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Abstract

Yauhen Klimovich

Neural networks
for reading comprehension applied to
non-factoid question answering

Recent advances on Machine Reading Comprehension of Text have shown a po-
tential of artificial neural network based models for solving the task, but at the same
time comparatively high performance is bound with availability of high-quality
large-scale datasets. Major part of solutions proposed by the community are com-
plex neural architectures.

An example of state-of-the-art approach on traditional datasets, such as TREC-
QA, WikiQA, is Support Vector Machine (SVM) model employing Partial Tree Ker-
nels (PTKs). Though neural and traditional (SVM+PTK) approaches can be com-
pared in the lower-scale setting, it is important to understand the performance of
Tree Kernel (TK) methods in a large-scale setting, as TK is a reliable representation
of syntactic information, in contrast to neural architectures, which couldn’t employ
complete syntactic parsing yet.

Though there were some attempts to set baselines with a simpler and more trans-
parent approaches, it seems that there is a gap in the field of having no attempt to
apply SVM+TK model in the new large-scale setting.

The thesis gives an overview of novel neural network architectures developed
on large-scale datasets and reports the results of our attempts to apply SVM+TK
model to large-scale Stanford Question Answering Dataset (SQuAD). We applied
SVM+TK, but faced some difficulties mainly due to efficiency problems. We also
used different relaxation approaches in order to make TK models applicable and to
set the upper bound.
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Chapter 1

Introduction

Machine reading comprehension task (MRC) asking questions about a given text
document is a central problem in natural language understanding. It is an impor-
tant task in computational linguistics as it requires many other Natural Language
Processing (NLP) tasks to be solved and at the same time can be a part of building a
better search engine or a conversational agent.

Reading comprehension system’s goal is to answer any question that could be
posed against the facts in a reference text. The task is challenging for machines, as it
requires understanding of natural language, knowledge about the world and some-
times complex reasoning. Mainly challenges are due to the requirement to combine
facts from different sentences or background knowledge, difficulties in extracting in-
dividual facts due to highly compositional semantics, lexical and syntactic variation
(Joshi et al., 2017).

The task is not novel, but recently significant progress has been made by intro-
duction of MRC datasets with a volume significantly larger than previously, e.g. Ra-
jpurkar et al. (2016) released SQuAD dataset containing more than 100,000 question-
answer pairs while TREC-9 (Voorhees and Tice, 2000) has less than one thousand.
A large dataset became an important factor as a high number of data-points allows
to train a better machine learning models, especially based on artificial neural net-
works.

A high level of interest has been shown recently to the task of MRC especially
on large-scale datasets. The exact definition of MRC task varies depending on a
dataset and evaluation metrics proposed. The details of the definition for MRC and
the connection to Question Answering task will be discussed in Chapter 2.

The interest led to a number of neural network based methods applied to datasets
like SQuAD (Rajpurkar et al., 2016), TriviaQA (Joshi et al., 2017), NewsQA (Trischler
et al., 2016b). Though simple sliding window, logistic regression (Rajpurkar et al.,
2016) and neural network baselines (Ture and Jojic, 2016; Weissenborn, Wiese, and
Seiffe, 2017a; Weissenborn, Wiese, and Seiffe, 2017b) were proposed, it seems that an
approach employing Kernel Machines, like Support Vector Machine (SVM), which
are able to encode syntactic information, is still missing. The thesis reports the at-
tempt to fill this gap, i.e. to set up a new baseline based on SVM+PTK for SQuAD,
in contrast to artificial neural network baseline (Sec. 2.5.2). Our hypothesis of using
syntactic information is also supported by observations reported by Xie and Xing
(2017), that about 70% answers in SQuAD are exactly constituents (N = 0) and about
97% answers differ from the closest constituents by less or equal to 4 words.

Another motivation for our work is a better understanding of the contribution
of syntactic information, as studies on neural approaches report different levels of
success while using syntactic features (Sec. 2.5.2). Having a better idea on the role
of syntax in a large-scale setting can help to underline both the complexity of the
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MRC task tested on SQuAD, and compare strong and weak points of traditional and
neural approaches.

The rest of the work is organized as follows: Chapter 2 gives an overview of
previous work done in the field, goes into details on the recent advances and an
overview of the model we attempt to apply, Chapter 3 illustrates our experiments,
Chapter 4 derives the conclusion and names a list of ideas for future research.
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Chapter 2

Background

Question Answering (QA) is not only an interesting and challenging application, but
also the techniques and methods developed from question answering inspire new
ideas in many closely related areas such as document retrieval, time and named-
entity expression recognition, etc.

2.1 Question Answering and Reading comprehension

2.1.1 Question Answering

According to Yu et al. (2014), QA can be divided into two categories: an approach
which focuses on semantic parsing used to generate a query to a knowledge base,
and the other category is open domain question answering, which is more closely
related to the field of information retrieval. The task can be seen from more differ-
ent angles and exact formal definition can vary depending on whether a question
requires a fact as an answer or not (factoid/non-factoid QA), whether the topic do-
main is limited or not (open-domain QA), what kind of and how many sources are
used to retrieve the answer (knowledge base, Web; single text document or collec-
tion of documents; single or multiple text passages; whether expected answer is a
sentence or span of words), by the way of getting the answer (generative or extrac-
tive).

A standard task for open-domain Information Retrieval QA is annual Text RE-
trieval Conference (TREC) competitions (Voorhees and Tice, 2000). Though TREC
QA shared task covers different topics, it’s usually limited in size. Motivated by a
will to test QA systems by wider variety of aspects of language and allow to de-
velop a class of attention based deep neural networks applied to MRC, Hermann
et al. (2015) proposed a methodology to build large scale supervised datasets for
machine reading. Thus the number of datasets for MRC has shown recently a sig-
nificant increase, but having differences in task formulation, creating strategies, and
evaluation metrics.

Knowledge base style task

There are datasets defined via prediction of textual values from the structured knowl-
edge bases (KB), e.g. WikiReading by Hewlett et al. (2016), an example is given in
Table 2.1. KB QA involves translating natural language queries into logical forms
which can be executed over a KB.
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Categorization Extraction
Doc. Folkart Towers are

twin skyscrapers
in the Bayrakli
district of the
Turkish city of
Izmir. Reaching a
structural height
of 200 m (656 ft)
above ground
level, they are the
tallest . . .

Angeles blancos is
a Mexican telen-
ovela produced by
Carlos Sotomayor
for Televisa in
1990. Jacqueline
Andere, Rogelio
Guerra and Al-
fonso Iturralde
star as the main
. . .

Canada is a coun-
try in the northern
part of North
America. Its ten
provinces and
three territories
extend from the
Atlantic to the
Pacific and north-
ward into the
Arctic Ocean, . . .

Breaking Bad is an
American crime
drama television
series created
and produced by
Vince Gilligan.
The show origi-
nally aired on the
AMC network for
five seasons, from
January 20, 2008,
to . . .

Property country original language
of work

located next to
body of water

start time

Answer Turkey Spanish Atlantic Ocean,
Arctic Ocean,
Pacific Ocean

20 January 2008

TABLE 2.1: Examples instances from WIKIREADING. The task is to predict the answer
given the document and property. Answer tokens that can be extracted are shown in

bold, the remaining instances require classification or another form of inference.

Cloze-style task

Formalization of a particular MRC task can vary because of the way a dataset is
built. E.g. MRC cloze-style datasets define the task as a word prediction/completion
problem (CNN/Daily Mail, Hermann et al. (2015); Children Book Test (CBT) dataset
Hill et al. (2015); LAMBADA dataset by Paperno et al. (2016), an example follows).

• Context: “Why?" “I would have thought you’d find him rather dry," she said.
“I don’t know about that," said Gabriel. “He was a great craftsman," said
Heather. “That he was," said Flannery.

• Target sentence: “And Polish, to boot," said _____.

• Target word: Gabriel

Due to significant interest to the task of MRC boosted by new large-scale datasets
evaluated by means of extractive question answering, in this work our main focus is
on open-domain non-factoid extractive question answering. The formal definition
used in the thesis is given in Chapter 2.3.

2.1.2 Machine Reading Comprehension

The Machine Comprehension of Text (MCT), or Machine Reading comprehension
(MRC), has been a central goal of Artificial Intelligence for over fifty years. MRC
task goal is testing the ability of a system to understand a document using questions
based on upon the content of the document (Joshi et al., 2017). "Machine reading"
itself is a loosely-defined notion, ranging from extracting selective facts to construct-
ing complex, inference-supporting representations of text.

Trying to define machine comprehension in terms of Question Answering in a
general way, Burges (2013) proposed the following definition: "A machine compre-
hends a passage of text if, for any question regarding that text that can be answered
correctly by a majority of native speakers, that machine can provide a string which
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those speakers would agree both answers that question, and does not contain infor-
mation irrelevant to that question."

2.2 Factoid and Non-factoid Question Answering

In the real-world QA scenario, people may ask questions about both entities (factoid)
and non-entities such as explanations and reasons (non-factoid), examples of both
types are given in the Table 2.3, Yu et al. (2016).

Factoid QA

The first type of questions that research focused on was factoid questions. For ex-
ample, “When was X born?”, “In what year did Y take place?”, or definitional ques-
tions (biographical questions such as “Who is Hilary Clinton?”, and entity definition
questions such as “What is DNA?”), list questions (e.g. “List the countries that have
won the World Cup”), scenario-based QA (given a short description of a scenario,
answer questions about relations between entities mentioned in the scenario) and
’why’-type questions. Starting in 1999, an annual evaluation track of question an-
swering systems has been held at the Text REtrieval Conference (TREC)(Voorhees
and Tice, 2000), TREC summary over the number of question is in the Table 2.2. Fol-
lowing the success of TREC, in 2002 both CLEF and NTCIR workshops started to
organize multilingual and cross-lingual QA tracks (Wang, 2006).

TABLE 2.2: Summary of the number of question in TREC over years

Evaluation # of Qs
TREC 8 (1999) 198
TREC 9 (2000) 692
TREC 10 (2001) 491
TREC 11 (2002) 499
TREC 12 (2003) 413
TREC 13 (2004) 231

According to the survey by Wang (2006), typical factoid QA system employs a
pipeline architecture that consist of three main modules:

• Question analysis module processes the question, including the extraction of a
question type and runs syntactic and semantic analysis, dependency parsing.
Output of the module is a set of keywords for further retrieval.

• Document and passage retrieval takes the keywords from Question analysis and
uses a search engine to retrieve relevant document or passage.

• Answer extraction module analyzes the retrieved documents/passage, produces
a list of answer candidates and rank them according to a scoring function.

Mostly models for QA are different in features used for matching question and
answer sentence in answer extraction module. Early TREC systems focused on
hand-crafting or automatically acquiring surface text patterns, which became a rea-
son of low recall at the evaluation. Pattern-based and rule-based approaches also
led to a problem of inability to capture long-distance dependencies (Ravichandran
and Hovy, 2002; Riloff and Thelen, 2000). Motivated by the assumption, that factoid
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TABLE 2.3: Example of questions (with answers) which can be potentially answered
with RC on a Wikipedia passage. The first question is factoid, asking for an entity. The

second and third are non-factoid.

The United Kingdom (UK) intends to withdraw from the Euro-
pean Union (EU), a process commonly known as Brexit, as a re-
sult of a June 2016 referendum in which 51.9% voted to leave the
EU. The separation process is complex, causing political and eco-
nomic changes for the UK and other countries. As of September
2016, neither the timetable nor the terms for withdrawal have
been established: in the meantime, the UK remains a full mem-
ber of the European Union. The term "Brexit" is a portmanteau
of the words "British" and "exit".
Q1. Which country withdrew from EU in 2016?
A1. United Kingdom
Q2. How did UK decide to leave the European Union?
A2. as a result of a June 2016 referendum in which 51.9% voted
to leave the EU
Q3. What has not been finalized for Brexit as of September 2016?
A3. neither the timetable nor the terms for withdrawal

questions can be easily classified into distinct classes (date, person, location, num-
ber, etc.), named entities became another feature for answer extraction (Shih et al.,
2005) and had shown some little improvement.

Later, Shen, Kruijff, and Klakow (2005) had shown that incorporation of a tree
kernel function (Collins and Duffy, 2002) to compute the similarity between two
dependency trees (question and answer sentence) improves Mean Reciprocal Rank
(MRR) by 6.91 %. An example of the dependency tree is given in the Figure A.2.
In the succeeding work Shen and Klakow (2006) also used dependency tree partial
matching feature as input into maximum entropy classifier to produce the final scor-
ing; and experimental results showed that the method significantly outperformed
state-of-the-art syntactic relation-based methods by up to 20% in MRR.

Wang, Smith, and Mitamura (2007) proposed a method, which models relations
between question and answer candidate, based on the assumption, that questions
and their (correct) answers relate to each other via loose but predictable syntactic
transformations. The method is based on probabilistic quasi-syntactic grammar.
Other models like proposed by Heilman and Smith (2010), Wang and Manning
(2010), and Yao et al. (2013) had focused on methods to improve the accuracy of
Tree Edit Distance (TED).

Severyn and Moschitti (2013) showed that tree kernels can be applied to learn
structural patterns for both answer sentence selection and answer extraction em-
ploying automatic way of learning the features. The approach yielded the improve-
ment of up to 22% over previous state-of-the-art in F1 measure on TREC-QA dataset.
An example of question answer trees pair is given in Figure 2.6.

Non-factoid QA

Non-factoid QA can be intuitively defined as those cases, when a question asks for
explanations and descriptions as opposed to named entities and facts. Compared
to the relatively easier QA task of predicting single tokens/entities, predicting an-
swers of arbitrary lengths and positions significantly increases the search space: the
number of possible candidates to consider is in the order of O(n2), where n is the
length of a sentence in words. However, for previous works, in which answers are
single tokens/entities or from candidate lists, the complexity is O(n) or the size of
candidates list l (usually l ≤ 5), respectively (Yu et al., 2016). An example of the
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non-factoid question answering task can be community Question Answering chal-
lenge (cQA) (Nakov et al., 2016), where for a given unseen question a system should
predict the best answer from multiple answers given to other (potentially similar)
questions from an Internet forum. For cQA Tymoshenko, Bonadiman, and Mos-
chitti (2016) proposed a successful kernel based classifier and used a kernel method
to rank related answers.

2.3 Extractive question answering

According to Lee et al. (2016), extractive question answering systems take as input a
question q = {q0, . . . , qn} and a passage of text p = {p0, . . . , pm} from which they
predict a single answer span a = 〈astart, aend〉, represented as a pair of indices into p.
Machine learned extractive question answering systems learns a predictor function
f (q, p)→ a from a training dataset of 〈q, p, a〉 triples.

Recent large-scale MRC dataset examples which formalize the task as extractive
question answering are SQuAD (Rajpurkar et al., 2016) and NewsQA (Trischler et al.,
2016b). Overview in more details of the aforementioned and other modern datasets
is given in Sec. 2.4.

2.4 Datasets

2.4.1 TREC-QA

Series of TREC-QA challenges are one the first in question answering. The docu-
ment collection used in the TREC-9 QA task was the set of newspaper/newswire
documents. The source for the answer is a list of documents. Example of question-
answer pair from TREC-9 is ("How many hexagons are on a soccer ball?", "20"). A QA
system should detect answer from a set of 1000 documents, an illustrative example
of a document is given in the Figure 2.1.

FIGURE 2.1: A document extract from Financial Times (Voorhees and Tice, 2000)

2.4.2 Large-scale MRC datasets tested by QA

MRC also can be defined as extractive open-domain question answering task. Re-
lated large-scale datasets are MCTest with multi-choice answers (Richardson, 2013),
SQuAD (Rajpurkar et al., 2016), RACE (Lai et al., 2017), NewsQA (Trischler et al.,
2016b), NarrativeQA (Kočiský et al., 2017), MS MARCO proposed by Nguyen et



8 Chapter 2. Background

Train Dev Test Total

WikiHop 43,738 5,129 2,451 51,318
MedHop 1,620 342 546 2,508

TABLE 2.4: WikiHop and MedHop datasets volumes.

al. (2016), TriviaQA (Joshi et al., 2017), SearchQA - by Dunn et al. (2017), WikiHop
(Welbl, Stenetorp, and Riedel, 2017), Tables A.1, 2.4.

Below we give a short overview of other both low- and large-scale datasets for
MRC and underline their differences as well as some critics. All datasets questions,
answers, passages are in English.

2.4.3 SQuAD

SQuAD (Rajpurkar et al., 2016) is in focus of this work as the dataset was first in the
list of large-scale datasets developed for the task of extractive question answering
(span selection), defined in Sec. 2.3. An example of Paragraph-Question-Answer
triple is given Figure 2.2.

The development of SQuAD was motivated by a will to solve the issue which
was inevitable for earlier developed datasets either being small and in high quality,
like TREC-QA, or large but semi-synthetic, like bAbI (Weston et al., 2015).

To create the dataset at first 536 articles were randomly selected out of top 10000
articles in English Wikipedia. After cleaning up selected articles, individual para-
graphs were extracted, so that they are not shorter than 500 characters. In total there
were 23,215 paragraphs covering wide range of topics. The dataset was split into
train, dev, test samples by proportion 8/1/1. Then each paragraph was assigned
up to 5 question-answer pairs by crowd-workers. To control post-collection quality
crowd-worker was asked to select the shortest span in a paragraph given a question.

Evaluation employs two measures - exact match (EM) and F1 score (F1 = 2 ∗
Precision×Recall
Precision+Recall ). Both metrics ignore punctuation and English articles ( the,a,an). EM
measures the percentage of predictions that match any one of the ground truth an-
swers exactly (ignoring punctuations and articles), F1 is set in the macro-average
way: considering a prediction and ground-truth as bag-of-words, F1 is measured
as following: F1 score is measured over all pairs of prediction and ground-truth
per answer, then the maximum value is chosen among those, then this max value
contributes to get a final score - average over F1 over all of the questions. These
standard accuracy metrics got criticized because of their not clear ability to measure
real Natural Language Understanding (NLU) of methods developed for SQuAD. Jia
and Liang (2017) proposed two additional metrics: AddAny and AddSent, an ex-
ample is shown in Figure 2.3. The idea is to add distracting sentences to a passage
to fool a system, thus testing the ability to understand the passage more accurately.
Two popular models for SQuAD (BiDAF, Match-LSTM) tested with these additional
metrics have shown dramatic decrease in accuracy (around 2 times lower scores),
though Human performance decreased only by around 3%.

2.4.4 MCTest

MCTest (Richardson, 2013) consists of 660 elementary-level children’s stories with
associated questions and answers, collected with the help of crowd-sourcing. Each
question is linked with a set of 4 candidate answers, ranging from a single word
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FIGURE 2.2: Example of paragraph - question - answer from SQuAD train dataset

to a full sentence. The questions are designed to require rudimentary reasoning
and synthesis of information across sentences, making the dataset quite challeng-
ing. Though the dataset size can limit the training of expressive statistical models,
recent comprehension models have performed well on MCTest, including a highly
structured neural model (Trischler et al., 2016a). Also the model by Wang et al.
(2015) employs syntax, frame and semantic features, which emphasize usefulness of
structured linguistic data on relatively small datasets. The evaluation metric is an
accuracy (number of correctly predicted answers).

2.4.5 CNN/Daily Mail

The CNN/Daily Mail corpus (Hermann et al., 2015) is a set of news articles scraped
from those CNN/Daily Mail newspapers with corresponding cloze-style questions,
when a detection of the correct answer relies mostly on recognizing textual entail-
ment between the article and the question. The named entities within an article are
identified and anonymized in a preprocessing step and constitute the set of candi-
date answers, Table 2.5. It’s relatively easy to collect the dataset as the process can be
semi-automatized. Chen, Bolton, and Manning (2016) showed that the task requires
only limited reasoning.

Children’s Book Test

The Children’s Book Test (CBT), Hill et al. (2015), is similar to that of CNN/Daily Mail
by the collection method, but differs by the source, it consists of passages from chil-
dren’s books available through Project Gutenberg; last sentence of the passage is a
cloze-style question.
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FIGURE 2.3: An example from the SQuAD dataset. The BiDAF Ensemble model origi-
nally gets the answer correct, but is fooled by the addition of an adversarial distracting

sentence (in blue)

2.4.6 BookTest

Bajgar, Kadlec, and Kleindienst (2016) presented BookTest. This is an extension to
the named-entity and common-noun strata of CBT that increases their size by over
60 times. Bajgar, Kadlec, and Kleindienst (2016) showed that training on the aug-
mented dataset yields a model (Bajgar, Kadlec, and Kleindienst, 2016) that matches
human performance on CBT.

2.4.7 NewsQA

NewsQA (Trischler et al., 2016b) is similar to SQuAD by size (over 100,000 human-
generated question-answer pairs) and methodology (naturally collected by crowd-
sourcing), but differs by the source (news articles from CNN/Daily Mail) and the
building process designed to encourage exploratory, curiosity-based questions that
’reflect’ human information seeking. This modification in collection strategy made
NewsQA more challenging as more questions (comparing to SQuAD) require more
difficult forms of reasoning: synthesis and inference are almost doubled the number
of similar types in SQuAD.

2.4.8 MS MARCO

MicroSoft MAchine Reading COmprehension (MS MARCO) (Nguyen et al., 2016)
is a recent large-scale (100,000 queries with corresponding answers in first version)
MRC dataset which sets generative question answering task and collected from real-
user queries of a web-search engine.

2.4.9 TriviaQA

Joshi et al. (2017) collected TriviaQA, the dataset consisting of over 650,000 question-
answer evidence triples and questions are authored organically by enthusiasts (in-
dependently from the task), another advantage is that evidence documents are gath-
ered from different sources(Web and Wikipedia). The motivation was to provide a
dataset with more challenging questions, with substantial syntactic and lexical vari-
ability, often requiring multi-sentence reasoning (volume is three times larger than
in SQuAD). Examples of analysis of reasoning are presented in the Table A.1.
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FIGURE 2.4: An illustration of the ADDSENT and ADDANY adversaries.

Article: Nikola Tesla
Paragraph: "In January 1880, two of Tesla's uncles 
put together enough money to help him leave 
Gospić for Prague where he was to study. 
Unfortunately, he arrived too late to enroll at 
Charles-Ferdinand University; he never studied 
Greek, a required subject; and he was illiterate in 
Czech, another required subject. Tesla did, however, 
attend lectures at the university, although, as an 
auditor, he did not receive grades for the courses."
Question: "What city did Tesla move to in 1880?"
Answer: Prague
Model Predicts: Prague

Tadakatsu moved the city of 
Chicago to in 1881.

Chicago

What city did Tesla move to 
in 1880?

What city did Tadakatsu move to 
in 1881?

Prague

Adversary Adds: Tadakatsu moved to the city 
of Chicago in 1881.
Model Predicts: Chicago

(Step 1)
Mutate

question

(Step 3)
Convert into 
statement

(Step 4)
Fix errors with
crowdworkers, 
verify resulting
sentences with
other crowdworkers

AddSent

spring attention income getting reached

spring attention income other reached

Adversary Adds: tesla move move other george
Model Predicts: george

Repeat many times

Randomly initialize d words:

AddAny

Greedily change one word

(Step 2) 
Generate 

fake answer

FIGURE 2.5: An example item from CNN dataset

( @entity4 ) if you feel a ripple in the force today , it may be the 
news that the official @entity6 is getting its first gay character . 
according to the sci-fi website @entity9 , the upcoming novel " 
@entity11 " will feature a capable but flawed @entity13 official 
named @entity14 who " also happens to be a lesbian . " the 
character is the first gay figure in the official @entity6 -- the 
movies , television shows , comics and books approved by 
@entity6 franchise owner @entity22 -- according to @entity24 , 
editor of " @entity6 " books at @entity28 imprint @entity26 . 

Passage

Question
characters in " @placeholder " 
movies have gradually become 
more diverse

Answer

@entity6

2.5 Models

2.5.1 Support Vector Machines(SVMs)

SVMs (Cortes and Vapnik, 1995) are supervised learning models with associated
learning algorithms that analyze data used for classification and regression analysis.
Support vector machines attempt to pass a linearly separable hyperplane through
a dataset in order to classify the data into two groups. This hyperplane is a linear
separator for any dimension, what makes SVM effective, as to separate data-points
which are not linearly separable in a given number of dimension, adding ’artificial’
dimension makes it possible.

Main advantage of SVM is effectiveness and easy to encode structural data as
a feature thanks to a Kernel Trick, which requires only a definition of a similarity
function between points of data, but the same time computational time grows expo-
nentially.
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FIGURE 2.6: Shallow tree representation of the example q/a pair. Dashed arrows (red)
indicate the tree fragments (red dashed boxes) in the question and its answer sentence
linked by the relational REL tag, which is established via syntactic match on the word
lemmas. Solid arrows (blue) connect a question focus word name with the related
named entities of type Person corresponding to the question category (HUM) via a rela-
tional tag REL-HUM. Additional ANS tag is used to mark chunks containing candidate

answer (here the correct answer John Chapman), (Severyn and Moschitti, 2013)

Encoding syntactic trees for QA in SVM

Previous work discussed in Sec. 2.2 used a rich number of distributional semantic,
knowledge-based, translation and paraphrase resources to build explicit feature vec-
tor representations. One evident potential downside of using feature vectors is that
a great deal of structural information encoded in a given text pair is lost (Severyn
and Moschitti, 2013). A more versatile approach in terms of the input representation

FIGURE 2.7: Kernel used in (Severyn and Moschitti, 2013)

relies on kernels and measures the similarity between question and answer pairs.
Question/answer pair is defined as a triple consisting of a question tree Tq and an-
swer sentence tree Ts and a similarity feature vector v. Kernel is defined then as
in Figure 2.7, where Ktk computes a structural kernel, e.g., tree kernel, and Kv is a
kernel over feature vectors, e.g., linear, polynomial, gaussian, etc. Structural kernels
can capture the structural representation of a question/answer pair whereas tradi-
tional feature vectors can encode some sort of similarity (lexical, syntactic, semantic,
between a question and its candidate answer) (Severyn and Moschitti, 2013).

Partial Tree Kernels

Partial Tree Kernel (PTK) (Moschitti, 2006) are used to compute Ktk. PTK can be
effectively applied to both constituency and dependency parse trees, (Manning and
Schütze, 1999). It generalizes the syntactic tree kernel (STK) (Collins and Duffy,
2002), which maps a tree into the space of all possible tree fragments constrained by
the rule that sibling nodes cannot be separated. In contrast, the PTK fragment can
contain any subset of siblings, i.e., PTK allows for breaking the production rules in
syntactic trees. Consequently, PTK generates an extremely rich feature space, which
results in higher generalization ability (Severyn and Moschitti, 2013).
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2.5.2 Artificial Neural Networks

Many artificial intelligence tasks can be solved by designing the right set of features
to extract for that task, these features are then used by a simple machine learning
algorithm. Though, usually it is difficult to know what features should be extracted.
This can be solved by using machine learning to discover not only the mapping
from representation to output but also the representation itself. This approach is
known as representation learning. A major source of difficulty in many real-world
artificial intelligence applications is that many of the factors of variation influence
every single piece of data we are able to observe, which leads to difficulties of ex-
tracting such high-level, abstract features from raw data. Deep learning solves this
central problem in representation learning by introducing representations that are
expressed in terms of other, simpler representations. Deep learning allows the com-
puter to build complex concepts out of simpler concepts (Goodfellow, Bengio, and
Courville, 2016). There is no formal definition of the term Deep learning as through
the history of the field it was called differently, e.g. cybernetics, parallel distributed
processing. Nowadays, usually the term is used to call machine learning methods
based on multi-layer neural networks. The place of deep learning methods in Arti-
ficial Intelligence field is shown in Figure 2.8.

FIGURE 2.8: How different parts of an AI system relate to each other within AI disci-
plines, (Goodfellow, Bengio, and Courville, 2016)

Taking the advantage of rapid development of deep learning, and large-scale
MRC benchmark datasets discussed in Sec. 2.4, end-to-end neural networks have
achieved promising results (Hu, Peng, and Qiu, 2017). In the following section we
will study recent neural architectures applied for SQuAD.
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Neural network architectures for SQuAD

This section will give an overview for state-of-the-art neural architectures for SQuAD
dataset. The leader-board of models for the dataset is available on the Web 1. At
the moment of publication of the thesis top model Hybrid AoA Reader (ensem-
ble), by Joint Laboratory of HIT and iFLYTEK Research, surpassed Human upper
baseline in Exact Match metric (82.482 against 82.304), being still lower in terms of
F1 score (89.281 against 91.221). Another top model, Reinforced Mnemonic Reader
(Hu, Peng, and Qiu, 2017) + A2D (ensemble), by Microsoft Research Asia & NUDT,
showed higher result on EM than Human Performance, but not F1 2.

A common approach to build a neural network architecture of recent works is
based on ’encoder-interaction-pointer’ framework (Hu, Peng, and Qiu, 2017).

Encoder part is responsible for projection of both query(question) and context
(answer, paragraph) into distributional space and encoding by a neural network,
usually Recurrent Neural Network(RNN).Complex interaction between a query (ques-
tion) and context (answer) is done by attention mechanism (Bahdanau, Cho, and
Bengio, 2014), in extractive QA Pointer Network (Vinyals, Fortunato, and Jaitly,
2015) is used to select the boundaries of an answer.

FIGURE 2.9: A conceptual architecture illustrating recent advances in MRC, Huang et al.
(2017). Lowest level represents input vectors, Rectangular boxes represent RNNs and

the numbered arrows is an attention mechanism

… …
(1)

(2)

(2’)

(3’)

(3)

Context Question

Figure 2.9 shows a schema of a common architecture of majority of the neural
network models for MRC.

In the following subsections we will give an overview of selective set of neural
architectures for SQuAD. Evaluation results for the reviewed models are in the Table
2.5.

End-to-end answer extraction and Ranking for Reading Comprehension

Yu et al. (2016) proposed dynamic chunk reader (DCR), which was the first model
that generated and ranks the answer spans, which made the model different from
original logistic regression baseline (Rajpurkar et al., 2016), and represents answer

1http://stanford-qa.com
2The models usually reported in two versions (single and ensemble). Ensemble score is an average

results of top-N prediction of multiple runs of training of the same model architecture but initialized
with different hyper-parameters.

http://stanford-qa.com
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candidates as chunks instead or previous word-level representations. Another im-
portant contribution is a new baseline to understand the gap between cloze-style
models applied to span-extraction type models. POS pattern trie tree of answer sub-
sequences was build on the training set and the experiments had shown that for >
90 % of the questions on the development set, the ground truth answer is included in
the candidate list generated by the POS pattern trie tree. The overview of the neural
architecture is given in the Figure 2.10

FIGURE 2.10: Dynamic chunk reader neural architecture

Dynamic coattention networks for question answering

Xiong, Zhong, and Socher (2016) proposed Dynamic coattention networks (DCN),
which is different from previous models by introduction of Coattention encoder.
The motivation was as to overcome the issue of not being able to recover from local
maxima corresponding to answer span, due the single-pass nature of previously
proposed neural network models. DCN tries to solve this problem and makes it
able to estimate the start and the end positions of the span multiple times. Figure
2.11, 2.12 gives a schematic overview of the model architecture.

Bi-Directional attention flow for machine comprehension (BiDAF)

Seo et al. (2016) proposed multi-stage hierarchical process that represents the context
at different levels of granularity (character, word, context) and bi-directional atten-
tion flow. The novelty of the model is also in the way of reduction of the information
loss usually faced due to early summarization: BiDAF’s attention layer vector is
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FIGURE 2.11: Overview of dynamic coattention network

Document encoder Question encoder

What plants create most 
electric power?

Coattention encoder

The weight of boilers and condensers generally 
makes the power-to-weight ... However, most 
electric power is generated using steam turbine 
plants, so that indirectly the world's industry 
is  ...

Dynamic pointer 
decoder

start index: 49
end index: 51

steam turbine plants

FIGURE 2.12: Coattention architecture
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Model Dev EM Dev F1 Test EM Test F1

BiDAF (Seo et al., 2016) 67.7 77.3 73.3 81.1
DCN (Xiong, Zhong, and Socher, 2016) 70.3 79.4 71.2 80.4
Dynamic Chunk Reader (Yu et al., 2016) 62.5 71.2 62.5 71.0
FastQA (Weissenborn, Wiese, and Seiffe, 2017a) - - 78.9 70.8
SECT-LSTM (Liu et al., 2017) - - 68.12 77.21
SEDT-LSTM (Liu et al., 2017) - - 68.48 77.97
Reinforced M-Reader (Hu, Peng, and Qiu, 2017) - - 77.7 84.9
MEMEN (Pan et al., 2017) - - 78.23 85.34
R-NET (Wang et al., 2017) - - 82.65 88.49

Baseline (Rajpurkar et al., 2016) 40.0 51.0 40.4 51.0

Human (Rajpurkar et al., 2016) 81.4 91.0 82.3 91.2

TABLE 2.5: Comparative results on performance at the time of publishing of DCN to
original baseline and Yu et al. (2016)

computed at every step along with the representations from previous layers and is
allowed to flow through subsequent modeling layer. The neural architecture is de-
picted in the Figure 2.14

Table 2.6 gives an overview of ablation study results on BiDAF model by the
authors, and emphasizes the importance of word embeddings and C2Q (context to
query) attention which signifies which query works are more relevant to each of
context word.
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FIGURE 2.13: BiDAF neural architecture
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Context Query

Query2Context and Context2Query
Attention

Word
Embedding

GLOVE Char-CNN

Character 
Embed Layer

Character
Embedding

g1 g2 gT

m1 m2 mT

EM F1
No char embedding 65.0 75.4
No word embedding 55.5 66.8
No C2Q attention 57.2 67.7
No Q2C attention 63.6 73.7
Dynamic attention 63.5 73.6
BiDAF (single) 67.7 77.3
BiDAF (ensemble) 72.6 80.7

TABLE 2.6: BiDAF ablation study on SQuAD dev set

Figure 2.14 also underlines the lowest performance on ’why’-type questions (non-
factoid), which are in the focus of the thesis.

FastQA: A simple and efficient Neural architecture for Question Answering

Weissenborn, Wiese, and Seiffe (2017a) pointed out on a missed neural network base-
line. As significant number of previous models were built in top-down way, this led
to complex architectures and the analysis was mostly done by ablation studies. Mo-
tivated by the assumption, that ablation study is not a fully sufficient approach to
understand the impact of each of many parts of a complex neural network architec-
ture, the authors proposed FastQA, a neural network based model built as a result
of an incremental extension process (bottom-up), starting from very basic model that
is enhanced by extensions only by necessity The initial core heuristic feature is based
on the following axioms:

• the type of answer span should correspond to the answer type given by ques-
tion

• the correct answer should further be surrounded by a context that fits the ques-
tion

Having only three layers in the NN architecture (embedding, encoding, and answer
layer), FastQA is different comparing to other systems which employ complex at-
tention layer, Figure 2.15 The quantitative analysis had shown, that a simple binary



18 Chapter 2. Background

FIGURE 2.14: Correctly answered questions by BiDAF broken down by the 10 most
frequent first words in the question, from Seo et al. (2016)
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FIGURE 2.15: FastQA neural architecture
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word-in-question feature plays an important role in evaluation (according to abla-
tion studies, the drop is 13.6 in F1 and EM), that character based embeddings have a
notable effect. The qualitative analysis results underline the importance of syntactic
understanding, semantic distinction between lexemes, co-reference resolution and
context sensitive binding. Taking into account the error analysis, authors claim that
an extractive QA system does not have to solve the reasoning types that were used
to classify SQuAD instances to be successful.

The model’s errors analysis in capturing the syntactic structures in order to ex-
tract the correct answer span are important for the motivation of the thesis.

Structural embeddings of Syntactic trees for Machine Comprehension

Liu et al. (2017) proposed the model different to other by extending the encoder with
a structural embeddings of syntactic trees: constituency(SECT) and dependency
(SEDT). Attention layer is based on BiDAF neural architecture (Seo et al., 2016). Each
word in SECT is encoded by a path from the root of the tree, and in SEDT each word
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Method EM F1
SECT-Random 5.64 12.85
SECT-Random-Order 30.04 39.98
SECT-Only 34.21 44.53

SEDT-Random 0.92 8.82
SEDT-Random-Order 31.82 43.65
SEDT-Only 32.96 44.37

TABLE 2.7: Performance comparisons of models with only syntactic information
against their counterparts with randomly shuffled node sequences and randomly gen-

erated tree nodes using the SQuAD Dev set

is represented by all dependent children, according to a dependency link. Examples
are given in the Figure 2.18

FIGURE 2.16: Partial dependency parse tree of an example context “The Annual Con-
ference, roughly the equivalent of a diocese in the Anglican Communion and the Roman
Catholic Church or a synod in some Lutheran denominations such as the Evangelical

Lutheran Church in America, is the basic unit of organization within the UMC.”

FIGURE 2.17: Constituency tree for the example “the architect or engineer acts as the
project coordinator”

The role of structural embeddings was evaluated by the ablation studies, result
is given in the table 2.7

The results can imply that both ordering and the content of the syntactic tree
are important as SECT- and SEDT-Only (no word or character embeddings) give
more than 30 to EM score. This finding also motivated us to investigate the role of
syntactic trees for SQuAD dataset, but not in neural network setup.
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(a) A SECT example (b) A SEDT example

FIGURE 2.18: Two examples are used to illustrate how the syntactic information is
encoded for SECT and SEDT respectively. Take Bi-directional LSTM (Hochreiter and
Schmidhuber, 1997) as examples, where x is a vector such as word embedding, v and
u are the outputs of the forward and backward LSTMs respectively. For SECT, the en-
coding is the syntactic sequence (NP, PP, VP) for the word coordinator in Figure 2.17.
The fixed vectors for syntactic tags (e.g., NP, PP and VP) is in use, initialized with mul-
tivariate normal distribution. The final representation for the target word "coordinator"
can be represented as the concatenation (Ew,u,v), where Ew is the word embedding for
"coordinator" that is 100 dimensions in the experiments and each of the encoded vector
u and v can be 30 dimensional. For SEDT, encoded word "unit" in Figure 2.16 with its
dependent nodes including "Conference", "is" ,"the", "basic", "organization", ordered by
their positions in the original sentence. Each word is represented with its word embed-
ding. Similar to SECT, the final representation is the concatenation (Ew, u, v), which

will be sent to the input layer of a neural network.

Reinforced mnemonic reader for Machine Comprehension

Reinforced mnemonic reader (ensemble) + A2D model is currently the only one
which surpassed Human performance on EM. At the moment of writing there is no
publication available for the full model including A2D, but just Reinforced Mnemonic
Reader (M-Reader) is proposed by Hu, Peng, and Qiu (2017), model architecture is
presented in the Figure 2.20. This work was motivated by the limitations observed
on previously published models: there is a lack of usage of syntactic and linguis-
tic information (POS-tags, named entities, query category) in the encoder layer, an
LSTM/GRU-based interaction layer fails to fully capture the long-distance contex-
tual interaction between parts of the context, in the pointer layer boundary detection
strategies are not strong enough for detection of answer boundaries which are fuzzy
or too long.

Similarly to previous models, M-Reader’s encoding layer relies on character and
word level embeddings, but differs in employing binary exact match feature (a word
is both in context and question) and additionally POS and named entity tags embed-
dings which are concatenated with the word embedding. Additionally, each query
gets an explicit query category embedding (made out of top-9 query-categories, e.g.
who, where, when). The semantic fusion unit has the main difference at interaction layer
and memory-based answer pointing module is a novel part of the pointer layer of
the end-to-end neural network architecture. Performance of the ensemble version of
M-Reader is given in Table 2.5. Ablation studies on SQuAD development set have
shown that removal of feature-rich encoder decreases the overall performance less
than other extensions of M-Reader (Table 2.8).

Also, ’why’-questions are still the hardest to answer, according to the results re-
ported in Figure 2.19
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Model EM F1
M-Reader+RL 72.1 81.6
M-Reader 71.8 81.2
- feature-rich encoder 70.5 80.1
- interactive aligning 65.2 74.3
- self aligning 69.7 78.9
- memory-based answer pointer 70.1 79.8

TABLE 2.8: Ablation results on SQuAD dev set.

FIGURE 2.19: M-reader F1 results by question type comparing to BiDAF model
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Gated Self-Matching Networks for Reading Comprehension and Question An-
swering

R-Net (Wang et al., 2017) proposed by Microsoft Research Asia, is an end-to-end neu-
ral network model fore MRC and QA. It’s in the top-3 models on the SQuAD leader-
board at the moment of writing. The novelty of the work is related to the modifi-
cations at attention layer - new gated attention-based recurrent neural network to
aim the goal of assign different levels of importance to passage parts depending of
their relevance to the question, and also new self-matching layer to dynamically re-
fine passage representation with information from the while passage (due to limits
of RNN capturing long-distance dependencies in a sentence).

Other important findings are failed attempts to improve the architecture (1) by
adding syntax information like POS tag, NER results, linearized PCFG tree tags,
dependency labels, and (2) representing the extractive QA task as a sequence of
sentence ranking and span selection subtasks (either as a separate module indepen-
dently of answer selection from a sentence or in a multi-task setting), (3) dependency
parsing trees. These unsuccessful attempts can imply the limits of extensibility of
neural networks approaches with structured data, like syntactic trees.

MEMEN: Multi-layer Embedding with Memory Networks for Machine Compre-
hension

New MRC neural network model architecture, MEMEN, was introduced by Pan et
al. (2017). It was motivated by inability of previous models to handle key words
(important for an answer) differently from the rest of words in a sentence. There are
two main contributions of the work. First is a new multi-layer embedding, which
employs POS and NER tags besides word and character level embeddings (Figure
2.21). Second is memory networks of full-orientation matching. Authors reported
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FIGURE 2.20: M-Reader model architecture
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ablation studies (Figure 2.22), which tells that both syntactic (POS tags) and semantic
(NER tags) embeddings contribute towards the model performance.

FIGURE 2.21: The passage and its according transformed “passages“. The first row
(green) is the original sentence from the passage, the second row(red) is the name-entity

recognition (NER) tags, and the last row (blue) is the part-of-speech (POS) tags.

FIGURE 2.22: MEMEN: Ablation results on the SQuAD dev set

There are more related works, which in particular try to improve previously pro-
posed neural architectures, e.g. Shen et al. (2017) discovered that multiple-turn rea-
soning outperforms single-turn reasoning for all question and answer types; and
also that enabling a flexible number of turns generally improves upon a fixed multiple-
turn strategy. Chen et al. (2017) proposed lexical gating mechanism to dynami-
cally combine the words and characters and Interactive Attention and Memory Net-
work.
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Experiments

This work was motivated by the evidence of importance of syntactic structures in
open-domain QA, and for neural networks empowered MRC (models overview in
Sec. 2.5) on large-scale datasets. Our goal was to fill the gap (to our knowledge
no one tried it before) of a missing baseline, which doesn’t employ neural network
models, but was successfully applied to QA datasets like TREC before. State-of-art
model for TREC in our focus is based on the open source framework RelTextRank1

proposed by Tymoshenko et al. (2017), and the exact model explained in Severyn and
Moschitti (2013). The framework described as a flexible Java pipeline for converting
pairs of raw texts into structured representations and enriching them with semantic
information about the relations between the two pieces of text. An important feature
of the framework is a flexible way of combining different types of features (syntactic,
semantic, question type, question focus, etc.).

Model and framework

Before applying the model, we studied the dataset in more details.

Detailed analysis of SQuAD

The dataset has been in the focus of many recent MRC studies, thus we mention
here some characteristic reported before and also our findings. Rajpurkar et al., 2016
set logistic regression baseline on the dataset and reported ablation studies which
emphasized lexicalized and dependency tree path features importance, results are
presented in the Table 3.1.

1https://github.com/iKernels/RelTextRank

Train Dev

Logistic Regression 91.7% 51.0%
– Lex., – Dep. Paths 33.9% 35.8%
– Lexicalized 53.5% 45.4%
– Dep. Paths 91.4% 46.4%
– Match. Word Freq. 91.7% 48.1%
– Span POS Tags 91.7% 49.7%
– Match. Bigram Freq. 91.7% 50.3%
– Constituent Label 91.7% 50.4%
– Lengths 91.8% 50.5%
– Span Word Freq. 91.7% 50.5%
– Root Match 91.7% 50.6%

TABLE 3.1: F1 performance with feature ablations.
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Xie and Xing (2017) reported that about 70% answers are exactly constituents (N
= 0) and about 97% answers differ from the closest constituents by less or equal to 4
words, Figure 3.1.

FIGURE 3.1: Percentage of answers that differ from their closest constituents by N words

To get the data, we used NLTK Python library (Loper and Bird, 2002). First, we
found some unnatural (question, answer, passage) triples, which, in our opinion,
can be a result of a crowd-sourcing way of collecting the dataset:

• ’What means’, ’Advaita’, ’Advaita literally means "not two, sole, unity".’

• ’k’, ’ks’, ’Nanjing ( listen; Chinese: .., "Southern Capital" ) is the city situated
in the heartland of lower Yangtze River region in China, which has long been
a major centre of culture, education, research, politics, economy, transport net-
works and tourism.’

• ’j’, ’Ch’, <same as previous>

• ’n’, ’n’, <same as previous>

• ’b’, ’b’, <same as previous>

• ’v’, ’v’, <same as previous>

• ’dd’, set of answers with the same question ( ’Buddhism’, ’yptian Se’, ’Buddh’,
’m and E’ ), ’The religious sphere expanded to include new gods such as the
Greco-Egyptian Serapis, eastern deities such as Attis and Cybele and the Greek
adoption of Buddhism.’

• And cloze-style example: ’Himachal is?’,’multireligional, multicultural as well
as multilingual state like other Indian states’, ’It is a multireligional, multicul-
tural as well as multilingual state like other Indian states.’

After, we gathered data on minimum, maximum and average of the length of
answer sentences, Table 3.2, and Figure 3.2 gives an overview of answer span length
by question type (first question word). The reported results confirm that ’why’-type
of questions are the most challenging. Though, surprisingly, on average an answer
span to a ’how’-type question is not longer that ’what’ or ’where’. Similar results
on train and dev sets can be an another reason for a good neural network model
performance.

Additionally, we studied distribution of question by the first 1,2,3-gram to get a
shallow understanding of what type of questions are major part in the set.

We studied the distributions of top-20 types of question by first word (unigram):
Figures 3.3, 3.5, first two: Figures 3.7, 3.8 and first three words: Figures 3.9, 3.10. This
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Metric Train Dev

Avg. sent. length 31.785 33.13
Min sent. length 2 2
Max sent. length 382 263

Avg. ans. span length 3.37 3.08

Avg. ans. span proportion to whole sentence 0.129 0.115

TABLE 3.2: By number of words in an answer span/sentence
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FIGURE 3.2: Average answer span length by words on Train and Dev sets

study can be important as we apply the model based which has answer type (HUM,
LOCATION, ENTITY, DATE, QUANTITY, CURRENCY) as feature. We conclude
that the prevailing part of the dataset is of ’what’-type.

Training and development sets are distributed similarly according to this anal-
ysis, which can make it easier for some statistical models, like neural networks to
reach comparatively high performance.

According to the analysis based on the first word of a question, Figures 3.3 , 3.4,
despite the majority of question are to an entity (what, who, which), there are also
’how’- and ’why’-types, which usually implies non-factoid answers.

To have a better understanding of the distribution on answer sentences for the
task of answer sentence selection, we collected the data on a sequential number of
an answer sentence in a passage in Figures 3.11, 3.12. We conclude, that majority of
answers are in top-5 sentences in a paragraph. This can help to optimize training
performance of the model.

Task setting

Usually, question answering can be divided into three steps: document retrieval,
sentence answer selection and answer extraction. According to Brill et al. (2002)
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and Rajpurkar et al. (2016), one key difference between SQuAD MRC setting and
answer extraction is that answer extraction typically exploits the fact that the answer
occurs in multiple documents, while in SQuAD the system has access to a single
reading passage. The formal setting of the task of extractive question answering
was discussed in Sec. 2.3. We remind here that the inputs are a question (as a single
sentence) and a text paragraph, which usually consists of multiple sentences, the
output is a text span which is not longer than a sentence. Thus, the task can be also
considered as two sequential tasks:

• Answer sentence selection: finding the best sentence candidate from a passage;

• Answer span extraction: extracting exact answer span from the best sentence
candidate.

Experiments

We tried both settings: applying the model end-to-end, and also trying to solve
only second task separately, considering the first as comparatively easier (Ghigi
et al. (2017) reports 83.8% of Sentence Level Accuracy reached by proposed Deep
Word Match on SQuAD, the model doesn’t employ any neural network based ap-
proaches).
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FIGURE 3.10: Top-20 first trigrams in
questions in SQuAD Dev set

First, in end-to-end setting, consisting of two tasks, we trained a model only on
100 data-points and testing on the whole development set, and got EM = 3.7748, F1
= 6.6125.

Then we decided to relax the conditions to set a better upper-bound for our
method. At train time we reduced the input passage to only answer sentence, keep-
ing development set untouched (whole passage is used during evaluation), on 100
examples for training we got EM: 6.000, F1: 12.000, and while training on 500 sam-
ples, we got the decrease on F1: EM: 6.8496, F1: 9.5828.

Thus we continued the exploration by further task relaxation and reduced both
training and development passages to a single answer sentence, which is equal to
solving only span extraction task. Results were predictably higher (train - 100 sam-
ples, development - whole set) EM: 20.1135, F1: 29.0432. The rest of the results are
depicted in Figures 3.13, 3.14.

Example of the processing pipeline

In this section we give an overview on system data-flow with a step-by-step exam-
ple. The framework overview is given in Figure 3.15.

First, we converted original SQuAD data into the format, which can be read by
Input module: three files are for answers, questions, answer passages (as from the
dataset we have only positive examples, all samples are labeled positively). The
format of one sample in the answer file is the following: [ datapoint-id datapoint-id-
seq-number positive-label positive-label-float positive answer-text ]

An answer and a question formats are [ datapoint-id answer-text ] and [ datapoint-id
question-text ] accordingly.

The real example is:

• Passage (here answer sentence is marked by a color): 5733be284776f41900661182
5733be284776f41900661182-0 1 1.0 true Architecturally, the school has a Catholic
character. Atop the Main Building’s gold dome is a golden statue of the Virgin Mary.
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SQuAD train set answer sentence sequential number in a passage
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SQuAD dev set answer sentence sequential number in a passage
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Exact match on SQuAD dev dataset
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FIGURE 3.13: SVM+TK EM values of the experiments on SQuAD

Immediately in front of the Main Building and facing it, is a copper statue of Christ
with arms upraised with the legend "Venite Ad Me Omnes". Next to the Main Build-
ing is the Basilica of the Sacred Heart. Immediately behind the basilica is the Grotto,
a Marian place of prayer and reflection. It is a replica of the grotto at Lourdes, France
where the Virgin Mary reputedly appeared to Saint Bernadette Soubirous in 1858. At
the end of the main drive (and in a direct line that connects through 3 statues and the
Gold Dome), is a simple, modern stone statue of Mary.

• Question: 5733be284776f41900661182 To whom did the Virgin Mary allegedly ap-
pear in 1858 in Lourdes France?

• Answer: 5733be284776f41900661182 Saint Bernadette Soubirous

Following the system architecture scheme in Figure 3.15, the processing pipeline
employs the following steps:

• Linguistic annotation
A pipeline of UIMA Analysis Engines (AEs), which wrap linguistic annotators,
e.g., Sentence Splitters, Tokenizers, Syntactic parsers, to convert the input text
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pairs into the UIMA Common Analysis Structures (CAS). CASes contain the
original texts and all the linguistic annotations produced by Answer Extractor.
These produce linguistic annotations defined by a UIMA Type System.

• Generation of structural representations and feature vectors
The Experiment module uses CASes as input and generates the relational struc-
tures on trees (T) along with their feature vector representation (FV).

• Generation of the output files
For training the model in train mode or for ranking at test mode. A real exam-
ple follows.

An fragment of the output example, which is then used by SVM-light-TK 1.5
library (Moschitti, 2006) (written in C programming language) is given below:

• +1/-1 depicts a class of the example (correct/incorrect)

• Question tree: (ROOT (S (PP (TO (to))) (NP (WP (whom))) (VP (VBD (do))) (REL-
NP (DT (the)) (REL-NNP (virgin)) (REL-NNP (mary))) (ADVP (RB (allegedly)))
(VP (VBP (appear))) (PP (IN (in))) (REL-NP (REL-CD (1858))) (PP (IN (in))) (REL-
NP (REL-NNP (lourdes)) (REL-NNP (france))))) Figure 3.16

• Answer tree (ROOT (S (NP (PRP (it))) (VP (VBZ (be))) (NP (DT (a)) (NN (replica)))
(PP (IN (of))) (NP (DT (the)) (NN (grotto))) (PP (IN (at))) (REL-NP (REL-NNP
(lourdes))) (REL-NP (REL-NNP (france))) (ADVP (WRB (where))) (REL-FOCUS-
HUM-NP (DT (the)) (REL-NNP (virgin)) (REL-NNP (mary))) (ADVP (RB (reput-
edly))) (VP (VBD (appear))) (PP (TO (to))) (ANS-NP (NNP (saint)) (NNP (bernadette))
(NNP (soubirous))) (PP (IN (in))) (REL-NP (REL-CD (1858))))) Figure 3.17

• Similarity feature vector:
17:0.5393193716300061
18:0.1734944795898721
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FIGURE 3.15: Overall RelTextRank framework

19:0.44008622942335207 ...
36:0.6647577087403779

The list of similar examples is used for training SVM model. Similarly, for testing,
the same structure is produced by adding all possible pairs of trees. Afterwards, they
are ranked to obtain the best answer candidate.

FIGURE 3.16: An example of a question syntactic tree

Error Analysis

For the model trained on 5,000 samples, we found, that in 6% of samples the pre-
dicted answer is wider than the ground truth, which is a result of the model pre-
dicting constituents, while real answer can contain any part of a constituent; +14%
of predictions are shorter than a ground truth, i.e. the ground truth fully covers the
prediction, which again can imply the necessity of a span span borders ’adjustment’
module.

Qualitative analysis had revealed that majority of the cases of missed correct
predictions are due to detecting either wrong noun phrase or errors in numerical
answers, e.g. for the question What is the mace displayed in?, the predicted answer
was july 1999 while ground truths answers are ’glass case suspended from lid’, ’glass
case’; and for the question When was the Scottish Constitutional Convention held? the
prediction was industry for ground truth ’ 1989’.
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FIGURE 3.17: An example of an answer sentence syntactic tree

To set up an upper boundary and do a qualitative analysis of the errors, we
further relaxed the task by employing pruning strategy (example of the pruned tree
in Figures 3.18, 3.19), where the are less candidates of artificially generated incorrect
answers, e.g. pruning ray = 0 mean that for training per question-answer pair we
have two examples:

It yielded much better results: while training on 10,000 examples we got 50.956
for EM and 75.244 on F1, 488 questions were unanswered (answer is "none") and
incorrectly answered were 4695.

In the same setting number of span predictions which were not correct, but were
covered completely by ground truth is about 22% higher, while prediction was wider
than the ground truth in 21% of cases, which shows the direction for future work,
i.e. improvements on detecting exact boundaries which can cover a part of one or
multiple sequential constituents. The rest of the errors are due to wrong parsing of
the input, thus losing some characters, e.g. the prediction was 4 record, while answer
was ’12-4 record’, or ’31 24’, when ground truth is ’31–24’; another error type is a
wrong boundary prediction, where the prediction has no intersection with a ground
truth.

FIGURE 3.18: An example of an answer sentence syntactic tree pruned with a pruning
ray equals to 0, which means that no neighboring REL constituents are considered

FIGURE 3.19: An example of ’incorrect’ artificial sample of syntactic tree pruned with a
pruning ray equals to 0. Differs from 3.18 by POS tag under S - NP.
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Conclusions and future work

Observing the rapid development of the field, in this work we have explored mod-
ern methods based on neural networks applied to large-scale machine reading com-
prehension datasets, and made an attempt to set up a new baseline based on the
SVM+TK model, which was proven as an effective way of preserving syntactic in-
formation of language on traditional, comparatively low-scale datasets.

Discussion

Significant number research has recently done on creating datasets and according
models for MRC task. Though many complex neural architectures report high per-
formance results, it doesn’t always mean that the tasks of MRC and NLU are solved,
as better evaluation metrics show a significant decrease of performance. Also sim-
pler models show that the introduced complexity of architectures is not always nec-
essary. Deeper analysis of new datasets sometimes also provide hints on potential
reasons of high performance, e.g. majority of questions do not go along with claims
of required multi-sentence reasoning. Also, there are more and more neural network
architectures, which attempt to incorporate structural information, like constituency
or dependency trees, they show different level of success.

In the work we applied SVM+TK model, but realized that the main difficulties
were mainly due to efficiency problems. In order to make the Tree Kernel model
applicable and win some upper bounds, we used several relaxation approaches.

Another contribution is adapting RelTextRank framework to extract original sur-
face form while detecting the answer span, while previously it was only lemmatized
constituents.

Though we didn’t get expected results facing computational challenges, there
are many ways to try for the model improvement, which are listed below.

Future work

We consider the following steps to make next:

• Computation performance improvements optimization to train on the whole
dataset

• Training on separate question types to get a better understanding on ability of
the system to answer real explanatory questions (non-factoid)

• Test on real test dataset1 (not available to public).

1https://worksheets.codalab.org/ is used as a platform of submission. We couldn’t solve the is-
sue of running our modular system on the platform due to inability of the platform to handle input
files generated dynamically. The last we hope to solve by replacing C modules with equivalent Java
modules with the help of machine learning library KeLP (Filice et al., 2015)
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• Test on AddAny and AddSent metrics (Jia and Liang, 2017)

• We’d like to do ablation studies, mostly on features in the similarity feature
vector used alongside syntactic trees. Depending on the results, we consider
adding other similarity features to improve the model performance.

• We believe that one way to improve the accuracy could be also by a richer
number of experiments on SVM parameters tuning (Regularization, Gamma
and Margin)

• More experiments with depth of syntactic or constituency trees

Despite the reported performance, this work shapes some research directions to
use TK models in large datasets like SQuAD. So we nevertheless see an optimism
in future attempts to adopt SVM with PTKs model on SQuAD or similar dataset, as
there are more research done in incorporating structural information into the models
for MRC.
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Appendix A

FIGURE A.1: Analysis of reasoning used to answer TriviaQA questions shows that a
high proportion of evidence sentence(s) exhibit syntactic and lexical variation with re-

spect to questions. Answers are indicated by boldfaced text (Joshi et al., 2017)
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FIGURE A.2: Dependency tree and tagged dependency tree (Shen, Kruijff, and Klakow,
2005)

Dataset Documents Questions Answers

MCTest (Richard-
son, 2013)

660 short stories,
grade school level

2640 human generated,
based on the document

multiple choice

CNN/Daily Mail
(Hermann et al.,
2015)

93K+220K news ar-
ticles

387K+997K Cloze-form,
based on highlights

entities

BookTest (Ba-
jgar, Kadlec,
and Kleindienst,
2016)

14.2M, similar to
CBT

Cloze-form, similar to
CBT

multiple choice

SQuAD (Ra-
jpurkar et al.,
2016)

23K paragraphs
from 536 Wikipedia
articles

108K human generated,
based on the paragraphs

spans

NewsQA
(Trischler et
al., 2016b)

13K news articles
from the CNN
dataset

120K
human generated,
based on headline, highlights

spans

MS MARCO
(Nguyen et al.,
2016)

1M passages from
200K+ documents
retrieved using the
queries

100K search queries human generated,
based on the passages

SearchQA (Dunn
et al., 2017)

6.9m passages
retrieved from a
search engine using
the queries

140k human generated
Jeopardy! questions

human generated Jeop-
ardy! answers

NarrativeQA
(Kočiský et al.,
2017)

1,572 stories (books,
movie scripts) & hu-
man generated sum-
maries

46,765
human generated,
based on summaries

human generated,
based on summaries

WikiHOP (Welbl,
Stenetorp, and
Riedel, 2017)

598,103 support
passages from
Wikipedia & auto-
matically generated
summaries

43,738
human generated,
based on
Wikipedia paragraphs

human generated,
based on summaries

TABLE A.1: Compiled table of MRC datasets. Extended, based on mentioned by
Kočiský et al. (2017)
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