problem (e.g. too many
entities with a low frequency of occurrence).

The predicate themeIn describes the relative location of the dialogue theme
(the focus) of an utterance (the �rst argument). If the dialogue theme of an
utterance is new (i.e. it has never been introduced before), the second argument
is the same as the �rst argument. If the dialogue theme has already been
introduced before, the second argument is the utterance-id of the utterance
where the dialogue theme has been �rst introduced. For instance, in Table 4.4,
entity �priority� is a dialogue theme of utterances U4 and U5. Since �priority�
appeared �rst in U4, the dialogue theme of U5 is referred to U4. This can be
written as themeIn(U5,U4) which is read �the themein U5 is in U4�.

If an utterance contains a Question, we create three ground atoms using
the predicates question, questionIn and questionAbout. Firstly, the predicate
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Dialogue Text Ground Atoms

Schmitt: Bob, you're going to
want a core at this site?

speaker(Schmitt)
utterance(U1, Schmitt)
task(Want_a_core)
taskid(Want_a_core, U1)
entity(A_core_at_this_site)
entityid(A_core_at_this_site, U1)
question(Q1)
questionIn(Q1, U1)
questionAbout(Q1, U1)
focusIn(U1, U1)

Parker: Roger. speaker(Parker)
utterance(U2, Parker)
precedeUtt(U1, U2)
ack(Ack1)
ackIn(Ack1, U2)
ackOf(Ack1, U1)
answer(Ans1)
answerIn(Ans1, U2)
answerAbout(Ans1, U1)
focusIn(U2, U1)

Parker: We'd like to get... utterance(U3, Parker)
precedeUtt(U2, U3)
task(To_get)
taskid(To_get, U3)
focusIn(U3, U3)

Parker: Number 1 priority will
be some block samples,
including any dirt that was on
the blocks, if there is such.

utterance(U4, Parker)
precedeUtt(U3, U4)
entity(Block_sample)
entityid(Block_sample, U4)
entity(Priority)
entityid(Priority, U4)
focusIn(U4, U3)
focusIn(U4, U4)

Parker: And then the second
priority is a rake soil sample;

utterance(U5, Parker)
precedeUtt(U4, U5)
entity(Rake_sample)
entityid(Rake_sample, U5)
focusIn(U5, U3)
focusIn(U5, U4)
focusIn(U5, U5)

Table 4.4: Logical Annotation of a Sub-dialogue
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question de�nes the question-id. Secondly, the location where the Question
appears (i.e. an utterance's id) is described by the predicate questionIn. Fi-
nally, the predicate questionAbout describes the location of what the Ques-
tion is about, that is, the utterance id where the Entity, Task or Other
in question was introduced. Similar to themeIn, questionAbout contains the
relative location of the dialogue theme in the Question. For example in
Table 4.4, utterance U1 contains a Question de�ned by question(Q1) and
questionIn(Q1,U1). Since the Question is about the task Want_a_core in-
troduced in U1, we create questionAbout(Q1,U1).

Similar to a Question, for an utterance containing an Answer, three
ground atoms are created using the predicate answer, answerIn, and answer-
About. The predicate answer de�nes the answer-id and the predicate answerIn
describes where the Answer appears (i.e. the current utterance's id). Ad-
ditionally, the predicate answerAbout describes the location of what the An-
swer is about. For example, in 4.4 utterance U2 contains an Answer about
a dialogue theme in U1. Therefore, we created the following ground atoms:
answer(Ans1), answerIn(Ans1,U2) and answerabout(Ans1,U1).

An Acknowledgement also has three ground atoms similar to those of
a Question or an Answer. The predicate ack de�nes the acknowledgement-
id, the predicate ackIn describes where the Acknowledgement appears (i.e.
the current utterance's id), and ackOf describes the location of what is being
acknowledged. An utterance can express both an Acknowledgement and
an Answer. For example in utterance U2 in Table 4.4, Parker acknowledges
Schmitt's proposal and at the same time gives his positive answer to Schmitt's
question.

Finally, for every occurrence of a Pause such as the one in Example (4.1.3),
two ground atoms are created. The predicate pause de�nes the pause-id and
pauseIn describes where the Pause has occurred.

4.2 MLN Model

We use the Alchemy tool3 [Kok et al., 2009] to de�ne a set of �rst-order logic
formulas for constructing an MLN model. The formulas are described in sec-
tion 4.2.1. We also use the tool for learning the weights of each formula, and
for testing an MLN model in predicting the next theme. In section 4.2.2, we
describe the inputs of an MLN model for learning weights and the queries for
predicting the next theme. In section 4.2.3, we describe the outputs (predic-
tions) of an MLN model.

4.2.1 MLN First Order Logic Formulas

Following the notation in the Alchemy tool, we use a shortened notation for
de�ning �rst-order logic formulas. All arguments of the �rst order logic formu-
las are variables written in small letters. Whenever free variables occur in the
antecedent (left side of the arrow), there is an implicit universal quanti�er of
each of the free variables around the whole formula.

First of all, atomic formulas are de�ned as shown in Figure 4.1.3. We also
specify the uniqueness property of each Entity, Task and Other in Figure

3http://alchemy.cs.washington.edu/
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Entity
∀e1 (entity(e1)→ ∃fid1 entityid(e1, fid1)).
entity(e1) ∧ entityid(e1, fid1) ∧ entityid(e1, fid2)→ fid1 = fid2.
entity(e1) ∧ entityid(e1, fid1) ∧ entity(e2) ∧ entityid(e2, fid1)→ e1 = e2.

Task
∀a1 (task(a1)→ ∃fid1 taskid(a1, fid1)).
task(a1) ∧ taskid(a1, fid1) ∧ taskid(a1, fid2)→ fid1 = fid2.
task(a1) ∧ taskid(a1, fid1) ∧ task(a2) ∧ taskid(a2, fid1)→ a1 = a2.

Other
∀o1 (other(o1)→ ∃fid1 otherId(o1, fid1)).
other(o1) ∧ otherId(o1, fid1) ∧ otherId(o1, fid2)→ fid1 = fid2.
other(o1) ∧ otherId(o1, fid1) ∧ other(o2) ∧ otherId(o2, fid1)→ o1 = o2.

Figure 4.2.1: Uniqueness property of an Entity, a Task and an Other

4.2.1. The rules specify that every Entity, Task or Other is unique (i.e.
has a unique description) and has a unique identi�er, which is relative to the
utterance-id where it is introduced. Each of these rules is marked with a full-
stop. That means these rules are hard-constrained and not associated with any
weight.

In this work, an MLN model predicts a relative dialogue theme, that is
whether a dialogue theme of the current utterance is new or identical to a
previous utterance. We do not speci�cally predict an appearance of an Entity,
a Task or an Other, because predicting an absolute identi�er will lead to a
sparse data problem. Therefore, an MLN model predicts whether a theme
continues from the last utterance (Un−1) or changes in the current utterance
(Un). Formula 4.2.1 where precede(u1, u2)⇒ u1! = u2., predicts that a theme
from Un−1 is the theme in Un. Formula 4.2.2 predicts a new theme (Shift
New) in Un regardless of the theme(s) in Un−1. To penalize the probability
of other themes, we de�ne formula 4.2.3 which speci�es that, if there is a new
theme in an utterance, other themes are not the theme of that utterance. For
smoothing, we de�ne formula 4.2.4 which says that a theme in an utterance
can be a theme in another utterance regardless of the order of the utterances.

precede(u1, u2) ∧ themeIn(u1, fid1)→ themeIn(u2, fid1) (4.2.1)

precede(u1, u2) ∧ themeIn(u1, id1)→ themeIn(u2, u2) (4.2.2)

themeIn(u2, u2) ∧ fid1! = u2→!themeIn(u2, fid1) (4.2.3)

themeIn(u1, id1)→ themeIn(u2, id1) (4.2.4)

A dialogue theme of type Other is complex because it includes di�erent
linguistic acts and because the reaction of a dialogue participant to an Other
theme may vary. Di�erent strategies can be used to speci�cally model hu-
man behavior in performing a linguistic act and giving response to it. In this
work, we handle an Other theme by simply predicting a new theme after an
appearance of an Other theme in the last utterance (see Formula 4.2.5).
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Question and Answer
questionIn(q1, u1)→ question(q1).
answerIn(ans1w, u1)→ ∃answ (answer(answ)).
answerAbout(answ, u1)→ ∃answ (answer(answ)).
precedeUtt(u1, u2) ∧ questionIn(q1, u1)→ ∃answ (answerIn(answ, u2))

Acknowledgement
ackIn(ackn, u1)→ ∃ack1 (ack(ackn)).
ackOf(ackn, fid1)→ ∃ack1 (ack(ackn)).

Pause
pauseIn(p1, u1)⇒ pause(p1).

Figure 4.2.2: Properties of a Question, an Answer, an Acknowledgement, and
a Pause

otherId(o1, oid1) ∧ precede(u1, u2) ∧ themeIn(u1, oid1)
→ themeIn(u2, u2) (4.2.5)

We de�ne the properties of a Question and an Answer in Figure 4.2.2.
By using Formula 4.2.6, an MLN model learns how likely it is that a Question
is immediately followed by an Answer. Moreover, it takes advantage of the
existence of a Question or an Answer for predicting the theme. When a
speaker asks about a theme, he is likely to continue talking about that theme.
Otherwise, it is likely that an Answer for that Question will be given. For-
mula 4.2.7 models this by predicting that Un has the same theme as Question
Un−1. On the contrary, a theme is intuitively not likely to be continued after an
Answer. Since the theme of the Question has been clari�ed by an Answer,
the theme in the next utterance is likely to change. Formula 4.2.8 predicts a
new theme in Un, after an appearance of an Answer in Un−1.

precede(u1, u2)∧questionIn(q1, u1)→ answ(answerIn(answ, u2)) (4.2.6)

precede(u1, u2) ∧ questionIn(q1, u1) ∧ questionAbout(q1, fid1)
→ themeIn(u2, fid1) (4.2.7)

precede(u1, u2) ∧ answerIn(ans1, u1)→ themeIn(u2, u2) (4.2.8)

We also specify the properties of an Acknowledgement and a Pause in
Figure 4.2.2. Formula 4.2.9 predicts a new theme after an appearance of an
Acknowledgement. A Pause can be a good indication for a thematic change
in Un. Formula 4.2.10 predicts a new theme after a Pause.

precede(u1, u2) ∧ ackIn(ack1, u1)→ themeIn(u2, u2) (4.2.9)

precede(u1, u2) ∧ pause(p1) ∧ pauseIn(p1, u1)→ themeIn(u2, u2) (4.2.10)
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Each of the �rst order logic formula is assigned a weight which roughly
indicates the tendency of a formula to be true in a training database described
in the next section. The more a formula is inconsistent with the Herbrand
interpretation in the training database, the lower is the weight that it gets.

4.2.2 MLN Inputs

We designed �rst-order logic formulas with the purpose of predicting the dia-
logue theme in the next utterance. These formulas are associated with weights
representing the tendency of each formula to be true. To learn weights and per-
form inference, an MLN takes inputs written in �rst-order logic. The weights
are learned from a database of ground atoms which describes the possible in-
terpretations of each atomic formula. The database should explicitly specify
truth values of all possible ground atoms. Therefore, it should contain not only
the positive ground atoms, but also the negative ones.

Our database was built from a text dialogue which is transformed into a
collection of grounded atomic formulas (see section 4.1.2). The transformed
text dialogue contains only positive ground atoms. For each predicate, we
generated all the remaining possible groundings as negative evidence. For
example, the positive and the generated negative evidence of the predicate
utterance in the sub-dialogue of �ve utterances in Table 4.4, is shown in Table
4.5.

Positive Evidence Negative Evidence
utterance(U1, Schmitt) !utterance(U1, Parker)
utterance(U2, Parker) !utterance(U2, Schmitt)
utterance(U3, Parker) !utterance(U3, Schmitt)
utterance(U4, Parker) !utterance(U4, Schmitt)
utterance(U5, Parker) !utterance(U5, Schmitt)

!utterance(U1, Cernan)
!utterance(U2, Cernan)
!utterance(U3, Cernan)
!utterance(U4, Cernan)
!utterance(U5, Cernan)

Table 4.5: Evidence for the predicate utterance in Table 4.4

MLNs perform inference to answer a given query. For the purpose of pre-
dicting the theme(s) in the next utterance, we query the predicate themeIn
and we also give some context to it. A context for a query includes:

� the de�nition of the next utterance

� a dialogue history containing the formal descriptions of one or more pre-
ceding utterances

� a re-introduction of some constants in the dialogue history, and

� several free ground atoms.

The size of a dialogue history is the number of previous utterances included
in the dialogue history. Using a di�erent dialogue history length may lead to
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Ground Atoms

Dialogue History
utterance(U699,Parker)
ack(Ack104)
ackIn(Ack104,U699)
ackOf(Ack104,U11)
themeIn(U699,U11)
utterance(U700,Schmitt)
precede(U699,U700)
question(Q64)
questionIn(Q64,U700)
questionAbout(Q64,U7)
themeIn(U700,U7)

Next utterance utterance(U701,Cernan)
precede(U700,U701)

Re-introduction of
Constants

utterance(U11,Schmitt)
speaker(Schmitt)
utterance(U7,Parker)
speaker(Parker)
speaker(Cernan)

Free Ground Atoms task(Free_Task)
entity(Free_Entity)
other(Free_Other)
question(Free_Q)
answer(Free_Answer)
ack(Free_Ack)
pause(Free_Pause)

Query themeIn

Table 4.6: A sample query with a dialogue history of size two

di�erent results of an MLN inference. To examine these e�ects, we provide a
query with di�erent lengths of dialogue history. We experimented with dialogue
histories consisting of either only the one, two, four, or six last utterances. If an
utterance in a dialogue history contains a constant that is introduced outside
of the dialogue history, that constant is re-introduced. If a dialogue history
does not include the introduction of a theme-id (i.e. the utterance-id where an
Entity, Task, or Other is introduced), the theme-id is re-introduced.

To perform inference, all variables speci�ed in an MLN must be grounded
in a given dialogue history. In fact, some variables may not be grounded in a
dialogue history (i.e. there is no ground atom for some variables in the dialogue
history), because the history is a rather short sub-dialogue. Therefore, we add
some ground atoms to ground such missing variables. We call these ground
atoms free ground atoms.

Table 4.6 shows a sample of a query and its context. By using this sample,
we would like to predict the dialogue theme(s) in utterance U701 (i.e. the
next utterance). The query context contains a dialogue history of length two
which lists all the ground atoms in the utterances U699 and U700. There is an
Acknowledgement in the utterance U699 and a Question in the utterance
U700. The Acknowledgement is about a dialogue theme (i.e. an Entity,
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Task or Other) introduced in utterance U11 and the Question is about a
theme introduced in utterance U7. Since U11 and U7 are not introduced in
the dialogue history, they are re-introduced. Similarly, the constants Parker,
Schmitt and Cernan are also re-introduced. The theme in U699 is identical
to a theme in U11 and the theme in U700 is identical to a theme in U 7. The
free ground atoms are added to anticipate missing Entity, Task, Other,
Question, Answer, Acknowledgement and Pause constants. In this
sample, the dialogue history lacks an Answer and a Pause.

A context only describes positive ground atoms. All other possible ground-
ings of the predicates in the context are implicitly not true. We explicitly
specify this by adding negative ground atoms. These negative ground atoms
prevent an MLN from predicting probabilities for all implicitly wrong ground-
ings.

4.2.3 MLN Outputs

An MLN model predicts the next theme by performing inference. Particularly,
it infers an answer to the query themeIn. An MLN model will compute the
probability of each possible grounding of the predicate themeIn. Since we have
generated all the negative evidence of the predicate themeIn in a query, an
MLN model will compute the possible groundings of the themeIn predicate of
the next utterance only. The outputs of the MLN inference show how probable
it is for each possible theme to appear in the next utterance. The probabilities
re�ect how an MLN predicts and what its predictions are. We consider the
predicate themeIn with the highest probability as the MLN theme prediction.
In addition to that, we also consider all other themes whose probabilities have
low di�erence from the highest probability.

The probabilities of all possible groundings in MLN outputs do not sum up
to 1, and therefore they do not form a probability distribution. In reality, it is
possible for an utterance to contain more than one theme. Thus, each possible
grounding could actually be a theme in the next utterance. An MLN model
re�ects this by computing probabilities for all possible groundings that could
appear in the next utterance

Possible Grounding Probability

themeIn(U701,U11) 0.488
themeIn(U701,U7) 0.924
themeIn(U701,U701) 0.646

Table 4.7: Sample results of the query in Table 4.6

Table 4.7 presents sample outputs of an MLN given the query in Table
4.6. For every theme in the dialogue history, the MLN model computes the
probability of it becoming the theme of U701. The MLN model computes the
probability that U11 (i.e. the theme-id of U699 ) and U7 (i.e the theme-id of
U700 ) will be the theme-id in U701. An MLN model does not only consider
the theme(s) of the last utterance but also the theme(s) of all other utterances
in the dialogue history. In addition to that, an MLN model computes the
probability of a new theme.
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The probability of a possible grounding shows some degree of certainty (i.e.
how certain an MLN model that the grounding is true). The MLN expects with
49% probability that a dialogue theme in U11 is a theme in U701. Moreover,
it is 64% sure that there will be a new theme in U701. With 92% probability,
the MLN claims that the theme in U7 is/are the theme in U701. Since we
consider the possible grounding with the highest probability as the MLN theme
prediction, the MLN predicts that the theme of U701 is the same as the theme
in U7. In this case, the MLN predicts that there will be a continuation of theme
in U701, because U7 is the theme-id of U700. The MLN has learned that a
continuation of theme is likely to happen after an occurrence of a Question.
Since U700 contains a Question, the MLN is pretty certain that there will be
a continuation of the theme.



Chapter 5

Evaluation

We carried out experiments using the �rst-order logic formulas described in
the previous chapter. The weights of each formula were learned using di�erent
training data sets. We performed 5-fold cross validation to estimate the average
performance of the MLN models in practice. The models were evaluated using
the annotated data described in section 4.1. Furthermore, we compared the
MLN models to two baselines. The �rst baseline is a random choice from
all possible themes within a given dialogue history. The second baseline is a
basic theme prediction model which simply continues every theme in the last
utterance.

In the next section, we describe the evaluation methods we used and the
methodology of the evaluation. Section 5.2 explains how we split the dialogue
data to create training and test data sets. Section 5.3 compares the weights of
di�erent MLN models learned using di�erent training sets. Finally, we present
and analyze the evaluation results in section 5.4.

5.1 Evaluation Methodology

As described in section 4.1, we annotated 1000 utterances from the Apollo
17 Journal. We split the utterances to create a training data set and a test
data set. The training data set is used to learn the weights of an MLN model.
Di�erent training data sets will result in di�erent weights of the same �rst-order
logic formulas, and therefore they will produce di�erent MLN models (i.e. a
set of �rst-order logic formulas and their weights). An MLN model can be used
to predict the focus or foci of each utterance in a test data set by inferring a
query. Subsequently, the MLN predictions (i.e. the outputs of MLN inference)
can be evaluated by comparing them to the theme-annotations in the test data
set.

Our dialogue data size is fairly small, and therefore it might not be repre-
sentative of real data in practice. Using a small training data set may lead to an
over-�tting problem. In our case, for instance, a resulting MLN model may �t
the training data set very well, but still not �t the test data. This can happen
because the MLN model learns the characteristics of thematic changes from
the training data set. The characteristics in the training data set, however,
may be di�erent from the thematic changes in the test data.

Cross validation is a technique to estimate the performance of a model

45
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across multiple training and test data sets, so that the model performance is
not biased by certain training and test data sets. In k-fold cross validation,
we run k-rounds of training and testing using di�erent training and test data
sets. First of all, the data is partitioned into k-subsamples. Each subsample
is then used as a test data set for one round of cross-validation. Therefore, we
will have k test data sets. The k-th test data set is the test data set for the
k-th round of cross-validation. For each round, the remaining k-1 subsamples
are used to create a training data set. Each training data set shares a subset
of another training data set, but in principle it should still be di�erent from
each of other training data sets.

Section 5.2 explains how we split our data to perform 5-fold cross-validation.
To obtain representative weights, an MLN needs an adequate amount of train-
ing data. On the other hand, we also need enough data for testing and eval-
uating the MLN model's performance. We use two sizes of training data sets,
namely sets of 500 and 700 utterances in size, to measure the in�uence of the
size in learning weights and model performance. The rest of the data is used
to create a test data set.

For each training data size, we perform 5-fold cross validation. In each
round of cross validation, an MLN model is generated. Each 5-fold cross vali-
dation will produce �ve MLN models. Because we use two training data sizes,
we have 10 MLN models (i.e. 2 training data sizes × 5-rounds of cross valida-
tion). We compare the weights of the MLN models in section 5.3 and we show
that the standard deviations of the weights of the �rst-order logic formulas are
generally low. This suggest that the weights obtained from di�erent rounds of
cross validation are fairly close to the expected weight (i.e. the mean of the
weights).

Furthermore, as explained in section 4.2.2, we are interested in observing
the e�ects of varying the dialogue history size. The size of a dialogue history
is the number of utterances it contains. In our experiments, we used dialogue
history lengths one, two, four and six. We performed 5-fold cross validation
for each dialogue history size. In total, we ran 40 experiments (i.e. 2 training
data sizes × 5-rounds cross validation × 4 dialogue history sizes) using 10 MLN
models.

We evaluated MLN outputs by comparing them to the annotation of their
corresponding test data set. For each experiment, we computed the average
precision, recall and F1 score of the MLN model over all utterances in a test
data set. The precision of theme prediction of an utterance is computed as
the number of predictions which are identical to the annotated themes of the
utterance, divided by the number of all MLN predictions for the utterance.

Precision =
the number of predictions identical to the annotations

the number of predictions

The second evaluation measure we use is recall. It is de�ned as the number of
predictions that are identical to the annotated themes, divided by the number
of the annotated themes for the utterance.

Recall =
the number of predictions identical to the annotations

the number of annotations
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The F1 score combines precision and recall with equal importance.

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

For each utterance, we selected the MLN prediction that has the highest prob-
ability. Additionally, we selected all other predictions whose probabilities are
less than 0.05 below the highest probability.

We compared the average precision, recall and F1 scores of the MLN models
that we obtained using di�erent training sizes. We also compared the models
to two baselines, a random baseline and an informed baseline. The random
baseline predicts the next theme by randomly picking one of the themes in
the dialogue history of given length, or a new theme. On the other hand, the
informed baseline is a basic theme prediction model which simply continues
all the themes of the last utterance. For the sample query and its context in
Table 4.6, the informed baseline will predict themeIn(U701,U7), since U7 is
the theme in U700. The informed baseline is adapted from centering theory
[Grosz et al., 1995] described in section 2.3.4. The informed baseline is slightly
di�erent from centering theory in the way that it continues every theme in the
last utterance, while centering theory only continues a single theme of the last
utterance.

Furthermore, we investigate the performance of the MLN models in predict-
ing di�erent types of thematic/focus change. As described in section 1.2, we
examine three types of thematic changes, namely Continuation, Shift New and
Shift Old. For Shift Old, we consider the themes of the utterances in a dialogue
history, apart from the last utterance. We computed how many times the MLN
models successfully predict the annotated theme of each utterance in each test
data set. A prediction is successful if it is identical to the theme annotation.
In other words, we compute the recall for each thematic type. For the recall of
Continuation, we computed the number of predicted Continuations identical
to the annotation. We calculated the recall of Shift New and that of Shift Old
in a similar way. We describe the results of this investigation in section 5.4.4.

Finally, we analyzed the errors produced by the MLN models in predicting
the next theme. An error is a failure in predicting the next theme precisely as
the theme in the consulted annotation. We observe three kinds of errors:

� wrong prediction: predicting a di�erent theme from the annotation

� lack of prediction: not predicting a theme in the annotation

� over-prediction: predicting an additional theme other than the themes in
the annotation

The error analysis is presented in section 5.4.5.

5.2 Data Splitting

Our annotated dialogue data consists of 1000 utterances. We numbered the
utterances sequentially from 1 to 1000. We used 500 and 700 sequential ut-
terances to create two training data set sizes. We call the respective training
data sets TRAIN500 and TRAIN700. Moreover, we used test data sets of 300
sequential utterances which are neither contained in the TRAIN500 nor in the
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Figure 5.2.1: Data splitting over 5-fold cross validation

TRAIN700 data sets. An MLN model trained with a TRAIN500 set is called
an MLN500 model, and an MLN model trained with a TRAIN700 set is called
an MLN700 model. Di�erent training sets produce di�erent weights for the
same �rst-order logic formulas and therefore they yield di�erent MLN models.

We used cross validation to estimate the performance of the MLN500 and
MLN700 models over a variety of data. We chose 5-fold cross validation (k1−
k5) using di�erent combinations of the training and test data sets. Our training
and test data set selections are visualized by Figure 5.2.1. The left side of the
Figure shows the data splitting for 5-fold cross validation using TRAIN500
sets, whereas the right side shows the data splitting for 5-fold cross validation
using TRAIN700 sets. The test data sets are exactly the same in both sides.

Since dialogue data is one-dimensional and sequential, we cannot choose
utterances randomly and collect them as a training or a test data set. Instead,
we take blocks of utterances for our training and test data sets. We split our
dialogue data into three blocks of utterances:

� a training data set (white block in Figure 5.2.1),

� a test data set (gray block in Figure 5.2.1), and

� the rest of the utterances which are not used (black block in Figure 5.2.1).

We made variations of the training and test data sets by shifting the blocks. A
TRAIN700 set always contains a corresponding TRAIN500 set and also con-
tains additional 200 utterances. These 200 utterances comprise the black boxes
in the left side. To avoid over-�tting the TRAIN500 sets to certain parts of the
data, the black blocks are gradually shifted over all cross-validations that to-
gether cover all utterances with the same frequency. This is important because
if, for example, the black blocks only stayed at the beginning and at the end of
the data, the TRAIN500 sets would be biased towards the middle part of the
data. That means that the models would learn much of the characteristics of
the thematic changes in the middle part, but they would miss the characteris-
tics in the other parts. If the characteristics in these other parts are di�erent
from those in the middle part, the trained models might fail to predict those
thematic changes in the test data sets that have such characteristics.

Table 5.1 summarizes the di�erent sets of utterances for the TRAIN500, the
TRAIN700 and the test data sets. The TRAIN500 set for the �rst round of
cross validation k1 is a sub-dialogue containing all utterances from utterance
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K TRAIN500 set TRAIN700 set Test set

1 201-700 1-700 701-100
2 401-900 201-900 1-200 and 900-1000
3 1-100 and 601-1000 1-100 and 401-1000 101-400
4 1-300 and 801-1000 1-300 and 601-1000 301-600
5 1-500 1-500 and 801-1000 501-800

Table 5.1: The training and test data sets for performing 5-fold cross validation
(in utterance number-id)

number 201 to 700. The TRAIN700 set for k1 contains all utterances from
utterance number 1 to 700, which means that it covers the TRAIN500 set.
The test data for round k1 contains the remaining utterances from utterance
number 701 to 1000. For round k2, the TRAIN500 set contains all utterances
from 401 to 900, and the TRAIN700 set from 201 to 900. The test data set
for round k2 combines the �rst 200 utterances at the beginning of the dialogue
data and the last 100 utterances at the end of the data. For round k3, the
TRAIN500 set combines two sub-dialogues, namely the �rst 100 utterances at
the beginning of the data and 400 utterances at the end of the data. Similar to
the TRAIN500 set, the TRAIN700 set for round k3 uses the �rst 100 utterances
at the beginning of the data and the last 600 utterances at the end of the
data. The TRAIN500 set for round k4 combines the �rst 300 utterances at
the beginning of the data and 200 utterances at the end of the data. The
TRAIN700 set also contains the �rst 300 utterances and 400 last utterances.
The TRAIN500 set for the last round k5 uses the �rst 500 utterances. The
TRAIN700 set includes the TRAIN500 and also the 200 last utterances at the
end of the data.

5.3 MLN Weights

An MLN learns weights for all its �rst-order logic formulas that are not hard-
constrained (i.e. those that do not end with a full-stop). A weight of a formula
does not designate the probability of the formula, but represents the tendency
of the formula to be satis�ed in a given training data set. The higher the
weight of a formula, the more likely it is that the formula is true in a data set.
In contrast, the lower the weight of a formula, the more unlikely it is that the
formula is true in a data set. The characteristics of di�erent training sets can
be di�erent from one another. Some formulas may have higher tendencies in
some training sets and lower tendencies in other training sets.

We used the di�erent training sets described in section 5.2 to learn weights
for the �rst-order logic formulas described in 4.2.1. In Tables 5.2, we summarize
the weights of Formula 4.2.1 through Formula 4.2.10 that were learned using
the TRAIN500 sets over 5-fold cross validation. Descriptions of the formulas
are given in Figure 5.3.1. For each formula, we computed the means and
standard deviations of all the weights learned over 5-fold cross validation (i.e.
of all MLN500 models). The mean of a formula shows the average tendency of
the formula to be true. The standard deviation of a formula indicates how far
its weights in di�erent rounds of the cross validation deviate from the average
weights of the formula. The higher the standard deviation, the larger the
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FOL
Formula

5-Fold Cross Validation
Mean Std. Dev

k1 k2 k3 k4 k5
4.2.1 2.483 2.752 2.251 0.453 2.772 2.142 0.986
4.2.2 1.653 0.248 1.583 0.329 1.730 1.109 0.751
4.2.3 0.005 -0.010 0.002 0.000 0.009 0.001 0.007
4.2.4 0.007 0.008 0.007 0.043 0.017 0.017 0.016
4.2.5 0.141 1.529 -0.060 0.103 -0.175 0.307 0.694
4.2.6 1.577 2.923 1.499 0.348 1.860 1.641 0.920
4.2.7 4.315 4.798 3.875 0.824 4.696 3.702 1.649
4.2.8 3.096 1.657 3.097 0.439 2.775 2.213 1.155
4.2.9 3.080 1.709 3.070 0.448 2.815 2.225 1.142
4.2.10 0.088 -1.156 -0.417 0.224 -0.278 -0.308 0.541

Table 5.2: The weights of the �rst-order logic (FOL) formulas learned using
TRAIN500s over 5-fold cross validation

Formula Description
4.2.1 Continue the theme of the last utterance
4.2.2 Predict a new theme
4.2.3 No other theme when there is a new theme
4.2.4 A theme is a theme in another utterance
4.2.5 Predict a new theme after an other
4.2.6 Predict an answer after a question
4.2.7 Continue of the theme of a question
4.2.8 Predict a new theme after an answer
4.2.9 Predict a new theme after an acknowledgement
4.2.10 Predict a new theme after a pause

Figure 5.3.1: Description of �rst-order logic formulas of the MLN models

deviations are. The average standard deviation over all the �rst-order logic
formulas is 0.784, which is fairly low. This suggests that the weight of each
formula does not deviate too much from its expected weight (i.e. the mean of
the weights obtained from 5-fold cross validation).

Figure 5.3.2 highlights the changes of the weights of each �rst-order formula
over 5-fold cross validation. Generally, the weights of all formulas in k4 get
lower than in other k. We suspect that this is because the characteristics
of the thematic changes in the training data have a wide range of variation
and many are not explained by the �rst-order formulas. So, the formulas are
often inconsistent with the annotated training data. The formulas receive low
weights due to the high rate of inconsistency. Moreover, the characteristics are
almost equally distributed and there are no characteristics that particularly
stand out. Therefore, the weights of the formulas are quite similar and fairly
low.

Despite the low weights, in section 5.4.2 we show that the average perfor-
mance of MLN500 models using k4 is better than the average performance over
all training sets. This suggests that the higher weights of �rst-order logic for-
mulas do not necessarily improve an MLN model performance. The weights can
be interpreted as the strength of the tendency of the �rst-order logic formula
to be true. However, the degree of strongness does not explicitly explain the
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Figure 5.3.2: The �uctuation of the MLN500 models' weights over 5-fold cross
validation

performance of an MLN model. Moreover, a weight should not be interpreted
from the value itself, but from its relations to other weights.

Formula 4.2.1, which predicts a continuation of the theme of the last utter-
ance, is much less likely to be true in k4 compared to the other rounds of cross
validation. On the other hand, Formula 4.2.4, which speci�es that a theme
in an utterance can also be a theme in another utterance, and Formula 4.2.10
which predicts a new theme after an appearance of a Pause in the last utter-
ance, get higher weights in k4. This suggests that there is more evidence in k4
that increases the tendency of Formula 4.2.4 and Formula 4.2.10 to be true.

However, Formula 4.2.4 is generally not likely to be true (i.e. a theme in
an utterance does not tend to be a theme in another utterance). Although a
theme may be a theme of another utterance, no theme is likely to be the theme
of every other utterance. We believe that the formula received a low weight
for that reason. Over all �ve rounds of cross validation, the MLN models also
learned that the Formula 4.2.10 is rather unlikely, except in k4. In other words,
according to the training data sets, a Pause does not really tend to be followed
by a new theme.

The prediction of a new theme, which is crafted in Formula 4.2.2, is less
likely to be true in k2 and k4, but more likely in k1, k3 and k5. Overall, the
MLN models tend to predict a continuation of theme rather than a new theme.
The MLN models also believe that a new theme does not tend to be a single
theme of an utterance, as indicated by the low weights of Formula 4.2.3 over
all k. The tendency of a new theme to occur after an Other theme (i.e. the
Formula 4.2.5), is generally low but higher than that of Formula 4.2.3.

On the other hand, the weights of Formula 4.2.6 show that a Question has
a slight tendency to be followed by an Answer. Moreover, Formula 4.2.7 is
assigned the highest average weight. This means that the theme in aQuestion
is very likely to be continued in the next utterance. Moreover, the weights of
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FOL
Formula

5-fold Cross Validation
Mean Std. Dev

k1 k2 k3 k4 k5
4.2.1 0.444 0.465 2.920 3.500 0.927 1.651 1.450
4.2.2 0.333 0.382 2.056 2.263 0.552 1.117 0.958
4.2.3 0.000 0.000 0.005 0.029 0.002 0.007 0.012
4.2.4 0.037 0.026 0.006 0.004 0.025 0.020 0.014
4.2.5 0.107 0.201 -0.050 -0.102 2.101 0.452 0.930
4.2.6 0.378 0.400 1.864 2.926 0.489 1.211 1.145
4.2.7 0.834 0.889 5.026 6.422 1.526 2.940 2.603
4.2.8 0.404 0.448 3.679 3.121 1.126 1.756 1.541
4.2.9 0.426 0.476 3.662 3.181 1.098 1.768 1.541
4.2.10 -0.037 0.116 0.198 0.684 0.610 0.314 0.316

Table 5.3: The weights of the �rst order logic formulas learned using
TRAIN700s over 5-fold cross validation
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Figure 5.3.3: Standard deviations of the weights of the MLN500 and MLN700
models

Formula 4.2.8 show that a new theme is likely to occur after an occurrence of
an Answer in the last utterance. It is similar to the tendency of an occurrence
of a new theme after an Acknowledgement as suggested by the weights of
Formula 4.2.9.

Table 5.3 is similar to Table 5.2. It shows the weights of the �rst order logic
formulas obtained using TRAIN700 sets over 5-fold cross validation. The stan-
dard deviations of the weights of the MLN700 over 5-fold cross validation have
a similar trend to those of MLN500 weights. The average standard deviation
of the MLN700 weights, however, is slightly higher than that of the MLN500
weights. The comparison between the standard deviations of the weights of
the MLN500 and MLN700 models is illustrated in Figure 5.3.3. The Figure
shows that weights of Formula 4.2.3 and Formula 4.2.4 in both MLN500 and
MLN700 models are very stable over 5-fold cross validation. On the contrary,
there is a large deviation in the distribution of the weights of Formula 4.2.7.
The deviations of the weights of the other formulas are quite normal because
they only vary approximately one unit from the their expected weights.

The characteristics of thematic/focus changes in the TRAIN700 sets can be
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Figure 5.3.4: Average weights of the MLN500 and MLN700 models

di�erent from the TRAIN500 sets. To observe the characteristics among the
training sets, we compared the average weights of all the MLN500 and MLN700
models. Figure 5.3.4 highlights that the average weights of both MLN500 and
MLN700 models are very much alike. In both MLN500 and MLN700 models,
the continuation of the themes in the last utterance (Formula 4.2.1) is more
likely than the prediction of a new theme in the next utterance (Formula 4.2.2).
We used di�erent strategies to predict an appearance of a new theme. From
various training data sets, the models learned that a new theme is likely to
appear after an occurrence of an Answer or an Acknowledgement in the
last utterance (Formula 4.2.8 and 4.2.9). All the MLN models also tend to
predict Continuations if there is a question in the previous utterance.

In the MLN500 models, Formula 4.2.10 obtains the lowest weight and it
is rather unlikely to be true. In the MLN700 models, however, it is a bit
more likely to be true. For both MLN500 and MLN700 models, Formula 4.2.3
and Formula 4.2.5 have a low tendency to be true, while Formula 4.2.7 has a
the highest tendency compared to the other formulas. The average weights of
some formulas including Formula 4.2.6, 4.2.7, 4.2.8 and 4.2.9 are smaller in the
MLN700 models compared to in the MLN500 models. The fall in the weights
seems to be caused by the greater variety of thematic changes in TRAIN700.
The �rst-order logic formulas seem to be inconsistent with many interpretations
of the additional ground atoms in the TRAIN700 sets.

Formulas with low or negative weights are still useful. We show in sec-
tion 5.4.2 that the removal of Formula 4.2.3 and Formula 4.2.4 decreases the
performance of MLN700 models.

5.4 Evaluation Results

In this section, we present the results of the evaluation of the MLN model's per-
formance. First of all, in section 5.4.1, we exemplify successful and unsuccesful
MLN theme predictions. Then, in section 5.4.2, we describe and compare the
performance of the MLN500 and MLN700 models over 5-fold cross validation
using di�erent dialogue history lengths. Moreover, we compare the model per-
formance to random and informed baselines in section 5.4.3. In section 5.4.4,
we also present the results of the MLN models in predicting each type of the
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annotated thematic changes. Finally, in section 5.4.5, we present an analysis
of the errors produced by the MLN models in predicting theme.

5.4.1 MLN Theme Prediction

An MLN model is able to answer a question of what the theme in the next
utterance will be. It takes a query and its dialogue context as its inputs,
and outputs the probability of each possible theme in the next utterance. We
describe the inputs and outputs of an MLN model in section 4.2.2 and 4.2.3.
In evaluating an MLN model, we do not consider all the outputs of an MLN
as its predictions. Instead, we only consider the MLN output with the highest
probability and all other outputs whose probabilities are no more than 0.05
behind, as MLN predictions.

An MLN prediction of a thematic change can be of type Continuations,
Shift News or Shift Olds. A predicted theme in the next utterance is correct,
if it is identical with the annotation of that utterance. In this section, we
illustrate two samples where an MLN model correctly predicts a Continuation
and a Shift New. Additionally, we show an unsuccessful sample in predicting a
Shift Old.

Dialogue history
Parker: Okay. We copy that.
Schmitt: Do you need to take a vertical pan?

Next utterance Cernan: Yeah, I've gotten it all.

Figure 5.4.1: The text dialogue of sample in Table 4.6

Figure 5.4.1 shows the text version of the sample query in Table 4.6. Schmitt,
the speaker of the utterance U669 asked about a pan, which means that he
focused his attention to a pan. In the next utterance, Cernan gave an Answer
which is also about the pan. The sample results in Table 4.7 are outputs of an
MLN model trained with 700 utterances and given the query in Table 4.6. The
MLN model predicts that there will be a Continuation in the next utterance.
This prediction model is correct as the speaker of the next utterance indeed
continued talking about the theme in the last utterance.

Dialogue history
Cernan: I'm on frame count 42.
Parker: Copy, 42.

Next utterance Cernan: Did you get a locator from here, Jack?

Figure 5.4.2: A sample of a Shift New

Figure 5.4.2 shows a sample dialogue text where the theme of the next
utterance is a new theme. In the two utterances within the dialogue history,
Cernan and Parker were talking about a frame count. The theme of the �rst
utterance is continued in the second utterance as Parker gave an Acknowl-
edgement about the frame count. In the next utterance, Cernan introduced
a locator as a new theme because the locator was not a theme appearing in the
previous utterances.
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Possible Grounding Probability

themeIn(U709,U707) 0.733
themeIn(U709,U709) 0.852

Table 5.4: Sample results of an MLN model for the sample in Figure 5.4.2

In our dialogue data, the �rst utterance of the sample in Figure 5.4.1, is
annotated as the utterance U707. Given a query using the context from Figure
5.4.1, an MLN model predicts the theme of the utterance U709. Using the same
MLN model as in the previous example, we show that the model is also able
to predict an occurrence of a new theme correctly. The MLN model computes
the probabilities of all possible themes of U709, which are shown in Table 5.4.
Since the theme of U708 is identical with the theme of U707, there are only
two possible groundings of the predicate themeIn of U709. The MLN predicts
with 85% probability that the theme in U709 will be new, which is correct. The
probability of a new theme appearing in U709 is higher than the probability
of a continuation of theme U707 in U709, because the MLN has learned that
a new theme tends to appear after an occurrence of an Acknowledgement.

Dialogue history

Cernan: Yeah, I'll get that.
Schmitt: This �llet?
Cernan: You got it?
Parker: And, 17...

Next utterance Schmitt: (To Houston) This is a �llet from
underneath the rock.

Figure 5.4.3: A sample of Shift Old

Another type of thematic change is Shift Old. Figure 5.4.3 presents a sample
text dialogue with dialogue history length four. In this sample, "�llet" is
introduced as the theme of the second utterance in the dialogue history. It is
continued as the theme of the third utterance. In the fourth utterance, which
is the last utterance, the theme is shifted to "17", which is a new theme. The
theme in the next utterance is again about "�llet". Therefore, there is a theme
shift to the theme of the second and the third utterances.

Possible Grounding Probability

themeIn(U727,U561) 0.468
themeIn(U727,U578) 0.472
themeIn(U727,U10) 0.695
themeIn(U727,U727) 0.610

Table 5.5: Sample results of an MLN model for the sample in Figure5.4.3

An MLN model computes the probabilities of all possible groundings of
the theme in the next utterance. However, the probability of an old theme is
typically lower than the probability of the theme of the last utterance or the
probability of a new theme. Table 5.5 shows the results of an MLN model given
the query using the sample in 5.4.3. The dialogue history starts from utterance
U723 whose theme is in U561. U724 and U725 have the same theme which
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History
Size

Mea-
sure

5-Fold Cross Validation
Mean

Std.
Devk1 k2 k3 k4 k5

1 P 0.622 0.515 0.533 0.602 0.600 0.574 0.047
R 0.623 0.508 0.543 0.602 0.602 0.576 0.048
F1 0.622 0.511 0.538 0.602 0.601 0.575 0.048

2 P 0.609 0.515 0.524 0.557 0.591 0.559 0.041
R 0.615 0.508 0.523 0.730 0.608 0.597 0.089
F1 0.612 0.511 0.524 0.632 0.599 0.576 0.055

4 P 0.604 0.519 0.519 0.551 0.576 0.554 0.037
R 0.612 0.518 0.523 0.743 0.657 0.611 0.095
F1 0.608 0.518 0.521 0.633 0.614 0.579 0.055

6 P 0.594 0.519 0.510 0.536 0.567 0.545 0.035
R 0.602 0.518 0.508 0.747 0.650 0.605 0.099
F1 0.598 0.518 0.509 0.624 0.605 0.571 0.053

Average
P 0.607 0.517 0.522 0.562 0.584 0.558 0.040
R 0.613 0.513 0.524 0.706 0.629 0.597 0.083
F1 0.610 0.514 0.523 0.622 0.605 0.575 0.056

Table 5.6: The performance of the MLN 500 models over 5-fold cross validation

is in U578. The theme of U726 is in U10. The annotation suggests that the
theme in U727 is U578 (47%). However, the MLN yields higher probabilities
for a continuation of the theme of U726 (69%) and for a new theme in U727
(61%). Thus, according to the annotation, the MLN model fails to predict the
theme of U727.

We ran experiments with di�erent MLN models. Some models are only able
to predict theme continuations and appearances of new themes. Nevertheless,
some other models are also able to predict a theme shift to an old theme. We
discuss the performance of these MLN models in the next sections.

5.4.2 MLN Model Performance

Using the di�erent TRAIN500 and TRAIN700 sets described in 5.2, we created
10 MLN500 models and 10 MLN700 models. We used di�erent dialogue history
sizes (i.e. one, two, four, and six) and tested all the MLN models against �ve
test data sets. In total, we have run 40 experiments and computed precision,
recall and F1 score (i.e. performance measures) for the results of each experi-
ment. We summarize the precision, recall and F1 score values of the MLN500
models in Table 5.6 and those of MLN700 models in Table 5.7. For each dia-
logue history size, we computed average performance measures over the 5-fold
cross validation. Moreover, we also computed the standard deviation of the
values.

Over all dialogue history sizes, the MLN500 models yield the highest pre-
cision in the �rst round of cross validation k1. The MLN700 models, on the
other hand, obtain the highest precision in k5. The highest recall and F1 score
of the MLN500 models are reached in k4, while those of the MLN700 models
are reached in k1. On average over all 5-fold cross validation, both MLN500
and MLN700 precision decreases as the dialogue history size increases. The
average recall of the MLN500 models goes up from dialogue history lengths



CHAPTER 5. EVALUATION 57

History
Size

Mea-
sure

5-Fold Cross Validation
Mean

Std.
Devk1 k2 k3 k4 k5

1 P 0.620 0.600 0.532 0.583 0.608 0.589 0.034
R 0.617 0.569 0.547 0.587 0.605 0.585 0.028
F1 0.618 0.584 0.539 0.585 0.607 0.587 0.030

2 P 0.577 0.559 0.523 0.567 0.604 0.566 0.029
R 0.665 0.694 0.563 0.615 0.618 0.631 0.050
F1 0.618 0.619 0.543 0.590 0.611 0.596 0.032

4 P 0.567 0.545 0.520 0.537 0.592 0.552 0.028
R 0.712 0.727 0.608 0.665 0.612 0.665 0.055
F1 0.631 0.623 0.561 0.594 0.602 0.602 0.028

6 P 0.570 0.534 0.509 0.543 0.579 0.547 0.028
R 0.720 0.708 0.603 0.690 0.607 0.666 0.056
F1 0.636 0.609 0.552 0.608 0.593 0.600 0.031

Average
P 0.584 0.560 0.521 0.558 0.596 0.563 0.030
R 0.679 0.675 0.580 0.639 0.611 0.637 0.047
F1 0.626 0.609 0.548 0.594 0.603 0.596 0.030

Table 5.7: The performance of the MLN700 models over 5-fold cross validation

one to four, but then goes down for dialogue length six. In the case of the
MLN700 models, the average recall keeps increasing as the dialogue history
length increases. The F1 scores for both MLN500 and MLN700 models reach
their peaks using a dialogue history length of four. Over all dialogue history
lengths and the 5-fold cross validation, the average performance measures of
the MLN700 models are higher than those of the MLN500 models. Moreover,
the standard deviations of the performance measures of the MLN700 models
are smaller than those of the MLN500 models. The standard deviations of both
the MLN500 and MLN700 models are lower than 0.1. This suggests that the
results of the MLN models over all experiments are pretty stable.

Over all experiments, the MLN700 models yield better theme predictions
than the MLN500 models. The precisions of MLN700 models are similar to
those of MLN500 models, but their precisions are slightly higher on average.
Their average recall and F1 score values are 4% and 2% higher than those of
the MLN500 models.

In section 5.3, we discussed that the weights of the �rst-order logic formulas
in the MLN500 models trained using k4 training data sets are lower than using
other training data sets. We also discussed that the weights themselves do not
directly re�ect model performance. Instead, the distribution of the weights
should be considered. In Table 5.6, we show that the performance of the
MLN500 models in k4 yield the highest average recall and F1 score. The
average precision is also higher than the average precision over all k. The
weights learned using the training data set in k4 are more equally distributed
than in other rounds of cross validation.

Since the average performance of MLN500 models in k4 is better than the
others, we suppose that the MLN500 models in other rounds su�er from over-
�tting problems. The problem might be because there is strong evidence for
some rules and lack of evidence for other rules. The rules which characterize
thematic changes for speci�c patterns, such as an occurrence of an Acknowl-
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edgement, get lower weights in k4. In contrast, the more general rule char-
acterizing a theme re-occurrence get a weight about 6 times higher in k4 than
in most other rounds. These phenomena also appear in the cross validation for
MLN700 models. In section 5.3, the three MLN700 models yielding the best F1
scores are shown to have similar phenomena regarding the much higher weight
of the theme re-occurrence rule relative to the other rules.

Moreover, in section 5.3, we show that some �rst-order logic formulas of
an MLN model are associated with low weights. For instance, Formula 4.2.3
and Formula 4.2.4 have low weights in the MLN700 models. To examine the
impact of the �rst-order logic formulas that have low weights, we generated
MLN models without Formula 4.2.3 and Formula 4.2.4 using the TRAIN700
sets. We call these models MLN700'. We tested them using our test sets
with dialogue history length four. Then, we compared the performance of
the MLN700' models to that of the MLN700 models containing Formula 4.2.3
and Formula 4.2.4. We computed the performance measures of the MLN700'
models. Precision, recall and F1 score are all the same, that is 0.538. The
precision (0.552), the recall (0.665) and the F1 score (0.602) of the MLN700
models are higher that those of the MLN700'.

5.4.3 Comparison to Baselines

We compare the performance of the MLN500 and MLN700 models to that
of random baselines. A random baseline randomly chooses a theme from all
existing themes in a given dialogue history or a new theme. The probability
of a random baseline to correctly predict the themes in the next utterance
depends on the dialogue history length. Since a longer dialogue history tends
to contain more themes than in a shorter dialogue history, the random baseline
performance goes down from dialogue history lengths one to six.

We also compare the MLN models to an informed baseline which always
predict all the themes in the last utterance to be the theme of the next ut-
terance. Unlike for the random baseline, the informed baseline performance is
not a�ected by the di�erent lengths of a dialogue history. This is because an
informed baseline is only informed about the last utterance. Thus, it always
produce the same predictions regardless of the length of a dialogue history.

For both random and informed baselines, we computed precision, recall and
F1 score values for each test data set using di�erent dialogue history lengths.
For each dialogue history length, we compute the average values of the perfor-
mance measures. Table 5.8 suggests that both the MLN500 and the MLN700
models outperform the random baseline. Averaged over all 5-fold cross val-
idation datasets and all di�erent history lengths, the MLN500 models yield
approximately 17.4% higher precision (0.558) and 23% higher recall (0.597)
than the random baseline which yields precision 0.385 and recall 0.368. Be-
sides, the MLN700 models yield approximately 18% higher average precision
and 27% higher average recall values than the random baseline. According
to Wilcoxon signed rank tests, the precisions and recalls of the MLN500 and
MLN700 models are signi�cantly higher than those of the random baselines
generally at p-value < 0.01.

Both the MLN500 and the MLN700 models also yield slightly better results
than the informed baseline. The MLN500 models yield 2% higher average pre-
cision and 6% higher average recall compared to the precision (0.538) and the
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History
Size

Average
Perfor-
mance

MLN500
Models

MLN700
Models

Informed
Baseline

Random
Baseline

1 P 0.574 0.589 0.538 0.510
R 0.575 0.585 0.538 0.489
F1 0.575 0.587 0.538 0.500

2 P 0.559 0.566 0.538 0.417
R 0.597 0.631 0.538 0.400
F1 0.576 0.596 0.538 0.408

4 P 0.554 0.552 0.538 0.352
R 0.611 0.665 0.538 0.333
F1 0.579 0.602 0.538 0.342

6 P 0.545 0.547 0.538 0.259
R 0.605 0.666 0.538 0.248
F1 0.571 0.600 0.538 0.253

P 0.558 0.564 0.538 0.385
Average R 0.597 0.637 0.538 0.368

F1 0.575 0.596 0.538 0.376

Table 5.8: Average performance of MLN500 and MLN700 models compared to
the Informed and the Random baselines

recall (0.538) of the informed baseline. Besides, the MLN700 models yield ap-
proximately 3% higher average precision and 10% higher average recall values.
The average F1 score (0.575) of the MLN500 models are about 4% higher than
that of the informed baseline and 20% higher than that of the random baseline.
The F1 score of the MLN700 models is 22% better than that of the random
baseline and 6% better than that of the informed baseline.

The precisions and recalls of the MLN700 models are generally signi�cantly
higher than those of the informed baseline at p-value < 0.20. Moreover, preci-
sions of the models using the dialogue history size 1 are usually more signi�cant
than using other sizes. In contrast, the recalls are more signi�cant using a larger
size. The precisions and recalls of the MLN500 models using the dialogue his-
tory size 1 are also signi�cantly higher than those of the informed baseline at
p-value < 0.20.

We suspect that the performance of MLN models are not much better than
the informed baseline, because the training data is still insu�cient for learning
proper weights of the �rst-order formulas. Using the TRAIN700 data sets
does not improve the results much in comparison to the use of the TRAIN500
data sets. The additional 200 utterances in a TRAIN700 data set seem to
be insu�cient to considerably improve representing the variety of thematic
changes. Besides, the MLN models may need more clues to be able to predict
an occurrence of a new theme in the next utterance and to be speci�c in
its predictions. The MLN models might be able to predict a thematic change
correctly but at the same time it may produce errors by over-predicting another
theme also. We discuss more about the errors produced by the MLN models
in section 5.4.5.
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History
Size

Theme
Prediction

Annota-
tion

MLN500 MLN700

1 Continuation 168.40 140.80 (83.61%) 132.20 (78.50%)
Shift New 144.00 38.40 (26.67%) 49.20 (34.17%)
Shift Old 0.00 0.00 (0.00%) 0.00 (0.00%)

2 Continuation 168.40 142.40 (84.56%) 137.20 (81.47%)
Shift New 128.60 43.80 (34.06%) 59.80 (46.50%)
Shift Old 17.40 0.00 (0.00%) 0.00 (0.00%)

4 Continuation 168.40 150.20 (89.19%) 151.40 (89.90%)
Shift New 115.00 40.40 (35.13%) 56.60 (49.22%)
Shift Old 32.00 0.00 (0.00%) 0.00 (0.00%)

6 Continuation 168.40 151.20 (89.79%) 155.20 (92.16%)
Shift New 108.60 37.60 (34.62%) 53.00 (48.80%)
Shift Old 39.80 0.40 (1.01%) 0.60 (1.51%)

Average
Continuation 168.40 146.15 (86.79%) 144.00 (85.51%)
Shift New 124.05 40.05 (32.62%) 54.65 (44.67%)
Shift Old 22.30 0.10 (0.25%) 0.15 (0.38%)

Table 5.9: Correct predictions MLN500 and MLN700 models identical to the
annotated themes by thematic change type

5.4.4 Predicting Thematic Change Type

Precision gives us information about how precise or accurate the predictions of
an MLN model are, and recall demonstrates the completeness of the predictions
with respect to covering all the themes in the annotation data. Both precision
and recall statistically measure the performance of an MLN model, but they do
not speci�cally measure the performance in modeling thematic change types.
We measure how well an MLN model predicts each type of thematic change,
by computing the recall of each thematic type. Note that this measurement
ignores the errors an MLN model might produce, and only takes into account
the correct predictions of the MLN.

First of all, for each test data set with each dialogue history size, we com-
puted the number of each thematic change type in the annotation. Likewise,
we also computed the number of each thematic change type of the correct
predictions of the MLN500 models and those of the MLN700 models. Then,
we calculated the average number of each thematic change for each dialogue
history size. In Table 5.9, we present the average number of each thematic
change in the annotation and in the correct predictions of the MLN500 and
the MLN700 models. We also show the percentage of correct predictions for
each thematic change type, that is, the recall of each thematic change type.

Since an utterance may contain more than one theme, the average total
number of all annotated themes (312.4) in all test data sets is larger than the
total number of utterances in the test data sets (300). On average, all the test
data sets with di�erent dialogue history lengths contain 54% Continuations,
40% Shift News, and rather rarely, 7% Shift Olds. There are 168.4 Continu-
ations regardless of the di�erent history length. Moreover, there are 124.05
Shift News and 22.30 Shift Olds on average.

The number of Shift News and Shift Olds are relative to the length of the
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dialogue history. A dialogue history of size 1 only contains the last utterance,
so a theme in the next utterance can only be a Continuation or a Shift New,
but not a Shift Old. As the dialogue length increases, a Shift Old may be a
theme in the next utterance and its probability increases. A Shift Old relative
to a longer dialogue history always replaces a Shift New relative to a shorter
dialogue history. This is because it would be a Shift New if only a smaller
dialogue history length is considered. The number of Shift Olds in a test data
set will become greater given a longer dialogue history, but the number of Shift
News will become smaller.

Over all dialogue history lengths, the MLN models correctly predict up to
nearly 87% of all Continuations on average. The average successful Continua-
tion prediction of the MLN500 models (86.79%) is slightly better than that of
the MLN700 models (85.51%). The reason for this is discussed in section 5.4.5.
The MLN700 models (44.67%), however, predict more Shift New occurrences
than MLN500 models (32.62%).

The MLN models are able to correctly predict more Continuations when
larger dialogue history lengths are considered. As the dialogue history size is
increased, the number of correct Continuation predictions grows. Therefore,
the MLN models obtain the best predictions of Continuations using a dialogue
history length of six utterances. The number of correct MLN model predictions
of Shift New jump up when using a dialogue history length of two instead of
one, but then fall again, when using dialogue history lengths between two and
six. Thus, the MLN models obtain their largest amount of identi�ed Shift New
predictions by using a dialogue history length of two utterances.

Since the informed baseline always continues a theme of the last utterance
to be a theme of the next utterance, it is able to predict 100% Continuation,
but 0% Shift New and Shift Old. The MLN models correctly predict less Con-
tinuations than the informed baseline, because the MLN models consider the
probability of other thematic change types. The models are able to predict up
to 86.79% of the Continuations and almost 45% of the Shift New occurrences.
Moreover, the MLN models are shown to be able to �nd a Shift Old, although,
in the best result, using a dialogue history length of six utterances, only 0.38%
of all Shift Old occurrences are correctly identi�ed. This is interesting, since
the �rst-order logic formulas do not include a particular rule for predicting a
Shift Old.

5.4.5 Error Analysis

A typical error of an MLN model is to predict a Shift New, when there is a
Continuation in the annotation. This type of error occurs because the MLN
models have a fairly high tendency to predict a new theme after an occurrence
of an Answer or an Acknowledgement. Although the prediction may be
true in many cases, it is not true in all cases. On the other hand, the MLN
models might also produce a wrong prediction of a Continuation while there is
a Shift New in the annotation. Predicting a new theme is di�cult when there
is no explicit clue for the MLN models. For instance, there is no Answer or
Acknowledgement in the last utterance.

Although the MLN models succeed in predicting most of the Continuations
and almost half of the Shift News, the precisions are not as high as one might
expect. This is because the MLN models might have over-predicted the theme
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of the next utterance. In other words, the models might produce more predic-
tions than they should. In this case, the MLN models fail to predict only a
partial continuation of the themes in the last utterance, when not all themes
are continued to be talked about. Moreover, while predicting a Shift New, the
MLN models are also likely to predict a Continuation. When there is actually
only a Shift New in the annotation, the MLN models might produce too many
predictions.

On the contrary, it may also happen that the MLN models make too few
predictions which results in low recalls. The MLN models tend to predict Con-
tinuations only, whereas a Shift New may occur together with a Continuation
in the annotation. Therefore, sometimes the models do not predict enough
themes in the next utterance.

Predicting a Shift Old is a di�cult task since it seems that there is no overt
clues that can be used, at least with the way the data is annotated in this
work. The MLN models do not contain speci�c formulas to predict a Shift
Old. Even so, the models still consider the recent themes and compute their
probabilities to appear in the next utterance. The MLN models mostly predict
a Continuation or a Shift New. However, the models may predict a Shift Old,
when a theme has been continued a few times in a given dialogue history. The
MLN models need a longer dialogue history to believe that the theme that
has been talked about continuously in the past, but does not occur in the last
utterance, is likely to be talked about in the next utterance. We show in 5.9,
the MLN models can predict a Shift Old by using the dialogue history size six.

Both the MLN500 and the MLN700 models produce similar errors to the
ones that have been discussed so far. Nevertheless, the MLN700 models amelio-
rate the errors better than the MLN500 models. This is because the MLN700
models tend to produce more Shift New predictions than the MLN500 models.
While predicting a Continuation, the MLN700 models also predict a Shift New.
In this way, the models are able to capture more Shift News in the annotation
than MLN500 models (see Table 5.9). Unfortunately, this also results in more
failures in predicting a Continuation compared to the MLN500 models. When
the theme of the next utterance is supposed to be a Continuation, and the
MLN500 models predict it correctly, the MLN700 models predict a Shift New
instead.



Chapter 6

Discussions

In section 6.1, we describe the solutions given by an MLN model to solve
the problem of modeling thematic changes. Moreover, we also present the
di�culties of using an MLN model. In section 6.2, we show how an MLN
model can be used in the setting of human-robot interaction in performing a
USAR task. Finally, in section 6.3, we explain how an MLN model can be
applied to improve various modules in a dialogue system.

6.1 Solutions and Di�culties

MLN models o�er a solution to structuring thematic changes in a dynamic
dialogue, where the dialogue themes change throughout the dialogue without
following a certain order or pattern. MLN models can do this because they
consider all possible themes in a given dialogue history, and a new theme, as
possible next themes. Therefore, the thematic structure represented by an
MLN is more �exible than a stack model and the centering theory (see section
2.3.2 and section 2.3.4). Unlike a stack model and the centering theory, MLN
models do not restrict possible connections/relations between the themes of
di�erent utterances. In MLNs, the next theme does not only depend on the
last utterance, but on all utterances in a given dialogue history. Each theme
of these utterances may be related to the themes in the next utterance.

Like a knowledge-based approach, MLN models can explain the characteris-
tics of thematic changes (i.e. the decision-making process behind the activation
of a thematic change). By using logical rules (i.e. �rst order-logic formulas),
MLN models describe how a thematic change type may occur. For example, a
Continuation may occur after a question. While a knowledge-based approach
uses an ontology to guide how a dialogue is likely to progress (see section 2.3.6),
MLN models do not restrict a dialogue to following a certain pattern. The log-
ical rules of MLN models are not applied in a certain order or pattern. Thus,
MLN models would not su�er from pattern complexity problems when dealing
with a complex dialogue.

Moreover, MLN models also use statistics to assign weights to the logical
rules. This allows MLN models to learn the tendencies of thematic change
characteristics from data. Thus, MLN models do not only assume the charac-
teristics of thematic changes, but re�ect how the characteristics actually occur
in reality. Like a typical statistical model, however, MLN model performance

63
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is highly in�uenced by the training data that was used. Since thematic changes
in di�erent training data sets can have di�erent characteristics, MLN models
may re�ect di�erent tendencies of the characteristics of the training data. To
obtain representative estimations of the tendencies, MLNs need a large amount
of training data containing a lot of evidence of thematic change characteristics.
MLNs are vulnerable to over-�tting problems due to insu�cient training data.
A small training data set may result in biased weights of the formulas in MLN
models, due to irregular occurrences of thematic changes.

Not only can MLN models describe the thematic changes in a dialogue, they
can also predict the next dialogue theme at some point in a dialogue. MLN
models yield theme predictions by computing the probability of each possible
dialogue theme in a given dialogue history being the next theme. Additionally,
the models also compute the probability of a new theme in the next utterance.
MLN models do not strictly predict a single theme, ignoring any possible ad-
ditional themes. This way of predicting theme is more realistic, because an
utterance may express more than a single dialogue theme.

MLN models consider all three types of thematic changes, namely Con-
tinuation, Shift New and Shift Old, as its predictions. However, they rarely
correctly predict a Shift Old. Theoretically, the characteristics of a Shift Old
can be formulated as a �rst-order logic rule. However, the occurrence of a Shift
Old itself is not regular and does not really show any pattern. Thus, it is hard
to discover Shift Old characteristics and de�ne a rule to predict an occurrence
of a Shift Old. We suspect that annotation is probably insu�cient to allow us
to come up with such a rule. Since estimating the probability of a Shift Old is
di�cult without a rule, predicting its occurrence correctly is also di�cult.

A di�culty in predicting the next theme is to predict the number of themes.
Since an utterance may express more than a single dialogue theme, an MLN
model should be able to predict more than one theme. However, it is rather
di�cult to approximate how many dialogue themes will appear in the next
utterance. Sometimes an MLN estimates too many themes with high proba-
bilities. In other cases, an MLN yields rather low probabilities for all possible
themes and only one theme gets higher probabilities than the others. In prac-
tice, the use of a system determines how precise the number of dialogue themes
should be modeled. Predicting at least one correct dialogue theme can be ade-
quate in some systems to keep a conversation going. On the other hand, some
systems may require a more precise number of predictions to be able to recog-
nize the themes in the next utterance and properly understand the intention
of a speaker.

Dialogue data typically contains noise. MLN models are useful for describ-
ing noise characteristics and creating strategies for handling noise. In this work,
we represent noise as a dialogue theme of type Other. In fact, the thematic
changes after an occurrence of an Other theme are varied and not regular.
Therefore, it is rather hard to be characterized. Moreover, the noise charac-
teristics in di�erent data can be di�erent. For instance, a new theme may be
likely to appear after noise in some data sets, but it may not be the case in
other data sets. This should be taken into account to formulate logical rules
for handling noise.
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6.2 Thematic Structure for Human-Robot Interaction

in USAR

In this work, we attempt to build a thematic structure which can describe and
predict thematic changes in human-robot interaction, especially in performing
a USAR task. Due to the lack of human-robot dialogue data, however, we
developed our approach based on a human-human dialogue data set. We care-
fully chose a human-human dialogue data set (i.e. the Apollo 17 transcript)
that is akin to a human-robot dialogue data set. The similarities between the
data set we use and a human-robot dialogue data set have been described in
section 4.1. Since the characteristics of thematic changes in the Apollo 17
transcript are considered similar to those in a human-robot data set, we ex-
pect that our approach can also be used for structuring the dialogue themes
in human-robot data sets. Besides, the approach has been shown to model a
complicated human-human dialogue. Since a human-robot dialogue is simpler
than a human-human conversation, the approach can be applied to model a
human-robot dialogue as well.

A human-robot dialogue is simpler than a human-human conversation, be-
cause a robot has much more limited capabilities than a human. A human-
robot dialogue usually use a controlled language is typically simpler than a
natural language in general. The grammar and vocabulary in a human-robot
dialogue is reduced to avoid ambiguity and complexity. Moreover, a human-
robot dialogue does not contain a lot of problem solving, such as how to perform
a task or deal with a problem/obstacle while performing a task. Instead, it typ-
ically contains a lot of instructions from a human operator and reports from
a robot. Human behavior, when talking with a robot, tends to be di�erent
from when talking with a human. For example, people often compliment and
encourage each other, but a human operator may not bother to do so to a
robot. Besides, people may ramble or joke in a human-human conversation,
but it is not likely to happen in human-robot interaction. A human operator
should be aware of the limitation of a robot, and therefore he will be likely to
use simple commands to talk to a robot.

Furthermore, a USAR task is typically performed in a stressful situation,
where a rescuer must perform a task in a dangerous place with limited time.
A conversation in such a situation must not be verbose, but short and concise.
The Apollo 17 mission is actually also constrained with time. The tasks in the
mission were carefully planned with time slots, because the astronauts have
limited oxygen and other resources. Despite the time limit, however, the dia-
logue participants still sometimes produced an utterance which is irrelevant to
performing a task. In a task-oriented dialogue, such an utterance is considered
as noise, because it drifts a conversation away from focusing on a task. In
this work, we do not clean up the data by removing such noise, but treat it
as a theme of type Other. By doing so, we keep the rich dialogue data, but
simplify its representation.

Human-robot data does not tend to contain such irrelevant talking, but it
may contain noise due to errors produced in some modules of the robot. For
instance, an utterance of a human operator is not clear because of background
noise. As a result, the speech recognition module cannot recognize it. In fact,
the Apollo 17 data also contains incomplete transcriptions for such a case. This
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re�ects that a human may also be unable to recognize such an utterance. The
way we treat noise in annotating the Apollo 17 data, can be applied to treating
noise in human-robot data. In other words, noise in human-robot interaction
can be assigned as a theme of type Other.

As mentioned in section 1.4, a robotic system deals with a lot of uncer-
tainty in all of its modules. A module in a robotic system usually tries to
approximate the best possible results as its outputs. For instance, an image
recognition module tries to recognize an object, but it may not be certain what
the object is. Therefore, the results of the module are an approximation of the
real object. Sometimes, the target to approximate is uncertain. For instance,
what a robot should say in response to a user utterance is uncertain. A robot
may give di�erent responses to a user utterance. Some of these responses may
be preferable to others, but the other responses may still be acceptable. Sim-
ilarly, more than one theme could be the next theme of a conversation. MLN
models can address this issue, as they estimates the probability (i.e. the degree
of certainty) of all the recent themes in a dialogue history, and that of a new
theme being the next dialogue theme.

6.3 Application

In this work, we use annotated data for illustrating and evaluating MLN mod-
els. To use an MLN model in a dialogue system or a robotic system, theme
identi�cation and speech act classi�cation modules are needed. A theme iden-
ti�cation module identi�es the Task, Entity and/or Other contained in an
utterance. On the other hand, a speech act classi�cation module assigns a
speech act to an utterance, if it is a Question, an Answer or an Acknowl-
edgment. Moreover, Pauses in a dialogue should also be identi�ed.

Since an MLN model takes inputs in �rst-order logic form, one also needs a
�rst-order logic conversion module to transform an annotated text to grounded
atomic formulas. As described in section 4.2.2, the negative atomic formulas
for all the remaining possible groundings should also be explicitly speci�ed.
The �rst-order conversion module should also generate these negative atomic
formulas. Given a database of ground atoms, an MLN tool such as Alchemy can
be used to learn weights for the �rst-order logic formulas described in section
4.2.1. Moreover, it can also be used to run inference using weighted �rst-order
logic formulas (i.e. to produce MLN predictions).

An MLN-based thematic structure which can predict the next dialogue
themes can be used in various ways. As mentioned in 1.1, such a thematic
structure can help ASR to reduce speech recognition errors. Thus, it will help
a dialogue system to better understand a user utterance. Predicted themes can
be used to guess the keywords in a user utterance, when a user utterance is
noisy and ASR cannot recognize the words in the user utterance well. Besides,
they can provide a context for priming ASR outputs. For such a purpose, the
predicted themes are associated with a bag of words related to the themes.
These words are then used to recognize or to expect the words in the next
utterance of the user. Moreover, they can be used to prime unexpected ASR
outputs.

Predicted themes can also be used to predict the intention conceived in an
utterance. For instance, a Task describes the intention of a speaker about
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performing the Task. Moreover, we use a prediction of a Shift New to expect
a move in a plan or a task list. Typically, a USAR team has a check list of the
tasks they have to do. When an MLN model predicts a Shift New, we can use
the task list to further predict what the new theme could be.

A robot discourse planner can bene�t from an MLN model to produce a
system response related to a predicted theme. When the natural language
module of a robot fails to understand a user utterance, an MLN model can
be used to guide a clari�cation sub-dialogue, e.g. asking for a repair of a user
utterance. A clari�cation sub-dialogue has the purpose of clarifying whether
the user has talked about the predicted theme with the highest probability.
If the robot prediction is correct, the sub-dialogue further progresses on the
theme. In this way, a robot shows some degree of expectation or idea about a
user utterance, and resolve a non/partial-understanding of the utterance.



Chapter 7

Conclusions

This chapter presents a conclusion of our work and a discussion of future work.

7.1 Conclusions

We have described an approach to modeling the changes of dialogue themes (i.e.
thematic changes) in a collaborated task-oriented dialogue. We have introduced
a categorization of a dialogue theme into three categories, namely Entity,
Task, and Other. This categorization allows us to describe the intention
of a speaker and use it to structure the thematic changes in a conversation.
Moreover, noise can be represented and handled by using the Other type.

We have introduced three types of thematic changes, which are Continu-
ation, Shift New and Shift Old. These thematic change types provide infor-
mation that can help various modules in a dialogue system. We use an MLN
to model the characteristics of thematic changes in a dialogue. This includes
how a dialogue theme changes with respect to an occurrence of some speech
acts, namely Question, Answer, and Acknowledgment. Moreover, we
have also speci�ed how a dialogue theme may change with an occurrence of a
Pause.

Our experiment results show that the MLN models are able to predict the
thematic changes in the next user utterance. We show that, on average, the
MLN models are able to predict up to 87% of all Continuations and 45% of all
Shift News in the annotation. However, the models are not good in predicting
a Shift Old and are only able to predict a Shift Old by using a dialogue history
length of six utterances. Furthermore, we have shown that the MLN models
outperformed both a random and an informed baseline. Although we used a
human-human dialogue data set for developing and evaluating MLN models,
we have argued that the approach can also be used for human robot interaction
dialogue data.

7.2 Future work

The approach described in this thesis has been shown to be able to model
thematic changes in a collaborative task-oriented dialogue. The MLN models,
however, still su�er from several drawbacks, such as di�culties in predicting
Shift Old and in handling noise. MLN model performance can be improved

68
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by adding more rules and training data. In crafting rules, however, one should
keep simplicity, because complex rules will cause exponential complexity in
learning weights. To characterize the occurrences of Shift Olds and to handle
noise, the training data might also need a richer annotation. As over�tting
problem is typical in statistical models, more training data is desirable to obtain
representative weights for the logical rules of the MLN models.

As mentioned in section 1.3, a USAR task usually comprises well-structured
sub-tasks. The logical rules in an MLN can be extended by including a task
structure (i.e. an ontology of how a task is done step by step). A task structure
can be represented as logical rules and used to support the predictions of the
next theme. In this work, the MLN models can predict an occurrence of a new
theme, but they do not predict what the new theme could be. This is because
the MLN models are only informed by a dialogue history. A task structure can
provide hints about possible Entities and Tasks in an utterance which has
not been perceived so far. Thus, this information could be used to specify a
new theme and also to help predicting the next theme in general.

Moreover, MLN models can also bene�t from a topological abstraction of
the setting of a situated dialogue. Dialogue themes in a situated dialogue are
in�uenced by the environment of the dialogue participants. Therefore, a topo-
logical abstraction can be useful to support the predictions of the next theme.
A topological abstraction can provide information about possible Entities
and Tasks in a certain location. Together with a task structure, it can be
used to predict Entities and Tasks which might be talked about at a certain
location.
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