
Exploring Higher Order
Dependency Parsers

With special attention on feature
engineering with Higher Order Parsing.

Masters Thesis
Sumbitted in the partiall fulfilment of requirements for the Degree of Masters
Degree in Human Language Science and Technolgy.

Pranava Swaroop Madhyastha
European Masters Program in Language and Communication Technologies.

Supervisor: Prof. Michael Rosner
Co-Supervisor: RNDr. Daniel Zeman

This masters thesis is a part of European Masters Program in Human Lan-
guage and Communication Techonologies Program.

The work in this thesis has been carried out at:

Department of Human Language Science and Technology
Department of Intelligent Computer Systems
University of Malta

&
Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics
Charles University in Prague

iv

Abstract

Parsing is one of the most important steps in understanding of natural lan-
guages. In this thesis, we focus on the dependency grammar formalism since,
the core concepts of dependency grammar, namely the relational view of head
and modifier asymmetry, has proven useful for diverse set of languages, es-
pecially accounting for the explanation of word order and relation between
surface structure and meaning. Most of the recent efficient algorithms for de-
pendency parsing work by factoring the dependency trees. In most of these
approaches, the parser loses much of the contextual information during the
process of factorization. In this thesis we investigate how features (syntacto-
semantic) affect the higher order discriminative learning methods for depen-
dency parsing. We will show that linguistic features in most cases provide a
significant improvement in the parsing accuracy.

We start by presenting a survey on several discriminative learning meth-
ods for graph based statistical dependency parsers and explain the concept
of higher order that is the generalization of the work done by [Koo & Collins
2010] and [McDonald et al. 2006]. This leads us to the core of the thesis -
feature engineering in higher order dependency parsers. Here, we experi-
ment with several syntacto-semantic features then try to explain the theoret-
ical foundation of these features. The experiments are done on two diverse
languages - English and Czech, we have compared the several results obtained
with different parsing algorithms.

Keywords: Dependency Parsing, Discriminative Learning, Higher order, Se-
mantic features.

v

vi

Contents

1 Introduction 1
1.1 Dependency Grammar: Definition and Current Status 1

1.2 Dependency Parsing: Status Quo 2

1.3 Research Objective . 4

2 Premise 5
2.1 Why Parsing? . 5

2.2 The Dependency Grammar . 6

2.3 Projectivity and Non-Projectivity Constraints 7

2.4 Discriminative Graph Based Dependency Parsing 8

2.5 Notational Conventions . 9

2.6 Factoring Structures . 9

2.6.1 Parameter Estimation using Structured Perceptron . . . 10

2.7 Parsing Algorithms . 12

2.7.1 Second-Order Factored Parsing Algorithm 14

2.7.2 Third-Order Factored Parsing Algorithm 15

2.8 Feature Space . 17

2.9 Effect of Features in Dependency Parsing 18

2.9.1 Effect of Semantic Features 18

2.9.2 Morphosyntactic and Morphosemantics with Dependency
Parsing . 19

3 State-of-the-Art and Current Research 21

4 Experimentation Details 25
4.1 In Focus . 25

4.2 Inherent Feature Combination in the Parser 26

4.3 System Information . 26

4.3.1 Input Format . 27

4.3.2 Corpus Used . 27

4.3.3 Tools . 29

4.4 Word Sense Extraction . 29

4.5 Morphosyntactic Feature Extraction 30

5 Experiments 33
5.1 Feature Spaces . 33

5.2 Experiment 1 . 34

5.2.1 Research Question . 34

5.2.2 Theoretical Plausibility 34

5.2.3 Experimentation . 35

5.2.4 Results . 36

vii

5.2.5 Discussion . 36

5.3 Experiment 2 . 38

5.3.1 Research Question . 38

5.3.2 Theoretical Plausibility 38

5.3.3 Experimentation . 39

5.3.4 Results . 39

5.3.5 Discussion . 40

5.4 Experiment 3 . 41

5.4.1 Research Question . 41

5.4.2 Theoretical Plausibility 41

5.4.3 Experimentation . 41

5.4.4 Results . 42

5.4.5 Discussion . 42

6 Analysis 45
6.1 Comparisons . 46

6.1.1 Work done by Agirre et al. 2011 46

6.1.2 Work done by Koo et al. 2008 47

6.1.3 Work done by Øvrelid 2008 47

7 Discussion and Future Work 49

8 Conclusion 51

Bibliography 59

viii

1
Introduction

One of the major challenges in the field of computational linguistics is to
transform text from the native natural language representation to representa-
tions which can be fed as an input to the computer. The computer would then
be using this to perform various tasks. The transformation of representations
from natural language to well-defined formal languages involves several lay-
ers of processing. Amongst these, parsing is one of the most important and
the most difficult of them.

Parsing of a natural language can be defined as the process of mapping
sentences in the natural language to their syntactic representations. Parsing
also lays an important foundation for understanding the natural language
syntax and semantics. Recently, statistical parsing has taken precedence over
other forms of parsing due to its highly efficient parsing capabilities ([Marcus
et al. 1993]). While parsing accuracy of these parsers are mostly rising, this
is still not enough for integration with the practically implementable natural
language processing applications and hence there is a pressing need for better
accuracy [Merlo et al. 2011]. This is also due to the highly ambiguous nature
of the natural language. High accuracy natural language parsing would be
very useful for modern NLP applications which include machine translation,
question answering systems, information extraction, text summarization, se-
mantic role labeling, etc..

The syntactic structure of the natural language is formalized into a certain
syntactic representation, this is also known as the grammatical formalisms.
There are several syntactic representations which are used in computational
linguistics. In this thesis, we would be focusing on one of the most important
representations which is based on the notion of dependency [Tesnière 1959].
This formalism is now formally known as the “Dependency Grammar” (DG)
Framework. Also, we would be concerned with a particular type of parsing
for the DG called the data-driven discriminative graph based dependency
parsing, also known more frequently as graph based dependency parsing
formalism which is a type of statistical parsing.The rest of the thesis will set
the very basic premise of the thesis.

1.1 D E P E N D E N C Y G R A M M A R : D E F I N I T I O N A N D C U R R E N T
S TAT U S

A dependency tree can be defined in the most basic way as a directed acyclic
graph in which all the words in the given sentence are connected together
by grammatical relations. For example, the subject and object depend on the
main verb; adjectives depend on the nouns that they modify; etc.. In each
pair of connected words, one is called the ‘dependent’ which is basically a

1

modifier and the other is called the ‘head’. That is, the modifier modifies the
head. Simply, an analysis based on DG can be explained as a tree where, each
token in the sentence is a node in the tree, and each arc connects a head to
its modifier. A more detailed discussion on the dependency grammar will be
made in the next chapter. DG is an increasingly important grammar repre-
sentation in modern computational linguistics. It is particularly well-suited
for languages with approximately free word order [Covington 2001]. Also,
dependency representations are emerging as the standard for comparing the
result of syntactic analysis across different grammar formalisms and parsing
approaches. In a way, the DG formalizes the syntactic structure as a directed
tree of dependencies. The classical phrase-structure [Chomsky 1956] models
have been of less help in exploring the joint ‘syntactic and semantic’ phenom-
ena, especially with a cross-linguistic perspective. [Mel’čuk et al. 1987] and
[Covington 2001] claimed that one of the advantages of DG over approaches
based on phrase based or constituent structures is that it allows for a more ad-
equate treatment of languages with variable word order, where discontinuous
syntactic constructions are more common than in languages like English. Also
note, dependency links are close to the description of semantic relationships
needed for the next stage of interpretation in the linguistic hierarchy.

There are two dominant and mostly studied approaches to dependency
parsing: graph-based and transition-based, where graph-based parsing is under-
stood to be slower but exhaustive (global optima based approach), and often
more accurate.

DGs have been at the forefront of computational linguistics since last two
decades. This can be seen by its application to functional description of gram-
mar [Sgall 1984], possibilities of extracting rich lexical information from cor-
pora [Bangalore et al. 2009], applications related to semantic graphs [Marneffe
et al. 2007] and adaptability to various languages with the same formalism
[Bourdon et al. 1998].

1.2 D E P E N D E N C Y PA R S I N G : S TAT U S Q U O

Highly efficient parsers have made DG to be one of the most explored gram-
mar formalisms in the last decade [Merlo et al. 2011]. One of the major hurdles
in understanding natural languages is mostly concerned with producing an
optimized natural language system. Implementations of efficient grammar
formalisms form one of the basic components of these systems. Current data
driven dependency parsing formalisms can be divided into three different
types:

• Local-and-greedy transition based parsers (e.g., MALTPARSER and sim-
ilar parsers [Nilsson et al. 2006], [Yamada & Matsumoto 2003]),

• Globally optimized graph-based parsers which are also known as dis-
criminative graph based dependency parsers. (e.g., MSTPARSER [Mc-
Donald et al. 2005] ; [Koo & Collins 2010] and [Carreras et al. 2006]),
and

2

• Hybrid systems (e.g., ([Sagae & Lavie 2006] and [Nivre & McDonald
2008])), which combine the output of various parsers into a new and
improved parse.

Transition based parsers basically scan the input from left to right. They
usually have linear complexity and mostly make use of a big list of features.
Most of their their decisions are local. Some of the transition based parsers
have the restriction of sticking to the ‘left to right’ direction [Nilsson et al.
2006]. [Nilsson et al. 2006] also states that the transition based parsers have
O(n) complexity, that is, it has a ‘linear complexity’. Also note, even if they
can use the big list of features, which can basically include the rich structural
information, it is basically restricted, as only the next two or three lexemes
are available to the parser. This implies that it has a very small look-ahead
window, and hence, it is right to predict the relatively less rich contextual
information. This usually results in error propagation and relatively bad per-
formance on root and long distance dependencies when compared to graph
based or discriminative dependency parsers [McDonald & Nivre 2007].

The transition based parsers are also known to an extent as ‘history-based
models’. History-based models basically incorporate arbitrary information
from the prediction history to estimate the possible decisions at each choice
point in its search space. Transition based parsers make an independence as-
sumption, which actually is not a theoretical necessity, in order to decrease the
search space. Hence, performing a applying a local optima approach. These
approaches in general involve a concrete search for the minimum loss struc-
ture. This would help put an upper-bound on the inference time almost for
every sentence structure. Basically in a ‘transition-based parser’ the history
based model is applied at every state transition. These are known to apply
deterministic parsing time as they employ greedy inference.

The graph based dependency parsers on the other hand, have a better con-
textual information. They usually perform an ‘exhaustive’ search over all the
probable parse trees for a given sentence, and hence are globally optimized.
Once they do an ‘exhaustive’ search they sum all the possible tree structures
(this will be discussed in length in the following chapters) to find the best
scoring tree for a given sentence. But then, an increase in the feature sets ac-
tually makes it a hard problem, hence the feature sets are mostly restricted to
the single edges - (which is the first order parsing model) or edge-pairs (sec-
ond order parsers - ([McDonald et al. 2006]; [Carreras 2007]) or edge-triplets
(third order [Koo & Collins 2010]). There have been efforts on incorporating
arbitrary tree-based features, but these adversely affect the overall complex-
ity of the parser. These models have at least O(n3) complexity. In contrast,
transition-based parsers have the opportunity to extract non-local features by
examining the stack, but they are intractable when they exploit such non-local
features.

In this thesis, we will concentrate on this graph-based family of parsers
and explore mostly the higher order parsers - second and higher.

Chapter 1. Introduction 3

1.3 R E S E A R C H O B J E C T I V E

The major focus of the research presented in this thesis is to investigate the ef-
fects of semantic and morphological features on the discriminative data driven
dependency parsing. Especially, we will be concentrating on the graph based
dependency parsing. One powerful aspect of discriminative models is their
ability to incorporate rich sets of highly dependent features. The question that
we seek an answer for in this thesis is: “How do these features effect parsing?”.
[Bikel 2004a] has done a detailed analysis on each class of distribution of
features for generative models. But a similar analysis seems to be missing for
discriminative models, especially the graph based parsing models. This thesis
is a step ahead into a similar analysis. In this thesis we would be concerned
about the affects of features on the learning and prediction of the graphical
dependency parsing algorithm, especially using averaged perceptron. More
details about the same are discussed in detail in the next sections. We come to
a conclusion that adding the semantic features improves the parsing accuracy
and these are also dependent on the type of algorithms and the amount of
information about the structure exploited by algorithms.

4

2
Premise

In this section, we review the background concepts of Dependency Grammar
and dependency parsing. We will then provide a succinct description of the
research orientation adopted. We will also present a holistic view of the graph
based dependency parsing models.

2.1 W H Y PA R S I N G ?

Natural languages like English are hard to define in exact terms and is am-
biguous in many situations, while a formal language is mostly well defined
and is less ambiguous. A natural language has often evolved during thou-
sands of years and yet it continues to evolve. This makes it impossible to state
an exact definition at a given time. It is also hard to draw boundaries be-
tween natural languages, and whether a particular language is counted as an
independent language is usually dependent on historical events and culture,
seldom only on the linguistic criteria. These properties not only make natural
language processing a challenging task but also a very interesting research
topic. Especially with the increasing use of information technology in combi-
nation with natural languages. Many computer applications that involve nat-
ural languages like machine translation, question answering and information
extraction are dependent on modeling natural language in an easier repre-
sentation. Moreover, these applications usually have to deal with unrestricted
text, including grammatically correct text, ungrammatical text and foreign
expressions.

Thus, parsing of natural languages can be seen as the process of mapping
an input string or a sentence to its syntactic representation. We assume that
every sentence in the given set of sentences (or in other words the corpus) has
a single correct analysis which the speakers of the language generally agree
that this analysis is preferable. We do not necessarily assume that a formal
grammar defines the relationship between sentences and their preferred inter-
pretations. [Nilsson et al. 2006] in his paper uses the concept of text analysis
to characterize this problem that can only be evaluated with respect to the
empirical evidence of a language text.

Several attempts have been made to formalize the grammar of the language
over a long period. The first records of such an attempt dates back to 400

BC, when Panini described and formalized the Sanskrit grammar. The first
computational study of grammar could be dated back to the early 1950s with
the seminal work of CFG [Chomsky 1956]. Since then, there have been a very
large set of grammatical formalisms, which have existed and which have been
used and implemented in several domain of computational linguistics. These
plethora of grammar formalisms help the objective of parsing in several ways

5

for different applications. In the next section we would solely concentrate on
the Dependency Grammar formalism that forms the backbone of the formal
structure in our work.

2.2 T H E D E P E N D E N C Y G R A M M A R

Syntactic representations based on word-to-word dependencies have a long
tradition in general linguistics. The basic assumptions behind the notion of
dependencies are summarized in the following sentences from the seminal
work of [Tesnière 1959]: (translated from French verbatim)

“The sentence is an organized whole; its constituent parts are the words. Every
word that functions as part of a sentence is no longer isolated as in the dictionary: the
mind perceives connections between the word and its neighbors; the totality of these
connections forms the scaffolding of the sentence. The structural connections establish
relations of dependency among the words. Each such connection in principle links a
superior term and an inferior term. The superior term receives the name governor;
the inferior term receives the name dependent”

The very basic dependency structure can be viewed as shown in 2.1.

Figure 2.1 Basic dependency structure - A head and a modifier

As we have explained before, we usually represent the dependency rela-
tions among the words of a sentence as a graph. A dependency representa-
tion is a labeled directed graph, where the nodes are the lexical items and the
labeled arcs represent dependency relations from heads to dependents.

It is these binary dependents - the head and the modifier that play a major
role in the structure. Let us have a quick glance at a dependency structure in
2.2.

Figure 2.2 A simple example;please note that we are adding an extra root here

6

The dependency structure for a sentence x with words ~x ∈ [x1...xn], is the
directed graph on the set of positions of ~x that contains an edge from i to
j if and only if xj depends on xi . In this way, the dependency structures
can capture information about certain aspects of the linguistic structure of a
sentence. This notion allows us to express linguistic concepts as structural
constraints on graphs. In practice, the dependencies are usually required to
form a well defined and well formed tree. There are well formed rules for the
retention of the tree order for a dependency tree.

Figure 2.3 The directed graph for previous example

2.3 P R O J E C T I V I T Y A N D N O N - P R O J E C T I V I T Y C O N S T R A I N T S

Projectivity is concerned with the restriction of the span of the dependency
relation. It requires each dependency subtree to cover a contiguous region
of the sentence, hence, making sure that there is no crossing in dependency
relations. Or in other words, the dependency spans don’t cross each other.
This is a very important constraint and it makes sure that there is no shuffle
in the word order, which acts as a boon for the dependency algorithms, since,
it adds a constraint. These have been strongly exploited with dependency
parsers like [Eisner & Satta 1999].

However, there are many languages where the dependency subtree may be
spread out over a discontinuous region of a sentence, which usually results in
the crossing of the spans. [Kuboň et al. 1998] have mentioned that such repre-
sentations mostly occur due to the linguistic phenomena such as extraction of
entailment, topicalization and extrapolation. These are particularly common
in languages with flexible word-order. Unfortunately, dependency parsing of
non-projective structures using graph-based dependency parsing is found to
be NP-Complete [McDonald & Nivre 2007]. Let us investigate this quickly by
venturing into the two diagrams here. 2.4 represents a projective dependency
structure. 2.5 represents a non-projective dependency structure.

Chapter 2. Premise 7

India won the worldroot cup by defeating Lanka

Figure 2.4 Projective Structure: none of the edges are crossing each other.

For English, projective trees are sufficient to analyze most sentence types,
this is also stated in [Sleator & Temperley 1993]. However, there are certain
examples in which a non-projective tree is preferable. We consider one of
those examples here in the next sentence. But, in general, most of the free-
word-order based languages have non-projective structures more often than
for English.

Figure 2.5 Non-Projective Structure: the red edge is crossing in the above depen-
dency structure. In this specific case the establishment clause and the object it
modifies are separated by an adverb. There is no way to draw the dependency
tree for this sentence in the plane without crossing edges. Languages with more
flexible wordorder non-projectivity is more pronounced.

In this thesis all our algorithms are following the above definition of pro-
jectivity. Also note, the parsing algorithms that we would discuss ahead in
the thesis correspond to the the projective structures.

2.4 D I S C R I M I N AT I V E G R A P H B A S E D D E P E N D E N C Y PA R S -
I N G

Let us now shift our focus to the type of dependency parsing upon which
we will concentrate in this thesis. Graph based parsers are parsers which
implement a discriminative learning technique. In this sub-section we will try
to explain the theory of discriminative parsing.

8

2.5 N O TAT I O N A L C O N V E N T I O N S

Let us consider that a dependency parser gets as an input a sentence x of n to-
kens and outputs a labeled dependency tree y. A labeled dependency would
be the triplet < h, m, l >, where the index of the head token is represented as
h ∈ [0...n], the index of the modifier token is represented as m ∈ [1...n] and the
label for each dependency pair (h, m) is represented as l ∈ [1...L] (here, L is
the set of all possible dependency labels in the given dataset). Also note, the
total number of sentences in the corpus is assumed to be χ and the number
of possible trees for the sentences in the whole corpus is assumed to be γ.

The head of the sentence is assigned a value h = 0, in this thesis, we
represent it by a special root symbol, which is as represented in the previous
figures. D(x) represents all possible dependencies and the set (~x) represents
all possible dependency structures for a sentence x. (~x) for projective parsing
algorithms and non-projective parsing algorithms differ.

Before we proceed ahead to define the parsing algorithms, let us first ex-
plore the discriminative modeling.

y∗(~x; ~w) =y∈γ(x) ~w · φ(~x, y) (2.1)

In the above equation: please note, χ is the set of all the sentences in the
corpus and γ. Here, φ(~x, y) produces a d-dimensional (where the d is dimen-
sionality of (χ, γ)) → Rd) vector representation of the event that dependency
tree y is assigned to sentence x. Each dimension in φ(~x, y) is a feature that
measures some quantifiable aspect of x and y. Hence we call φ(~x, y) as the
feature vectors. The parameter vector ~w contains d weights corresponding to
the d separate features; these parameters are learned on a training corpus of
examples.

The maximization is performed over the set (x), the size of this set increases
exponentially with the length of the sentence. This makes the enumeration
intractable. To take care of this situation we factor the dependencies in the
following way.

2.6 FA C T O R I N G S T R U C T U R E S

Factorization constrains the feature representation so that each feature is only
sensitive to a limited region of y. Essentially, the factorization breaks each
structure into sets of parts, which are local substructures of y with well-
defined interactions.

Consider, for a given sentence x, with parameter vector w, and parts p, we
have a modified and reduced version of the equation mentioned in the last
subsection:

y∗(~x; ~w) =y∈γ(x) ∑
p∈y

~w · φ(~x, p) (2.2)

Let us consider an example to illustrate this, the simplest type of factoriza-
tion is the generic factorization, that is, the first order factorization, which is

Chapter 2. Premise 9

also implemented by [McDonald et al. 2006]. In this case a tree y is broken
into n component dependencies. If this is the case, the equation would then
transform to:

y∗(~x; ~w) =y∈γ(x) ∑
(h,m)∈y

~w · φ(~x, h, m) (2.3)

since - (h, m) would represent the head and modifier indices of a depen-
dency in y. We can then apply dynamic programming algorithms efficiently
to solve the parsing problem. This is well described in [Eisner 2000]. We will
briefly explore this shortly.

The leftmost component i.e., the function is referred to as the factorization.
This method is used to decompose the tree into parts. The φ() corresponds to
the feature functions. In theory, every component can result in an opportunity
for improvement, we would restrict ourselves to the feature section.

Now, if the above problem also considers non-projective structures, then
a simple dynamic-programming would not suffice. But it could, still be effi-
ciently solved by using directed maximum spanning tree algorithms as shown
by [McDonald et al. 2005].

Consider a case where the dependency trees are factored into larger parts,
i.e., scoring groups of two or more neighboring dependencies with a shared
head. This is known as higher-order factorizations, and parsers which im-
plement this are known as higher order dependency parsers. This forms one
of the seminal parts of this thesis. We shall explore later the different ap-
proaches to the higher order dependency parsing and the advantages and
disadvantages of the higher order dependency parsing.

Let us now switch our focus back to the previous mentioned equations,
especially the concept of estimating the parameters .

2.6.1 Parameter Estimation using Structured Perceptron

A parameter estimation problem is usually formulated as an optimization
problem. This is mostly because of different optimization criteria and also
several possible parameterizations, a given problem can be solved in many
ways. In this thesis we use one of the simplest parameter estimation meth-
ods - the structured perceptron algorithm, which is the generalization of the
perceptron algorithm.

This algorithm was introduced by [Collins 2002] in his seminal work of
discriminative training models for Hidden-Markov-Models (HMM). The per-
ceptron is one of the easiest and the simplest parameter estimation algorithms.

The averaged perceptron begins with a parameter vector, which is initial-
ized to 0. It is then proceeds in a series of T iterations, which are basically
divided into a series of estimations. Each estimation step involves selecting
a random example from the training set, parsing that example, and checking
the parsers prediction against the standard structure. If the structures differ,
then the parameters ~w are updated with the difference between the feature
vectors of the gold standard and model prediction. The output of the algo-

10

rithm is not the final parameter vector, but the average of all parameter vectors
across every trial in the training run. Henceforth, it is also called the averaged
perceptron for parameter estimation. The parameters are basically updated
in the case of a mistake. We can see the pseudocode of the algorithm in the
here:

Algorithm 1 Pseudocode for average perceptron algorithm: In this algorithm
~w is the normal parameters and ~v is the summed parameters. Also note that
the resultant output as described here is ~v.

Input: Training Data = (~x,~y) where i ∈ [1...n]
~w = 0
~v = 0
for t = 1→ T do

for j = 1→ n do
i = Random[1, n]
y′ = y′′(xi; ~w)
if y′ , yi then
~w = ~w + φ(xi, yi)− φ(xi, y′)

end if
~v = ~v + ~w

end for
end for
~v = ~v/Tn

The difference computed in the algorithm, i.e., ~w = ~w+ φ(xi, yi)− φ(xi, y′),
has an additional property: if the model prediction y’ is mostly correct, then
only a few of its parts will differ from the parts in the gold standard yi.
Thus, the update performed on the parameter vector will only modify features
pertaining to incorrect or missing parts.

The averaging of parameter vectors is crucial for obtaining best results with
the perceptron algorithm. As pointed out by [Carreras 2007] the actual percep-
tron parameters yield only mediocre parsing performance, while the averaged
parameters v resulting from the same run are of much higher quality. This
seems to generate desirable performance for our parsers. We are only sticking
to this form of parameter estimation.

We now seem to have the necessary background to understand higher or-
der discriminative parsing models.

What we have described above is just a formalization of the tree factored
into parts, that is, we have described the score of the tree to be the sum
of the edge scores. A detailed account on the factorization is explained in
[McDonald et al. 2005]. In the process of factorization, the whole problem of
finding the dependency tree of a particular sentence has been reduced to the
problem of finding maximum spanning trees. In this section we restrict the
definition to the more refined, projective dependency trees.

[Koo & Collins 2010] defines order of a part as the number of dependencies a
part contains. In the following sub-sections we shall see explore the different

Chapter 2. Premise 11

projective algorithms and then we would concentrate on the existing feature
structure and the proposed changes in the feature structure.

2.7 PA R S I N G A L G O R I T H M S

In this section we briefly describe the current research on graph based depen-
dency algorithms. We have briefly described the algorithms which are one of
the most essential parts for the justification of our hypothesis.

Before we go further with the description of the dynamic programming
structures, let us understand the terminology which is generally accepted:

• Simple Dependency: The simple dependency as we have been defining
since the beginning, is made of a head (h) and a modifier (m) relation-
ship.

Figure 2.6 The basic dependency structure.

• Sibling Structure: A sibling is defined as the relation where the modifiers
share the same head. We consider here one as the main modifier (m),
while the other as the sibling (s).

Figure 2.7 Sibling structure.

• Grandchild Structure: In case of a grandchild structure, the head has a
parent, that is the grandparent (g). The structure is depicted in the figure
here.

Figure 2.8 Grandchild Structure

• Grandsibling Structure: Here, the sibling structure defined above is headed
by a grandparent. Hence, forth a grand-sibling structure.

12

Figure 2.9 Grandsibling Structure

Let us now understand the basic dynamic programming structures. The
algorithms in detail would not be mentioned, but the relevant reference would
be made for each of the algorithmic formulation.

First-Order Factored Parsing Algorithm

One of the earliest implementation of discriminative dependency parsing was
introduced in the seminal work by [Eisner 2000] who used dynamic program-
ming for first order parsing. This laid the foundation to other parsing algo-
rithms in the area of graph based dependency parsing.

The most important part of the algorithm is that it has two main compo-
nents - the complete span and the incomplete span. The complete span on one
hand consists of a headword and its modifiers, while the incomplete span
consists of the region between the head and the modifier.

A slightly modified version of CKY [Eisner 2000] chart parsing algorithm
would generate and represent the dependency trees in less than O(n5) (which
is the standard time complexity of CKY algorithm) time to create. However,
[Eisner & Smith 2010 (Chapter 8)] parses left and right dependents of a word
independently and then combines them at a later stage. This reduces the time
complexity from the standard - O(n5) to O(n3) as each derivation is defined
by fixed boundaries of a ‘span’ (which is two) and ‘a split point’.

We can think about a complete span as a ‘half-constituent’ of a dependency
tree part. This half-constituent is headed by a head ‘h′ and is modified by a
modifier ‘m′. Similarly, an incomplete span can be thought of as a ‘partial
half-constituent’, because, this is extended by adding modifiers to m.

Let us consider a complete span as Ch,e where h and e are the indices of the
span’s headword and endpoint. An incomplete span may then be written as
Ih,m, where m is the modifier of h. As we have seen above, with the Eisner’s
independent combination strategy, again, each span is created by recursive
combination of smaller spans. An incomplete span is constructed from a
pair of complete spans, while a complete span is created by combining the
incomplete span with the other half of the constituent.

The above process is a recursive process. Also in the figure, the span com-
bines at a point m (in (1)) and at a point r (in (2)) is the free index that must
be enumerated to find the optimal construction. This is also split point. The
point of concatenation is found to infer the optimal construction. This is ex-
actly accomplished by modifying the CKY parsing techniques as mentioned
in [Cocke & Schwartz 1970] and [Kasami 1965].

Chapter 2. Premise 13

Figure 2.10 First-Order dynamic programming structures
Kindly note here that complete spans are triangles and incomplete spans are

trapezoids.

2.7.1 Second-Order Factored Parsing Algorithm

In a second order factored algorithm a part contains 2 dependencies. The
implementation of second order parsing algorithms have been majorly done
in the below mentioned ways:

• Sibling factorization - This was introduced by [McDonald et al. 2006]
where the dynamic programming structures were modified to explore
the possibility of extending the parts to include the sibling information.
That is two words with a shared head word. In this case, a sibling infor-
mation is a triplet < h, m, s >. Extending from the previous algorithm,
(h, m) and (h, s) are dependencies and s and m are successive modifiers
to the same side of h. For this case, the dynamic programming structure
has been augmented to include an extra structure: sibling spans. Sibling
span represents the region between successive modifiers and of a head.
Let us consider a sibling span as Ss,m, here s and m are the successive
modifiers involved in the relationship.
In this case, the incomplete spans are constructed in a completely dif-
ferent way as opposed the earlier case. Here, the parser combines in-
complete span, that represents the innermost dependency with a sibling
span. Even in this case, each derivation is still defined by a span and
split point only. Hence, even here the parser requires O(n3) time.

• Grandchild factorization - The grandchild factorization was introduced
by [Carreras 2007] in which parser tries to exploit the grandchild parts,
that is, the part includes the children of head and modifier. So, in this
case, a grandchild information is a triplet < h, m, c >. Extending from
the same first order factorization, (h, m) and (m, c) are now the depen-
dencies. Again, for this case, the dynamic programming structure is
modified to include the identity of the outermost modifier of the head
of the complete span. These also make use of the aforementioned sib-

14

Figure 2.11 Second order dynamic programming structure
This shows the sibling spans

ling parts - (h, m, s) but then s and c are effectively independent of each
other and hence the algorithm is optimized to deal with each index sep-
arately. Here, please note that the grand child relation changes the pars-

Figure 2.12 Second order dynamic programming structures
Grandchild spans

ing algorithm now, in terms of the computational complexity. That is the
complexity increases from O(n3) to O(n4).

2.7.2 Third-Order Factored Parsing Algorithm

Third order parsing algorithms was introduced by [Koo & Collins 2010] which
basically extends the above approaches. This is mostly by augmenting the
grand-parent index. [Koo & Collins 2010] remarks that the efficiency of the

Chapter 2. Premise 15

third order algorithms is due to a fundamental asymmetry in the structure of
a directed tree, i.e., a head can have any number of modifiers but a modifier
always has a single head. So in a way, this exploits the structural asymmetry.
[Koo & Collins 2010] specifically divides the parsing algorithms into three
different models, the important two are mentioned below, which we have
tried to experiment on:

• Include all grandchildren In [Koo & Collins 2010]’s structures a grandchild
is a part contains the information of the triplet < g, h, m >, where (g, h)
and (h, m) are dependencies. For this both complete and incomplete
spans are augmented with g-spans. Hence, in other words, it basically
represents the same first-order algorithm, but now it includes the indices
of the grandparent. Please do note that here each derivation copies the
grandparent index g into smaller g-spans. This actually causes each g-
span to have non-contiguous structure. This is basically an extension of
the second order grand-child factorization

Figure 2.13 Third order dynamic programming structures
Grandchild

Even with this algorithm the time complexity is O(n3) as each derivation
is defined by three fixed indices and one split point.

• Include all grand-siblings In this case, we decomposed each tree into a set
of grand-sibling parts which consist of the sibling parts and the grand-
child parts. i.e., a grand-sibling is a quadruple < g, h, m, s > where

16

(h, m, s) is basically the sibling part from above and (g, h, m) is the grand-
child parts. Its almost like a hybrid of the aforementioned approaches.

Figure 2.14 third order dynamic programming structures
grand-sibling.

2.8 F E AT U R E S PA C E

All through the previous sections we defined the score of an edge, but we
intrinsically made an assumption about the feature space. We supposed that
we have a high dimensional feature representation for each edge. The feature
set description in the above implementations maintain the successful previous
work in first order dependency parsing [McDonald et al. 2005], [McDonald
et al. 2006], [Carreras 2007].

Let us understand feature space with an example from [McDonald et al.
2005]. Let us consider one of combination of fetures from the form of the
words, the lemma of the words, the pos tags of the words. The features are
basically the indicatory functions (most often binary), each of the functions
evaluate the presence of a certain pattern in a dependency. Consider a feature
pattern which takes into account part-of-speech tag and the form of the word
into consideration. There is an implicit direction on each dependency part -
the left or the right. Let us assume that if |h| ¡|m| then the direction is right and
it is left otherwise. If these are the given conditions, then the part φ(x, h, m, c)
can be defined as:

• dir.pos (h).pos (m)

• dir.form (h).pos (m)

• dir.form (m).pos (h)

Chapter 2. Premise 17

• dir.form (h).pos (m)

• dir.form (h).form (m)

The most basic feature patterns consider the surface form, part-of-speech,
lemma and other morphosyntactic attributes of the head or the modifier of a
dependency. The representation also considers complex features that use a va-
riety of part-of-speech tags of the following items: the head and modifier; the
head, modifier, and any token in between them; the head, modifier, and the
two tokens following or preceding them. Most of the above implementations
of the parsing algorithms involve using the syntactic features.

In our experiments we are working with a deprived tree, by depriving
it of the dependency-labels. This is because the addition of labels actually
increases feature space. For simplicity and computational reasons, we have
restricted the experiments to unlabeled parsing. Just like the concept of direc-
tion defined above, the label is actually dependent on both head and modifier.

2.9 E F F E C T O F F E AT U R E S I N D E P E N D E N C Y PA R S I N G

[Bikel 2004b] provided a detailed analysis of the contribution of each class of
distribution to the generative power of the model for generative parsing mod-
els. But, unfortunately the non-probabilistic nature of our models prevents
that detailed analysis. One of the reasons for the non-probablistic nature of
the models is because the models do not perform an exhaustive computation
for inference. Thereby, these models are highly generalized in comparison to
the generative models as done in [Bikel 2004b]. In this thesis we investigate
the effective improvement of certain features and also explain their impor-
tance.

2.9.1 Effect of Semantic Features

Semantic information basically focuses on the relation between signifiers, like
words, phrases, signs and symbols, and what they stand for. Use of semantic
information to improve parsing accuracy has been an interesting but difficult
goal since the early days of NLP [Ratnaparkhi et al. 1994], [Hektoen 1997],
[Xiong 2005]. There have been some good results as shown by [Ratnaparkhi
et al. 1994] but the overall integration has been a tough challenge. Recently
[Agirre et al. 2011] made an attempt to integrate semantic word classes with
transition based data driven dependency parser - the Maltparser [Nivre &
Hall 2005] using basic semantic representations using WordNet [Fellbaum
1998a]. Recently, [Agirre et al. 2011] concludes that semantic information
gives an improvement on a transition-based deterministic dependency pars-
ing. Also, he mentions that feature combinations give an improvement over
using a single feature. Semantic information can be further classified accord-
ing to its exactness to its intended meaning.

18

2.9.2 Morphosyntactic and Morphosemantics with Dependency Parsing

Morphosyntactic feature is a feature which is involved in either syntactic
agreement or government. A typical example is the gender, number and
person are involved in agreement. In languages like English and many other
languages, syntax is not sensitive to the tense value of the verb. But in lan-
guages, especially, highly inflected languages, the tense plays a major. This
is a very important attribute for languages with rich morphology and inflec-
tions. The relationship of the concept of ‘gender’ i.e., the concepts ‘masculine’,
‘feminine’, ‘neuter’; or between the concept ‘case’ i.e., the concepts ‘nomina-
tive’, ‘accusative’, ‘genitive’, etc., with many languages also play a major role
in deciding the sentence structure. There are some interesting results about
integrating Tense, Aspect, Modality and Minimal Semantics (with constrained
and selective semantic relations) with a dependency parser to obtain better re-
sults for parsing morphologically rich free word order language [Ambati et al.
2010] [Ambati et al. 2009]. They claim that with the introduction of seman-
tic features there is a significant improvement in the performance of both the
parsers. They further state that adding semantic features for nouns helps with
label identification more than head identification.

Most of the current research on dependency parsing is focussed on the
algorithms employed by the parsers, in this thesis we would concentrate on
the issue of the relevant information to the parsing algorithm. That is ex-
perimenting on extending the feature structure, the problem of relevant and
important feature extraction is as important as the research on parsing algo-
rithms. Feature structures provide information for the inference sub-part of
the algorithm.

Chapter 2. Premise 19

20

3
State-of-the-Art and Current Research

The research in the field of dependency parsing was boosted by the successful
results in the open shared tasks of the Conference on Computational Natural
Language Learning (CoNLL) which concentrated on the task of dependency
parsing. The relevant shared tasks which concerns this thesis and the field
of dependency parsing directly are shared tasks in CoNLL-2006 [Buchholz &
Marsi 2006a], CoNLL-2007 [Nivre et al. 2007a], CoNLL-2008 [Surdeanu et al.
2008] and CoNLL-2009 [Hajič et al. 2009]. Most of the participating teams had
novel and highly competitive methods. Though, CoNLL-2008 and CoNLL-
2009 shared tasks were joint assignment of syntactic and semantic dependen-
cies.

This thesis focuses on the aspect of pure dependency parsing rather than
the task of joint assignment of syntactic and semantic dependencies, hence we
will be more concerned with the systems with exclusive dependency parsing
results. The results of the CoNLL 2007 shared task is presented in 3.1.

We can see that shift-reduce (or transition based parsers) and [Eisner 2000]
based techniques are the most used as parsing approaches and have a very
good performance. Eisner-based parsers use edge-factorizations, which are
usually simple to approach. Very recently, the new parsing algorithms have
been trying to extract maximum number of context by considering more num-
ber of words in a part - that is the concept of higher order [Koo & Collins 2010].
Let us now see some of the most important developments in the field of de-
pendency parsing in the recent past which has inspired this thesis directly
and indirectly.

In spite of these workshops and shared tasks, there is still a question of
whether, even for English, a dependency parser could compete with the other
well established phrase-structure parsers, which have access to a richer struc-
ture to perform disambiguation. This is still a question for potential research.
[McDonald et al. 2005] extracted dependencies from the output of phrase

Parsing Algorithm English Czech Type of Parser
Carreras 90.63 85.16 Discriminative Graph Based

Nakagawa 90.13 84.19 Probabilistic based on Gibbs Sampling
Sagae 89.87 81.27 Transition Based

Nilsson 88.93 83.59 Inductive Transition
Titov 89.73 81.20 Probabilistic

Table 3.1 CoNLL 2007 Shared Task Results. Unlabeled Attachment Score. The
parsers are - [Carreras 2007], [Shimizu 2007], [Sagae & Tsujii 2007], [Nivre et al.
2007b], [Titov & Henderson 2007].

21

structured parser - Collins parser 1 using head finding rules and found that
Collins parser was relatively more accurate (0.5 percent) at correctly assign-
ing the heads even with the fact that Collins parser was not trained for the
domain.

[Carreras et al. 2008] introduced a dependency parsing algorithm inspired
by TAG formalism [Joshi 1969]. The main advantage of this algorithm is the
ability to use features from dependency trigrams. This approach uses the
splittable grammar formalism - TAG into maximum usage and also produces
accurate results.

[Koo et al. 2008] used an interesting approach by using semi-supervised
learning. They use Brown clustering algorithm as features and achieve some
very interesting results. This is specifically useful method when small amount
of training data is available. This is one such research where the use of feature
has shown a relatively big improvement in the parsing accuracy. This thesis
is totally exploiting the work done by [Koo & Collins 2010] where he intro-
duced the parsers with third order. These algorithms have been previously
explained.

Noticeable research in the field of dependency parsing, especially in the
area of exploring the feature set has been rather less and not as exhaustive
as with other constituent parsers. Some of the recent work that concentrates
with exploiting the features are mentioned here.

[Agirre et al. 2011] introduces semantic classes using WordNet, but for
transition based parser. The work shows an improvement in the retrieval of
labeled accuracies. But, the work does not provide an exhaustive analysis of
the semantics on parsing. However, this strongly motivates us to explore the
importance of including the semantics into the parser.

[Kitagawa & Tanaka-Ishii 2010] have augmented the selection of parsing
actions by using a tree based approach. They build a model that considers
all words necessary for selection of parsing actions by including words in the
form of trees. It chooses the most probable head candidate from among the
trees and uses this candidate to select a parsing action. This is a very new and
interesting approach, but, it is restricted to transition based parsers.

[Song et al. 2011] demonstrates a method in which a classifier is used to
determine whether a pair of words forms a dependency edge. The classi-
fier trained on the projected classification instances significantly outperforms
previous projected dependency parsers when augmented with graph based
dependency parsers.

[Novák & Žabokrtský 2007] have showed that optimizing feature templates,
there is a chance of getting a better parse structure in state-of-the art graph
based dependency parsing algorithms. This work also makes a comparison
to the resources spent v/s the improvement in the obtained result.

In general we can make a dichotomy of the features -

1. Lexical Features and

2. Semantic Features.
1http://www.cs.columbia.edu/mcollins/code.html

22

Also, history-based models are simpler to design, as they do not require
problem-specific independence assumptions to be crafted, nor independence-
assumption-specific inference algorithms to be invented. Transition-based
parsers have the opportunity to extract non-local features by examining the
stack, but they are intractable when they exploit such non-local features (hence
the greedy search). All of these ”history based” models have a very restricted
kind of history, though in a way we could condition on anything but, in prac-
tice we only work with local knowledge. Also, the search is structured in a
way that it is very difficult for later decision to override earlier ones. These
”history-based” models are not really stronger than a forth-order parsing
model.

The experiments done by [Koo et al. 2008] is mostly lexical but the semantic
information is extracted using the lexical semantics. While, in the work by
[Agirre et al. 2011] is more into the real semantic features. In any of the
above cases, the number of features has to be limited. Else, there is always a
chance of overfitting due to the potential loss of information and introduction
of unwanted random noise in the learning and parsing process.

Chapter 3. State-of-the-Art and Current Research 23

24

4
Experimentation Details

In order to evaluate the impact of the semantic level features, we conducted
several dependency parsing experiments in English and Czech. In this chapter
we will describe the system settings, for the experimentations that we will
be doing to obtain the results. We have tested with several sets of feature
based experiments, while maintaining the algorithmic constraints. We test
it on first order, second order and third order parsing models with several
configurations of features. In the following sections we shall explore the the
idea and the configurations of the parsing experiments.

4.1 I N F O C U S

Let us recollect the algorithm that we have explained before. The parsing
algorithms used in the parsers are fine tuned on the framework of averaged
perceptron [Koo & Collins 2010]. The parser basically scores the part as shown
here:

Part(~x, p) = ~w · φ(~x, p) (4.1)

In the above equation, φ is a feature vector mapping and ~w is a vector of
related parameters. As described before, following the standard approaches
here from [Koo & Collins 2010], [Carreras 2007] and [McDonald et al. 2006],
the model scores for all of the parsers follow a generic pattern.

Please note, it is not only the higher order parts that the parser are mapped,
but even the lower order parts are evaluated. For example, let us consider
the third order grandsibling parser. This parser evaluates the mappings for
dependencies, siblings, grandchildren and all the grandsiblings as well.

The score is calculated as:

Score(~x, y) = ∑
(h,m)∈y

~w · φ(~x, h, m) + ∑
(h,m,s)∈y

~w · φ(~x, h, m, s)+

∑
(g,h,m)∈y

~w · φ(~x, g, h, m) + ∑
(g,h,m,s)∈y

~w · φ(~x, g, h, m, s)
(4.2)

In this equation, we have defined the dependency- (~x, h, m), the siblings -
(~x, h, m, s), the grandchildren - (~x, g, h, m) and the grandsiblings - (~x, g, h, m, s)
as the different parts which are actually the decomposed part structures.

What is special in this parsing approach is that it is not just the considering
the lower order parse structures, but the way the feature combinations take
place. In this parsing substructure, we can have 4-gram context features -
consisting of 4-gram POS augmented with adjacent POS tags (when using

25

POS as the feature). Consider an example of φ(~x, g, h, m, s). This basically
includes the POS features at these positions - (g, h, m, s, g + 1, h + 1, m + 1),
this means a POS 7-gram feature structure.

Figure 4.1 Example Structure where Sense information is included

Consider a simple example as shown in figure 4.1. Here, ‘S’ - wordsense
information with the parser it increases the amount of information required
for the parser to parse the structure of the sentence correctly. This is, in
general, more pronounced when we talk about higher order structures. [Koo
et al. 2008] has mostly tried to augment structures which are either syntactic
or approaches like the brown clustering. In this thesis, we try to experiment
with a linguistic analysis of feature addition.

4.2 I N H E R E N T F E AT U R E C O M B I N AT I O N I N T H E PA R S E R

The first order feature set in [Koo & Collins 2010]’s parser works exactly sim-
ilar to the feature set of [McDonald et al. 2005]. It consists of indicator func-
tions for combination of words and parts of speech for the head and modifier
of each dependency, as well as certain contextual tokens. [Koo & Collins
2010] has further augments the above feature set with backed off versions
of“Surroundng Word POS Features” which includes only neighboring POS
tag.

The higher-order baseline features are implemented in the similar manner
as implemented by [Carreras 2007]. Essentially, here the parsing algorithm
considers part of speech tags for sibling interactions and grandparent inter-
actions. This also includes additional bigram and trigram based features on
pairs/triplets of words involved in these higher-order interactions.

4.3 S Y S T E M I N F O R M AT I O N

A large number of experiments were performed through the development
process. As we stated at the start of this work, our main point of interest is to
compare the scores with different features and see if there is any significant
effect on the score. We re-ran some experiments with the latest system config-
uration to facilitate a comparison across experiments. Some experiments are
really expensive and hence were done using a reduced corpus, which will be
explained below.

26

4.3.1 Input Format

The input format for our experiments is using the CoNLL-X format 1 [Buch-
holz & Marsi 2006b].

The data format is as follows:

• The data files contain sentences separated by a blank line.

• A sentence consists of one or more tokens and the information for each
token is represented on a separate line.

• A token consists of at least 8 fields, described in the table below. The
fields are separated by one or more whitespace characters. Whitespace
characters are not allowed within fields.

The CoNLL format which we used for our experimentation Czech:

1. ID - Token counter, starting at 1 for each new sentence.

2. FORM - Word form or punctuation symbol.

3. LEMMA - Lemma or stem (depending on particular data set) of word
form, or an underscore if not available.

4. CPOSTAG - Coarse-grained part-of-speech tag, where tagset depends on
the language.

5. POSTAG - Fine-grained part-of-speech tag, where the tagset depends on
the language, or identical to the coarse-grained part-of-speech tag if not
available.

6. FEATS - Unordered set of syntactic and/or morphological features (de-
pending on the particular language), separated by a vertical bar (—), or
an underscore if not available.

7. HEAD - Head of the current token, which is either a value of ID or zero
(’0’).

8. DEPREL - Type of dependency relation. The set of dependency relations
depends on the particular language.

4.3.2 Corpus Used

We are experimenting with two languages - English and Czech which are
widely used in shared tasks and are also widely experimented. This is also
largely because of the ready availability of finely tagged standard corpora.
In this section we will describe the corpora which were used in the process
of experimentation. We used a “reduced corpus” as these experiments are
heavily computationally intensive and need a lot of resources for different
experiments. The parsing algorithms, as shown by [Koo & Collins 2010], has a
time-complexity of O(n4). In practice, other computations which concern the
data conversion and other sub processes also consume a lot of computational
time. For easy replication of the results, the exact details of the corpus are
also provided.

1This can be accessed here http://ilk.uvt.nl/conll/

Chapter 4. Experimentation Details 27

English

The corpus consisted of Penn Treebank (PTB) [Marcus et al. 1993] corpus and
it was converted to the required format by using Penn2Malt [Johansson &
Nugues 2007] constituency-to-dependency converter. We used a subset of
this corpus that consisted of:

1. 15,000 Sentences - Training

2. 1000 Sentences - Validation

3. 2000 Sentences - testing

For English, the interest in developing exclusive dependency parsed corpus
has been a bit weaker than for other languages. This is probably because of
the strong tradition of constituent analysis in Anglo-American linguistics, this
is reinforced by the creation of a big treebank for American English, the Penn
Treebank [Marcus et al. 1993], that is annotated with constituent analyses. At
the same time, there has been increasing interest in using dependency parses
for a range of NLP tasks, from machine translation to question answering.
This is one of the reasons, why most of the other languages have shifted to
building treebanks natively with a dependency grammar formalism. Even
in this work, we use Penn2Malt [Johansson & Nugues 2007] for the process
of conversion from the constituency tagged corpus format to a dependency
tagged corpus.

The exact details about the corpus divisions are provided here. Please note
that the corpus was extracted from Penn Treebank. The specifics are:

1. Training Set: This was built from section 2 to section 10. A set of fifteen
thousand sentences were extracted from this set. These sections were
combined n a serial order and 15,000 sentences were extracted. In a
similar manner every other sections were extracted.

2. Validation or Development Set: Random selection of sentences from sec-
tions 15, 17, 19 and 25. This set contained a set of one thousand sentences.

3. Testing Set: This was chosen from sections 0, 1, 21, 23. This is contained
two thousand sentences in all.

Czech

We used the Prague Dependency Treebank (PDT) [Böhmová et al. 2001] for
Czech, which was converted by using some scripts provided in the TectoMT.
Though the data consisted of a big set of sentences, unfortunately generating
models for all of the them is a very expensive task. Since the result was
computed with several models with similar dataset, we believe that the results
still holds merit as these were comparative results.

The Exact division of the sets were.

1. 15,000 Sentences - Training

2. 1000 Sentences - Validation

3. 2000 Sentences - testing

28

The Prague Dependency Treebank [Böhmová et al. 2001] consists of Czech
texts annotated with syntactical information consisting mainly of dependency
relationships. Unlike English, Prague Dependency Treebank is natively a cor-
pus following the dependency grammar formalism. One of the most popular
benchmarks for evaluating parser quality is by evaluating against the surface-
syntactic trees provided by the Prague Dependency Treebank.

The Czech side of the experimentation was extracted from the “pdt-full-
automorph” dataset of the Prague Dependency Treebank. It constituted of:

1. Training Set: This was built from train1 to train5 splits of the dataset. It
had in total a set of fifteen thousand sentences.

2. Validation or the Development Set: This section was taken from the
train6 and train7 sets. It had a set of one thousand sentences.

3. Testing Set: The test set was made up of dtest and etest parts of the
dataset. It contained two thousand sentences in total.

The Czech wordnet is unfortunately a closed work, this was tackled by
exploring the Prague Dependency Treebank for the near-semantic annotations
as explained in the later half od the thesis.

4.3.3 Tools

Dependency Parser

We use [Koo & Collins 2010]’s higher order dependency parser dpo3
2 which is

freely available with a GPL license. This parser already builds algorithms for
all the higher order parsers and provides the ideal basis to experiment. This
lets us use the ideal base to experiment with different dynamic algorithms
and test our hypotheses.

The training is done using the standard average perceptron training al-
gorithm. The learning method was retained as it is a very fast converging
algorithm, typically converging in around ten iterations. For our experimen-
tations, we have trained each parsing experimentation for ten iterations and
then we have selected the best score on the development set. In practice, the
convergence varies for different corpora and with the input feature set.

4.4 W O R D S E N S E E X T R A C T I O N

• Fine-grained Word Sense Extraction We use the standard word sense
disambiguation [Pedersen & Kolhatkar 2009] algorithm to do the basic
word sense disambiguation. What it does is it, finds the sense of each
word that is most related to the senses of the surrounding words based
on a similarity measure. It proceeds word by word from left to right,
centering each content word in a balanced window of context, whose
size is determined by the user, of surrounding words. At each stage, the
token being disambiguated is called “the target”, and the surrounding

2This can be accessed here http://groups.csail.mit.edu/nlp/dpo3/

Chapter 4. Experimentation Details 29

tokens “the context window”. The size of the context is determined by
the user and will be referred to as window size. A balanced context is
chosen according to the size of the window. The goal of the algorithm is
to select one of the senses from the set of possible senses. This is done by
measuring the semantic relatedness between the possible senses of the
target and the possible senses of each of the tokens in the context win-
dow. Consider a sense pair (sk, s′il), where sk is the kth sense of the word
being considered and s′il represents the lth sense of the ith word in the
context window. A ‘relatedness’ function takes as input two senses, and
outputs a real number. It is assumed that this real number is indicative of
the degree of semantic similarity between the two input senses. A larger
number denotes high relatedness between the two senses and a smaller
number denotes low relatedness between the senses. In simple terms the
equation that is used to calculate the sense is given below:

Sk = ∑
1ton

(max(sk, s′il)) (4.3)

Here, Sk is the final-chosen sense for the given word in the context.

• Coarse-grained Word Sense Extraction [Fellbaum 1998b] describes that
the organization of words in the WordNet are done as sets of synonyms,
called synsets. Each synset in turn belongs to a unique semantic le (SF).
There are total of 45 SFs (1 for adverbs, 3 for adjectives, 15 for verbs,
and 26 for nouns), based on syntactic and semantic categories. A script
is written in order to fetch coarse-sense disambiguation. This script also
uses [Pedersen & Kolhatkar 2009]’s word sense disambiguation tool, but
then makes it more coarse grained for our experiments. The tags are
SF00...SF44.

This is not exactly the case for Czech. The difficulty is due to the problem
of having a reliable sense-tagged corpus for Czech 1. It would have been
much more easier to get the senses disambiguated if there was a good sense-
tagged corpus. In lieu of the sense tagged corpus for Czech, we extracted an
almost similar feature from the Prague Dependency Treebank - “SEMPOS” or
the semantic part of speech. We will explain in detail about the extraction in
the next chapter.

4.5 M O R P H O S Y N TA C T I C F E AT U R E E X T R A C T I O N

These were properly done for the Czech language since we had the tagged
corpus with a set of morphosyntactic features, also these were of Gold stan-
dard. The morphosyntactic features are the basic morphological features in
the Prague Dependency Treebank which are extracted from the m-layer.

There are 13 categories in the Czech morphological tagset with 4452 plau-
sible combinations. These are briefly mentioned in the table 4.1. We extract
the morphosyntactic features out of this table - both the whole feature set

1We did not have the Czech WordNet available for our experiments.

30

Category Number of Values
POS 10

SUBPOS 75

GENDER 8

NUMBER 4

CASE 9

POSSGENDER 4

POSSNUMBER 3

PERSON 5

TENSE 4

GRADE 5

NEGATION 3

VOICE 3

VAR 3

Table 4.1 Morphological Tagset for Czech

and take specific morphosyntactic features into consideration and try to ex-
periment with different possible combinations. Some of these tags are very
important and are mostly specific for an inflectional language as these contain
a lot of information which is essential to build a good sentence. This inspires
us to embed these features into the various dependency parsing algorithms
and gain an insight into these feature structures.

Again for the English language, we used the fine-grained part-of-speech
tags. These tags also contain some morphological information, but not as
extensive as the Prague Dependency Treebank has. This is again directly
extracted from the Penn Treebank.

Chapter 4. Experimentation Details 31

32

5
Experiments

This chapter presents a set of results from the experiments carried out on the
data introduced in the previous chapter. At first, we present the hypothesis
and discuss the theoretical plausibility of the hypothesis, then we provide a
brief description of the experimental setup. Finally, we present the results and
a discussion on the obtained results and the experimental outcome.

The major part of the experimentation was with features. To have a holistic
idea of the performance of the features, we considered all possible combina-
tion of the feature space. This included from grandchild and grand sibling
to the head and the modifier with the possible feature combination. In all
the experiments we took the basic coarse grained part-of-speech as one of the
constant features. This was also the baseline for all the experimentation.

The performance of the feature enhanced parsing algorithms are compared
with the parsing algorithms augmented with basic coarse-grained part-of-
speech feature and form as the features. We calculated the unlabeled attach-
ment score, that is, the score which calculates the number of times a decision
- where the head has been correctly predicted. This is one of the standard
metrics used in the evaluation of the dependency parsers both in the shared
tasks as well as in the research publications. The result hence, could eas-
ily be verified. As explained before, the test set comprised of two thousand
sentences.

The experiment is made to run at least ten times to get the maximum con-
vergence with the score and get the optimum result. We have provided a list
of run-by-run variations for each parsing algorithm across all the experiments
in the “Appendix”. In most of the experiments we have got the convergence,
but on some of them there was a necessity of more iterations for the conver-
gence.

5.1 F E AT U R E S PA C E S

As explained in the previous chapters, our parsing algorithms have a high-
dimensional feature representation for each edge (i, j). Again, we have de-
scribed the feature space in Section 2.8 where we discussed about the struc-
ture of combining the feature patterns. For our experiments, we have exper-
imented with all possible feature structure combinations. One of the feature
structure combinations is just similar to the feature structure combination as
mentioned in [McDonald & Nivre 2007]. The second is basically the one with
joins the structure with the distance between the two siblings as well as the
direction of attachment (from the left or right). These features were modi-
fied on a development set. We tried additional features, such as the POS of

33

words in-between the two siblings and POS of words in between parent and
children.

5.2 E X P E R I M E N T 1

5.2.1 Research Question

“What is the effect of using the fine-grained semantic word-sense as a feature with
different graph based dependency parsing algorithms?”

5.2.2 Theoretical Plausibility

English

As explained in the previous chapters, we can see that dependency parsing,
in general, is very useful for semantic analyses. This draws us closer to the
question of whether there is any effect on the parsing accuracy if any semantic
information is available to the parser. We investigate the possibility by includ-
ing specific word-senses. This becomes especially interesting with the higher
order parsing algorithms, since, these can explore better context information.

To explain the possibility of wordsense making an impact, let us consider
an example as shown in 5.1 and 5.1. Now, given the word form and the part
of speech tag, “cricket” has exactly the same POS tag in both ‘cricket as an
insect’ and ‘cricket as a sport’. We can see that the possibilities, given several
parses with the same form and POS information, would make it ambiguous.
This would change if we have more information. In this example, the sense
can be useful to distinguish between the two different forms of the word.

A sense tagged corpus has the ability to give a better set of information to
the parsing algorithm. Also, if we consider, second and higher order parsing
algorithms, then the amount of information would be significant and hence
theoretically the accuracy in predicting the structure would be considerably
higher. This experiment was inspired by [Agirre et al. 2011]’s recent work
on improving dependency parsing accuracy by using semantic classes as fea-
tures. In [Agirre et al. 2011]’s experiments, they use the most generic semantic
tags as features, we use the same logic in the next experiment.

Czech

Following the same logic as for English, for Czech, there is a well defined
Semantic POS (the tag name is SEMPOS) tag in the t-layer of the Prague
Dependency Treebank. We have symbolically treated this as the fine grained
semantic tagset. But one interesting issue is that these are Gold standard
tagsets and hence we can have a clearer look at the results. The tagset for
Czech is explained in the following section.

The reason for experimentation with Gold standard tags is because the
relative use of the semantic features is still new and is an untested area. This
experiment might prompt a tool which could generate a sense tagged corpus
based on the relative usefulness in this experiment. The guiding factor again

34

Figure 5.1 Effect of Wordsense

1 Ms. - NN n2 - 2 NMOD
2 Haag - NN - - 3 SUB
3 plays - VB v3 - 0 ROOT
4 Elianti - NN - - 3 OBJ
5 . - . - - 3 P

Table 5.1 A sample set from the Penn Treebank tagged with fine-grained word-
sense tags for English

is based on the experiments done by [Agirre et al. 2011]. Also, in [Agirre et al.
2011]’s experiments, they have worked with the semantically Gold tagged
corpus to explore the effect of the semantic tags.

5.2.3 Experimentation

English

As explained before, we use [Pedersen & Kolhatkar 2009]’s algorithm to dis-
ambiguate and associate senses for each word in a given sentence. Now, given
a target word and its part of speech, the algorithm chooses the best possible
sense. Consider an example sentence “I enjoy watching a cricket match”, in
this case cricket as a game would in the WordNet belong to the sense number
1. Hence, the output would be n1 when tagged. A sample sentence from the
training dataset is mentioned in 5.1:

Czech

The t-layer of the PDT [Böhmová et al. 2001] is tagged with the grammateme
semantic postags or sempos. We have extracted the sempos from the PDT and
we are have experimented with the sempos. The tagset of the sempos is given
in 5.2.

Chapter 5. Experiments 35

Type Explanation
n.denot denominating semantic noun

n.denot.neg denominating semantic noun with separately represented negation
n.pron.def.demon definite pronominal semantic noun: demonstrative

n.pron.def.pers definite pronominal semantic noun: personal
n.pron.indef indefinite pronominal semantic noun
n.quant.def definite quantificational semantic noun
adj.denot denominating semantic adjective

adj.pron.def.demon definite pronominal semantic adjective: demonstrative
adj.pron.indef indefinite pronominal semantic adjective
adj.quant.def definite quantificational semantic adjective

adj.quant.indef indefinite quantificational semantic adjective
adj.quant.grad gradable quantificational semantic adjective

adv.denot.ngrad.nneg nongradable denominating semantic adverb, impossible to negate
adv.denot.ngrad.neg nongradable denominating semantic adverb, possible to negate
adv.denot.grad.nneg gradable denominating semantic adverb, impossible to negate
adv.denot.grad.neg gradable denominating semantic adverb, possible to negate

adv.pron.def definite pronominal semantic adverb
adv.pron.indef indefinite pronominal semantic adverb

v semantic verb

Table 5.2 Semantic POS-Tags for Czech from the Prague Dependency Treebank

5.2.4 Results

English

As we have stated above, for this experiment, we evaluated the performance
of our system using 15,000 sentences from the Penn Treebank corpus which
are converted by the “pennconverter” into the CoNLL format. This is a tool to
automatically convert the constituent format used in the Penn Treebank into
dependency trees. This was also used in the previous versions of the CoNLL
shared task. We tagged the corpus with the fine-grained semantic tags, i.e.,
these tags actually mention the possible sense number from the list of senses
retrieved from the WordNet. Seeing table ?? we notice a gradual improvement
in the parsers accuracy for unlabeled attachment score.

Czech

The table 5.4 shows the result for the Prague Dependency Treebank. In this
case, the experiment was done with Gold standard tags. Hence, this just gives
us an indication of the relative importance of the semantic tags for Czech.

5.2.5 Discussion

One basic difference between our approach and the other previous approaches
on augmenting wordsense is that here, we use a relatively ‘more specific’
wordsense of the word. This provides more specific information to the pars-
ing algorithm. The grand-sibling based parsing algorithm shows better per-

36

Parsing Algorithm Semantic Tags Baseline Difference Mean Score
(refer Appendix 8)

Third order grand-sibling 86.87 85.67 +1.20 86.15

Third order GrandChild 86.82 86.03 +0.79 86.44

Second order grand-sibling 85.19 84.32 +0.87 85.45

Second order GrandChild 85.23 84.79 +0.44 84.26

Table 5.4 Results for Prague Dependency Treebank

formance than the grandchild based parsing algorithm. A close analysis re-
veals that the sibling based interactions that are local, are easily retrieved.
While, the farther sibling interactions don’t necessarily give better results.

If we closely look at the results we find that for both the languages, there
is a generic uplift in performance for all the different kinds of algorithms.
But, significant results can be seen especially in the sibling-based parsing al-
gorithms. The standard test for statistical significance is heavily expensive
and hence we take a different route. We average all the learning stage mod-
els score with respect to the test data to compute the average significance.
Both in English and in Czech the grand-sibling based algorithm show a good
improvement. In this particular case you see the difference, there is a big dif-
ference for the Czech language, where the third order sibling parser differs
from the original score by a difference of +1.20. The other differences are of
similar magnitude, but more pronounced with sibling parsers.

In comparison to [Agirre et al. 2011]’s work, we have got a significant im-
provement on both Czech and English datasets. An automatically tagged
Czech corpus with the semantic tags could be a good experiment, since the
Gold tagged one has given us a positive result.

Chapter 5. Experiments 37

5.3 E X P E R I M E N T 2

5.3.1 Research Question

What is the effect of using the coarse-grained semantic word-sense as a feature with
different graph based dependency parsing algorithms?

5.3.2 Theoretical Plausibility

Before we justify the cause of the hypothesis, let us try to understand what
coarse-grained semantic word-sense tags are. For English, tthese tags are
basically a very high level representation of the possible semantic orientation
of the word. For example, an animate noun which denotes action or acts
would be classified in a particular set containing all of the animated nouns.

For English, a similar approach has been tried for transition based depen-
dency parsing by [Agirre et al. 2011]. We approach in a similar manner and
work on the level of semantic files to extract the details of the coarse-grained
wordsenses. Though, in our case, due to the lack of gold tagged data that has
been explored in [Agirre et al. 2011]’s work, we use just WordNet to tag our
corpus.There has been some improvement with the transition based parsing,
we experiment if at all there is an effect with graph based dependency parsing
algorithms, especially the ones with higher order context information being
made available.

Unfortunately, we couldn’t extend the same results to Czech. This was pri-
marily due to a problem in fetching a similar structural source like the Word-
Net due to several other practical constraints for the coarse grained semantic
tags.

The difference between the coarse and fine grained semantic tags lies in the
amount of information made available to the parsing algorithms. The coarse
grained information is a more generic form of information. There can be a
big set of words which belong to a particular semantic file. This presents the
parser witch generic set of information. Consider an example of the word
‘path’ and the word ‘way’. These two belong to the same family henceforth,
they will be numbered with the same semantic file number.

Now, consider a hypothetical case where, the training data has a sentence,
say, “Path of least resistance.”. Assume that this sentence is semantically tagged
and then the parser trains on this dataset. Again, consider a sentence in the
test data “Way of least Resistance”. In this sentence, it can be seen that all the
other words are the same set except for the word “Way”. In this case, both
“Path” and “Way” have the same POS and the same semantic tags. This would
make the sentence to be parsed correctly, due to the presence of semantic
information. There are cases when the POS tags are not similar, but semantic-
file would be same and the sentence would have a similar parse structure.
This would help the parser decide a better option of selecting the best possible
head by using the semantic-file as one of the features.

38

Parsing Algorithm Semantic Tags Baseline Difference Mean Score
(refer Appendix 8)

Third order grand-sibling 91.10 90.29 +0.81 91.22

Third order GrandChild 90.72 90.57 +0.15 90.36

Second order grand-sibling 88.54 87.45 +1.09 88.35

Second order GrandChild 88.62 88.34 +0.28 88.90

Table 5.5 Results for Penn Treebank

5.3.3 Experimentation

The algorithmic implementation is described here. The algorithm uses [Ped-
ersen & Kolhatkar 2009]’s algorithm to extract the best possible sense of the
word for the given context. This then is used to extract the synset of the word,
through which we extract the final semantic file number for the target word.

Algorithm 2 Pseudo-code for the semantic file tagging algorithm.
Input: Tokenized sentence and the window size n
function: disambiguate-all-tokens (input[], n): disambiguated-input[]
for tokens t in input[] do

best-sense = disambiguate-single-token (input[], t, n)
disambiguated-input[t] = wt with best-sense assigned

end for
end function
function: tag-symantic-file (disambiguated-input[]): semantic-file-tagged-
input[]
for tokens and senses t in disambiguated-input[] do

synset-information = synset-extraction(disambiguated-input[], y)
semantic-file-tagged-input[y] = t (tagged with semantic-file information
for the synsets)

end for
return semantic-file-tagged-input[]
end function

This algorithm assigns the semantic file information for the given target
word given the sentence. As we have explained before, these were basically
the semantic files and out tag representations were the closed set [SF00...SF45].

5.3.4 Results

The results for the experiment are mentioned in table 5.5. We can note that
there is a significant change due to the addition of the semantic tags. Also
note that the lower order parsing algorithm has a better relative improvement
than the higher order parsing algorithms.

Chapter 5. Experiments 39

5.3.5 Discussion

Again, in this case, we see that the sibling based parsers perform better than
the other forms of parsing algorithms. Also, please note that the second order
parser shows a better relative improvement than the third order sibling parser
with an improvement of +1.09 units.

The improvement in the performance of the parser is a very encouraging
result. Given the nature of semantic classes and word sense disambiguation
algorithms, there seems to be room for a lot of improvement. This gives
us the possibility of exploring information like WordNet concepts, wikipedia
concepts and other related concepts, which could be essentially important for
various Natural Language Processing tasks like Semantic Role Labeling, etc.,
also, these results are very interesting for fields of Machine Translation and
other related fields.

This experiment, to a certain extent, indicates the effect of having high
level word classes. An experiment with word classes was performed by [Koo
et al. 2008], which showed a significant effect on the lower order parsing algo-
rithms. This experiment provides the motivation for a similar experiment for
the higher order dependency structures. Though, this thesis has not explored
any of the effects of using the approaches based on lexical word-classes, which
are basically semi-supervised structures. In a generic word-clustering ap-
proach, lexical information is considered as a crucial step to resolving am-
biguous relationships. While in our case, we have tried to go beyond the
lexical relationship. We are trying to scale the features upto a semantic level.

40

5.4 E X P E R I M E N T 3

5.4.1 Research Question

“What is the effect of using the morphosyntactic tags as a feature with different graph
based dependency parsing algorithms?”

5.4.2 Theoretical Plausibility

Czech

Czech is a morphologically rich language [Horák et al. 2007]. The morpho-
logical tags are known to contain a lot of significant lexical information. This
information seemingly play an important role in the parsing of morphologi-
cally rich free order languages. With a big window of contexts, the amount of
useful information could be extended.

English

For English, though morphological information is important, but the amount
of contribution of the morphology might not be as great as the contribution
from Czech. We used the fine-grained POS tags directly from the Penn Tree-
bank’s tagged corpus. We found out that the fine-grained POS contains a
significant amount of morphological information. The tags comprised of the
standard tag set from the Penn Treebank.

5.4.3 Experimentation

Czech

We initially tried with the 15-letter tags as individual features and exploited
the whole tagset with the parsing algorithm. But unfortunately, it couldn’t
give better results mostly due to the problem of over-fitting of the feature
space. This made us make experimentation on linguistically coherent choices
with respect to the parsing decision. Later, we chose a subset of these morpho-
logical features, the subset was chosen on the basis of relative importance of
the particular morphological tag in providing the relevant information which
might be helpful. The tags that we considered were specific tags like:

• Gender - Gender is an inherent feature of nouns and is also a contextual
feature. Gender in basically determined through agreement. Gender is
lexically produced and its value is fixed for the noun.

• Number - It is a morphosyntactic feature if it participates in agreement.

• Case - Case is a feature that expresses a syntactic or semantic function of
the element that carries the particular case value.

• Person - Person as a morphosyntactic feature is typically a feature of
agreement.

• Tense - It denotes the semantic feature of location in time.

Chapter 5. Experiments 41

Parsing Algorithm Morph. Tags Baseline Difference Mean Score
(refer Appendix 8)

Third order grand-sibling 86.12 85.67 +0.45 85.97

Third order GrandChild 87.75 86.03 +1.72 87.54

Second order grand-sibling 84.88 84.32 +0.56 84.73

Second order GrandChild 85.51 84.79 +0.72 85.32

Table 5.6 Results for Prague Dependency Treebank

Parsing Algorithm Morph. Tags Baseline Difference Mean Score
(refer Appendix 8)

Third order grand-sibling 90.50 90.29 +0.21 90.55

Third order GrandChild 91.78 90.57 +1.21 91.04

Second order grand-sibling 87.67 87.45 +0.22 87.45

Second order GrandChild 89.32 88.34 +0.98 88.91

Table 5.7 Results for Penn Treebank

• Voice - The temporal feature between the subject and the verb.

English

As explained before, for English we use the standard Penn Treebank’s fine
grained tagset. It contained a set of thirty six tags. These tags are specifically
mentioned in [Marcus et al. 1993] and these are used as the standard tagsets
for tagging English in most of the part-of-speech taggers. Also, in most of the
dependency parsing shared tasks, one of the columns is mentioned for the
fine-grained part-of-speech.

5.4.4 Results

Czech

As explained in the previous section, preliminary tests on a portion of train
data showed that the complete morphological tagset feature templates de-
crease the accuracy. Hence we concentrated on experimenting with the smaller
morphological tagset. Table 5.6 shows the result.

English

As explained before, we are using the fine-grained tagset here. The results are
provided in 5.7. What is interesting is that the present set of morphological
features are minimal while the improvement is statistically significant.

5.4.5 Discussion

Third order grandchild shows a relative improvement of about 1.72% for
Czech. This is an important result, since grandchild based parsing algorithms

42

seem to be better than their counterparts when included with the morpholog-
ical tags. Also, please note, this corroborates the linguistic assumption about
morphological information, an important factor for the morphologically rich
languages.

In case of English, the fine-grained POS tags, basically these tags are en-
riched with morphological information, also show a very interesting improve-
ment. The third-order grandchild based parser shows +1.21 relative improve-
ment.

Chapter 5. Experiments 43

44

6
Analysis

The goal of the thesis was to explore the higher order dependency parsing
algorithms. We have tried to experiment with the parser using some of the se-
mantic and syntactic feature sets. While the practical implementation of some
of the features is not directly available, for example, the SEMPOS from the
Prague Dependency Treebank was manually tagged as there is no published
material to show an automated way of tagging the semantic tags without the
availability of dependency trees. But, the experimentation gives an indication
of usefulness of the features. For languages with a good WordNet and a se-
mantically tagged corpus, extracting semantic information should not be a big
challenge, since they would have almost the same disambiguation algorithm
as has been described by [Pedersen & Kolhatkar 2009].

Ideally it is desirable to use many features collectively and perform the
process of parsing, eventually arriving at an optimal solution. But, each fea-
ture increases the search space quite remarkably and hence, there are two
important problems here -

1. Problem of Over-fitting Over-fitting generally occurs when a model is
excessively complex, such as having too many parameters. This works
in a contra-productive way most of the time.

2. Parsing Time The amount of parsing time increases with new features
too. This is again because of the increase in the search space which might
act in a negative way to reduce the parsing accuracy.

Also, please note that the current tagging of the English wordsense was
done using a simple algorithm [Pedersen & Kolhatkar 2009]. There are better
algorithms which could give better tagging accuracies. This might have a
direct effect on the parsing performance. Another important thing to note is
that the morphological taggers have better accuracies in practical applications.
Hence the proposed approach would be useful, if we were able to carefully
combine the accurate features.

POS tags provide very basic linguistic information in the form of broad
grained categories. Among all the parsing structures, we saw that an aug-
mentation of the specific wordsenses has improved the unlabeled accuracy
scores. It is evident that one of the parsing algorithms - performs much better
than other parsing algorithms. It is more important to note, it is the type of
the parsing algorithm along with the features that makes a noticeable change
in the score.

Also, after a close investigation when we introduced morphological tags,
we found that we have a very strong problem with agreement. The agreement
problem is bad whenever there is a coordinating conjunction or when there
is a complex verb. There is still a lot of work to be done with the parsing

45

structures and on the observe the correct set of features to take full advantage
of dependency grammar in practical application of NLP.

6.1 C O M PA R I S O N S

In this section we try to compare our experiments with other similar experi-
ments. We try to analyze the experiments that we have done in the thesis and
their relative significance.

6.1.1 Work done by Agirre et al. 2011

This work is technically directed at introducing generic semantic features as
semantic information into the parsing algorithm. This was primarily done on
the Penn Treebank. Maltparser was used as the main parser for the parsing
experiment. The parser produces a dependency tree in a single pass over the
input using a stack of partially analyzed items and the rest of the items in
the input. It determines the best “action” at each step by using models which
maintain history and SVM classifiers. Maltparser allows the introduction of
semantic and other related features in the training model as the parsing action
is dependent on the feature set. The only drawback is that the decision of the
action is local, that is, the history is restricted, and in most cases this might
turn out to be a bad action that might affect in the result. [Agirre et al. 2011]
uses the semantically tagged Semcor and full Penn Treebank intersection as
the dataset. The experiment was done by using three different ways, these
are:

• Gold standard tags: Manually tagged corpus used as training set.

• 1st sense extraction: Extracting only the 1st and the most relevant sense.

• Automatically Sense tagged corpus: This uses a similar algorithm to the
one we have used for getting the wordsenses for English and tries to
predict the correct wordsense of the word.

[Agirre et al. 2011]’s work makes use of the semantic-file type of tags, which
in our thesis we have referred to as the coarse-grained semantic tags. The
results are evaluated using the Labelled Attachment score, that is, the score
is the proportion of tokens that are assigned the correct head word as well as
dependency type. In the experiments, the resultant improvement in the score
is mildly significant, but then it shows that semantic features have a positive
effect on the parsing algorithm.

The experiments in the thesis, in relation to semantic tags, had a similar
setup. Though, for English, we experimented with almost the same approach
when using coarse grained semantic sense as feature set. The experiment
which we had done showed a significant improvement. It showed that the
second order parsing algorithm performed much better with the semantic
tags than others. In the first experiment we try to evaluate the parser with
specific semantic tags, in a way this is closer to the 1st sense tag extraction
evaluation. In the case of English, the data was tagged by an unsupervised

46

algorithm, while, for Czech the experiment was done with tags extracted from
the Prague Dependency Treebank. Again, in both the cases we got a signifi-
cant improvement in the results.

An important observation is that the semantic tags - both specific and
generic, actually do significantly improve the parsing accuracy. And this is
more pronounced in higher order dependency parsing algorithms.

6.1.2 Work done by Koo et al. 2008

The work done in [Koo et al. 2008] is using a semi-supervised method for
training the dependency parsers. This is basically done by using features that
incorporate word clusters that are derived from a huge unannotated corpus.
The basic algorithm used is the Brown Clustering algorithm, where the input
to the algorithm is a vocabulary of words to be clustered and a corpus of text
that contains the given vocabulary. Then a standard clustering procedure is
followed and it results in a hierarchical clustering of words. The clusters can
be represented by a binary tree, here, each word is uniquely identified by its
path from the root. This path can further be represented by a bit string. These
were then encoded in the training data, hence, augmenting the lexical infor-
mation. In a way, there is a mismatch between the kind of lexical information
that is captured by the Brown clusters and the kind of lexical information that
is modeled in dependency parsing.

The experiments were performed on both English and Czech, again, using
Penn Dependency Treebank and Prague Dependency Treebank respectively.
The parser used the first order and second order graph based algorithms
that are explained before. The results are presented with a comparison of
the respective Unlabeled Accuracy Score. The cluster based features achieve
improvement at all training set sizes. There was an important result which
came out of this work and that was data-reduction factors, that is, the result
for a particular set of data by a normal algorithm (without the addition of the
features), was equivalent to the result obtained by using half the data with the
parsing algorithm which used word cluster features.

The work done in our thesis has a similar strategy of breaking into groups.
In this case, we are breaking the vocabulary into a cluster of senses instead of
the lexical clusters. This is prevalent in the second experimentation. Though,
the second experiment was not extended to the Czech language, we received
a significant improvement with the English data set. The results that we have
achieved a encouraging for a combination of lexical and semantic feature ex-
perimentation. Again, the same methods as we have used for English can be
again used for Czech.

6.1.3 Work done by Øvrelid 2008

[Øvrelid 2008]’s work is mostly augmenting linguistically motivated features
on Maltparser. The research work tries to investigate if including linguistic
features would improve the parsing accuracy for relations like subject and

Chapter 6. Analysis 47

object, argument etc.. The basic feature extraction was done from the Swedish
Talbanken corpus. Also, experiments were done with acquired features, that
is the features like Animacy, Morpho-syntactic features etc. being acquired by
the automatically tagged features for the given corpus. The author explains
the theoretical motivation behind the acquisition of these features. Several
taggers were used to extract the relevant feature information for the training
dataset.

As explained before the experimentation was done with the Swedish Tal-
banken corpus. The experiment with Gold standard tags resulted in a signifi-
cant improvement of the parsing accuracy. Our work in the thesis also targets
a similar strategy for the third experiment. In case of English, the morpholog-
ical set of features available was restricted, we used the fine-grained part of
speech tags, this contains to an extent some specific linguistic features. This
gave a significant improvement in the higher order parsing structures. We see
here also, that the grandchild based parsing algorithms were always outper-
forming other forms of algorithms.

While, in the case of Czech, we had a big list of morphological features.
But, when we included all the morphological features the results were not as
good as the baseline scores. We then restricted this set of features to a smaller
set (by looking at the relative linguistic importance), which improved the pars-
ing accuracy. This is possibly due to the case of overfitting of data. That is
the parser probably throws a lot of noise instead of the basic relationship of
dependency links. This is mostly due to the fact that whenever a statistical
model learns random error or noise instead of the underlying relationship of
dependencies as the number of parameters now that is considered is compar-
atively large relative to the number of valid observations of the pair/triplet.

48

7
Discussion and Future Work

The thesis starts by explaining the graph based dependency parsing algo-
rithms and their extensions that are also called the higher order structures.
The objective of the thesis was to explore higher order parsing algorithms by
augmenting several syntacto-semantic features. The above mentioned three
papers acted as the inspiration for the experiments that were done. We have
successfully established here that the higher order parsing structures are more
responsive to the linguistic features. Also, we can see in the Appendix that
there is a linear increase in the parsing accuracy after adding the features. The
inclusion of Gold standard data was made to actually test the possibilities of
the effect of the features on the parsing algorithms.

One of the most important things that we would be working next would
be to experiment with the labelled accuracy score and to augment parser with
wordsenses. The current parser doesn’t score the labels. We would like to
extend the parser to score both the labels and also integrate wordsenses in the
parsing structure.

The overall approach is to augment each part and each dynamic-programming
structure with senses and labels. Let us assume that the word senses can be
represented as indices in the set 1, ..., S∗ while dependency labels can be rep-
resented as indices in 1, ..., L; here, S∗ and L denote the total number of senses
and labels. For every part now, we will have (h, m, l, sh, sm) that is sh and sm ∈
S∗ and l ∈ L that is we need to embed both labels and senses with the parse
structures.

A natural idea for future work is to evaluate the effects of combining sev-
eral semantic features with the different parsing algorithms and building the
specific set of features which increase the parsing accuracy for each language.

We can also investigate if increasing the order of the parsers - that is 4th
order and higher would be interesting. Primarily because these would give us
a range of orders for optimal parses. Though, this might be a difficult task due
to the inherent computational complexity of both space and time problems.

Another interesting dimension of approach concerns the application of
these parsers in several fields. The field of Machine Translation and auto-
mated summarization would especially need high end results. Also, since
semantics plays an important role in these parsing frameworks, it might help
to experiment with higher order parsers. Based on the interesting work by
[Popel et al. 2011], it would be interesting to use these higher order parsers
for Czech in TectoMT framework to extract better parse information.

As the higher order parsers are better in extracting the structural infor-
mation, we could use these for the preliminary stages of various kinds of
treebank tagging. Also, even if we have observed a positive change in the per-
formance of dependency parsers, the best parsing techniques still fall short

49

of almost accurate performance obtained by part of speech tagging etc., and
hence present a promising area for future research.

50

8
Conclusion

In this work we provide insight into extension of feature set by augmenting
some lesser known features. With the introduction of semantic and mor-
phological features there is a significant improvement in the performance of
parsing algorithms. We have seen the importance of some of these features
individually.

We have shown in this thesis that the feature set in the dependency pars-
ing algorithm need not be restricted to syntactic features only, the semantic
features also add a lot of information to the parsing structure. This provides
evidence that there is a relative improvement in unlabeled accuracy score
whenever there is an inclusion of semantic features. The effects of semantic
features are visible with higher order parsing structures.

Also, we see from the results that order plays an important part with lan-
guages which have rich morphology or inflectional languages, especially the
grandchild parsing algorithms. Although we worked and presented our re-
sults only on two languages, our approach can be generalized to other lan-
guages and frameworks.

Finally, we hope that the work done in this thesis inspires the use of de-
pendency parsers, especially the higher order dependency parsers in several
tasks in the field of NLP. We also hope, this further increases the interest in
research for better features.

51

52

Appendix

The graphs below show the performance of various parsers with the 10 runs
on the validation dataset.

Figure 8.1 Result for experimentation with fine-grained wordsenses with English

53

Figure 8.2 Result for experimentation with fine-grained wordsenses with Czech

54

Figure 8.3 Result for experimentation with coarse-grained wordsense with English

Chapter 8. Conclusion 55

Figure 8.4 Result for experimentation with morphological tags for Czech

56

Figure 8.5 Result for experimentation with morphological tags for English

Chapter 8. Conclusion 57

58

Bibliography

[Agirre et al. 2011] Agirre, E., Bengoetxea, K., Gojenola, K., & Nivre, J. (2011).
Improving dependency parsing with semantic classes. In Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, (pp. 699–703)., Portland, Oregon, USA. Association
for Computational Linguistics. (Cited on pages 18, 22, 23, 34, 35, 37, 38,
and 46.)

[Ambati et al. 2009] Ambati, B. R., Gade, P., Gsk, C., & Husain, S. (2009).
Effect of minimal semantics on dependency parsing. In Proceedings of the
Student Research Workshop, (pp. 1–5)., Borovets, Bulgaria. Association for
Computational Linguistics. (Cited on page 19.)

[Ambati et al. 2010] Ambati, B. R., Husain, S., Nivre, J., & Sangal, R. (2010).
On the role of morphosyntactic features in hindi dependency parsing. In
Proceedings of the NAACL HLT 2010 First Workshop on Statistical Parsing of
Morphologically-Rich Languages, (pp. 94–102)., Los Angeles, CA, USA. Asso-
ciation for Computational Linguistics. (Cited on page 19.)

[Bangalore et al. 2009] Bangalore, S., Boulllier, P., Nasr, A., Rambow, O., &
Sagot, B. (2009). Mica: a probabilistic dependency parser based on tree
insertion grammars application note. In Proceedings of Human Language
Technologies: The 2009 Annual Conference of the North American Chapter of
the Association for Computational Linguistics, Companion Volume: Short Papers,
NAACL-Short ’09, (pp. 185–188)., Stroudsburg, PA, USA. Association for
Computational Linguistics. (Cited on page 2.)

[Bikel 2004a] Bikel, D. M. (2004a). On the parameter space of generative lexicalized
statistical parsing models. PhD thesis, University of Pennsylvania, Philadel-
phia, PA, USA. AAI3152016. (Cited on page 4.)

[Bikel 2004b] Bikel, D. M. (2004b). On the parameter space of generative lex-
icalized statistical parsing models. PhD thesis, University of Pennsylvania,
Philadelphia, PA, USA. AAI3152016. (Cited on page 18.)

[Böhmová et al. 2001] Böhmová, A., Hajič, J., Hajičová, E., & Hladká, B.
(2001). The prague dependency treebank: Three-level annotation scenario.
In A. Abeillé (Ed.), Treebanks: Building and Using Syntactically Annotated Cor-
pora. Kluwer Academic Publishers. (Cited on pages 28, 29, and 35.)

[Bourdon et al. 1998] Bourdon, M., Sylva, L. D., Gagnon, M., KHARRAT, A.,
Knoll, S., & MACLACHLAN, A. (1998). A case study in implementing
dependency-based grammars. (Cited on page 2.)

[Buchholz & Marsi 2006a] Buchholz, S. & Marsi, E. (2006a). Conll-x shared
task on multilingual dependency parsing. In Proceedings of the Tenth Con-
ference on Computational Natural Language Learning (CoNLL-X), (pp. 149–
164)., New York City. Association for Computational Linguistics. (Cited
on page 21.)

59

[Buchholz & Marsi 2006b] Buchholz, S. & Marsi, E. (2006b). Conll-x shared
task on multilingual dependency parsing. In In Proc. of CoNLL, (pp. 149–
164). (Cited on page 27.)

[Carreras 2007] Carreras, X. (2007). Experiments with a higher-order projec-
tive dependency parser. In Proceedings of the CoNLL Shared Task Session of
EMNLP-CoNLL 2007, (pp. 957–961)., Prague, Czech Republic. Association
for Computational Linguistics. (Cited on pages 3, 11, 14, 17, 21, 25, and 26.)

[Carreras et al. 2008] Carreras, X., Collins, M., & Koo, T. (2008). Tag, dynamic
programming, and the perceptron for efficient, feature-rich parsing. In
CoNLL 2008: Proceedings of the Twelfth Conference on Computational Natural
Language Learning, (pp. 9–16)., Manchester, England. Coling 2008 Organiz-
ing Committee. (Cited on page 22.)

[Carreras et al. 2006] Carreras, X., Surdeanu, M., & Màrquez, L. (2006). Pro-
jective dependency parsing with perceptron. In Proceedings of the Tenth
Conference on Computational Natural Language Learning (CoNLL-X), (pp. 181–
185)., New York City. Association for Computational Linguistics. (Cited on
page 2.)

[Chomsky 1956] Chomsky, N. (1956). Three models for the description of
language. IEEE Trans. Information Theory, 2(3), 113– 124. (Cited on pages 2

and 5.)
[Cocke & Schwartz 1970] Cocke, J. & Schwartz, J. T. (1970). Programming

languages and their compilers. Technical report, Courant Institute, NYU.
Preliminary notes. (Cited on page 13.)

[Collins 2002] Collins, M. (2002). Discriminative training methods for hidden
markov models: Theory and experiments with perceptron algorithms. In
Proceedings of the 2002 Conference on Empirical Methods in Natural Language
Processing, (pp. 1–8). Association for Computational Linguistics. (Cited on
page 10.)

[Covington 2001] Covington, M. A. (2001). A fundamental algorithm for de-
pendency parsing. In In Proceedings of the 39th Annual ACM Southeast Con-
ference, (pp. 95–102). (Cited on page 2.)

[Eisner 2000] Eisner, J. (2000). Bilexical grammars and their cubic-time pars-
ing algorithms. In H. Bunt & A. Nijholt (Eds.), Advances in Probabilistic and
Other Parsing Technologies (pp. 29–62). Kluwer Academic Publishers. (Cited
on pages 10, 13, and 21.)

[Eisner & Satta 1999] Eisner, J. & Satta, G. (1999). Efficient parsing for bilexi-
cal context-free grammars and head-automaton grammars. In Proceedings of
the 37th Annual Meeting of the Association for Computational Linguistics (ACL),
(pp. 457–464)., University of Maryland. (Cited on page 7.)

[Eisner & Smith 2010 (Chapter 8)] Eisner, J. & Smith, N. A. (2010). Favor
short dependencies: Parsing with soft and hard constraints on dependency
length. In H. Bunt, P. Merlo, & J. Nivre (Eds.), Trends in Parsing Technol-
ogy: Dependency Parsing, Domain Adaptation, and Deep Parsing chapter 8,
(pp. 121–150). Springer. (Cited on page 13.)

60

[Fellbaum 1998a] Fellbaum, C. (1998a). A semantic network of english: The
mother of all wordnets. Computers and the Humanities, 32(2-3), 209–220.
(Cited on page 18.)

[Fellbaum 1998b] Fellbaum, C. (1998b). Towards a representation of idioms
in wordnet. In In Proceedings of the workshop on the Use of WordNet in Natural
Language Processing Systems (Coling-ACL, (pp. 52–57). (Cited on page 30.)

[Hajič et al. 2009] Hajič, J., Ciaramita, M., Johansson, R., Kawahara, D., Martı́,
M. A., Màrquez, L., Meyers, A., Nivre, J., Padó, S., Štěpánek, J., Straňák,
P., Surdeanu, M., Xue, N., & Zhang, Y. (2009). The conll-2009 shared task:
Syntactic and semantic dependencies in multiple languages. In Proceed-
ings of the Thirteenth Conference on Computational Natural Language Learning
(CoNLL 2009): Shared Task, (pp. 1–18)., Boulder, Colorado. Association for
Computational Linguistics. (Cited on page 21.)

[Hektoen 1997] Hektoen, E. (1997). Probabilistic parse selection based on se-
mantic cooccurrences. In 5th International workshop on parsing technologies
(IWPT-97), (pp. 113–122). (Cited on page 18.)

[Horák et al. 2007] Horák, A., Pala, K., Dužı́, M., & Materna, P. (2007). Verb
valency semantic representation for deep linguistic processing. In ACL
2007 Workshop on Deep Linguistic Processing, (pp. 97–104)., Prague, Czech
Republic. Association for Computational Linguistics. (Cited on page 41.)

[Johansson & Nugues 2007] Johansson, R. & Nugues, P. (2007). Extended
constituent-to-dependency conversion for English. In Proceedings of
NODALIDA 2007, (pp. 105–112)., Tartu, Estonia. (Cited on page 28.)

[Joshi 1969] Joshi, A. K. (1969). Properties of formal grammars with mixed
types of rules and their linguistic relevance. In Proceedings of the 1969 con-
ference on Computational linguistics, COLING ’69, (pp. 1–18)., Stroudsburg,
PA, USA. Association for Computational Linguistics. (Cited on page 22.)

[Kasami 1965] Kasami, T. (1965). An efficient recognition and syntax algo-
rithm for context-free languages. Technical Report AFCLR-65-758, Air
Force Cambridge Research Laboratory, Bedford, MA. (Cited on page 13.)

[Kitagawa & Tanaka-Ishii 2010] Kitagawa, K. & Tanaka-Ishii, K. (2010). Tree-
based deterministic dependency parsing — an application to nivre’s
method —. In Proceedings of the ACL 2010 Conference Short Papers, (pp. 189–
193)., Uppsala, Sweden. Association for Computational Linguistics. (Cited
on page 22.)

[Koo et al. 2008] Koo, T., Carreras, X., & Collins, M. (2008). Simple semi-
supervised dependency parsing. In Proceedings of ACL-08: HLT, (pp. 595–
603)., Columbus, Ohio. Association for Computational Linguistics. (Cited
on pages 22, 23, 26, 40, and 47.)

[Koo & Collins 2010] Koo, T. & Collins, M. (2010). Efficient third-order de-
pendency parsers. In Proceedings of the 48th Annual Meeting of the Association
for Computational Linguistics, (pp. 1–11)., Uppsala, Sweden. Association for
Computational Linguistics. (Cited on pages v, 2, 3, 11, 15, 16, 21, 22, 25, 26,
27, and 29.)

Bibliography 61

[Kuboň et al. 1998] Kuboň, V., Holan, T., Oliva, K., & Plátek, M. (1998). Two
useful measures of word order complexity. In Proceedings of the Dependency-
Based Grammars Workshop, the COLING - ACL Conference. (Cited on page 7.)

[Marcus et al. 1993] Marcus, M. P., Marcinkiewicz, M. A., & Santorini, B.
(1993). Building a large annotated corpus of english: the penn treebank.
Comput. Linguist., 19, 313–330. (Cited on pages 1, 28, and 42.)

[Marneffe et al. 2007] Marneffe, M. C. D., Grenager, T., Maccartney, B., Cer,
D., Ramage, D., Kiddon, C., & Manning, C. D. (2007). Aligning semantic
graphs for textual inference and machine reading. In In Proc. of the AAAI
Spring Symposium at. (Cited on page 2.)

[McDonald et al. 2005] McDonald, R., Crammer, K., & Pereira, F. (2005). On-
line large-margin training of dependency parsers. In Proceedings of the 43rd
Annual Meeting of the Association for Computational Linguistics (ACL’05), (pp.
91–98)., Ann Arbor, Michigan. Association for Computational Linguistics.
(Cited on page 21.)

[McDonald et al. 2006] McDonald, R., Lerman, K., & Pereira, F. (2006). Mul-
tilingual dependency analysis with a two-stage discriminative parser. In
Proceedings of the Tenth Conference on Computational Natural Language Learn-
ing (CoNLL-X), (pp. 216–220)., New York City. Association for Computa-
tional Linguistics. (Cited on pages v, 3, 10, 14, 17, and 25.)

[McDonald & Nivre 2007] McDonald, R. & Nivre, J. (2007). Characterizing
the errors of data-driven dependency parsing models. In Proceedings of the
2007 Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-CoNLL), (pp. 122–131).,
Prague, Czech Republic. Association for Computational Linguistics. (Cited
on pages 3, 7, and 33.)

[McDonald et al. 2005] McDonald, R., Pereira, F., Ribarov, K., & Hajic, J.
(2005). Non-projective dependency parsing using spanning tree algorithms.
In Proceedings of Human Language Technology Conference and Conference on
Empirical Methods in Natural Language Processing, (pp. 523–530)., Vancou-
ver, British Columbia, Canada. Association for Computational Linguistics.
(Cited on pages 2, 10, 11, 17, and 26.)

[Mel’čuk et al. 1987] Mel’čuk, I., Pertsov, N., & Kittredge, R. (1987). Surface
syntax of English: a formal model within the meaning-text framework. Linguistic
& literary studies in Eastern Europe. John Benjamins Pub. Co. (Cited on
page 2.)

[Merlo et al. 2011] Merlo, P., Bunt, H., & Nivre, J. (2011). Current trends in
parsing technology. In N. Ide, J. Vronis, H. Bunt, P. Merlo, & J. Nivre
(Eds.), Trends in Parsing Technology, volume 43 of Text, Speech and Lan-
guage Technology (pp. 1–17). Springer Netherlands. 10.1007/978-90-481-
9352-31. (Citedonpages 1and 2.)

[Nilsson et al. 2006] Nilsson, J., Nivre, J., & Hall, J. (2006). Graph transforma-
tions in data-driven dependency parsing. In Proceedings of the 21st International

62

Conference on Computational Linguistics and 44th Annual Meeting of the Associa-
tion for Computational Linguistics, (pp. 257–264)., Sydney, Australia. Association
for Computational Linguistics. (Cited on pages 2, 3, and 5.)

[Nivre & Hall 2005] Nivre, J. & Hall, J. (2005). Maltparser: A language-
independent system for data-driven dependency parsing. In In Proc. of the
Fourth Workshop on Treebanks and Linguistic Theories, (pp. 13–95). (Cited on
page 18.)

[Nivre et al. 2007a] Nivre, J., Hall, J., Kübler, S., McDonald, R., Nilsson, J.,
Riedel, S., & Yuret, D. (2007a). The CoNLL 2007 shared task on dependency
parsing. In Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL 2007,
(pp. 915–932)., Prague, Czech Republic. Association for Computational Lin-
guistics. (Cited on page 21.)

[Nivre et al. 2007b] Nivre, J., Hall, J., Kübler, S., McDonald, R., Nilsson, J.,
Riedel, S., & Yuret, D. (2007b). The CoNLL 2007 shared task on dependency
parsing. In Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL 2007,
(pp. 915–932)., Prague, Czech Republic. Association for Computational Lin-
guistics. (Cited on page 21.)

[Nivre & McDonald 2008] Nivre, J. & McDonald, R. (2008). Integrating graph-
based and transition-based dependency parsers. In Proceedings of ACL-08:
HLT, (pp. 950–958)., Columbus, Ohio. Association for Computational Linguis-
tics. (Cited on page 3.)

[Novák & Žabokrtský 2007] Novák, V. & Žabokrtský, Z. (2007). Feature engi-
neering in maximum spanning tree dependency parser. In Proceedings of the
10th International Conference on Text, Speech and Dialogue, (pp. 92–98). (Cited on
page 22.)

[Øvrelid 2008] Øvrelid, L. (2008). Linguistic features in data-driven dependency
parsing. In Proceedings of the Conference on Computational Natural Language
Learning (CoNLL 2008). (Cited on page 47.)

[Pedersen & Kolhatkar 2009] Pedersen, T. & Kolhatkar, V. (2009). Word-
Net::SenseRelate::AllWords - a broad coverage word sense tagger that max-
imizes semantic relatedness. In Proceedings of Human Language Technologies:
The 2009 Annual Conference of the North American Chapter of the Association for
Computational Linguistics, Companion Volume: Demonstration Session, (pp. 17–
20)., Boulder, Colorado. Association for Computational Linguistics. (Cited on
pages 29, 30, 35, 39, and 45.)

[Popel et al. 2011] Popel, M., Mareček, D., Green, N., & Žabokrtský, Z. (2011).
Influence of parser choice on dependency-based mt. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, (pp. 433–439)., Edinburgh, Scot-
land. Association for Computational Linguistics. (Cited on page 49.)

[Ratnaparkhi et al. 1994] Ratnaparkhi, A., Reynar, J., & Roukos, S. (1994). A
maximum entropy model for prepositional phrase attachment. In Proceed-
ings of the workshop on Human Language Technology, HLT ’94, (pp. 250–255).,
Stroudsburg, PA, USA. Association for Computational Linguistics. (Cited on
page 18.)

Bibliography 63

[Sagae & Lavie 2006] Sagae, K. & Lavie, A. (2006). Parser combination by repars-
ing. In Proceedings of the Human Language Technology Conference of the NAACL,
Companion Volume: Short Papers, (pp. 129–132)., New York City, USA. Associa-
tion for Computational Linguistics. (Cited on page 3.)

[Sagae & Tsujii 2007] Sagae, K. & Tsujii, J. (2007). Dependency parsing and
domain adaptation with LR models and parser ensembles. In Proceedings
of the CoNLL Shared Task Session of EMNLP-CoNLL 2007, (pp. 1044–1050).,
Prague, Czech Republic. Association for Computational Linguistics. (Cited
on page 21.)

[Sgall 1984] Sgall, P. (1984). Contributions to Functional Syntax, Semantics and Lan-
guage Comprehension. Amsterdam, Netherlands/Academia, Czech Republic:
Benjamins/Academia. (Cited on page 2.)

[Shimizu 2007] Shimizu, N. (2007). Structural correspondence learning for de-
pendency parsing. In In Proc. (Cited on page 21.)

[Sleator & Temperley 1993] Sleator, D. D. & Temperley, D. (1993). Parsing en-
glish with a link grammar. In Third International Workshop on Parsing Technolo-
gies. (Cited on page 8.)

[Song et al. 2011] Song, Y., Wang, H., & Jiang, J. (2011). Link type based pre-
cluster pair model for coreference resolution. In Proceedings of the Fifteenth Con-
ference on Computational Natural Language Learning: Shared Task, (pp. 131–135).,
Portland, Oregon, USA. Association for Computational Linguistics. (Cited on
page 22.)

[Surdeanu et al. 2008] Surdeanu, M., Johansson, R., Meyers, A., Màrquez, L., &
Nivre, J. (2008). The conll 2008 shared task on joint parsing of syntactic and
semantic dependencies. In CoNLL 2008: Proceedings of the Twelfth Conference on
Computational Natural Language Learning, (pp. 159–177)., Manchester, England.
Coling 2008 Organizing Committee. (Cited on page 21.)

[Tesnière 1959] Tesnière, L. (1959). Éleménts de syntaxe structurale. Paris: Klinck-
sieck. (Cited on pages 1 and 6.)

[Titov & Henderson 2007] Titov, I. & Henderson, J. (2007). A latent variable
model for generative dependency parsing. In Proceedings of the Tenth Inter-
national Conference on Parsing Technologies, (pp. 144–155)., Prague, Czech Re-
public. Association for Computational Linguistics. (Cited on page 21.)

[Xiong 2005] Xiong, Z. (2005). Downstep effect on disyllabic words of citation
forms in standard chinese. In INTERSPEECH, (pp. 1393–1396). (Cited on
page 18.)

[Yamada & Matsumoto 2003] Yamada, H. & Matsumoto, Y. (2003). Statistical
dependency analysis with support vector machines. In In Proceedings of IWPT,
(pp. 195–206). (Cited on page 2.)

64

	Abstract
	Contents
	Introduction
	Dependency Grammar: Definition and Current Status
	Dependency Parsing: Status Quo
	Research Objective

	Premise
	Why Parsing?
	The Dependency Grammar
	Projectivity and Non-Projectivity Constraints
	Discriminative Graph Based Dependency Parsing
	Notational Conventions
	Factoring Structures
	Parameter Estimation using Structured Perceptron

	Parsing Algorithms
	Second-Order Factored Parsing Algorithm
	Third-Order Factored Parsing Algorithm

	Feature Space
	Effect of Features in Dependency Parsing
	Effect of Semantic Features
	Morphosyntactic and Morphosemantics with Dependency Parsing

	State-of-the-Art and Current Research
	Experimentation Details
	In Focus
	Inherent Feature Combination in the Parser
	System Information
	Input Format
	Corpus Used
	Tools

	Word Sense Extraction
	Morphosyntactic Feature Extraction

	Experiments
	Feature Spaces
	Experiment 1
	Research Question
	Theoretical Plausibility
	Experimentation
	Results
	Discussion

	Experiment 2
	Research Question
	Theoretical Plausibility
	Experimentation
	Results
	Discussion

	Experiment 3
	Research Question
	Theoretical Plausibility
	Experimentation
	Results
	Discussion

	Analysis
	Comparisons
	Work done by Agirre et al. 2011
	Work done by Koo et al. 2008
	Work done by Øvrelid 2008

	Discussion and Future Work
	Conclusion
	Bibliography

