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ABSTRACT 

 

Loanwords exist in almost every language. Identifying loanwords manually is time-consuming. 

Previous studies present the possibility of detecting loanwords by comparing the similarity of 

pronunciation, or pronunciation distance, between words from two unrelated languages. The 

principal hypothesis is that, if a pair of words is made up of a loanword and its source in another 

language, the pronunciation distance between these two words should be significantly smaller than 

another pair that does not consist a loanword. The pronunciation distance is measurable by the edit 

distance. The Levenshtein algorithm is one of the main algorithms to calculate an edit distance. In 

order to accurately represent the pronunciation distance, a more sensitive edit distance for 

measuring pronunciation distance is desired. There are various refined Levenshtein algorithms 

which are implemented for sound-sensitive edit distance. The purpose of this dissertation is to 

apply three refined Levenshtein algorithms to calculate the pronunciation distance and discover a 

more advanced algorithm for loanword detection. The three refined Levenshtein algorithms 

calculate sound distances by respectively considering pointwise mutual information (PMI) 

between segments, measurements extracted from Spectrogram, and sound class alignment (SCA) 

between strings. The performances of each refined Levenshtein algorithm in loanword detection 

are compared. Their performances are evaluated by precision/recall analysis as well as cross 

validation. As a result, applying SCA-based algorithm outperforms the other two algorithms 

according to the evaluations.  
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1. INTRODUCTION 

A loanword is a word that is borrowed from one language and adopted in another. To support the 

development of computational applications in linguistics, a more convenient and well-performing 

loanword detection model is desirable. Loanword detection has been studied using various 

methods, such as the phylogenetic method (Delz, 2013), ancestral state reconstruction (Köllner & 

Dellert, 2016), and the comparison of pronunciation distances (van der Ark et al., 2007; Mennecier 

et al., 2016). Distinguishing from previous research involving comparing pronunciation distances, 

this study aims to apply superior edit distance algorithms with more sensitive pronunciation 

distances for the purpose of loanword detection. This study aims at detecting loanwords within the 

Turkic and the Indo-Iranian language families with three refined edit distance algorithms, whose 

performances are compared with each other. The measurement of the sound distance between two 

words is decisive in detecting loanwords. The principal hypothesis is that the pronunciation 

distance between a loanword and the corresponding borrowed word should be significantly smaller 

than the distance between two words that do not have such relation (Van der Ark et al., 2007; Mi 

et al., 2014; Mennecier et al., 2016). Generally, if a word Wa in a language A shares the same 

concept represented as Wb in language B, either Wa or Wb is probably a loanword given: 

1. Wa and Wb are phonologically similar;  

2. Language A and language B are unrelated.  

For Rule 1, “phonologically similar” means that the pronunciations of two words are similar. The 

similarity is described by a sound distance between two words. If the sound distance between two 

words is small, the two words are defined as “phonologically similar”. But how small should the 

sound distance be to define a loanword? The threshold for determining a loanword is decided by 

comparing the predicted loanwords against a gold standard in which loanwords are classified by 

experts. Rule 2 indicates that it is inappropriate to identify Wa and Wb as loanwords if language A 

and language B are closely related. Dutch and German, for instance, share numerous words with 

similar pronunciations. This is probably the result of genealogical relatedness since they are both 

Germanic languages and geographical neighbors. Hence, identifying loanwords merely by 

considering sound similarity is not sensible in this case.  

The data used in this study was collected by Mennecier et al. (2016). The pronunciations of the 

words in the Turkic and Indo-Iranian language family representing concepts from the Swadesh list 

are included in the data. Swadesh list is a list containing approximately 200 concepts that are 

argued to exist in all languages (Swadesh, 1955; Swadesh, 1972). The pronunciations are written 

in phonetic transcriptions. For instance, the concept ‘one’ is written as /bɪr/ and /jak/, concept ‘big’ 

as /ʉlkɪn/ and /kalɔn/, in the Turkic and Indo-Iranian language families respectively. The data 

records numerous phonetic transcriptions representing a concept in both families because of the 

various languages in a language family, and potential variety of the pronunciations in a language. 

The loanword is detected by comparing phonetic transcriptions in the Turkic family against 

phonetic transcriptions in the Indo-Iranian family. According to the principal hypothesis, one of 

the phonetic transcriptions in a pair of transcriptions is a loanword if their pronunciations are 

similar enough.  

The Levenshtein algorithm is successfully applied in calculating the differences between word 

pronunciations (Heeringa, 2004). The distance between two strings is called the Levenshtein 

distance if the Levenshtein algorithm is applied. The pronunciation distance between two words 
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is represented by the edit distance between the two phonetic transcriptions. The pitfall of applying 

the Levenshtein distance directly to represent pronunciation distance is that it fails to reflect the 

actual “dissimilarity” between two pronunciations. For instance, the sound distance between /dɔɡ/ 

and /dɒt/ is two, while between /dɔɡ/ and /dɪɡ/ is one if the Levenshtein distance is applied. But 

/dɔɡ/ is more similar to /dɒt/ than to /dɪɡ/ according to human perception. Hence, refined 

Levenshtein algorithms are desirable for the purpose of representing sound distance.  

Although a simple Levenshtein distance can be used in loanword detection, the performance is not 

satisfactory because of the error rate (Van den Ark et al., 2007; Mennecier et al., 2016). The edit 

distance of phonetic transcriptions between two words is decisive in loanword detection, and 

applying different (or refined) edit distance algorithms should lead to different results. In order to 

explore the possibility of improving the performance in loanword detection, three refined 

Levenshtein algorithms are evaluated in the application of loanwords detection. They are the 

pointwise-mutual-information-based algorithm (Wieling et al., 2009), the Spectrogram-based 

algorithm (Heerigna, 2004), and the sound-classes-based algorithm (List, 2012).  

These algorithms have been applied in various areas, including dialectometry, accent measurement, 

and language relatedness (Wieling & Nerbonne, 2015; Wieling et al., 2014; Mennecier et al., 2016). 

Hence, the purpose of this experiment is to compare the performances of above-mentioned 

algorithms in the application of loanword detection. It should be noticed that this method cannot 

be used to identify the donor language (the language that “gives” the word) because the distance 

between two pronunciations is not directed. Also, the method fails to determine if a third language 

is involved, since there is a possibility that a detected loanword is a cognate from a third language 

rather than one of these two. For instance, the English word ‘tofu’ is borrowed from Japanese, but 

the Japanese word originates from Chinese (Table 1).  

 Word Pronunciation in IPA 

English tofu /'təʊfuː/ 

Japanese とうふ /to̞ːɸɯᵝ/ 

Chinese 豆腐 /toufu/ 

Table 1. The concept "tofu" written in English, Japanese, and Chinese, and their respect pronunciation. 

It is possible to detect that one of the three words representing the concept “tofu” is a loanword 

when any two of these three languages are compared, but it is impossible to determine the donor 

language of this word and identify the origin of ‘tofu’ without considering the related facts about 

tofu.  

The description of the linguistic background is below in this chapter. This is followed by a 

discussion of related works in loanword detection, as well as works in which refined Levenshtein 

algorithms are applied to calculate sound distances and other purposes. The second chapter, 

methodology, starts with the overall design of the experiment. The data used in this project is 

explained in the methodology section as well. The last part in the methodology chapter briefly 

introduces the algorithms used in this project, as well as the fundamental Levenshtein algorithm. 

The following three chapters explain the three refined algorithms in detail, along with their 

realization and performance in loanword detection. Results, evaluations, and simple discussions 

are included in these three chapters. Finally, there is a chapter for comparing the performances of 

the algorithms, and the conclusions of the project.  
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Before going further, here are several terms used in this dissertation. They are explained for the 

sake of clarity.  

 Concepts: the concepts of word meanings in different languages. For instance, /mɔdar/ and 

/ɔna/ are pronunciations in Uzbek and Tajik, respectively, and they both mean ‘mother’. 

Here, ‘mother’ is the concept. The concepts are in English in the dataset used in this 

experiment. 

 Segment: a phonetic unit such as /a/, /ɔ/, or /p/.  

 Phonetic symbol: is a symbol belonging to the International Phonetic Alphabet (IPA). IPA 

symbols are used to represent the pronunciation of phonetic segments.  

 Phonetic transcription: the representation of word pronunciation. A phonetic transcription 

is a sequence of phonetic symbols (/mɔdar/ is a phonetic transcription for instance). 

 Segment distance: the distance between two phonetic symbols according to various 

features, such as phonological features, phonetic features, or acoustic features (intensity, 

frequency, etc.).   

 

1.1 Linguistic Background 

A loanword is a word borrowed from one language and adopted in another. Borrowing words is a 

common phenomenon in a language, and probably loanwords exist in every language in the world 

(Haspelmath & Tadmor, 2009). In distinction to similar concepts such as calque and code-

switching, a loanword is the result of phonological adaptation rather than semantical adaptation 

(translation) or direct borrowing. A loanword is adapted phonologically in order to fit the 

phonological pattern in the recipient language (Peperkamp & Dupoux, 2003). Here is a sentence 

in Cantonese containing a loanword, a calque, and code-switching. 

我 book 咗 巴士 去 跳蚤 市場 (Character) 

Ngo5  zo2 baa1 si2 heoi3 tiu3 sat1 si5 coeng4 (Jyutping) 

/ŋɔː/             /bʊk/    /t͡ sɔː/ /pa:siː/          /hɵy̯/     /tʰiːu̯sɐd/    /si:tsʰ œːŋ̩/           (IPA) 

I book (perfective) bus Go flea market (English) 

‘I have booked a bus to flea market.’ 

  

‘巴士’ is a loanword from English ‘bus’. ‘跳蚤市场’ is a calque, which is the result of literal 

translation of ‘flea’ (‘跳蚤’) and ‘market’ (‘市场’). The verb ‘book’ is code-switch using English 

‘book’ (as a verb) in the Cantonese sentence directly. The example of concept ‘bus’ in Cantonese 

shows that the loanword is similar to the original word phonologically without semantic adoption 

(/pa:siː/ in Cantonese vs. /bʌs/ in English), since neither the meaning of  /pa:/ (巴) nor /si:/ (士) is 

related to bus1. Hence, the phonological similarity is a feature of loanword, and the loanword is 

“highly predictable from a phonological perspective” (Paradis & LaCharité, 1997). This feature 

supports the principal hypothesis of the project mentioned above.  

 

                                                           
1 An example of loanwords in Cantonese with both phonological and semantic adaptation is “啤酒”, meaning “beer” 

in English. In this case, “啤” (/pɛː/) is the phonological adaptation of /bɪə/ (beer), and “酒” (/tsou/) means alcohol.  
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Necessity of loanword detection 

Language contact is one of the main concerns in historical linguistics, and it reflects the 

interactions between language and ethnic groups. Loanwords arise as a consequence of language 

contact, and the study of loanwords contributes to the understanding of language history and word 

origin. Besides, the loanwords can influence a recipient language in various aspects, such as syntax, 

morphology, phonology and writing system. Maltese is a typical example reflecting how the study 

of loanwords is beneficial to the study of a language’s development.  

Maltese originated from Siculo-Arabic in the 11th century when settlers from Sicily moved to 

Malta. After expelling the Muslims in the 13th century, Maltese was separated from Arabic and it 

became an isolated language. It has developed along with Sicilian and Italian since then. From the 

colonization of Britain in the 19th century until now, Maltese had been influenced greatly by 

English. Consequently, over 50% of the vocabulary in Maltese are derived from either Italian, 

Sicilian, or English.  

The many loanwords influence the language in various aspects. For instance, new sounds are 

introduced to Maltese. “televiżjoni” is a loanword from English “television”, and /ʒ/ is introduced 

in Maltese phonology system through the borrowing of the word ‘television’. The writing system 

is influenced as well. Controversy has been raised arguing whether Maltese spelling, “televiżjoni”, 

or English spelling, “television” should be used in Maltese. Meanwhile, loanwords influence the 

syntax of a language. The Maltese word of “to park” is “ipparkja” which is borrowed from English 

“park”. A new rule is designed to include English verbs in Maltese by adding prefix “ip-” and 

suffix “-ja”, which is different from the morphology rule applied to Maltese verbs. The syntactic 

adoption and the phonology adoption mentioned above lead to decreasing similarity between a 

loanword in the recipient language and the corresponding borrowed word in the donor language 

with time.  

To a great extent, the development of Maltese involves borrowing words from other languages, 

and the loanwords have been an important component of Maltese. Therefore, Maltese speakers 

probably fail to distinguish loanwords from original Maltese words. On the other hand, it is 

controversial to classify a loanword if the word has been part of a language for a long period. 

Loanword detection is one of the most important steps to study the phenomenon and solve these 

problems.  

Loanwords can be detected manually, but it is time-consuming and occasionally controversial. A 

more efficient method to detect loanword is desired. Hence, there is no doubt that applying a 

computational approach can be effective and efficient to detect loanwords.  

 

1.2 Related Work 

This dissertation involves mainly three aspects: loanword detection, sound distances derived from 

Levenshtein algorithms, and the application of sound distance derived from Levenshtein algorithm 

to the loanword detection.  Previous works on the topics of loanword detection, applying (refined) 

Levenshtein algorithms to calculate sound distances, and applying sound distances to loanword 

detection are investigated here.  
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Previous work on applying sound distance to loanword detection  

Van den Ark et al. (2007) calculate sound distances with a VC-sensitive Levenshtein algorithm in 

which the cost of substituting a vowel for a consonant (or vice versa) is higher than a vowel for a 

vowel (or a consonant for a consonant). Their work aims to classify groups of the languages in 

Central Asia and detect loanwords. In terms of loanword detection, the result shows that using 

Levenshtein distance for loanword detection is not perfect due to the tradeoff of precision and 

recall. Another work in which sound distance is applied is conducted by Mennecier et al. (2016), 

in which pronunciations of central Asian languages are collected and applied to measure language 

relatedness and loanword detection. It applies the same method as that in van den Ark et al. (2007) 

to detect loanwords. Comparing to the work of van den Ark et al. (2007), the data used by 

Mennecier et al. (2016) is more suitable for loanword detection (the dataset is also used in this 

dissertation and will be discussed in the later section). However, the results show that there is room 

for improvement. Around 30%-50% of the loans fail to be detected.  

 

Previous works on loanword detection not applying sound distance  

Various approaches are used to detect loanwords. One approach to detect loanword is to apply 

ancestral state reconstruction. State reconstruction is used in phylogenetics, and it aims to find the 

common ancestors of individuals. Köllner & Dellert (2016) apply this method to trace the cognates 

of words in order to discover the words sharing identical cognates so that loanwords are detected. 

The assumption is that, “if a cognate class is reconstructed for some node v, but a different class 

is reconstructed for its immediate ancestor”, “all leaves under v are possibly having undergone 

borrowing”. The algorithm is tested on the database of Indo-European Lexical Cognacy Database, 

and it is a database of cognate judgments in the Indo-European languages. The performance is not 

ideal due to several limitations, such as the size of the database, the failure of detecting borrowing 

outside the language sample, etc.  

Besides above mentioned approaches, Mi et al., (2014) utilize the string similarity to represent 

pronunciation similarity to detect Chinese and Russian loanwords in Uyghur. The approach is 

based on the idea that a loan word shares similar pronunciation with the corresponding word from 

the donor language. This principle is applied by van den Ark et al. (2007) and Mennecier et al. 

(2016). The difference is that Mi et al. (2014) use string similarity to represent the similarity of 

pronunciation. There are two major challenges to use string similarity to detect loanwords. One is 

the change of spelling, and the other one is suffixes of Uyghur words.  Mi et al. (2014) apply 

characters alignment to solve the problem of the change of spelling, and classification-based 

models to solve the later.  The application of these two methods enables Mi et al. (2014) to measure 

the string similarity between two words, and a loanword is identified on a given threshold. Mi et 

al. (2014) apply different string similarity algorithms to compare the performances of them on 

loanword detection. The method is evaluated by a corpus introduced by Mi et al. (2014). The 

corpus is trained from city names mapping table, and the test set includes materials from web. The 

result is considered as “efficiently” with the highest F1 score 73.18 for detecting Chinese 

loanwords, and 76.93 for detecting Russian loanwords.  
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Previous work on sound distance  

Sound distances between words have been utilized in different linguistic topics for years, and the 

Levenshtein algorithm is the main algorithm to calculate sound distance. Moreover, refined 

algorithms have been introduced in order to provide more sensitive sound distance measurement. 

This method has been commonly used in the study of dialects, including relatedness and 

classification (Nerbonne et al., 1996; Nerbonne et al., 1999; Nerbonne & Kretzschmar, 2003; 

Heeringa, 2004).  Van der Ark et al. (2007) apply the Levenshtein algorithm to obtain sound 

distances for language classifications instead of dialect classification. Also, a refined Levenshtein 

algorithm is applied to measure foreign accents strength (Wieling et al., 2014).  

 

Conclusion  

Loanword detection has been pursued by previous studies, but there are plenty of rooms for 

improvements upon the previous studies. Comparing the above mentioned works, the approaches 

used by Köllner & Dellert (2016) and Mi et al. (2014) to detect loanwords might not be as effective 

as applying sound distance. The work of Köllner & Dellert (2016) has shown that the performance 

of applying ancestral state reconstruction to detect loanword is not good. On one hand, the success 

of applying ancestral state reconstruction for loanword detection highly rely on the accuracy of the 

expert notations in the database. On the other hand, Köllner & Dellert (2016) states that purely 

considering cognate class is not sufficient to detect loanwords. Hence, considering phonological 

representations instead of cognate class is encourage by Köllner & Dellert (2016). In the case of 

Mi et al. (2014), using the phonetic transcriptions of the words might be more representative of 

the pronunciations of the words than strings. In other words, calculating the sound distance directly 

from the phonetic transcriptions is more accurate than string similarity used by Mi et al. (2014).  

Van der Ark et al. (2007) and Mennecier et al. (2016) apply Levenshtein algorithm to calculate the 

sound distance between words to detect loanwords. However, loanword detection is not the 

primary purpose of applying Levenshtein algorithms to measure sound distances in these two 

studies. Moreover, the performance of applying the original Levenshtein algorithm is not 

satisfactory, even when taking care to avoid aligning vowels and consonants. Since more refined 

algorithms have not been applied to loanword detection yet, the purpose of this dissertation is to 

explore the possible improvement of applying refined Levenshtein algorithms. Nevertheless, 

Mennecier et al. (2016) state that the Levenshtein algorithm has no bias to words in one language 

group. Meanwhile, Mennecier et al. (2016) suggest applying more sensitive measurements of 

sound distances in loanword detection.   

 

 

2. METHODOLOGY 

2.1 Overall Design of the Experiment  

The data used in this experiment consists of phonetic transcriptions of words from various 

locations in Central Asia. The concepts underlying these words are from the Swadesh list, a list 

containing approximately 200 concepts that are argued to exist in all languages. The data are from 
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two language families, Turkic and Indo-Iranian. This experiment aims at comparing the 

performances of three edit distance algorithms in detecting loanwords between these two language 

families. There is more than one pronunciation per word per language family because there are 

various languages in a language family and various recordings of multiple informants at each data 

collection site. The pronunciation of every word of every informant in Turkic family is compared 

to every pronunciation in the Indo-Iranian family. The sound distance between two pronunciations 

from either language family is calculated by three different algorithms. For each algorithm, a list 

of tuples is generated containing the information of concept, the distance value, and a pair of 

phonetic transcriptions (Table 2). To generalize, the pairs of pronunciations of words for a concept, 

𝑐, is represented as:  

(𝑡1, 𝑖1) , (𝑡1, 𝑖2), … , (𝑡1, 𝑖𝑛−1) , (𝑡1, 𝑖𝑛), (𝑡2, 𝑖1), … , (𝑡𝑚−1, 𝑖1), (𝑡𝑚−1, 𝑖2), … , (𝑡𝑚, 𝑖𝑛−1), (𝑡𝑚, 𝑖𝑛)  

Given: 

𝑡: Phonetic transcription of the word for 𝑐 in the Turkic family; 

𝑚: The number of phonetic transcriptions of the words for 𝑐 in the Turkic family; 

𝑖: Phonetic transcription of the word for 𝑐 in the Indo-Iranian family.  

𝑛: The number of phonetic transcriptions of the words for 𝑐 in the Indo-Iranian family.  

 

Hence, a generated tuple is represented as:  

(𝑐, distance(𝑡𝑥, 𝑖𝑦), 𝑡𝑥, 𝑖𝑦)  𝑥 ∈ 𝑚, 𝑦 ∈ 𝑛 

A loanword is detected when the sound distance between two words is smaller than a given 

threshold. Finally, the results are compared to the gold standard. The gold standard is part of the 

dataset used in this dissertation. An expert marks the origin of the words with a code in the dataset. 

Within one concept, if a word from the Turkic family and a word from the Indo-Iranian family 

share the same code, it means that one of the words is loaned from the other.  Precision/recall and 

F1 score are used to evaluate the performance of an algorithm used to detect loanwords. Three 

algorithms are applied to calculate the sound distance. Therefore, there are three groups of 

precision/recall and F1 score values. The performances of these three algorithms are evaluated by 

comparing their respective evaluation values. In order to evaluate the robustness of algorithms 

dealing with independent data, cross validation is applied.  
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('animal', '0.0273098', 'ʒanwar', 'hajvɔn') 

('animal', '0.0277859', 'ʒanwar', 'hajβɔn') 

('animal', '0.0228481', 'ʒanwar', 'hajwɔn') 

('animal', '0.0312264', 'ʒanwar', 'zindene') 

… 

('animal', '0.00959365', 'hajwan', 'hajvɔn') 

('animal', '0.0100698', 'hajwan', 'hajβɔn') 

('animal', '0.005132', 'hajwan', 'hajwɔn') 

('animal', '0.0309691', 'hajwan', 'zindene') 

… 

('back', '0.0362989', 'arqa', 'puʃt') 

('back', '0.0346792', 'arqa', 'mijʊn') 

('back', '0.0364408', 'arqa', 'pəʃt') 

('back', '0.0342844', 'arqa', 'mijɔn') 

… 
Table 2. An example of results when applying the PMI-based algorithms to calculate edit distance.  

 

2.2 Algorithms  

The Levenshtein algorithm is the basis of the refined algorithms used in this dissertation. The 

Levenshtein distance is a popular algorithm to measure the edit distance between two strings as 

well as determine the alignment (Levenshtein, 1965). The edit distance between two strings is 

represented by the minimal operations to transform one string to another. There are three different 

operations: insertions, deletions, and substitutions in the simplest version of the algorithm. Each 

operation is assigned a cost of 1. The algorithm proceeds as follows. A matrix is created, with the 

source string being placed in the column vertically, and the target string placed in the row 

horizontally (Table 2). An extra symbol ‘#’ in added in the first place of each string. Denote s1 as 

the source string with a length of m, s2 as the target string with a length of n, i as an index in s1, j 

as an index in s2, and d[i,j] as a cell in the matrix. d[i,j] represents the string distance between sub-

string of s1 from 0 to the ith character, and sub-string of s2 from 0 to the jth character. In the first 

row (d[0,j], as j is 0 to n) and first column (d[i,0], as i=0 to m) of the matrix, fill in the integer from 

0 to n, and 0 to m, respectively. For each value of d[i,j] (as i=1..m, j=1..n), it is equal to the 

minimum value of the values adjacent, or diagonal to it (specifically d[i-1,j], d[i,j-1], and d[i-1,j-

1]), plus the substitution cost. Substitution cost is 0 if s1[i]=s2[j], otherwise it is 1. This procedure 

iterates until the matrix is completely filled. The value in the right bottom corner (d[m,n]) is the 

Levenshtein distance between these two strings. Tracing back to the path leading to the 

Levenshtein distance in d[m,n] can extract the alignment of the strings as well as the operations 

used to obtain the result. The pseudo-code for realizing Levenshtein algorithm is presented in Code 

1.  
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function LevenshteinDistance(string s1, string s2): 

    #This function shows the transfer from s1 to s2 

    m=len(s1) 

    n=len(s2) 

    #Define a table d[i,j] with a size of (m+1)X(n+1). 

    for i from 0 to m: 

        for j from 0 to n: 

    #d[i,j]represents the distance between string s1[:i] and string s2[:j]. 

           declare int (d[i,j]) 

     

    for i from 0 to m: 

        d[i,0]:=i        

    for j from 0 to n: 

        d[0,j]:=j 

         

    for j from 1 to n: 

        for i from 1 to m: 

            if s[i]=s[j]: 

                sub_cost:=0 

            else: 

                sub_cost:=1  

            d[i,j]:=min(d[i-1,j]+1,            #deletion  

                        d[i,j-1]+1,            #insertion 

                        d[i-1,j-1]+sub_cost)   #subsitution 

     

    return d[m,n] 

 

Code 1. Pseudo-code for Levenshtein algorithm. 

The following example shows the application of Levenshtein distance on an IPA transcription 

(Table 3). In this example, it takes at least three operations to transform “/mɔdar/” to “/ɔna/” 

(deleting [m], replacing [d] by [n], and deleting [r], yielding the alignment shown as below). Hence, 

the edit distance between /mɔdar/ to /ɔna/ is 3. The algorithm guarantees that the minimal-cost 

alignment is found. 

 # ɔ n a 

# 0 1 2 3 

m 1 1 2 3 

ɔ 2 1 2 3 

d 3 2 2 3 

a 4 3 3 2 

r 5 4 4 3 
Table 3. Applying the Levenshtein algorithm to transform phonetic transcript /mɔdar/ (“mother” in Tajik) to /ɔna/ 

(“mother” in Uzbek). The gray boxes in the table indicate the path of transformation from one string to the other.  

Obviously, the Levenshtein distance fails to reflect the pronunciation distance between two words 

in fine detail. For example, the Levenshtein distance between /modar/ and /mɔdar/ is the same as 

the Levenshtein distance between /modar/ and /mʊdar/. However, the pronunciation of /modar/ is 

more similar to /mɔdar/ than to /mʊdar/ in people’s perception. The cost of substituting /o/ for /ɔ/ 

should be smaller than the cost of substituting it for /ʊ/. Hence, it is necessary to modify operation 

cost in Levenshtein algorithms so that a more sensitive edit distance can be applied to measure 

pronunciation distance. The refined algorithms used in this project change the cost of the 

m ɔ d a r 

  ɔ n a 

1 0 1 0 1 
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operations in Levenshtein algorithms by considering various aspects related to pronunciation 

measurement. For instance, Heeringa (2004) proposed a VC-sensitive2 Levenshtein algorithm, 

which avoids the substitution between vowel and consonant. This is realized by increasing the 

substitution cost between vowel and consonant to 2, for instance (Code 2).  

 

#This function is used to check if two characters are both vowels or 

#consonants. 

function check_vowel_consonant(character a, character b): 

    if both a and b are vowels or both a and b are consonants: 

        return True  

    else: 

        return False  

 

function LevenshteinDistance(string s1, string s2): 

    #This function shows the transfer from s1 to s2 

    m=len(s1) 

    n=len(s2) 

    #Define a table d[i,j] with a size of (m+1)X(n+1). 

    for i from 0 to m: 

        for j from 0 to n:   

      #d[i,j]represents the distance between string s1[:i] and string s2[:j]. 

           declare int (d[i,j]) 

     

    for i from 0 to m: 

        d[i,0]:=i        

    for j from 0 to n: 

        d[0,j]:=j 

     

    for j from 1 to n: 

        for i from 1 to m: 

            if s[i]=s[j]: 

                sub_cost:=0 

            else if check_vowel_consonant(s[i],s[j])==True: 

                sub_cost:=1  

            else: 

                sub_cost:=2 

            d[i,j]:=min(d[i-1,j]+1,            #deletion  

                        d[i,j-1]+1,            #insertion 

                        d[i-1,j-1]+sub_cost)   #subsitution 

     

    return d[m,n] 

 

 

Code 2. Pseudo-code for VC-sensitive Levenshtein algorithm. 

The VC-sensitive Levenshtein algorithm needs improvement. The example of /modar/, /mɔdar/, 

and /mʊdar/ shows that the substitution of vowels for vowels should be discriminated more finely. 

This is the reason a more sensitive sound distance algorithm that explores more features must be 

used. Heeringa (2004) utilizes spectrograms to reflect phonetic and acoustic features which are 

applied to measure segment distance, and other variants are motivated in similar ways. 

                                                           
2 VC-sensitive means vowel and consonant sensitive.  
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The substitution cost in the Levenshtein algorithm is 1, but the refinements vary the substitution 

costs instead of always using one. Actually, insertion or deletion is considered a substitution 

between a segment and an empty segment. Basically, the substitution cost is decided according to 

the segment distance between two segments involved in the substitution. They are summarized as 

follow: 

 PMI-based Levenshtein algorithm (Wieling et al., 2009): the segment distance is decided 

by pointwise mutual information (PMI) value between two segments. The PMI value 

depends on the strength of co-occurrence of two segments in a corpus of alignments.  

 Spectrogram-based Levenshtein algorithm (Heeringa, 2004): the segment distance is 

decided by the acoustic features of those segments. Acoustic features of a sound are related 

to the intensity or loudness of various frequencies at a specific time, and these features are 

normally visualized in a spectrogram.  

 Sound-Class-Based Levenshtein algorithm (List, 2012): Segment distance is decided by 

the “sound class” of segments. Sounds are grouped into different sound classes according 

to specific phonetic and phonology theories. Segment distances vary according to the 

substitution within or between sound classes.   

 

2.3 Data 

Mennecier et al. (2016) conducted a survey to explore the language variety of the Central Asian 

region and utilized the data to measure the relatedness of languages and detect loanwords. The 

data is documented and it is publicly available for the study of loanwords detection in this 

experiment. The data was collected from 23 sites in three Central Asian countries, namely 

Uzbekistan, Kyrgyzstan, and Tajikistan. These sites are regarded as displaying “complex human 

and linguistic geography”. There are 88 informants and they are from the three countries. Generally, 

the informants are males who are over 40 years old, for genetic testing reasons. Genetic testing is 

a common strategy in collecting similar data. It allows tracing the linguistic history and genetic 

signal of an informant to determine the common genetic history, the similarity of culture 

(language), and the degree to which the two signals match. The mother tongues of these informants 

are: Kazakh, Kyrgyz, Karakalpak, Uzbek, Tajik, and Yaghnobi. These languages are from two 

language families, Turkic and Indo-Iranian. (Table 4). Besides their mother tongues, these 

informants also understood Russian well since they all went to school during the times of the Union 

of Soviet Socialist Republic (USSR).  

A 200-word extended Swadesh list in Russian is shown to the informants and they are required to 

translate the words in the list orally into their mother tongues. Each word in the Swadesh list 

represents a concept. The pronunciations are digitally recorded and manually transformed into 

phonetic transcription. In total, each informant produces 200 pronunciations, resulting in more 

than 17000 recordings. There are approximately 88 phonetic transcriptions for a Russian word 

representing a concept. Sometimes, the number of pronunciations for a word is lower than 88 

because the data is not valid. For example, some informants did not pronounce the word related to 

the concept properly.  
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Turkic Indo-Iranian  

Kazakh 

Kyrgyz 

Karakalpak 

Uzbek 

Tajik 

Yaghnobi 

Table 4. The languages in the dataset and their classification in language families. 

The expert classification is marked in the dataset as well. Within a concept, each pronunciation is 

marked with a letter and the pronunciations with identical letters are considered cognates. Hence, 

a word from the Turkic family (or the Indo-Iranian) bearing the same letter as another word in the 

Indo-Iranian family (or the Turkic) means that one of the words is a loanword3. Notably, it is 

common that pronunciations of a concept in one language family are assigned to different cognate 

classes, because there are multiple languages in a language family, and informants may know 

multiple ways to translate a Russian word representing a concept. In this dissertation, within one 

concept, if a word from the Turkic family and a word from the Indo-Iranian family share the same 

cognate, it means that one of the words is loaned from the other language.  This is the gold standard 

presented in the data.  

The concepts in the Swadesh list include numbers, adjectives, nouns, verbs, and pronouns. It 

should be noted that the order of the concepts in the data is arranged in a certain pattern. For 

example, numbers come first in the list, and they are followed by commonly seen adjectives (such 

as “big” and “long”). Appendix I is the list of the concepts in the data used in this dissertation.  

 

3. PMI-BASED LEVENSHTEIN ALGORITHM FOR MEASURING SOUND DISTANCE 

In terms of measuring sound distances, the original Levenshtein algorithms in which each 

operation cost one is not entirely appropriate. The fact that it does not take specific features of 

sounds into consideration results in a failure to provide sensitive sound distances. For instance, a 

correct pairwise alignment of the phonetic transcriptions is one of the keys to generate sound 

distance, but it is not guaranteed by using the original Levenshtein algorithm. Considering the 

string /soʊfa/ and /ʂafa/, the pronunciations in English and Chinese, respectively for the word 

‘sofa’. The Levenshtein algorithm leads to three different alignments:  

All the edit distances of alignments are three if the operation cost is always one. However, it is 

obvious that alignment A is not appropriate since /o/ aligns with /ʂ/. A slight modification (VC-

sensitive Levenshtein algorithm) is applied to forbid a vowel from being aligned to a consonant 

by raising the cost of substitution between vowel and consonant, so that situation A can be avoided 

(Heeringa, 2004). Unfortunately, this slight improvement fails to offer preference in case of 

                                                           
3 Normally, “cognate” is different from “loanword”. However, Mennecier et al. (2016) indicate that “cognate” 

includes “borrowing” in this case because they use the word “cognate” loosely.  

s  o  ʊ  f  a 

    ʂ  a  f   a 

1  1  1  0  0 

 

s  o  ʊ  f  a 

ʂ  a      f   a 

1  1  1  0  0 

 

s  o  ʊ  f  a 

ʂ      a  f   a 

1  1  1  0  0 

A                          B                      C  
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alignment B or C. Therefore, more features should be included to make a decision. In addition to 

this VC-sensitive Levenshtein algorithm, Wieling et al. (2009) introduce pointwise mutual 

information (PMI) as a segment weighting to generate edit distance between phonetic 

transcriptions. The core of the algorithm is that the substitution cost is decided by PMI-based 

segment distances rather than one. Further in this chapter include the introduction of this PMI-

based Levenshtein algorithm, followed by its implementation. The application of PMI-based 

Levenshtein algorithm in the sound distance is explained in detail.  Finally, the result and 

evaluation of the algorithm are presented.   

 

3.1 Introduction to PMI-based Levenshtein Algorithm 

PMI (Church & Hanks, 1990) is used to measure the strength of the tendency of two objects to co-

occur. It is reflected by the probability of the co-occurrence of objects x and y (𝑝(𝑥, 𝑦)), and the 

independent occurrence of x (𝑝(𝑥)) and y (𝑝(𝑥)) respectively, assuming x and y are independent. 

PMI is defined as: 

𝑃𝑀𝐼(𝑥, 𝑦) = log2(
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
) 

In the case of applying PMI to measure segment distance, 

 𝑝(𝑥, 𝑦): the probability of segment x and segment y that are aligned together. It is estimated 

by the number of times x and y that are aligned together divided by the total number of 

aligned segment pairs in the dataset.  

 𝑝(𝑥) or 𝑝(𝑦): the probability of segment x (or y) occurring. It is estimated by the number 

of times x (or y) occurs divided by the total number of segments in the dataset. The 

assumption is that x and y are independent.   

 

A greater PMI value indicates more frequent co-occurrence of two segments. It is intuitive that a 

more frequent co-occurrence of two segments reflects smaller segment distance between them. In 

other words, a greater PMI value indicates a smaller segment distance as well as smaller edit cost. 

Normalization is used to scale the PMI value to represent segment distance. The PMI values of 

each segment pair are subtracted from the maximum PMI value so that the minimum segment 

distance is 0 and the values can represent segment distance intuitively (Table 5). When substituting 

one segment with the other, the substitution cost is the segment distance led by PMI value. The 

operation of insertion and deletion can be regarded as special cases of substitution, which is 

substituting an empty segment with a segment (insertion), or substituting a segment with an empty 

segment (deletion).   

Applying PMI values and segment distances extracted from it can lead to a more accurate 

alignment and a more sensitive sound distance between two phonetic transcriptions. Wieling et al. 

(2009) introduce the procedure to obtain the alignments with PMI values. The first step is to create 

string alignments using the VC-sensitive Levenshtein algorithm. With these alignments, the PMI 

values of each segment pairs are calculated and normalized to segment distance using the method 

introduced above. The Levenshtein algorithm is applied again to generate new alignment pairs, 

using the new segment distances as substitution cost. Iteratively calculating PMI values and 

segment distances over the new alignment, and generating new alignments with new segment 
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distances can lead to better alignment coverage. This means that the procedure stops when 

alignments remain unchanged.  

 

Alignments 

abcd dabc bdca dbac dbac dbac dabc dbac abcd cabd 

acbb bcda dcab dcab badb dcab dcab acdb dcab dbca 

 

(x,y) Nr(x,y) Nr(x) Nr(y) p(x,y) p(x) p(y) pmi(x,y) distance 

(a,b) 3 20 22 0.075 0.25 0.275 0.125531 1.94847 

(a,c) 5 20 19 0.125 0.25 0.2375 1.074001 1 

(a,d) 4 20 19 0.1 0.25 0.2375 0.752072 1.321928 

(b,c) 11 22 19 0.275 0.275 0.2375 2.074001 0 

(b,d) 6 22 19 0.15 0.275 0.2375 1.199531 0.874469 

(c,d) 1 19 19 0.025 0.2375 0.2375 -1.17393 3.247928 
Table 5. Here is an example how PMI-base segment distances are calculated according to alignments. Assume a, b, 

c, and d, are segments and the alignments of sequences containing these segments are shown in the top table 

(alignment). The PMI values and related parameters that are needed to PMI values are presented in the table. In the 

column of PMI, the greatest value is 2.07 for segment pair (b, c). Hence, the PMI value of each pair is subtracted 

from 2.07, and the respective results are their distances. As a result, the smallest distance is always 0.   

Consider again the example of “sofa” in English and Chinese, in order to determine a more suitable 

alignment between alignment B and C, it is possible to utilize a PMI-based segment distances list 

generated from a big data set. Initially, the substitution cost is always one in any circumstance. 

Assume there is a dataset containing a list of English and Chinese words in phonetic transcriptions. 

Applying the VC-sensitive algorithm can generate a list of word alignments from English and 

Chinese, respectively. After that, PMI-based segment distances are calculated according to these 

alignments. Applying the Levenshtein algorithm again with new segment distances generates new 

word alignments. This procedure is iterated until the alignments remained unchanged. 

Simultaneously a list of segment distances is generated as well. The segment distance between [a] 

and [ʊ], and between [a] and [o] should be included. If the segment distance between [a] and [ʊ] 

is smaller than [a] and [o], the substitution cost to use [a] to substitute [ʊ] is smaller than to 

substitute [o]. In other words, alignment C should be the alignment of /soʊfa/ and /ʂafa/ because 

the total cost of operation is smaller than alignment B. Code 3 is the pseudo-code presenting the 

algorithm which results in the most appropriate alignment between two strings.  

 

3.2 Realizing PMI-based Levenshtein Algorithm 

This algorithm is implemented by utilizing the RuG/L04 tool developed by Peter Kleiweg from 

the Groningen group4. RuG/L04 is designed for dialectometrics and cartography, and it has been 

applied to derive pronunciation distances between sounds with the original Levenshtein algorithm 

(Van Der Ark et al., 2007), as well as with the PMI-based Levenshtein Algorithm (Wieling et al., 

2014) in the previous studies. The procedure to utilize RuG/L04 to realize the PMI-based 

                                                           
4 http://www.let.rug.nl/~kleiweg/L04/ 
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Levenshtein algorithm is based on the work of Wieling et al. (2014), in which they apply the 

algorithm to measure foreign accents strength in English. Since RuG/L04 allows defining the 

operation cost, the operation cost is defined by PMI values to realize the PMI-based Levenshtein 

algorithm.  

dataset=[string a, string b, string c, ...] 
segment_list=[] 
 

#Assign the strings in the dataset to a list called segment_list.  

for string in dataset: 
  for segment in string: 
     segment_list.append(segment) 
  end  

end 

 

#For all possible pair combinations of segments from segment_list, initialize 

#the segment distance between segments in a pair as 1. 

segment_pairs_table:= all possible segment pairs   

for segment_pair in segment_pair_table: 

   segment_distance_list[segment_pair]=1 

 

string_pair_table := all possible combination in dataset  
#alignment(X,Y) function is to generate alignment using Levenshtein 

#algorithm.  
#Argument X is a list of string pairs. Argument Y is a segment distance list 

#indicating the substitution cost.  
alignment_list=alignment(string_pair_table,segment_distance_list) 
 

#PMI_based_segment_distance(X) function is to calculate the segment distance 

#using PMI values. 
#The argument X is a list of aligned strings.  
segment_distance_list=PMI_based_segment_distance(alignment_list)  
 

 

do:  
  new_alignment_list=alignment(string_pair_list,segment_distance_list) 
  segment_distance_list=PMI_based_segment_distance(new_alignment_list)  
until: 
  new_alignment_list doesn't change anymore.  

 

Code 3. PMI-based Levenshtein algorithm for generating alignment between two strings.  

In this dissertation, the two language families, Turkic and Indo-Iranian, play the role of “locations” 

in RuG/L04. The various phonetic transcriptions under each concept in the dataset are considered 

different “dialects” in each “location”. The purpose of this experiment is to identify loanwords at 

the word level. A detected loanword is one of the phonetic transcriptions in a pair of phonetic 

transcriptions. In other words, one of the words in the detected pairs is loaned. Hence, the 

“locations” should contain only one pronunciation so that the distance is calculated by a pair of 

phonetic transcriptions rather than a pair of “phonetic transcription lists”.  

Defining initial operation cost is required beforehand in RuG/L04. The initial operation cost 

satisfies the requirement of VC-sensitive algorithms. All operations cost one, except the case of 

substitution between vowel and consonant (the cost is higher than one). According to Wieling et 
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al.’s (2009) method, a VC-sensitive Levenshtein algorithm is applied to the whole dataset so that 

a list of PMI-based segment distances is outputted. In the case of substitution, the PMI value is a 

measurement of co-occurrence of two segments. Insertion and deletion are considered as a special 

case of substitution, that one of the segment is an empty string. The newly generated PMI-based 

segment distances are used as the operations costs to calculate the pronunciation difference of each 

phonetic transcription pairs between Turkic and Indo-Iranian. Eventually, a list of pronunciation 

distances is generated.  

In this pair, a collection of phonetic transcriptions of words from Central Asian languages in the 

Swadesh list is used. It is worth noticing that the diacritics in the phonetic transcriptions have been 

ignored for the sake of effectiveness (Wieling et al., 2014). It means there is no difference among 

[z̥], [z̩] and [z]. Following the above procedure, there are two sections to calculate the distance 

between phonetic transcriptions: generating PMI-based segment distances, and calculating 

distances. There are four steps to generate PMI-based segment distances: 

1. Transforming the original data file to the appropriate format. As mentioned above, a list of 

PMI-based segment distances should be generated with the whole dataset. The data 

arrangement is designed as Table 6. The first column is the name of the two language 

families, and the first row is the 183 concepts in English (only three concepts are shown in 

Table 6). The phonetic transcripts are filled in the cells and they are split by ‘/’. Missing 

data exists and it is filled with empty space. For example, there is missing data in the cell 

of concept ‘one’ in Turkic. Hence, two consecutive “/” are found in the cell because of 

missing data between “/”.  

2. Generating a csv file for each concept. Based on the data format in Table 6, a csv file is 

generated for each concept by a provided python script in RuG/L04. A csv file of a concept 

contains the phonetic transcripts for that concept in both language families (Table 7 left).  

3. Tokenizing data and generating initial segment distances. Each phonetic symbol in the data 

files is transformed to be represented by an integer (Table 7 right). Meanwhile, initial 

segment distances are calculated according to feature values considering all phonetic 

transcriptions in the dataset.  

4. Generating the PMI-based segment distance. In order to generate PMI-based segment 

distance, an initial distance value, which is generated in the last step, should be provided. 

The program “leven” not only outputs the distance between two “locations” but also 

updates segment distance table by outputting a file containing the PMI-based segment 

distances. Meanwhile, “leven” allows setting a parameter of small fraction number. This 

number is added to the frequency avoiding frequency of zero (1e-80 is used as shown in 

the tool manual). The file containing PMI-based segment distances is used for calculating 

the distance between phonetic transcriptions.  

In summary, RuG/L04 requires data in the format of Table 6. Each concept in Table 6 has its own 

file as shown in Table 7. RuG/L04 compares the sound between the Turkic and the Indo-Iranian 

family per concept. In Table 6, there is more than one pronunciation under a family. Applying 

“leven” to those concepts actually outputs the distance between two groups of pronunciations. In 

other words, the distance is calculated in the concept level (later in this chapter). In order to 

calculate the distance between two pronunciations, the data needs to be rearranged so that there is 

only one pronunciation under a family per concept.  
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 ‘one’ ‘two’ ‘three’ … 

Turkic bɪr / brɪw / bɪrɪw /  / brɪw / 

brɪw / bɪr / bər / bər / bər / 

bər / bir / bir / bir / bir̯ / bir̯ / 

bir / bir / bir / bir / bɪr / bər / 

bɪʃ / biʃ / bir / bər / bər / bər 

/ bər / bər / bər / bər / bər / 

bər̯ / bər / bər / bɪr / ber / bər 

/ bɪr / bər / bər / bər / bɪr / bɪr 

/ bɪr / bɪr / bɪr / bər /  

jekə / jekə / jɪkjew / jɪkə / 

jeka / jekʲew / jɪkə / jikə / 

jɪkə / jɪke / jɪkə / jeki / jeki / 

jeki / jekɪ / jeki / jeki / jeki / 

jeki / jeki / jikʲe / ɛkkɪ / ɛkʲɪ / 

ɛkkʲɪ / jeke / jɪkɐ / jɪkɐ / jɪkə 

/ jekke / jika / jɪkʲe / jekə / 

jɪkɐ / jɪkɐ / jɪkɐ / jɪkɐ / jɪkə / 

jɪkɐ / jɪkɐ / ikkʲe / ikkʲe / ikkʲe 

/ ikkʲe / ikkʲe / ikta / ikkʲe / 

ikkʲɪ / ikki / ikkʲe /  

ʉʃʲ / ʉʃʲ / ʉʃʲjʊː / ʉʃ / ʉʃ / 

ʃuː / ʉʃ / yʃ / yʧ / øʃ / ʉʃ / 

yʧ / yʧ / yʧ / yʧ / yʧ / yʧ 

/ yʧ / yʧ / yʧ / ʉʧ / yʧ / yʧ 

/ yʧ / yʧ / ʉʃ / ʉʃ / ʉʃ / yʧ 

/ ʉʃ / yʧ / ʉʃ / ʉʃ / ʉʃ / ʉʃ / 

ʉʃ / yʧ / ʉʧ / ʉʃ / uʧ / yʧ / 

yʧ / yʧ / ʉʧ / uʃta / ʉʧ / ʉʧ 

/ uʧ / uʧ /  

… 

Indo-

Iranian 

jak / jak / jak / jakta / jak / 

jak / jak / jak / jak / jak / jak 

/ jaktə / jaktɐ / jak / jak / jak 

/ jak / jakta / jak / jak / jak / 

jak / jak / jak / jaktə / jak / 

jakta / jak / jak / jak / jaktɒ / 

jak / jakta / jak / iː / iː / iː / iː 

/ iː /  

du / du / du / duttə / dʊ / dø 

/ dʊ / dø / dø / dø / du / dutɐ 

/ dʉtɐ / dʊ / du / dʊ / də / 

dutta / du / dø / du / dø / dø / 

du / dyttə / døː / døtta / døː / 

du / du / døttɒ / dyː / duttɐ / 

du / dʊː / døː / dʊ / dʉ / dʊː /  

sʲɛ / se / se / setta / sʲe / se 

/ sɛ / se / sʲe / sʲɛ / se / sʲetɐ 

/ sʲetɐ / se / se / se / se / 

sʲeta / se / se / se / se / sʲe 

/ se / sʲeta / seː / seˑta / sʲeː 

/ se / se / seta / se / sʲeta / 

sʲe / saraj / traj / tʲiraj / traj 

/ tɪraj /  

… 

Table 6. The first few columns of the arrangement of data used by RuG/L04.  

“one” 

%utf8 

: turkic 

- bɪr 

- brɪw 

- bɪrɪw 

-  

- brɪw 

- brɪw 

- bɪr 

- bər 

… 

 

: iranian 

- jak 

- jak 

- jak 

- jakta 

- jak 

- jak 

… 

%utf8 

: turkic 

+ 36 34 5 

+ 36 5 34 4 

+ 36 34 5 34 4 

 

+ 36 5 34 4 

+ 36 5 34 4 

+ 36 34 5 

+ 36 39 5 

… 

 

: iranian 

+ 7 2 23 

+ 7 2 23 

+ 7 2 23 

+ 7 2 23 32 2 

+ 7 2 23 

+ 7 2 23 

… 

 
Table 7.  Every concept has its own file. This is an example of concept ‘one’. Phonetic transcripts for concept ‘one’ 

(left), and its transformation in integers (right). Notice that there is missing data on the left, and it is ignored in integer 

format.     
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With the generated PMI-based segment distances, the distance between phonetic transcriptions 

can be calculated. Another data arrangement is designed as Table 8. Importantly, the duplicate 

phonetic transcriptions in a language family per concept need to be deleted to avoid repetition 

results. The first row is the title showing the concepts and indexes. The title is indicated as index-

concept-title here. For instance, the title ‘0_0_one’ represents a phonetic transcription pair, /bɪr/ 

and /jakta/, the first phonetic transcriptions in the Turkic family of concept ‘one’, and the first 

phonetic transcriptions in the Indo-Iranian family of concept ‘one’ (the index starting from 0). In 

total, there are more than 25 thousand unique phonetic transcription pairs. Based on the data format 

presented in Table 8, a group of csv files are generated by the python script as mentioned above. 

The content of the file is a pair of phonetic transcriptions corresponding to the index-concept title 

(Table 9, the first column of each title). Each unique phonetic symbol in the data files is 

transformed to be represented by a unique integer (Table 9, the second column of each title)5. The 

distances of those 25+ thousand unique phonetic transcription pairs are calculated with the “integer 

data” and the PMI-based segment distances.  

 ‘0_0_one’ ‘0_1_one’ … ‘1_0_one’ ‘1_1_one’ … 

Turkic bɪr bɪr … brɪw brɪw … 

Indo-Iranian jakta jaktə … jakta jaktə … 

Table 8. For concept ‘one’, the arrangement of data used by RuG/L04. 

“0_0_one” “0_1_one” … 

%utf8 

: indo_iranian 

- bɪr 

: turkic 

- jak 

 

%utf8 

: indo_iranian 

+ 36 34 5 

: turkic 

+ 7 2 23 

 

%utf8 

: indo_iranian 

- bɪr 

: turkic 

- jakta 

 

%utf8 

: indo_iranian 

+ 36 34 5 

: turkic 

+ 7 2 23 32 2 

 

 

Table 9. The first column of “0_0_one” and “0_1_one” is the content of the csv file “0_0_one” and “0_1_one” 

respectively. They are the phonetic transcriptions pairs corresponding to their respective index-concept title. The 

second column is the content of the files containing integers corresponding to phonetic segments. 

The “leven” program is applied to each phonetic transcription pair inputting the PMI-based 

segment distance and integer data. There are more than 25 thousand files containing one pair of 

phonetic transcriptions in each of them. As a result, more than 25 thousand pronunciation distances 

are generated (Code 4). For the purpose of future evaluation, the distance values, concepts, and 

phonetic transcription pairs are arranged in tuples as shown in Table 1, such as: 

('one', '0.0355222', 'bɪr', 'jak') 

Besides considering the pronunciation distance of a pair of single phonetic transcriptions, it is also 

worthwhile to explore the loanwords on the concept level by considering pronunciation distance 

between language families per concept. “On the concept level” means to discover the concept that 

is “borrowed” from a language. For instance, most of the words representing the concept “person” 

are loanwords (either from Turkic family to Indo-Iranian family, or opposite). Hence, the concept 

                                                           
5 In practice, the integer data can be extracted based on the integer data in Table 7 by deleting the duplicated 

integers and rearranging them into the format of Table 9.  
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“person” is considered as a “borrowed concept” in a language. As mentioned previously, the 

various phonetic transcriptions per concept in the dataset are treated as different “dialects” in each 

“locations” as regards the software. Therefore, each concept is possibly represented by a 

pronunciation distance between “dialects” in Turkic and “dialects” in Indo-Iranian family. In other 

word, there is more than one phonetic transcription per language family per concept, which means 

there are multiple variants within one language family per concept. Hence, the phonetic 

transcriptions in a family are grouped together per concept, and each concept can be associated 

with a (mean) distance value as a result. Similarly, if the distance value of a concept is small 

enough, the word representing the concept in the Turkic family is probably borrowed from the 

Indo-Iranian family, or vice versa.  

It should be noticed that, when there is a list of phonetic transcriptions representing a concept in a 

language, the distances of a concept between two language families is related to the distances of 

natural pairs and the number of phonetic transcriptions representing the concept from each family. 

A natural pair is a pair of transcripts formed by one transcript from each list, and it has the smallest 

sound distance among all possible pairs. In RuG/L04, the distance between two language families 

per concept is equal to the minimal non-zero distance of natural pair divided by the number of 

natural pairs6 (Nerbonne & Kleiweg, 2003).   

                                                           
6 More details are introduced in Nerbonne & Kleiweg (2003).  
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#Use the python script in RuG/L04 to transform the dataset(as in Table 5). 

#one,two...are the concept titles.  

one,two,...:=python.py(dataset_concept) 

 

#The integer format of the data are generated, as well as the initial segment 

distance.  

one.integer, two.integer,...,initial_distance:= 

tokenize([one.data, two.data, three.data,...], configuration_file): 

 

#Output the pmi-based distance.  

leven_distance_between_families, pmi_distance:= 

leven(data=[one.integer, two.integer,...], distance=initial_distance)  

 

#The index_concept_title are generated as in Table 8.  

#Every index_concept_title has unique phonetic transcription pair (in inte-

ger) per concept. 

 

0_0_one.integer, 0_1_one.integer,…,0_0_two.integer,0_1_two.integer,…:=  

    deleting duplicated phonetic transcriptions and rearranging[one.inte-

ger,two.integer,...] 

 

#distance_list stores all the sound distances of each lexicon meaning.  

distance_list=[] 

for file in [0_0_one.integer, 0_1_one.integer,0_2_one.integer,...]: 

  file.dis:= 

         leven(data=file,distance=pmi_distance,output_segment_distance=False) 

  distance_list.append(file.dis) 

 
Code 4. The procedure of realizing PMI-based Levenshtein algorithm using RuG/L04, and calculating distance 

between phonetic transcription pairs.  

 

3.3 Results and Evaluation  

As a result of calculating the sound distance between words from Turkic and Indo-Iranian family, 

each phonetic transcription pair has a file containing the PMI-based sound distance value between 

the two language families. The distances are extracted and handled by a python script. Before 

determining loanwords according to these distances values, the statistical description and related 

facts of the distances values are explored (Table 10).  

Min 0.00000 

1st Qu. 0.02909   

Median 0.03325   

Mean 0.03113   

3rd Qu. 0.03559   

Max. 0.04420 
Table 10. Statistical description of the sound distances derived by the PMI-based algorithm.  

Figure 1 is the histogram of sound distances derived from all the word pairs between Turkic and 

Indo-Iranian generated by all concepts. The figure shows that the distribution of sound distances 

is skewed to the right, which means that most distance values are relatively large. According to 
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our assumption of determining loanwords using sound distances, loanwords are the minority on 

the left side of the histogram. This corresponds to the fact that the loanwords are the minority 

according to expert classification. In this experiment, two approaches are applied to determine the 

threshold which is the boundary of loanwords or not. One is determining the threshold by 

examining several hundred potential thresholds. The other one is to calculate the outlier and use it 

as the threshold.   

  

 

Figure 1. Histogram of sound distances derived by PMI-based algorithm.  

3.3.1 Determining the Threshold  

Determining a threshold to detect loanwords means that the word represented by one of the 

phonetic transcriptions in a pair is classified as a loanword if the pair has a sound distance value 

smaller than a selected threshold. The predicted loanwords are compared to the gold standard and 

they are evaluated by precision/recall as well as the F1 score (Manning et al., 2008). Precision is 

the percentage of true positive, which means the percentage of correctly detected loanwords among 

the words detected as loanwords. It reflects how “precise” the detection is. The recall is the 

percentage of loanwords that are correctly detected. It reflects the ability to extract the relevant 

items (loanwords). F1 score considers both precision and recall to measure the quality of the 

detection.  

a= No. of correctly detected loanwords (true positives) 

b= No. of incorrectly detected loanwords (false positives) 

c=No. of all the words detected as loanwords (true positives + false positives) 

d=No. of loanwords (true positives + false negative) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑎

𝑐
, (𝑐 = 𝑎 + 𝑏) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑎

𝑑
  

𝐹1𝑠𝑐𝑜𝑟𝑒 =
2 ∙ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

Distance 

Counts 
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Inspired by Mennecier et al. (2016) and Van der Ark et al. (2007), a group of evenly spaced values 

over an interval between the minimum value (other than 0) and the average value of the distance 

list are chosen as potential thresholds in order to spot a suitable threshold. Since the histogram 

skews to the right, it is a reasonable assumption that using the mean value (or above mean) as 

threshold leads to a low possibility to achieve the best performance. Theoretically, using a larger 

number to divide the potential threshold interval ensures that the most suitable threshold is 

obtained because of its coverage of more threshold values. However, it raises the cost of 

computation simultaneously. In this case, there are 200 potential thresholds chosen from the 

interval between 0.0037 (the minimum value other than 0) and 0.0311 (average value). Figure 2 is 

the plot of precision, recall, and F1 score against 200 potential threshold values.  

 

 

Figure 2.Precision, recall, and F1 score against the 200 potential thresholds.  

Precision is over 0.974 at the small threshold value, while recall is very low. In fact, only around 

6% loanwords from the gold standard are detected at the low threshold. Precision slightly drops 

with the rising of the threshold, while the recall value climbs dramatically. The absolute slope 

value of recall is obviously greater than precision. At a threshold value of around 0.02, Precision 

suddenly drops significantly, and the recall keeps climbing steadily. After the interaction between 

precision and recall, precision keeps dropping and recall almost reaches 1.0 at a threshold of over 

0.03. As for the value of the F1 score, it climbs in the same way as recall before intersection of the 

lines and drops in the same way as precision after the interaction.  

Figure 2 shows that a tradeoff exists between precision and recall: the higher the recall, the smaller 

the precision. Meanwhile, the threshold value is positively correlated to recall because a higher 

threshold value has a higher tolerance and allows more words to be classified as loanwords. It is 

difficult to determine the performance of loanword detection by solely applying precision or recall. 

Hence, the F1 score is used to reflect the performance. F1 score peaks at 0.784 at the threshold 

0.021. The precision and recall are 0.846 and 0.730, respectively. It is summarized as: 

 

 

 

Thresholds 

Values 
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Best threshold 0.021 

F1 score 0.784 

Precision 0.846 

Recall 0.730 
Table 11. Summary of the performance using the PMI-based Levenshtein algorithm to detect loanwords in the data 

including all the concepts.   

Meanwhile, the loanwords at the concept level are detected as well (as mentioned at the end of 

Section 3.2). The detected concepts which are considered “loanwords” are reflected at the word 

levels. Each phonetic transcription pair is represented by a concept in English. Among the phonetic 

transcription pairs predicted as loanwords, the concepts presenting those phonetic transcriptions 

are analyzed. The distribution of the number of concepts existing in the predicted loanwords set 

shows that the concepts appearing frequently are the concepts predicted as being represented by 

loanwords.  

Which loanwords fail to be found and which words are incorrectly classified as loanwords? Table 

12 presents several randomly-chosen examples of these two situations. In general, the reason for 

failing to detect the loanwords is that the pronunciations of the relevant words are significantly 

different. The first part of the table shows that the phonetic transcriptions of the words are not 

similar, which leads to a large sound distance. This shows that the phonological adaptation of 

loanwords possibly results in a huge pronunciation difference. Meanwhile, the idiosyncratic 

pronunciation of the informants contributing to the data might affect the result as well. For instance, 

the words for the concept “flower” are generally loanwords, and most of the pronunciations are 

/gul/, /gyl/, or /gʉł/. However, one of the informants whose mother tongue is Tajik says /kul/, 

which is not detected. There are also words which are incorrectly classified as loanwords. The 

second part of Table 12 presents words with similar pronunciations which are not loanwords. 

Actually, the sound distances of these phonetic transcription pairs are quite close to the threshold 

(0.021), and this is probably the reason of misclassification (for instance, the distance between 

/bajlaʊ/ and /bastak/ is 0.0205; the distance between /pustlɔq/ and /pust/ is 0.0167).     

 

Loanwords that not detected 

Concept Phonetic transcription pair (Turkic, Indo-Iranian) 

‘person’ /adam/ (Karakalpak), /ɔdamzɔt/ (Tajik)   

‘correct’ /tørøs/ (Karakalpak), /durust/ (Tajik)  

'flower' /gʉl/, (Kazakh), /kul/, (Tajik)  

'breast' /kukrɨk/, (Kazakh), /qʊqrak/, (Tajik)  

'to dig' /ʧaβlamɔq/, (Uzbek), /kɔftan/, (Tajik) 

Words incorrectly detected as loanwords 

Concept Phonetic transcription pair (Turkic, Indo-Iranian) 

‘bark’  /pustlɔq/ (Kyrgyz), /pust/ (Tajik)  

‘bone’  /sujak/ (Uzbek), /suɣun/ (Tajik)  

‘worm’ /kurt/ (Kyrgyz), /kirm/ (Tajik) 

‘to tie’  /bajlaʊ/ (Karakalpak), /bastak/ (Tajik) 

‘narrow’ /tar̯/, (kyrgyz), /tank/ (Yaghnobi) 
Table 12. Several examples that loanwords are not detected and words are incorrectly detected as loanwords using 

the PMI-based algorithm.  
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3.3.2 Cross Validation 

In order to evaluate the performance of the model when it deals with independent data, a cross 

validation is conducted. Cross validation is a commonly used model validation technique. Assume 

a k-fold cross validation is conducted. Firstly, the dataset is split equally into k pieces. One of the 

pieces is used as a testing set, and the other k-1 pieces are used as a training set. After the model 

is trained by the training set, the testing set is applied to the model to evaluate its performance. 

The procedure is iterated for k times, and a different piece is used as the testing set each time. 

Eventually, there are k evaluation results (precision, recall, or F1 score).   

In this experiment, a 10-fold cross validation is conducted. The dataset is shuffled before being 

split because the concept is arranged in a specific order. For instance, the first five concepts in the 

data are numbers; at the end of the data, the concepts are mainly pronounced and interrogatives.  

After the dataset is split into a training set and a testing set, the phonetic transcription pairs in the 

training set are used to find the threshold outputting the highest F1 score using the method 

introduced in Section 3.4. For the sake of computational cost, the “best threshold” is found by 

investigating 10 potential thresholds rather than 200. The “best threshold” is then used to decide 

the loanwords in the testing set. Comparing the predicted loanwords against the expert-classified 

loanwords in the testing set returns evaluation results including ten precision values, ten recall 

values, and ten F1 score values. Finally, the mean values of the ten precisions, the ten recalls, and 

the ten F1 scores are the results that reflect the performance of the model. Figure 3 is a diagram 

illustrating this process. The result of the 10-fold cross validation is shown in Table 13. 

Precision 0.760 

Recall 0.795 

F1 score 0.768 
Table 13. Mean scores in 10-fold cross validation for the PMI-based Levenshtein algorithm. 



25 

 

 

Figure 3. Diagram illustrating the process of conducting cross validation.  

3.4 Discussion 

Generally, choosing an appropriate threshold for this task is not that intuitive. Van der Ark et al. 

(2007) detect loanwords at the word level with a similar method and dataset but applying a simple 

Levenshtein distance rather than a PMI-based sound distance. Van der Ark et al. (2007) suggests 

that the determination of the threshold relies on the tolerance of “noise”. Since this experiment 

aims to compare the performances of various sound distance calculation algorithms in detecting 

loanwords, the F1 score is an appropriate indicator of algorithm performance because of its 

consideration of precision and recall simultaneously. The approach applied in this experiment to 

determine the threshold is computationally expensive. An alternative is to detect the outliers in the 

set of distance values. Then the threshold is simply equal to first quartile minus 1.5 times the 

difference between the first quartile and the third quartile (the lower outlier boundary). Although 

the threshold leading to the highest F1 score value is not guaranteed, it reduces the cost of 

computation.  
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4. SPECTROGRAM-BASED LEVENSHTEIN ALGORITHM FOR MEASURING 

SOUND DISTANCE 

Using the original Levenshtein algorithm fails to reflect the sound features of phonetic 

transcriptions. Heeringa (2004) introduces a so-called VC-sensitive sound distance which raises 

the penalty of substituting a vowel with a consonant, and vice versa. However, it is necessary to 

consider more features for the sake of determining segment distances between vowels and between 

consonants, as well (See the “sofa” example in Chapter 3). Hence, Heeringa (2004) takes 

advantage of the spectrogram to investigate the acoustic representation of vowels and consonants 

so that a more sensitive sound distance scheme between phonetic transcriptions can be realized. 

Speech sounds have their specific acoustic characteristics (Reetz & Jongman, 2011), and the 

spectrogram is an ideal visualization of the acoustic features of sound samples.  

Similar to the PMI-based algorithm (Wieling et al., 2009), Heeringa (2004) determines the 

segment distances between two phonetic symbols based on their acoustic features and applies the 

segment distances to the Levenshtein algorithm. Three sound representations based on a 

spectrogram are introduced by Heeringa (2004) in order to measure segment distances acoustically. 

Instead of a common spectrogram, two variants of the spectrogram are applied as acoustic 

representations of sounds. The first variant is Barkfilter, in which Bark-scale is used in the y-axis 

of a spectrogram rather than linear Hertz scale as in a normal spectrogram. Bark-scale has merit in 

matching the human perception of sound frequency. The second variant is cochleagram, a 

modification of Barkfilter. Bark-scale is used in cochleagram as well, but the loudness of each 

frequency is given instead of intensity. Besides these two variants of the spectrogram, formant 

track is used to represent acoustic features of sounds by giving formants values of each time step 

as the representation of sounds (Figure 4). In this part of the experiment, these three spectrogram-

based representations of sounds are implemented to measure the segment distances and apply those 

segment distances in Levenshtein algorithms for loanwords detection. The sound distances 

calculated by these three representations of sounds are called spectrogram-based sound distances. 

Further in this chapter, the mechanism of measuring spectrogram-based segment distance is 

introduced. Furthermore, a tool for implementing the spectrogram-based Levenshtein algorithm is 

explained by presenting the procedure of applying the tool to calculate the sound distances between 

the Turkic and the Indo-Iranian family per concept. Finally, the result of the predicted loanwords 

based on the spectrogram-based sound distances is presented and analyzed so that the performance 

in loanword detection is evaluated.   
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Figure 4. Different acoustic representation of sounds pronounced by John Wells (Figure Heeringa, 2004). There 

are four different sounds represented in the (from top to bottom) spectrogram, Barkfilters, cochleagrams, and 

sound tracks respectively. The x-axis of the graphs is time. The y-axis of the graphs is frequency in Hertz (in 

case of Spectrogram and formant tracks) or Bark (in case of Barkfilter and cochleagram).  
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4.1 Introduction to Spectrogram-based Levenshtein Algorithm 

A spectrogram is a three-dimensional visual representation of a sound sample (Figure 4 Row 1). 

The x-axis represents time, and the y-axis represents frequency in Hertz. The darkness of the colors 

reflects the intensity of frequency at a specific time. One of the applications of a spectrogram is to 

identify sounds phonetically since different sounds have different acoustic features reflected in a 

spectrogram. For instance, the distance between formants in the lowest band (F1) and the second 

lowest band (F2) varies in different sounds (Figure 5, see section 4.1.1 about formants), which 

means formant values are representative of some sounds. Hence, the acoustic features of sounds 

can be utilized to calculate the segment distances and these segments distances are applied in the 

Levenshtein algorithm. As mentioned above, Heeringa (2004) introduces two modifications of 

spectrograms, Barkfilter and cochleagram, to measure segment distances.  

4.1.1 Barkfilter, Cochleagram, and Formant Tracks 

The common spectrogram represents frequencies in linear Hertz scale. However, the human 

perception of frequency is not linear, but logarithmic. Therefore, Heeringa (2004) uses the 

Barkfilter as sound representation (Figure 4, Row 2). In Barkfilter, the Bark-scale is used instead 

of a linear scale, because the Bark-scale is closer to human perception of frequency. Heeringa 

(2004) uses the software Praat7 to obtain intensity values in Bark-scale, and the intensity values 

are used to calculate the sound distances. In Praat, Schroeder et al.’s (1979) formula is used for the 

purpose of transforming Hertz values into Bark-scale values: 

𝐵𝑎𝑟𝑘 = 7 × ln (
𝐻𝑒𝑟𝑡𝑧

650
+  √1 + (

𝐻𝑒𝑟𝑡𝑧

650
)

2

)      

Figure 6 is a plot of Bark value against linear Hertz frequency. The plot shows that the Bark scale 

is linear below 1000Hz, and becomes approximately logarithmic over 1000Hz. This matches the 

way a human would perceive the frequency of sounds.  

Besides Barkfilters, Heeringa (2004) uses cochleagrams to represent sounds (Figure 4 Row 3). A 

cochleagram is similar to the Barkfilter in that they both use the Bark-scale, but in a cochleagram 

it returns the loudness of frequencies in time instead of intensity. Loudness is what people actually 

perceive, and it is related to intensity as well as frequency. Similar to the Barkfilter, Heeringa 

(2004) uses Praat to obtain the loudness values of sounds. In Praat, the same formula is used to 

calculate the Bark-scale in cochleagrams.  

 

                                                           
7 Praat is a software for phonetic analysis of speech. More information: http://www.fon.hum.uva.nl/praat. 
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Figure 5. This figure shows the F1 and F2 of three different vowels [i], [u], and [a]. The distance between F1 and F2 

of [i] is greater than [u], and [u] is greater than [a] (image created by Wikipedia user ish ishwar in 2005).  

Formant track is the third representation of sounds used by Heeringa (2004). In a spectrogram, the 

use of small analysis windows makes individual harmonic blends and bands appear. The middle 

frequency of a band at a point of time is a formant, and a formant track is formed by connecting 

formants at a range of continuous time (Figure 4 Row 4). A formant in the lowest band is called 

F1, a formant in the second lowest band is called F2, etc. (Figure 5). Heeringa (2004) uses the 

formants from F1 and F2 to represents sounds since different sounds have their own specific F1 

and F2 (Rietveld and Van Heuven, 1997). The Bark-scale is used in this case as well, but the 

transformation is conducted by the formula of Traunmüller (1990), which is: 

𝐵𝑎𝑟𝑘 =  
26.81 × 𝐻𝑒𝑟𝑡𝑧

1960 + 𝐻𝑒𝑟𝑡𝑧
− 0.53               

The formula is recommended for the phonetic project. The plot of this formula is shown in Figure 

6.  

 

 

Figure 6. Plot of Schroeder et al. (1979) formula (upper line) and Traunmüller (1990) formula (lower line) (Heeringa, 

2004).  
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4.1.2. Measuring Segment Distances Acoustically 

In order to measure segment distances acoustically for all sounds in the IPA alphabet, sound 

samples are required. A tape called The Sounds of the International Phonetic Alphabet on which 

all sounds in IPA alphabet are produced by John Wells and Jill House is available and Heeringa 

(2004) uses it to extract acoustic data for all the sounds. Spectrogram-based segment distances are 

measured by considering the spectrogram or formant track representation of sounds. Related 

values, including intensity, loudness, and formants, can be extracted for every sound in the IPA 

alphabet applying the above mentioned methods. It is notable that the sound sample used by 

Heeringa (2004) is canonical, and the sounds may be different from the sounds in the Central Asian 

data collection.  

The spectrogram-based representations of sounds are related to the duration of pronouncing a 

sound. It is important to normalize the duration of sound to ensure the sounds are comparable. 

Hence, the sound is analyzed in a unit of the time step. A spectrogram divided by units of the time 

step is called a spectrum, and a formant track divided by units of the time step is called a formant 

bundle. Here a spectrum or a formant bundle is called a slice. Within a slice, there are numerous 

intensity, loudness, or formants values depending on the Barkfilter, cochleagram, or formant tracks 

that are applied. Assume there are two segments, s1 and s2, and they have m and n slices, 

respectively. The collections of slices are: 

𝑠1 = {𝑠11, 𝑠12, … , 𝑠1𝑚 } 

𝑠2 = {𝑠21, 𝑠22, … , 𝑠2𝑛 } 

In order to normalize the length of duration, s1 is duplicated n times and s2 is duplicated m times. 

As a result, there are 𝑚 × 𝑛 slices in each segment.  

𝑠1 = {𝑠111, 𝑠112, … , 𝑠11𝑛,𝑠121, 𝑠122 … , 𝑠12𝑛, … , 𝑠1𝑚1,𝑠1𝑚2,…, 𝑠1𝑚𝑛 } 

𝑠2 = {𝑠211, 𝑠212, … , 𝑠21𝑚,𝑠221, 𝑠222 … , 𝑠22𝑚, … , 𝑠2𝑛1,𝑠1𝑛2,…, 𝑠1𝑛𝑚 } 

Eventually, 𝑚 × 𝑛  pairs of slices are generated. For each pair of corresponding slices, the 

Euclidean distance between them is calculated. Assume there are v values in each slice belonging 

to a pair (𝑠1𝑖𝑗 , 𝑠2𝑘𝑙), the distance between two slices within a pair is:   

𝑑(𝑠1𝑖𝑗 , 𝑠2𝑘𝑙) = √∑(𝑠1𝑖𝑗
𝑎 − 𝑠2𝑘𝑙

𝑎 )2

𝑣

𝑎=1

      (𝑖 ∈ [1, 𝑚], 𝑗 ∈ [1, 𝑛], 𝑘 ∈ [1, 𝑛], 𝑙 ∈ [1, 𝑚]) 

 

The distance between two segments 𝑠1, 𝑠2, is equal to the sum of the Euclidean distances between 

each pair of corresponding slices, divided by the number of slices 𝑀 × 𝑁.  
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4.1.3 Applying Segments Distance to the Levenshtein Algorithm 

The purpose of introducing spectrogram-based segment distances is to provide more sensitive 

segment distances leading to a more precise representation of sound distance between two phonetic 

transcriptions. The spectrogram-based segment distance is applied to the operation weights in the 

Levenshtein algorithm. There are three operations to transform one transcript to another in the 

Levenshtein algorithm, and all three operations cost one in the default algorithm. Similar to the 

PMI-based Levenshtein algorithm, determining a suitable alignment between two phonetic 

transcriptions is important to decide the minimum edit distance between them, and using more 

sensitive segment distances in operation weights is beneficial in the determination. Considering 

again the example of ‘sofa’ in English and Chinese, which the potential alignments repeated below: 

 

The VC-sensitive algorithm avoids alignment A, which matches a vowel to a consonant, but fails 

to choose between B and C. Applying spectrogram-based segment distances can determine which 

is the more suitable alignment between B and C, given that the segment distance between [o] and 

[a] is different from the distance between [ʊ] and [a]. As long as a suitable alignment is found, the 

sound distance between two phonetic transcriptions is determined by summing the operation cost. 

Deletions and insertions are regarded as a segment pair between a normal sound and a silent sound. 

A silent sound indicates that the values within a spectrum or formant bundle are zero.  

 

4.2 Realizing Spectrogram-based Levenshtein Distance 

Heeringa (2004) develops a tool that calculates the spectrogram-based segment distances. The tool 

is used for measuring pronunciation differences between two dialects, as well as producing the 

visualization of the result. Utilizing this tool returns the sound distances between a pair of phonetic 

transcriptions from the Turkic and the Indo-Iranian families with spectrogram-based segment 

distances. The Turkic family and the Indo-Iranian family are regarded as the “dialects” in the tool 

analogously. Rather than outputting the sound distances between any two “dialects” (in fact, they 

are the Turkic and Indo-Iranian families in this case), the tool is modified for the purpose of 

returning the sound distances of the phonetic transcription pairs. The input phonetic transcription 

data of the tool is required to be in the form of Extended Speech Assessment Methods Phonetic 

Alphabet (X-SAMPA). X-SAMPA is an extended version of SAMPA, and it is used to transform 

all IPA phonetic symbols into 7-bit ASCII8. Here is an example of transforming /ʒwɒn/ (which 

means “thick” in Kazakh from the Turkic family) into X-SAMPA: 

                                                           
8 See http://www.phon.ucl.ac.uk/home/sampa/ipasam-x.pdf for more details about X-SAMPA. 

s  o  ʊ  f  a 

    ʂ  a  f   a 

1  1  1  0  0 

 

s  o  ʊ  f  a 

ʂ  a      f   a 

1  1  1  0  0 

 

s  o  ʊ  f  a 

ʂ      a  f   a 

1  1  1  0  0 

A                          B                      C  

  

http://www.phon.ucl.ac.uk/home/sampa/ipasam-x.pdf


32 

 

 

The input of the tool is two files, in which the phonetic transcriptions are stored and compared 

against each other. Table 14 is the data format used in the tool for outputting spectrogram-based 

sound distance. Phonetic transcripts per concept per family are separated by a “/” and concepts in 

a family are separated by a new line tag “\n”. Two data files are generated for Turkic and Indo-

Iranian family respectively using Python. The tool requires these two files as input, and the 

distances are calculated by comparing the phonetic transcriptions from each file in the same line 

(e.g. the phonetic transcriptions in Line One in Turkic file compares to the ones in Line Two in 

the Indo-Iranian file). If there are five lines (in other words, five concepts in this case), for instance, 

of phonetic transcriptions in both files, five distance values (between pronunciations of the same 

concept) are calculated.  

Concept  Turkic family  Indo-Iranian family   

‘one’ 

‘two’ 

‘three’ 

‘four’ 

‘five’ 

… 

1 bIr / 1 brIw / 1 bIrIw / 1 brIw / … 

1 jek@\ / 1 jek@\ / 1 jIkjew / 1 jIk@\ / … 

1 }s_h / 1 }s_h / 1 }s_hju: / 1 }s / 1 }s / … 

1 t2rt / 1 t2rt / 1 tw2rt / 1 t_h2rt / 1 t2rt / … 

1 b_hIs / 1 b_hIs / 1 b_hes / 1 b_hIs / … 

… 

1 jak / 1 jak / 1 jak / 1 jakta / 1 jak / … 

1 s_hE / 1 se / 1 se / 1 setta / 1 s_he / … 

1 tSahOr / 1 tSOr / 1 tSOr / 1 tSOrta / … 

1 pandZ / 1 panZ / 1 panZ / 1 panZta / … 

1 kalOn / 1 kalOn / 1 kalOn / 1 kalOn / … 

… 
Table 14. This table shows part of the pronunciations in X-SAMPA format of five concepts (‘one’, ‘two’, ‘three’, ’four’, 

and ‘five’) from the Turkic family and Indo-Iranian family. Each concept is represented in one line, and the 

pronunciations are separated by “/”.  The number “1” in front of each pronunciation functions as a label and it has 

no influence on the result. The 183 concepts are listed line by line in each file. 

As shown in Table 14, there is more than one pronunciation in every line in either file. Applying 

the tool to this data format generates distances on the concept level (later in this chapter). In order 

to generate distances on the word level, there should be only one pronunciation in every line. 

Hence, the data should be rearranged in another format. The duplicated data in a language family 

per concept is deleted to avoid repeated phonetic transcription pairs. A file containing the phonetic 

transcriptions in the Turkic family and a file containing the phonetic transcriptions in the Indo-

Iranian family are created for each concept. Hence, concept ‘one, for instance, has two files called 

‘one_turkic’ and ‘one_indoiranian’ respectively, and the content of each file is: 

 

 

 

 

 

 

IPA X-SAMPA      

ʒ  Z 

w w 

ɒ Q 

n n 
 

/ʒwɒn/ 

  

ZwQn 
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‘one_turkic’ ‘one_indoiranian’ 

1 bIr 

1 brIw 

1 bIrIw 

1 b@\r 

1 bir 

1 bIS 

1 biS 

1 jak 

1 jakta 

1 jakt@\ 

1 jakt6 

1 jaktQ 

1 i: 

Table 15. The content of file ‘one_turkic’ and ‘one_indoiranian’ for the Spectrogram-based algorithm.  

In order to ensure that every phonetic transcription in a family is compared to every phonetic 

transcription in the other family, the phonetic transcriptions are arranged in a certain way. Assume 

there are 𝑚 unique phonetic transcriptions denoted as 𝑡𝑥 (𝑥 = 1,2, … , 𝑚) in the Turkic family, and 

𝑛 unique phonetic transcriptions denoted as 𝑖𝑦 (𝑦 = 1,2, … , 𝑛)  in the Indo-Iranian family for the 

given concept. Each phonetic transcription in the Turkic family is duplicated n times one by one, 

while all the phonetic transcriptions in the Indo-Iranian family are duplicated together for m times. 

In general, the data per concept is arranged as in Table 16. Table 17 is an example showing the 

data arrangement of concept ‘one’.  

Turkic  Indo-Iranian  Turkic file after 

duplication   

Indo-Iranian file 

after duplication 

Phonetic transcription 

pairs 

𝑡1 

𝑡2 

𝑡3 

⋮ 
𝑡𝑥 

⋮ 
𝑡𝑚 
 

 

 

 

 

 

 

𝑖1 

𝑖2 

𝑖3 

⋮ 
𝑖𝑥 

⋮ 
𝑖𝑛 
 

𝑡1

𝑡1

𝑡1

⋮
𝑡1

          

 
𝑡2

𝑡2

𝑡2

⋮
𝑡2

   

 

⋮ 
 
𝑡𝑚

𝑡𝑚

𝑡𝑚

⋮
𝑡𝑚

   

 

𝑖1 

𝑖2 

𝑖3 

⋮ 
𝑖𝑛 
 

𝑖1 

𝑖2 

𝑖3 

⋮ 
𝑖𝑛 
 

⋮ 
 

𝑖1 

𝑖2 

𝑖3 

⋮ 
𝑖𝑛 
 

𝑡1, 𝑖1 

𝑡1, 𝑖2 

𝑡1, 𝑖3 

⋮ 
𝑡1, 𝑖𝑛 

𝑡2, 𝑖1 

𝑡2, 𝑖2 

⋮ 
𝑡2, 𝑖𝑛 

⋮ 
𝑡𝑛, 𝑖𝑚 
 

Table 16. The data arrangement for using the tool to output spectrogram-based distance.  

The two files of a concept are used as the input of the tool. The output is a list of pronunciation 

distances between phonetic transcription pairs per concept. This procedure is iterated for all the 

concepts. Eventually, every concept has its list of distance values. Various spectrogram-based 

segment distances are prepared in advance. Three sets of sound distances using Barkfilter, 

𝑚 

𝑛 

𝑛 

𝑛 
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cochleagram, and formant tracks as acoustic representations are generated by changing the 

parameter in the executable file. Similar to the PMI-based method, the diacritics in the transcripts 

are ignored for the sake of simplification in this case. For the purpose of further evaluation, the 

distance values, concepts, and phonetic transcription pairs are arranged in tuples as shown in Table 

2, as follow: 

('animal', 3.6941, 'ʒanwar', 'hajvɔn') 

Turkic file of concept ‘one’  Indo-Iranian file of concept ‘one’ pairs 

1 bIr 

1 bIr 

1 bIr 

1 bIr 

1 bIr 

1 bIr 

1 brIw 

1 brIw 

1 brIw 

1 brIw 

1 brIw 

1 brIw 

… 

1 jak 

1 jakta 

1 jakt@\ 

1 jakt6 

1 jaktQ 

1 i: 

1 jak 

1 jakta 

1 jakt@\ 

1 jakt6 

1 jaktQ 

1 i: 

… 

bIr, jak 

bIr, jakta 

bIr, jakt@\ 

bIr, jakt6 

bIr, jaktQ 

bIr, i: 

brIw, jak 

brIw, jakta 

brIw, jakt@\ 

brIw, jakt6 

brIw, jaktQ 

brIw, i: 

… 
Table 17. Data arrangement for concept “one” for generating distance based on the spectrogram-based algorithm.  

Moreover, it is possible that the loanword is detected on the concept level. In this case, the sound 

distance is calculated between two lists of phonetic transcriptions, instead of between two phonetic 

transcriptions.  Heerigna (2004) calculates the distance between two lists of phonetic transcriptions 

by finding natural pairs from two lists, as well. The distance between two lists of phonetic 

transcriptions is then determined by the distances of natural pairs and the number of phonetic 

transcriptions. Unlike the method used in Nerbonne & Kleiweg (2003), the sum of the distances 

of natural pairs is divided by the number of phonetic transcriptions9.  

 

4.3 Result and Evaluation 

Three lists of tuples (each tuple including concept, distance, phonetic transcription in the Turkic 

family, and phonetic transcriptions in the Indo-Iranian family) are created by using the three 

acoustic representation of segment distances in the Levenshtein algorithm. Table 18 is the 

statistical information of sound distance values generated by each method. The histograms of the 

three sound distance lists show that the distributions of the sound distance values are similar. 

Unlike the distance values generated by the PMI-based algorithm (Figure 1), the sound distance 

values are approximately normally distributed (the p-values of Shapiro-Wilk normality test for 

these three distances lists are all greater than 0.3).  Moreover, the number of potential loanwords 

(the distance values on the left of the x-axis that are smaller) are more frequent than the extreme 

high distance values on the right of the x-axis. 

                                                           
9 See Heeringa (2004) Chapter 5 for more details. 
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A word from a phonetic transcription pair is classified as a loanword if the sound distance between 

these two phonetic transcriptions is smaller than a chosen threshold. An interval between the mean 

value and the minimum value of a list of sound distance values is divided into evenly spaced values, 

and these values are the potential thresholds. As a result, a predicted loanword list is generated for 

each acoustic representation. The predicted loanwords are compared against the gold standard, 

loanword classifications determined by an expert. Also, a 10-fold cross validation is conducted to 

explore the performance with independent data.  

 Barkfilter 

 

Cochleagram Formant Tracks 

 

 

 

Statistical 

description 

 

 

 

 

 Min.       :0.000   

 1st Qu.   :3.389   

 Median   :4.254   

 Mean      :4.319   

 3rd Qu.   :5.175   

 Max.       :9.581 

 

  

 Min.      :0.000   

 1st Qu.  :3.395   

 Median  :4.264   

 Mean     :4.306   

 3rd Qu.  :5.196   

 Max.      :9.688  

 

 

 Min.       :0.000   

 1st Qu.   :2.982   

 Median  :3.732   

 Mean     :3.749   

 3rd Qu.  :4.579   

 Max.      :8.343  

 

Histogram  

 

 

 

 

 
 

 

 

 

 

Table 18. Statistical description and visualizations of sound distances between phonetic transcriptions of the words 

from the Turkic and Indo-Iranian families by applying Barkfilter, cochleagram, and formant tracks to measure 

segment distance. 

Table 19 presents selected thresholds achieving the highest F1 scores, and the corresponding 

precision/recall score. (the explanation of these values is in Chapter 3). Simultaneously, a graph is 

created for the result of each acoustic representation, which shows the plot of the evaluation results 

against 200 potential thresholds between mean and minimum.  

The results of using the Barkfilter and cochleagram are similar, and the plots of the Barkfilter and 

cochleagram can be considered as identical. On the other hand, the F1 score of using formant 

tracks has a tiny disadvantage compared to the ones of the other two. In addition, using the formant 

track representation provides higher precision since the threshold is significantly lower than the 

other two representations. Although there is a difference between the plot of formant tracks and 

the plot of the Barkfilter or cochleagram, the trends of all three plots are similar.  

At the low threshold values, the precision is as high as around 0.95 while recall is very low. With 

the rise of threshold values, precision drops slowly, but there is a significant drop at threshold 

value of around 1.5 for the Barkfilter and the Cochleagram, while precision keeps smoothly 

dropping for the formant tracks. A similar development may be seen for recall. For the Barkfilter 
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and Cochleagram, recall rises sharply but suddenly remains flat at a threshold value of around 1.0, 

and begins to climb again at a threshold value of around 1.5. But recall keeps rising in a similar 

slope for formant tracks. After the intersection of the lines, precision drops steadily and recall 

keeps climbing, reaching a value of almost 1.0. This phenomenon has been explained as the 

tradeoff between precision and recall. The trend for F1 score line is similar to the trend for recall. 

The F1 score peaks at 0.7427, 0.7441, and 0.7364 using Barkfilter, cochleagram, and formant track. 

Although the peak F1 scores are not very different, using formant tracks tends to return higher 

precision, while the other two tend to favor recall. 

 Barkfilter Cochleagram Formant Tracks 

Threshold 2.1381 2.1560 1.5585 

Precision 0.7467 0.7332 0.7915 

Recall 0.7387 0.7553 0.6884 

F1 score 0.7427 0.7441 0.7364 

Precision, 

recall, and 

f1 score 

against 

200 

Potential 

thresholds 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

Table 19. Results and evaluation of applying Barkfilter, cochleagram, and formant tracks to detect loanwords.  

 

4.4 Cross Validation 

A 10-fold cross validation is applied to assess this model as well. There are ten values of precision, 

recall, and F1 score for the Barkfilter, cochleagram, and formant tracks representations. Table 20 

shows the mean value of the evaluation results.   

 Barkfilter Cochleagram  Formant tracks 

Precision 0.7370 0.7024 0.6835 

Recall 0.7646 0.7482 0.7721 

F1 score  0.7379 0.7127 0.7068 
Table 20. Mean value of each evaluation results of a 10-fold cross validation.  

 

4.5 Discussion 

As argued in Chapter 3, the F1 score is the standard of deciding the “good performance” of an 

algorithm in loanword detection. The performance of formant track is not as good as the other two 

representations. Since using the Barkfilter and the cochleagram return nearly identical F1 scores, 

either Barkfilter or cochleagram is an appropriate representative of the spectrogram-based 

Levenshtein algorithm in loanword detection. Besides, the results also show that there is almost 
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no difference between using Barkfilter and Cochleagram. This means that considering human 

perception in the representation of sound distances has little effect on loanword detection. On the 

other hand, the results in cross validation show that the Barkfilter representation has the highest 

F1 score with 0.7379, which means the Barkfilter performs better than the other two 

representations when dealing with independent data.  

 

5. SCA SOUND ALGORITHM FOR MEASURING SOUND DISTANCE 

Both the PMI-based and the spectrogram-based Levenshtein algorithms are modifications of 

Levenshtein distance, in which they provide alternative approaches to calculate the substitution 

cost. Besides calculating distance values between two sequences, these methods are capable of 

providing corresponding sequence alignments (this is the original purpose of proposing PMI-based 

algorithm). Actually, alignment analysis is important in sequence comparison.  

Refined algorithms can output a sound distance between phonetic transcriptions, leading to a more 

appropriate sequence alignment simultaneously. Conversely, an appropriate sequence alignment 

can assist in determining a distance value reflecting pronunciation distance more accurately. List 

(2012) proposes a modified sound class alignment (SCA), which is used for phonetic alignments 

based on sound classes. With the improved phonetic alignment proposed by List (2012), a refined 

distance between phonetic transcriptions is calculated giving the formula of Downey et al. (2008). 

Downey et al. (2008)’s formula, derived from the ALINE algorithm (Kondrak, 2000), is used to 

calculate the distance between two phonetic transcriptions when the alignment of the two 

transcriptions are given. In sum, phonetic alignment analysis and distance calculation are two 

results of SCA-based sound distance algorithm. The algorithm is realized by LingPy, a python 

library for historical linguistics (List and Forkel, 2016). Further in this section, the algorithm of 

SCA is introduced, as well as the formula based on the ALINE algorithm. Furthermore, the 

implementation of SCA and phonetic distance calculation is explained. Finally, the result of 

predicting loanwords and the corresponding evaluation of these algorithms are presented as well 

as the comparison to similar methods previously applied in this dissertation.   

 

5.1 Introduction to the SCA Sound Distance Algorithm  

The SCA sound distance algorithm consists of two components: phonetic alignment and distance 

calculation. The phonetic alignment algorithm proposed by List (2012) is the core of his 

modification, in which sound classes are applied to a basic pairwise sequence alignment (PSA) 

model and its extensions. In addition, scoring functions are required to reflect the weights of 

transitions between sound classes. Also, prosodic features are considered to determine gap 

penalties and substitution costs. In conclusion, sound classes, the corresponding scoring functions, 

and prosodic profiles constitute a sequence model in SCA. List (2012) summarizes that phonetic 

alignment in SCA is conducted in four stages: 
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1) Tokenization: phonetic transcription is tokenized into phonetic segments.  

2) Class conversion: phonetic segments are converted to be represented by sound classes and 

prosodic profiles through an SCA sequence model.  

3) Alignment analysis: List (2012) applies DIALIGN, an extension of PSA, for alignment 

analysis.    

4) IPA conversion: The sound classes are converted back to phonetic segments.  

After two phonetic transcriptions are aligned, the distance between them is calculated. The 

algorithm used to calculate the distance is proposed by Downey et al. (2008), and the algorithm is 

a modification of ALINE algorithm.   

5.1.1 Alignment- introduction to PSA 

-Sequence modeling in SCA  

The sequence model in SCA consists of sound classes, scoring function, and prosodic profiles10. 

Sound classes are used to represent phonetic segments in PSA due to the disadvantages of using 

phonetic sequences directly. Although using phonetic segments in PSA is intuitive, the 

disadvantage is that different languages might have completely different pronunciation systems, 

which makes the alignment language dependent. The concept of sound class is proposed by 

Dolgopolsky (1964), and the main idea is that sounds are divided into different classes according 

to their phonetic correspondences. In other words, sounds in a given class regularly appear in 

phonetic correspondence. The sound class model of Dolgopolsky has been used for automatic 

cognate identification, by investigating the sound classes of the first two consonants of the words 

(Turchin et al., 2010). Originally, Dolgopolsky introduces ten sound classes, while List (2012) 

applied an extension Dolgopolsky model with 28 sound classes (Table 21). 

No. CI. Description Examples  No. CI. Description Examples 

1 A unrounded back vowels a, α 15 P labial plosives p, b 

2 B labial fricative f, β 16 R trills, taps, flaps r 

3 C dental / alveolar affricates ʦ, ʣ, ʧ, ʤ 17 S sibilant fricatives s, z, ʃ, ʒ 

4 D dental fricatives θ 18 T dental / alveolar plosives t, d 

5 E unrounded mid vowels e, ε 19 U rounded mid vowels ɔ, o 

6 G velar and uvual fricatives ɣ, x 20 W labial approx. / fricative v, w 

7 H laryngeals h, ʔ 21 Y rounded front vowels u, ʊ, y 

8 I unrounded close vowels i, ɪ 22 0 low even tones 11, 22 

9 J palatal approximant j 23 1 rising tones 13, 35 

10 K velare and uvular plosives k, g 24 2 falling tones 51, 53 

11 L lateral approximants l 25 3 mid even tones 33 

12 M labial nasal m 26 4 high even tones 44, 55 

13 N nasal n, ŋ 27 5 short tones 1, 2 

14 O rounded back vowels ɶ, ɒ 28 6 complex tones 214 
Table 21. An extension of Dolgopolsky model with 28 sound classes used in List (2012).  

Dolgopolsky’s approach forbids the transitions between sound classes despite the fact that they 

occur. Scoring functions are designed to represent the probabilities of transition from one sound 

                                                           
10 Secondary sequence structure is also part of sequence modelling in SCA. It segments a word into syllables rather 

than sound units. It is useful in monosyllabic languages like Chinese.   
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class to another. List (2012) applies a theoretical approach to derive the scoring functions11. It 

considers the directionality of sound changes. The directionality of sound changes means changing 

from class A to class B is observed while the reverse direction (from B to A) is hardly ever seen. 

For instance, velar plosives are easily palatalized to affricates, and then to sibilants ([k] or [g] is 

palatalized to [ʧ], [ʦ], [ʤ], [ʣ], then to [ʃ], [ʒ], [z], [s]). But the opposite direction (changing from 

[ʃ], [ʒ], or [ʧ], [ʦ] to [k], [g]) is rare. A directed weighted graph is used to derive scoring function. 

Generally, any two closely connected sound classes are connected by a directed edge with a weight, 

and the weight reflects the probability of changing between those two sound classes. A smaller 

weight means a higher changing probability. Figure 7 illustrates the direction of changing dentals 

to affricates weights as 2 while changing from dentals to fricatives weights 4. Hence, the 

probability of changing dentals to affricates is higher than the probability of changing dentals to 

fricatives.  

 

Figure 7.  An example presents weights of sound changing (List, 2012).  

Prosodic profile, introduced by List (2012b), is a vector representation of a sequence. A score is 

assigned to each segment according to its sonority decided by the sonority hierarchy (Geisler, 

1992), and each segment is assigned to various prosodic environments which are ordered by a 

hierarchy of strength. The hierarchy of strength leads to relative weights reflecting the penalty of 

introducing gaps and a bonus for matching environments (Table 22). Each sequence is represented 

by sound classes and prosodic profiles through the above-defined sequence model, along with 

scoring functions deciding the probability of transitions between sound classes. Table 22 illustrates 

the correspondences of phonetic segments, sound classes, and relative weight for a Bulgarian word 

jabǎlko /jabəlka/ (‘apple’).  

In conclusion, the sequence model used in SCA model of List (2012) is based on the extension of 

Dolgopolsky model containing 28 sound classes. The scoring function is theoretically derived 

according to directionality and probability of sound changing. The prosodic profile contributes to 

determining relative weights, which is used for modifying scores of gap penalty and substitution.  

 

 

                                                           
11 Scoring function can be derived by an empirical approach, in which the probabilities are derived according to the 

sound correspondence frequencies in the language of the world (Brown et al., 2013). 
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Phonetic transcriptions j a b ə l k a 

Sound classes J A P E L K A 

Prosodic profile  6 7 1 7 5 1 7 

Prosodic environment # v C v c C w 

Relative weight 7 3 5 3 4 5 1 

Relative scores for Sonority (Prosodic profile): plosives (1), affricates (2), fricatives (3), nasals 

(4), liquids (5), glides (6), and vowels (7)  

Prosodic environment and hierarchy (Relative weight value in the bracket): #(7, word-initial 

consonant) > V(6, word-initial vowel)> C(5, ascending sonority)> c(4, descending sonority)> 

v(3, sonority peak)>$(2, word-final consonant)> w(1, word-final vowel)  
Table 22. An example of converting phonetic transcriptions to sound classes, and assigning relative weights. The 

bottom two rows are sonority hierarchy and prosodic environment hierarchy respectively. 

-PSA and its extension  

The first PSA algorithm is known as Needleman-Wunsch alignment algorithm (Needleman & 

Wunsch, 1970). Similar to the Levenshtein algorithm (Table 3), the basic PSA algorithm proceeds 

by creating a matrix in which scores are filled by comparing two sequences per segment. The path 

leading to the final score is found by backtracking. In the Levenshtein algorithm, three operations 

of transforming a sequence to another are introduced and various scores (cost) of these operations 

are determined. PSA applies a different method. Basic PSA defines that the score is -1 if two 

segments fail to match or one of them is null (empty), while the score is 1 if two segments match. 

Therefore, the basic PSA alignment algorithm is also a Levenshtein distance. The difference is that 

PSA alignment algorithm calculates the similarity between sequences rather than distance. 

Modifications are made for the various alignment problems. One of the modifications is the 

structural extensions12. Structural extensions allow alignment between two sequences considering 

the full sequences (global), the partial sequences (local), or a combination of these global and local 

(DIALIGN). A global alignment tends to treat every segment in a sequence equally, and a local 

alignment tends to only align partial sequences because of the fact that only part of the sequence 

is comparable to the other in many cases. DIALIGN conducts alignment analysis globally by 

considering the whole sequence, as well as analyzing local alignment.  

5.1.2 Distance- ALINE Algorithm and its Modification 

As long as two phonetic transcriptions are aligned applying the methods introduced above, the 

distance between the pair of phonetic transcriptions is calculated. In order to obtain a distance 

value accurately representing the degree of dissimilarity of two phonetic transcriptions, phonetic 

features ought to be included. List (2012) applied the formula proposed by Downey et al. (2008) 

to calculate the sound distances between two phonetic transcriptions after the alignment analysis 

is conducted. The formula of Downey et al. (2008) is a modification of the ALINE algorithm from 

Kondrak (2000). The ALINE algorithm is proposed specifically for phonetic transcriptions, and it 

generates similarity scores between phonetic transcriptions for phonetic alignment (Kondrak, 

2000). In the  ALINE algorithm, each segment is represented as a vector including features in 

                                                           
12 Another modification is substantial extensions, and it aims to modify the scores by considering phonetic features 

linguistically.  
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various categories, such as vowel length, phonation etc., and these features are applied to generate 

similarity scores between phonetic transcriptions13. One of the main disadvantages of ALINE 

algorithm is that the raw score is not appropriate for comparison between pairs. For instance, the 

similarity score between /pu/ and /pu/ (50) is different from the similarity score between 

/tausebasai/ and /tausebasai/ (230), despite the fact that each pair has identical pronunciations. 

Normalization is required in order to overcome the above-mentioned disadvantage of ALINE 

algorithm. Downey et al. (2008) improve the algorithm via normalizing the score by the average 

score of word self-comparisons. Assume two phonetic transcriptions 𝑝1and 𝑝2, and the similarity 

score between them is 𝑠. The similarity score between 𝑝1(or 𝑝2) and itself is 𝑠1 (or 𝑠2).  

The normalized similarity score 𝑠𝑛𝑜𝑟𝑚 between 𝑝1and 𝑝2 is:  

𝑠𝑛𝑜𝑟𝑚 =
2𝑠

𝑠1 + 𝑠2
 

The formula is changed to represent distance (dissimilarity) rather than similarly: 

𝑑 = 1 −
2𝑠

𝑠1 + 𝑠2
 

The distance ranges from 0 to 1 while converging to 1 implies that the two phonetic transcriptions 

become more similar. The normalization considers the lengths of phonetic transcriptions and 

penalty of mismatching.  

 

5.2 Realizing SCA Sound Distance Algorithm  

It is convenient to apply the SCA sound distance algorithm using the python library LingPy (List 

and Forkel, 2016).  LingPy is a series of open-source Python modules which is developed for 

quantitative analysis in historical linguistics. It integrates the various methods allowing users to 

conduct data analysis, such as sequence alignments, tokenization, searching cognates, and distance 

calculation. The SCA sound distance algorithm by List (201) is realized in LingPy by using 

appropriate functions and parameters.  

Code 5 is the python code for calculating the distance between two phonetic transcriptions. Firstly, 

the phonetic transcriptions are tokenized into phonetic segments with function: 

ipa2tokens(ipa) 

After that the pair of phonetic transcriptions is paired: 

align_pair_ipa=align.pairwise.Pairwise(tokenized_ipa1,tokenized_ipa2) 

 

The pair is aligned and the parameters indicate that the distance value is outputted and the SCA 

method is used: 

 

align_pair_ipa.align(distance=True, method='sca') 

                                                           
13 Detail is in Kondrak (2000).  



42 

 

As noted above, the SCA model allows three extensions of PSA which are global, local, and 

DIALIGN respectively. In this experiment, “global” is applied, which is the common method to 

treat every segment equally like the other distance algorithms used in this dissertation.    

The distance is extracted by 

distance=align_pair_ipa.alignments[0][2] 

from lingpy import * 
 

phonetic_paris=[ipa1,ipa2] 
 

## Tokenizes the phonetic transcriptions into phonetic segments. 
for ipa in phonetic_paris: 
    tokenized_ipa_pairs.append(ipa2tokens(ipa)) 
     

## Pairs the two tokenized phonetic transcriptions. 
align_pair_ipa=align.pairwise.Pairwise(tokenized_ipa_pairs[0],to-

kenized_ipa_pairs[1]) 
 

## Aligns the pair of tokenized phonetic transcriptions. 
## The two parameters specify that the distance will be outputted and the  

## method used is SCA. 
align_pair_ipa.align(distance=True,method='sca') 
 

## Output aligned phonetic transcriptions and distance between them. 
aligned_ipa1,aligned_ipa2,distance=align_pair_ipa.alignments[0] 
Code 5. Python code for determining the distance between two phonetic transcriptions using the SCA algorithm.  

It is notable that distance between phonetic transcriptions generated by LingPy is possibly higher 

than 1, which contradicts the formula of Downey et al. (2008). The reason is that the VC sensitive 

algorithm (introduced in section 2.2) is applied by LingPy, and the SCA algorithm is realized upon 

the VC sensitive algorithm. It means that substituting a vowel for a vowel or consonant affects the 

distance derived by the SCA-based algorithm because VC sensitive algorithm avoids the 

substitution between consonant and vowel. This causes the possibility of obtaining a negative 

similarity value. In other words, the distance value may be more than 1 according to the distance 

formula.  

It is straightforward to build an appropriate data structure to store the phonetic transcription pairs 

so that the data structure is applied in Code 5. Each pair is represented as a three-element tuple 

including concept and the two phonetic transcriptions. More than 25 thousands pairs are generated 

and they are put in a list, as: 

[('one', 'bɪr', 'jak'), 

('one', 'bɪr', 'jakta'), 

('one', 'bɪr', 'jaktə'), 

('one', 'bɪr', 'jaktɐ'), 

… 

('other', 'boʃqa', 'diga'), 

('other', 'boʃqa', 'ani'), 

('other', 'boʃqa', 'axti')] 
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Eventually, a list of tuples is generated. Each tuple consists of the concept, a pair of phonetic 

transcriptions, where one transcription comes from a Turkic family language and the other from 

an Indo-Iranian family language, and the distance value between them. Each generated pair 

consists of one phonetic transcription in one language family, and one from the other per concept 

(as mentioned in Section 2.1). There are more than 25 thousands tuples in the result list, and each 

tuple is in the format of: 

('animal', 0.60769, 'ʒanwar', 'hajvɔn') 

 

5.3 Result and Evaluation 

A list of tuples containing the concept, distance values, and a pair of phonetic transcriptions are 

generated applying SCA distance algorithm implemented by LingPy library. The distance values 

are the sound distances between phonetic transcriptions from the Turkic family and the Indo-

Iranian family. Table 23 is the statistical description presenting related facts of the distance values 

generated from all the word pairs from all the concepts.  

Min. 0.0000 

1st Qu. 0.5789 

Median 0.7077 

Mean    0.6642 

3rd Qu. 0.8142 

Max. 1.1670 
Table 23. Statistical description of the sound distances derived from the SCA-based algorithm.  

Figure 8 is the histogram presenting the distribution of distance values. In general, the distribution 

is slightly skewed to the right. The majority of the values are between 0.6 and 0.9. Both extremely 

low distance values and extremely high values are not common. This histogram is similar to the 

one generated by the PMI-based algorithm (Figure 1). The notable feature is that there is a small 

“peak” at the values below 0.1, and those values are regarded as potential loanwords. This fact 

might lead the algorithm to detecting more loanwords compared to the MI-based algorithm.   

 

Figure 8. Histogram of sound distances between phonetic transcriptions from the Turkic and Indo-Iranian family 

using SCA distance algorithm.  

Distance 

Counts 
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5.3.1 Determining Threshold 

The word represented by one of the phonetic transcriptions in a pair is classified as loanword if 

the sound distance of the pair is smaller than a selected threshold. Using the methods above, 200 

potential threshold values are generated by evenly dividing an interval between smallest distance 

values other than zero (0.1667) and the mean of the distance values (0.6642) into 200 pieces. The 

threshold leading to the highest F1 score value is the most suitable threshold. F1 score and other 

evaluation values are calculated by comparing detected loanwords to the gold standard. Figure 8 

is a plot presenting the precision, recall, and F1 scores under the 200 potential thresholds. Similar 

to the plots generated by PMI-based and spectrogram-based methods, there is a tradeoff between 

precision and recall values. Precision drops down from the high value at small threshold values, 

while recall climbs up from the low value to high along with the increasing of thresholds. It is 

notable that recall increases rapidly under threshold value of 0.1, while precision drops in a stable 

manner. This fact is reflected by the gathering of low distance values under 0.1 in the histogram 

(Figure 7). Recall rises more moderately after threshold is higher than 0.1, but the absolute slope 

value is still greater than the one of precision dropping. The intersection is at the threshold value 

of around 0.31. Precision keeps declining to a low level, and recall remains rising to almost 1 with 

the rising of threshold values. The F1 score is used to reflect the performance of the algorithm. It 

climbs up in a similar way as recall climbs before the intersection, and drops down afterward. The 

highest F1 score is at the threshold of 0.297. The evaluation values are summarized below: 

Threshold  0.297 

F1 score 0.8512 

Precision 0.8834 

Recall 0.8213 
Table 24. Summary of the performance using SCA-based algorithm. 

 

Figure 9.  Precision, recall, and F1 score against the 200 potential thresholds.  

5.3.2 Cross Validation 

A 10-fold cross validation is conducted in order to examine the performance of the algorithm when 

independent data is used. The method is illustrated in Figure 3. The average precision, recall, and 

F1 score of the cross validation values are summarized as follows:  

 

 

Values 

Thresholds 
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Precision 0.8346 

Recall 0.8019 

F1 score 0.8128 
Table 25. Mean scores in 10-fold cross validation for the PMI-based Levenshtein algorithm. 

 

5.4 Discussion  

The SCA distance algorithm outperforms PMI-based Levenshtein algorithm and spectrogram-

based Levenshtein algorithm when comparing F1 score. While applying LingPy to tokenize 

phonetic transcriptions, certain segments fail to be segmented probably. For instance, /pf/ is 

probably /p͡f / and LingPy is capable of segmenting /p͡f / as a sound unit, but LingPy treats /pf/ as 

two separated units. This might slightly affect the distance values. Since /pf/ is used in the other 

algorithms, the side effect caused by this pitfall is negligible.   

 

6. COMPARISON OF THE THREE ALGORITHMS 

So far, a model is designed to detect the pairs of the words containing loanwords. The core of the 

model is to discover the best value as a threshold to classify loanwords, and the F1 score is used 

to represent the performance of an algorithm at a given threshold. Thus, the model is able to 

evaluate the performances of the three refined edit distance algorithms in loanword detection. The 

performance of the three algorithms is compared from various perspectives. First of all, the 

performances of the algorithms in loanword detection are compared by directly comparing the 

evaluation values derived from the models. Meanwhile, the performance of the algorithms dealing 

with independent data is compared as well (cross validation). Secondly, the distributions of the 

distance values derived from these algorithms are compared in order to explore the distribution 

differences. Thirdly, the results of detected loanwords are compared. There is a list of predicted 

loanwords generated by using each algorithm to detect loanwords. Every list contains correctly 

detected loanwords, incorrectly detected loanwords, loanwords that are not detected, etc. The 

characteristics of these words in each algorithm are investigated and compared to other algorithms. 

Fourthly, an alternative method, detecting outliers, is used to classify loanwords rather than 

discovering the threshold outputting the highest F1 score. Comparison between these two methods 

is related to the practical application of applying this model to detect loanwords.  

 

6.1 Comparing Performances  

6.1.1 Thresholds and Performances  

A threshold is required to classify loanwords. If the distance value of a pair of words is lower than 

a threshold, this pair is classified as containing a loanword. Otherwise, there is no loanword in the 

pair. The “best threshold” is obtained by examining 200 potential thresholds from the interval 

between the minimum distance value and the mean value of the distances of each algorithm. The 

F1 score is used to evaluate the performance of an algorithm at a given threshold.  

The graphs in the right column of Table 26 show the values of precision, recall, and the F1 score 

of the selected 200 potential thresholds per algorithm. The graphs present the change of the three 
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evaluation values along with the increase of threshold values. In general, precision is positively 

correlated to the threshold, while recall is negatively correlated to the threshold. The graphs of 

each algorithm in the right column of Table 26 show that precision is high (almost 1.0) at small 

threshold values, and it keeps declining while the threshold increases. In contrast, recall is low at 

the smaller threshold values, and it keeps climbing while the threshold increases. The F1 score is 

the result of considering both precision and recall. The F1 score climbs along with the increasing 

of thresholds, peaks at a certain point (the best threshold), and keeps dropping after the peak. 

Although the shape of the lines varies in each algorithm, the trends are identical as described above. 

Evidently, the SCA-based edit distance algorithm outperforms the other two. The F1 score of 

applying the SCA-based algorithm to detect loanwords is more than 0.85, which is significantly 

higher than the F1 score derived from PMI-based algorithms (0.7847) or Barkfilter algorithm 

(0.7427). Meanwhile, both corresponding precision and recall values of the SCA-based algorithm 

are higher than the other two as well (Table 27).  
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 Distribution  

(Solid line: the position of best 

threshold. 

Dash line: the position of lower 

outlier boundary.) 

P/R, Fl score against 200 potential 

thresholds 

(Blue solid line: precision; 

Red dash line: Fl score; 

Green mixed solid and dash line: 

recall.)  

PMI  

 
Lower Outlier boundary: 0.01934  

Best threshold: 0.021   

 

 

Spectrogram 

(Barkfilter)  

 

 
Lower Outlier boundary: 0.71 

Best threshold: 2.1381 

 

 

SCA  

 
Lower Outlier boundary:  0.22595 

Best threshold: 0.297 

 

 
 

Table 26. Comparison of the three algorithms. The first column is the histogram presenting the distribution of distance 

values derived by each algorithm. The second column is the plots of evaluation values against 200 potential thresholds 

of each algorithm. 
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 PMI Spectrogram SCA 

F1 score 0.7847 0.7427 0.8513 

Precision 0.8405 0.7467 0.8831 

Recall 0.7357 0.7387 0.8218 
Table 27. F1 score, precision, and recall of the three algorithms when the best threshold is used. In other words, the 

highest F1 score of each algorithm and their corresponding precision and recall.  

6.1.2 Determining Threshold Using Lower Outlier Boundary   

An alternative method to extract an appropriate threshold is to calculate the lower outlier boundary 

of the list of distance values. In a list of the observation points, outliers are the points that are 

distant from other points. Mathematically, it is defined as the points outside the range of: 

[𝑄1 − 𝑘(𝑄3 − 𝑄1), 𝑄3 + 𝑘(𝑄3 − 𝑄1)] 

Where: 

𝑄1 is the first quartile of a list; 

𝑄3 is the third quartile of a list; 

𝑘 is a positive constant.  

Tukey (1977) proposed that k=1.5 indicates an “outlier”. The lower outlier boundary is the 

boundary separating the outliers that are smaller than the other points from the rest. In other words, 

lower outlier boundary is   

𝑄1 − 1.5(𝑄3 − 𝑄1) 

If a distance value of a pair of word is lower than the defined lower outlier boundary, the distance 

value is exceptionally smaller than the other distance values. The pair of words classified as an 

outlier is exceptional to other pairs as well. Hence, it is intuitive to classify a pair of words 

containing a loanword if the distance value of the pair is lower than the lower outlier boundary.  

Generally, the value of the lower outlier boundary is lower than the best threshold per algorithm 

(Table 28). Since the lower outlier boundary values differ from the best threshold, the F1 scores 

derived from the lower outlier boundary values are probably lower than those derived from the 

best thresholds. The difference of F1 scores is very small in case of PMI-based algorithm, while 

the difference is slightly more obvious in case of SCA-based algorithm. However, the difference 

of F1 score in case of Barkfilter is huge. The F1 score is only 0.2971 when the lower outlier 

boundary is used as threshold. The reason is that the lower outlier boundary value is much smaller 

than the best threshold. The more standard normality of the distribution of distance values from 

Barkfilter-based algorithm leads to fewer outliers compared to the outliers in case of the other two 

algorithms. Using a low value as threshold possibly causes low recall value. Actually, the recall is 

0.1771 when using the lower outlier boundary as the threshold in case of Barkfilter algorithm. 

Using the lower outlier boundary value as threshold tend to obtain higher precision (using 

Barkfilter algorithm is considered an extreme situation). In practice, this method reduces 

computational cost dramatically, and the bias to precision can be ignored, (sometimes it may be 

preferred) unless it causes extreme low recall.  
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 PMI Barkfilter SCA 

Lower Outlier boundary value/  

its corresponding F1 score   

0.01934/0.7516 0.71/0.2971 0.22595/0.7867 

Best threshold value/ 

its corresponding F1 score 

0.021/0.7847 2.1381/0.7427 0.297/0.8513 

Table 28. Comparison of performances between using lower outlier boundary as the threshold and using best 

threshold value as the threshold.  

6.1.3 Cross Validation  

Cross validation is used to evaluate the performance of a model when dealing with independent 

data. The data of pairs of words are split into a training set and a testing set. 

In this dissertation, applying one of the three algorithms to the model to detect loanwords with 

training data outputs a best threshold for each algorithm, and the best threshold is applied to the 

testing data so that the performance of the model is evaluated. In order to reduce the computational 

cost, there are only ten (instead of 200) potential thresholds selected by evenly dividing the interval 

between the minimum distance value and the mean of distance values into ten parts. The cross 

validation result shows that the SCA-based algorithm outperforms the PMI-based algorithm and 

the Barkfilter-based algorithm, and the PMI-based algorithm outperforms the Barkfilter-based 

algorithm. This performance ranks are identical to those obtained by using the best thresholds from 

200 candidates. In order to explore the performance of dealing with independent data, the cross 

validation result ought to be compared to the situation that cross validation is not conducted. To 

ensure comparability, the evaluation result generated by determining the best threshold from ten 

candidates (instead of 200) is compared to the cross validation because ten potential thresholds are 

used in each iteration in the cross evaluation. It turns out there is no huge difference between those 

two evaluation results in case of all three algorithms (Table 29). In other words, the respective 

loanwords detection models generated by the three algorithms is capable to deal with independent 

data.  

 PMI Spectrogram SCA 

Cross validation 

Precision  0.760 0.7370 0.8346 

Recall 0.795 0.7646 0.8019 

F1 score  0.768 0.7379 0.8128 

10 thresholds 

Precision 0.8808 0.7273 0.8752 

Recall  0.6628 0.7488 0.8293 

F1 score 0.7564 0.7379 0.8516 
Table 29. Cross validation results of the three algorithms, and performances of obtaining best threshold from “ten 

threshold candidates”.   

It should be noticed that the cross validation result of the PMI-based algorithm may not accurately 

reflect the actual ability to deal with independent data. The reason is that the PMI value between 

segments should be calculated based on the data in training set rather than all data. Hence, simply 

using distance values calculated according to the PMI values derived from the whole data set may 

affect the result of cross validation in this case. There is a possible solution. In each iteration, PMI 

values between all segment pairs are calculated based on the word pairs in training set, and the 
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distance values of the word pairs in training set and testing set should be calculated based on that 

PMI values. Considering the size of this dissertation, this is suggested in future works.  

 

6.2 Comparing Distribution of Distance Values  

There are approximately 25K distance values between two phonetic transcriptions generated per 

algorithm. The number of distance values is not the same per algorithm because certain phonetic 

transcriptions fail to be compared to the others in an algorithm. The difference of distance values 

quantities among the algorithms are small compared to the total number of the distance values 

(Table 30), the difference will not affect the comparison of the three algorithms.  

Algorithm  Number of distance values 

PMI 25103 

Barkfilter 25237 

SCA 25290 
Table 30. The number of distance values generated by each algorithm. 

Table 31 provides a statistical summary of the distance values derived by the three algorithms. The 

statistical descriptions include features of distance values, such as mean, median, etc., and these 

features offer an overview of the data distribution with concrete digits. Since the mechanisms of 

calculating distance are different from each other, it is meaningless to compare the statistical 

description among the three algorithms quantitatively. In order to compare the distribution of the 

distance values, using histograms is more appropriate.  

 PMI Barkfilter  SCA 

Min. 0 0 0 

1st Qu.   0.02909 3.389 0.5789 

Median 0.03325 4.254 0.7077 

Mean 0.03113 4.319 0.6642 

3rd Qu.  0.03559 5.175 0.8142 

Max. 0.04420 9.581 1.1670 
Table 31. Statistical descriptions of sound distances derived from each algorithm.  

A histogram is commonly used to visualize the distribution of data. Hence, observing the 

histogram contributes to interpreting the distance values generated from an algorithm. Meanwhile, 

it is intuitive to realize the approximate percentage of loanwords focusing on the low distance 

values. The first column of Table 26 shows the histogram of each algorithm. The distributions of 

the distance values extracted from the PMI algorithm and the SCA algorithm are similar in that 

the two histograms are skewed to the right. Hence, the low distance values are not common in 

these two situations, and the majority of the distance values gather in a narrow interval covering 

relatively high values. On the other hand, the distance values derived from spectrogram-based 

algorithm are normally distributed, where both low and high distance values are infrequent. The 

majority of the distance values cluster around the mean of the distance values. In the case of SCA, 

it is notable that there is a small peak at the position of extreme small distance values in its 

histogram, while the number of distance values increases along with the increase of distance values 

until they peak at a certain point in the other two cases.  
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The position of the best threshold of each algorithm is marked as a solid line in the respective 

histogram (Table 26 first column). In the histogram generated from the PMI-based algorithm, the 

best threshold is at the middle of the interval between the minimum value and the mean value. In 

the case of the other two algorithms, the best thresholds are closer to the smallest distance value. 

Obviously, the best threshold affects the number of detected loanwords per algorithm (Table 32). 

It is intuitive to estimate the number of detected loanwords derived from each algorithm by 

observing the distribution before the best threshold line in the respective histogram. In the case of 

the PMI-based algorithm, although the best threshold is more to the middle of the histogram than 

the SCA-based algorithm, there are fewer word pairs classified as containing loanwords. 

Meanwhile, the number of word pairs classified as containing loanwords in the case of the 

Barkfilter-based algorithm is less than the one in the case of the SCA-based algorithm in spite of 

the similar positions of their best threshold.  

Algorithm  Number of detected loanwords 

PMI 1815 

Barkfilter 1661 

SCA 1984 
Table 32. The number of predicted loanwords generated by each algorithm using their respective best threshold.  

 

6.3 Comparing Results of Detected Loanwords   

Using the best threshold in the model with each algorithm results in a list of word pairs which are 

predicted to involve a loan. There are three predicted loanword lists corresponding to each 

algorithm. Some expert-classified loanwords are not found in a predicted loanword list using one 

of the algorithms to detect loanwords, or not found in any predicted loanword list (false negative). 

On the other hand, some pairs are not classified as containing loanwords by experts, but they 

appear in the predicted loanword lists (false positive). The third list consists of genuine words that 

were classified correctly as such. Figure 10 is a Venn diagram presenting the relations of the 

predicted loanword lists of each algorithm and gold standard. The rectangle contains all the pairs 

of words in the data. The circle in the light color represents the pairs containing loanwords in gold 

standard. The three circles represent the pairs detected as containing loanwords by the three 

algorithms respectively. The intersections of the different sets represent possible situations about 

loanwords across each predicted loanwords list of an algorithm. For instance, some pairs are 

detected by one or some of the algorithms, and they may be in or outside the gold standard.  

6.3.1 Result Analysis  

When a word is borrowed from a donor language, adjustments are required in order to fit the 

linguistic features of the recipient language. Previous studies show that there are phonological 

adjustments when loanword are adapted into the recipient language because of the phonological 

features and constraints of the recipient language (Yip, 1993; Tsuchida, 1995; Miao, 2005). By 

sketchily studying the gold standard, the patterns of phonological adaptation between the Turkic 

family and the Indo-Iranian family may be discerned. The results explain the reason for the 

superior performances of the SCA-based algorithm as we will explain shortly.  

The study of the gold standard shows that epenthesis (or deletion) and substitution appear in the 

phonological adaption of loanwords between the Turkic family and Indo-Iranian family. 
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Epenthesis or deletion means that a segment is added or deleted when a word is borrowed by 

recipient language (Table 33), while substitution means a segment is substituted with one or more 

segments. Notably, the major operation is the substitution.  

 

Figure 10. Venn diagram showing schematically the overlap between the genuine loanwords and those predicted by 

the algorithms. For instance, the intersection between the set of gold standard and any one of the algorithm set 

represents the correctly predicted loanwords of each algorithm. The part of the intersection of the three algorithm 

sets outside gold standard represents the loanwords that incorrectly detected by all the three algorithms.   

('correct', 'tuːra', 'tøɣri') 

('forest', 'wʊrmon', 'urmʊn') 

('meat', 'gwʉʃt', 'guʃt') 

('lake', 'kwøl', 'kul') 

('old', 'kwønʲe', 'kʉjna')  
Table 33. Examples of epenthesis (or deletion) in phonological adaptation when borrowing words.  

The substitution of some segments for others is regular. For instance, [a] is commonly substituted 

for (or by) [e], [ɔ], and [ɒ], but it is rarely substituted for (or by) [u]. Table 34 is the summary of 

the substitution patterns. The segments that are interchangeable share similar pronunciations (at 

least their pronunciations are similar according to human perception). More importantly, Table 34 

shows that the sound segments are divided into groups to some degree. It implies that the lower 

distance value between any two segments within a group can raise the probability of detecting 

loanwords correctly. 

 

Gold standard

PMI 

SCA 

Spectrogram 
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 Commonly seen Segments  

that are interchanged   

Examples (a,b,c) from gold standard  

a: concept 

b: phonetic transcription in Turkic family 

c: phonetic transcription in Indo-Iranian family 

Vowels [a], [e], [ɔ], [ɒ] ('animal', 'hajβan', 'hajβɔn') 

('short', 'kʲelte', 'kalta') 

('fruit', 'miβe', 'meva') 

('breast', 'køkrʲek', 'kukrak') 

('wing', 'qanat', 'qanɔt') 

('wind', 'ʃamɒl', 'samɔl') 

[i] ,[ɨ], [ɪ], [ə] ('smooth', 'silləq', 'siłłɪq') 

'smooth', 'tekɪs', 'tɛkkəz') 

('correct', 'tuːrə', 'tuɣri') 

('root', 'tɒmɨr', 'tɒmər') 

('fruit', 'mʲɪva', 'miva') 

('straight', 'tʊrɨ', 'tɔɣri') 

('louse', 'bɪt', 'bit') 

('breast', 'kukrɨk', 'qʊqrak') 

[ə], [u], [ɜ], [ʉ],[ø], [ʊ],[ɔ] ('egg', 'tuxum', 'txəm') 

('egg', 'tqʊm', 'txəm') 

('dog', 'kəʧək', 'kuʧuk') 

('louse', 'ʃubəʃ', 'ʃʊpʊʃ') 

('forest', 'wɔrman', 'urmʊn') 

('flower', 'gul', 'gøl') 

('forest', 'wɔrman', 'ørmɔn') 

('breast', 'køkrøk', 'kʉkrak') 

Consonants [k], [q], [g] ('leaf', 'parak', 'barg') 

('breast', 'køkrɛk', 'kukraq') 

[q], [x], [χ] ('blood', 'qan', 'xun') 

('back', 'ɔrqa', 'arχa') 

[t], [d] ('tree', 'tʲerɛk', 'daraxt') 

('sea', 'tʲeŋɪz̥', 'deŋiz̥') 

[β], [v], [w], [f] ('animal', 'ajβan', 'hajvɔn') 

('animal', 'hajβan', 'hajwon') 

('to dig', 'kaβlɛm', 'kɔftan') 

('fruit', 'miwe', 'mʲeva') 

[ʧ],[ʃ], [ʤ], [j], [s] ('dust', 'ʃaŋ', 'ʧaŋ') 

('to live', 'ʤaʃa', 'jaʃam') 

('star', 'ʤɨldɨz̥', 'jɨldɨz̥') 

('bird', 'qʉs', 'kuʃ') 

('star', 'ʃʉldɨz̥', 'jɨldɨz̥') 
Table 34. Summary of segment substitution between loanwords in the gold standard from the data of Central Asian 

languages.   

The importance of regular segment substitution is reflected in the PMI-based algorithm, the 

spectrogram-based algorithm, and the SCA- based algorithm. The segment distance in the PMI-

based algorithm is based on the probability of two-segment alignment. On the other hand, the 
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segments in the same group in Table 34 may have similar acoustic features due to the similar 

pronunciations of the segments in the same group. In the case of the SCA-based algorithm, the 

division is similar to the division generated by sound classes (Table 21). Since all these three 

algorithms reflect the features of segment substitution in loanwords, why does the SCA-based 

algorithm outperform the other two? The reason may be related to two aspects.  

The first reason is that the SCA-based algorithm uses DIALIGN alignment (considering full and 

partial sequence) between two sequences before calculating the distance, while the sequence 

alignments of the other two algorithms are based exclusively on segment distance. Hence, 

alignment and distance calculation are more independent in the SCA-based algorithm.  

The second reason is the method of distance calculation. In the SCA-algorithm, the distance 

between two segments within a sound class is zero, and the distance between two segments from 

different sound classes has a fixed distance according to which two sound classes are compared. 

This is the reason for the small peak at the low value in the histogram of SCA-algorithm result 

(Figure 8) probably. Also, it explains the frequent appearance of identical sound distance values. 

Moreover, the distance between segments from two varied sound classes is larger than the two 

from the same sound class. In the case of the other two algorithms, the distance between any two 

segments is unique and more concrete in general. Unlike the SCA-based algorithm, the distance 

between two segments within a sound class is almost never zero. Nevertheless, the distance 

between any two segments within a group is smaller than two from two different groups.  

In summary, although PMI-based algorithm and spectrogram-based algorithm provide more 

concrete sound distances between two segments than what SCA-based algorithm does theoretically, 

the distance calculation scheme of the SCA-based algorithm is superior in detecting loanwords. 

Assigning “zero distance” to any two segments within a sound class is more appropriate given the 

fact that substitution within a sound class models the phonological adaptation of loanwords 

between Turkic language family and Indo-Iranian language family. The smaller difference 

between two segments within a sound class raises the probability of classifying two sequences 

involving those two segments as containing loanword.  

 

7. CONCLUSION 

There are various refined edit distance algorithms which are sensitive in measuring the sound 

distance between two words, and loanwords can be detected by comparing distances between pairs 

of words. This dissertation attempts to compare the performance of applying three refined edit 

distance algorithms to measure sound distance, and the derived distance values are applied to 

detect loanwords. The algorithms used in this dissertation are the PMI-based edit distance 

algorithm, the spectrogram-based edit distance algorithm, and the SCA edit distance algorithm. 

The performance evaluations of the three algorithms in loanword detection show that the SCA-

based algorithm outperforms the PMI-based algorithm and the spectrogram-based algorithm, and 

the PMI-based algorithm is slightly better than the spectrogram-based algorithm. Moreover, 

realizing SCA-based algorithm is more convenient than the other two algorithms. The tools used 

to calculate the PMI-based distance and spectrogram-based distance require the tedious 

preparation of pre-processing the data, and it is complicated to use those tools is complicated since 

they are based on a non-popular platform. In contrast, SCA-based distance is released by a Python 

library, which is efficient, and the pre-processing of data is straightforward. The convenience of 
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calculating SCA-based distance is beneficial to the development of an application for loanwords 

detection. In conclusion, the result shows that it is feasible to apply Levenshtein distance to 

represent the sound distance between two words written in phonetic transcriptions, and it is 

effective to apply the sound distance between words for loanword detection between two unrelated 

languages. Amongst the algorithms investigated in this dissertation, applying the SCA-based 

algorithm is appropriate to detect loanwords, and it outperforms algorithms and methods (such as 

ancestral state reconstruction (Köllner & Dellert, 2016) and string similarity (Mi et al., 2014)) used 

in previous studies as well.   

Each pair of words is assigned a distance value representing the sound distance between the words 

in a pair. The model introduced in this dissertation classifies the loanwords by an empirically 

determined threshold. In other words, if the distance value of a pair is lower than the threshold, the 

pair is classified as containing loanword, otherwise, it is not. Determining an appropriate threshold 

is core to classifying loanwords. Using the “200 potential thresholds” method we are able to find 

the best threshold which leads to the highest F1 score. The pitfall is that the computational expense 

is high since the model needs to be run for 200 times.  

In practice, the search for the best thresholds from the potential thresholds can be terminated as 

soon as the F1 score begins to decline because there is only one extremum in the line of the F1 

score. “Only one extremum” implies that the highest value before value declines is the highest 

value globally. Obviously, early termination of the investigation of potential thresholds reduces 

the cost of computation. An alternative method is simply to use lower outlier boundary as a 

threshold. Although the best performance may not be reached, the computational expense is 

reduced significantly. It is notable that the F1 score is not the only indicator of reflecting the 

performance because the highest F1 score is not always desired. High precision may be desired if 

incorrect detection is not tolerated, while high recall may be desired if it is required to detect more 

loanwords. Therefore, using F1 score as an indicator of performance is not always appropriate.  

It is possible that the pronunciation of word w1 from language A is similar to the pronunciation of 

word w2 from language B, but neither w1 nor w2 is a loanword. For instance, the comparison 

section above shows that all the pairs of some words are expertly classified as “not loanword”, but 

they are predicted as loanwords whatever algorithm is used. The concept “I” is mainly pronounced 

as /mʲen/ in Turkic family, and /man/ in the Indo-Iranian family. These two pronunciations are not 

cognates. However, their pronunciation is similar enough that the models developed by all the 

three algorithms classify this pair containing a loanword (Table 10). 

 Distance  Lower outlier boundary  Best threshold  

PMI 0.0106 0.0193 0.021 

Barkfilter 0.7628 0.71 2.1381 

SCA 0.04 0.22595 0.297 
Table 35. The distance between /mʲen/ (Turkic family) and /man/ (Indo-Iranian family) generated from the three 

algorithms. Comparing with the respective lower outlier boundary and best threshold, the distances are lower or a 

little higher than lower outlier boundary. Hence, /mʲen/ and /man/ have similar pronunciation.) 

If a pair of words are not cognates but share similar pronunciation and meaning, they are called 

false cognates. Examples of false cognates are ‘saint’ (/sɛ/̃) in French and ‘聖 (sheng)’ (/ʂəŋ/) in 

Mandarin (meaning “saint”), ‘斬る (kiru)’ / kʲirɯ/ in Japanese and ‘kill’ /kɪl/ in English. The words 

representing the concept “I” in Turkic family and Indo-Iranian family are probably false cognates.  

https://en.wikipedia.org/wiki/Mid_central_vowel#Mid_central_unrounded_vowel
https://en.wikipedia.org/wiki/Mid_central_vowel#Mid_central_unrounded_vowel
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The existence of false cognates may influence the principal hypothesis of this dissertation. The 

result of applying the model introduced in this dissertation shows that there are only 48 pairs of 

words (accounting for less than 0.2% of the total pairs of words) are incorrectly detected as 

containing loanwords no matter which algorithm is used. Although detecting loanwords via the 

sound similarities between words is not always reliable, false cognates has little effect to the 

performance of the model due to their low proportion.  

A sensitive distance value is important to accurately represent the sound difference between words, 

and this is one of the reasons for applying the refined algorithm to calculate sound distance. 

However, the algorithms used in this experiment are not perfect. For instance, the sound samples 

used in the spectrogram-based algorithm for extracting acoustic features may not be representative, 

meaning that the data might fail to reflect the acoustic features of pronunciation in at least some 

languages.  

As for PMI-based algorithm, the PMI of two segments is influenced by the dataset itself because 

the calculation of PMI depends on the available data. The performance of the algorithm in 

loanword detection may be worse than the cross validation result. The pitfall of the algorithms 

may influence the performance of the algorithm in loanwords detection.  

For the purpose of loanword detection, these algorithms can be improved in future study. For 

instance, the sound samples used in the spectrogram-based algorithm might be collected by other 

people with different mother tongue so that the bias to certain accents is diminished.   

It is possible that the performance of these algorithms in loanword detection could vary if evaluated 

on similar data of other languages instead of languages in Central Asia. Applying the model to 

other languages would be useful in order to examine the universality of the model. Besides, the 

evaluation of the performance of the refined edit distance algorithms in loanword detection would 

be more convincing. Moreover, an application can be developed properly for loanword detection 

between two unrelated languages, for instance an application with user-friendly interface. Such an 

application would be useful for the studies in historical linguistics.  
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Appendix I 

List of concepts from the extended Swadesh list in the data used in this dissertation.  

one rope to think rain round 

two skin to smell river sharp 

three meat to fear lake dull 

four blood to sleep sea smooth 

five bone to live salt wet 

big fat to die stone dry 

long egg to kill sand correct 

wide horn to fight dust near 

thick tail to hunt earth far 

heavy feather to hit cloud right 

small hair to cut fog left 

short head to pull sky name 

narrow ear to scratch wind I 

thin eye to dig snow you 

woman nose to swim ice he 

man mouth to fly smoke we 

person tooth to walk fire you 

child tongue to come ashes they 

wife nail to lie to burn who ? 

husband leg to sit road what ? 

mother knee to stand mountain where ? 

father hand to turn red when ? 

animal wing to fall green how ? 

fish belly to give yellow not 

bird neck to hold white other 

dog back to squeeze black  

louse breast to wash night  

butterfly heart to wipe day  

snake liver to pull year  

worm to drink to throw autumn  

tree to eat to tie warm  

forest to bite to sew cold  

stick to suck to say full  

fruit to spit to sing new  

seed to blow to play old  

leaf to breathe to freeze good  

root to laugh sun bad  

bark to see moon rotten  

flower to hear star dirty  

grass to know water straight  

 


