

A More Sensitive Edit-Distance for Measuring Pronunciation Distances and Detecting

Loanwords

Master’s Thesis, MSc Languages Communication Technology,

Faculty of Arts,

University of Groningen,

The Netherlands

Faculty of Information and Communication Technology,

University of Malta,

Malta

19th January 2018

Liqin Zhang

Email: l.zhang.13@student.rug.nl

Supervisor/university:

Prof. Dr. John Nerbonne

University of Groningen

Co-assessor/university:

Prof. Ray Fabri

University of Malta

mailto:l.zhang.13@student.rug.nl

TABLE OF CONTENTS

1. INTRODUCTION .. 1

1.1 Linguistic Background .. 3

1.2 Related Work .. 4

2. METHODOLOGY ... 6

2.1 Overall Design of the Experiment ... 6

2.2 Algorithms... 8

2.3 Data ... 11

3. PMI-BASED LEVENSHTEIN ALGORITHM FOR MEASURING SOUND DISTANCE .. 12

3.1 Introduction to PMI-based Levenshtein Algorithm ... 13

3.2 Realizing PMI-based Levenshtein Algorithm ... 14

3.3 Results and Evaluation .. 20

3.3.1 Determining the Threshold .. 21

3.3.2 Cross Validation .. 24

3.4 Discussion ... 25

4. SPECTROGRAM-BASED LEVENSHTEIN ALGORITHM FOR MEASURING SOUND DISTANCE 26

4.1 Introduction to Spectrogram-based Levenshtein Algorithm ... 28

4.1.1 Barkfilter, Cochleagram, and Formant Tracks .. 28

4.1.2. Measuring Segment Distances Acoustically ... 30

4.1.3 Applying Segments Distance to the Levenshtein Algorithm ... 31

4.2 Realizing Spectrogram-based Levenshtein Distance... 31

4.3 Result and Evaluation .. 34

4.4 Cross Validation .. 36

4.5 Discussion ... 36

5. SCA SOUND ALGORITHM FOR MEASURING SOUND DISTANCE ... 37

5.1 Introduction to the SCA Sound Distance Algorithm ... 37

5.1.1 Alignment- introduction to PSA ... 38

5.1.2 Distance- ALINE Algorithm and its Modification .. 40

5.2 Realizing SCA Sound Distance Algorithm ... 41

5.3 Result and Evaluation .. 43

5.3.1 Determining Threshold .. 44

5.3.2 Cross Validation .. 44

5.4 Discussion ... 45

6. COMPARISON OF THE THREE ALGORITHMS ... 45

6.1 Comparing Performances .. 45

6.1.1 Thresholds and Performances ... 45

6.1.2 Determining Threshold Using Lover Outlier Boundary .. 48

6.1.3 Cross Validation .. 49

6.2 Comparing Distribution of Distance Values ... 50

6.3 Comparing Results of Detected Loanwords .. 51

6.3.1 Result Analysis ... 51

7. CONCLUSION ... 54

BIBILOGRAPHY ... 56

ABSTRACT

Loanwords exist in almost every language. Identifying loanwords manually is time-consuming.

Previous studies present the possibility of detecting loanwords by comparing the similarity of

pronunciation, or pronunciation distance, between words from two unrelated languages. The

principal hypothesis is that, if a pair of words is made up of a loanword and its source in another

language, the pronunciation distance between these two words should be significantly smaller than

another pair that does not consist a loanword. The pronunciation distance is measurable by the edit

distance. The Levenshtein algorithm is one of the main algorithms to calculate an edit distance. In

order to accurately represent the pronunciation distance, a more sensitive edit distance for

measuring pronunciation distance is desired. There are various refined Levenshtein algorithms

which are implemented for sound-sensitive edit distance. The purpose of this dissertation is to

apply three refined Levenshtein algorithms to calculate the pronunciation distance and discover a

more advanced algorithm for loanword detection. The three refined Levenshtein algorithms

calculate sound distances by respectively considering pointwise mutual information (PMI)

between segments, measurements extracted from Spectrogram, and sound class alignment (SCA)

between strings. The performances of each refined Levenshtein algorithm in loanword detection

are compared. Their performances are evaluated by precision/recall analysis as well as cross

validation. As a result, applying SCA-based algorithm outperforms the other two algorithms

according to the evaluations.

1

1. INTRODUCTION

A loanword is a word that is borrowed from one language and adopted in another. To support the

development of computational applications in linguistics, a more convenient and well-performing

loanword detection model is desirable. Loanword detection has been studied using various

methods, such as the phylogenetic method (Delz, 2013), ancestral state reconstruction (Köllner &

Dellert, 2016), and the comparison of pronunciation distances (van der Ark et al., 2007; Mennecier

et al., 2016). Distinguishing from previous research involving comparing pronunciation distances,

this study aims to apply superior edit distance algorithms with more sensitive pronunciation

distances for the purpose of loanword detection. This study aims at detecting loanwords within the

Turkic and the Indo-Iranian language families with three refined edit distance algorithms, whose

performances are compared with each other. The measurement of the sound distance between two

words is decisive in detecting loanwords. The principal hypothesis is that the pronunciation

distance between a loanword and the corresponding borrowed word should be significantly smaller

than the distance between two words that do not have such relation (Van der Ark et al., 2007; Mi

et al., 2014; Mennecier et al., 2016). Generally, if a word Wa in a language A shares the same

concept represented as Wb in language B, either Wa or Wb is probably a loanword given:

1. Wa and Wb are phonologically similar;

2. Language A and language B are unrelated.

For Rule 1, “phonologically similar” means that the pronunciations of two words are similar. The

similarity is described by a sound distance between two words. If the sound distance between two

words is small, the two words are defined as “phonologically similar”. But how small should the

sound distance be to define a loanword? The threshold for determining a loanword is decided by

comparing the predicted loanwords against a gold standard in which loanwords are classified by

experts. Rule 2 indicates that it is inappropriate to identify Wa and Wb as loanwords if language A

and language B are closely related. Dutch and German, for instance, share numerous words with

similar pronunciations. This is probably the result of genealogical relatedness since they are both

Germanic languages and geographical neighbors. Hence, identifying loanwords merely by

considering sound similarity is not sensible in this case.

The data used in this study was collected by Mennecier et al. (2016). The pronunciations of the

words in the Turkic and Indo-Iranian language family representing concepts from the Swadesh list

are included in the data. Swadesh list is a list containing approximately 200 concepts that are

argued to exist in all languages (Swadesh, 1955; Swadesh, 1972). The pronunciations are written

in phonetic transcriptions. For instance, the concept ‘one’ is written as /bɪr/ and /jak/, concept ‘big’

as /ʉlkɪn/ and /kalɔn/, in the Turkic and Indo-Iranian language families respectively. The data

records numerous phonetic transcriptions representing a concept in both families because of the

various languages in a language family, and potential variety of the pronunciations in a language.

The loanword is detected by comparing phonetic transcriptions in the Turkic family against

phonetic transcriptions in the Indo-Iranian family. According to the principal hypothesis, one of

the phonetic transcriptions in a pair of transcriptions is a loanword if their pronunciations are

similar enough.

The Levenshtein algorithm is successfully applied in calculating the differences between word

pronunciations (Heeringa, 2004). The distance between two strings is called the Levenshtein

distance if the Levenshtein algorithm is applied. The pronunciation distance between two words

2

is represented by the edit distance between the two phonetic transcriptions. The pitfall of applying

the Levenshtein distance directly to represent pronunciation distance is that it fails to reflect the

actual “dissimilarity” between two pronunciations. For instance, the sound distance between /dɔɡ/

and /dɒt/ is two, while between /dɔɡ/ and /dɪɡ/ is one if the Levenshtein distance is applied. But

/dɔɡ/ is more similar to /dɒt/ than to /dɪɡ/ according to human perception. Hence, refined

Levenshtein algorithms are desirable for the purpose of representing sound distance.

Although a simple Levenshtein distance can be used in loanword detection, the performance is not

satisfactory because of the error rate (Van den Ark et al., 2007; Mennecier et al., 2016). The edit

distance of phonetic transcriptions between two words is decisive in loanword detection, and

applying different (or refined) edit distance algorithms should lead to different results. In order to

explore the possibility of improving the performance in loanword detection, three refined

Levenshtein algorithms are evaluated in the application of loanwords detection. They are the

pointwise-mutual-information-based algorithm (Wieling et al., 2009), the Spectrogram-based

algorithm (Heerigna, 2004), and the sound-classes-based algorithm (List, 2012).

These algorithms have been applied in various areas, including dialectometry, accent measurement,

and language relatedness (Wieling & Nerbonne, 2015; Wieling et al., 2014; Mennecier et al., 2016).

Hence, the purpose of this experiment is to compare the performances of above-mentioned

algorithms in the application of loanword detection. It should be noticed that this method cannot

be used to identify the donor language (the language that “gives” the word) because the distance

between two pronunciations is not directed. Also, the method fails to determine if a third language

is involved, since there is a possibility that a detected loanword is a cognate from a third language

rather than one of these two. For instance, the English word ‘tofu’ is borrowed from Japanese, but

the Japanese word originates from Chinese (Table 1).

 Word Pronunciation in IPA

English tofu /'təʊfuː/

Japanese とうふ /to̞ːɸɯᵝ/

Chinese 豆腐 /toufu/

Table 1. The concept "tofu" written in English, Japanese, and Chinese, and their respect pronunciation.

It is possible to detect that one of the three words representing the concept “tofu” is a loanword

when any two of these three languages are compared, but it is impossible to determine the donor

language of this word and identify the origin of ‘tofu’ without considering the related facts about

tofu.

The description of the linguistic background is below in this chapter. This is followed by a

discussion of related works in loanword detection, as well as works in which refined Levenshtein

algorithms are applied to calculate sound distances and other purposes. The second chapter,

methodology, starts with the overall design of the experiment. The data used in this project is

explained in the methodology section as well. The last part in the methodology chapter briefly

introduces the algorithms used in this project, as well as the fundamental Levenshtein algorithm.

The following three chapters explain the three refined algorithms in detail, along with their

realization and performance in loanword detection. Results, evaluations, and simple discussions

are included in these three chapters. Finally, there is a chapter for comparing the performances of

the algorithms, and the conclusions of the project.

3

Before going further, here are several terms used in this dissertation. They are explained for the

sake of clarity.

 Concepts: the concepts of word meanings in different languages. For instance, /mɔdar/ and

/ɔna/ are pronunciations in Uzbek and Tajik, respectively, and they both mean ‘mother’.

Here, ‘mother’ is the concept. The concepts are in English in the dataset used in this

experiment.

 Segment: a phonetic unit such as /a/, /ɔ/, or /p/.

 Phonetic symbol: is a symbol belonging to the International Phonetic Alphabet (IPA). IPA

symbols are used to represent the pronunciation of phonetic segments.

 Phonetic transcription: the representation of word pronunciation. A phonetic transcription

is a sequence of phonetic symbols (/mɔdar/ is a phonetic transcription for instance).

 Segment distance: the distance between two phonetic symbols according to various

features, such as phonological features, phonetic features, or acoustic features (intensity,

frequency, etc.).

1.1 Linguistic Background

A loanword is a word borrowed from one language and adopted in another. Borrowing words is a

common phenomenon in a language, and probably loanwords exist in every language in the world

(Haspelmath & Tadmor, 2009). In distinction to similar concepts such as calque and code-

switching, a loanword is the result of phonological adaptation rather than semantical adaptation

(translation) or direct borrowing. A loanword is adapted phonologically in order to fit the

phonological pattern in the recipient language (Peperkamp & Dupoux, 2003). Here is a sentence

in Cantonese containing a loanword, a calque, and code-switching.

我 book 咗 巴士 去 跳蚤 市場 (Character)

Ngo5 zo2 baa1 si2 heoi3 tiu3 sat1 si5 coeng4 (Jyutping)

/ŋɔː/ /bʊk/ /t͡ sɔː/ /pa:siː/ /hɵy̯/ /tʰiːu̯sɐd/ /si:tsʰ œːŋ̩/ (IPA)

I book (perfective) bus Go flea market (English)

‘I have booked a bus to flea market.’

‘巴士’ is a loanword from English ‘bus’. ‘跳蚤市场’ is a calque, which is the result of literal

translation of ‘flea’ (‘跳蚤’) and ‘market’ (‘市场’). The verb ‘book’ is code-switch using English

‘book’ (as a verb) in the Cantonese sentence directly. The example of concept ‘bus’ in Cantonese

shows that the loanword is similar to the original word phonologically without semantic adoption

(/pa:siː/ in Cantonese vs. /bʌs/ in English), since neither the meaning of /pa:/ (巴) nor /si:/ (士) is

related to bus1. Hence, the phonological similarity is a feature of loanword, and the loanword is

“highly predictable from a phonological perspective” (Paradis & LaCharité, 1997). This feature

supports the principal hypothesis of the project mentioned above.

1 An example of loanwords in Cantonese with both phonological and semantic adaptation is “啤酒”, meaning “beer”

in English. In this case, “啤” (/pɛː/) is the phonological adaptation of /bɪə/ (beer), and “酒” (/tsou/) means alcohol.

4

Necessity of loanword detection

Language contact is one of the main concerns in historical linguistics, and it reflects the

interactions between language and ethnic groups. Loanwords arise as a consequence of language

contact, and the study of loanwords contributes to the understanding of language history and word

origin. Besides, the loanwords can influence a recipient language in various aspects, such as syntax,

morphology, phonology and writing system. Maltese is a typical example reflecting how the study

of loanwords is beneficial to the study of a language’s development.

Maltese originated from Siculo-Arabic in the 11th century when settlers from Sicily moved to

Malta. After expelling the Muslims in the 13th century, Maltese was separated from Arabic and it

became an isolated language. It has developed along with Sicilian and Italian since then. From the

colonization of Britain in the 19th century until now, Maltese had been influenced greatly by

English. Consequently, over 50% of the vocabulary in Maltese are derived from either Italian,

Sicilian, or English.

The many loanwords influence the language in various aspects. For instance, new sounds are

introduced to Maltese. “televiżjoni” is a loanword from English “television”, and /ʒ/ is introduced

in Maltese phonology system through the borrowing of the word ‘television’. The writing system

is influenced as well. Controversy has been raised arguing whether Maltese spelling, “televiżjoni”,

or English spelling, “television” should be used in Maltese. Meanwhile, loanwords influence the

syntax of a language. The Maltese word of “to park” is “ipparkja” which is borrowed from English

“park”. A new rule is designed to include English verbs in Maltese by adding prefix “ip-” and

suffix “-ja”, which is different from the morphology rule applied to Maltese verbs. The syntactic

adoption and the phonology adoption mentioned above lead to decreasing similarity between a

loanword in the recipient language and the corresponding borrowed word in the donor language

with time.

To a great extent, the development of Maltese involves borrowing words from other languages,

and the loanwords have been an important component of Maltese. Therefore, Maltese speakers

probably fail to distinguish loanwords from original Maltese words. On the other hand, it is

controversial to classify a loanword if the word has been part of a language for a long period.

Loanword detection is one of the most important steps to study the phenomenon and solve these

problems.

Loanwords can be detected manually, but it is time-consuming and occasionally controversial. A

more efficient method to detect loanword is desired. Hence, there is no doubt that applying a

computational approach can be effective and efficient to detect loanwords.

1.2 Related Work

This dissertation involves mainly three aspects: loanword detection, sound distances derived from

Levenshtein algorithms, and the application of sound distance derived from Levenshtein algorithm

to the loanword detection. Previous works on the topics of loanword detection, applying (refined)

Levenshtein algorithms to calculate sound distances, and applying sound distances to loanword

detection are investigated here.

5

Previous work on applying sound distance to loanword detection

Van den Ark et al. (2007) calculate sound distances with a VC-sensitive Levenshtein algorithm in

which the cost of substituting a vowel for a consonant (or vice versa) is higher than a vowel for a

vowel (or a consonant for a consonant). Their work aims to classify groups of the languages in

Central Asia and detect loanwords. In terms of loanword detection, the result shows that using

Levenshtein distance for loanword detection is not perfect due to the tradeoff of precision and

recall. Another work in which sound distance is applied is conducted by Mennecier et al. (2016),

in which pronunciations of central Asian languages are collected and applied to measure language

relatedness and loanword detection. It applies the same method as that in van den Ark et al. (2007)

to detect loanwords. Comparing to the work of van den Ark et al. (2007), the data used by

Mennecier et al. (2016) is more suitable for loanword detection (the dataset is also used in this

dissertation and will be discussed in the later section). However, the results show that there is room

for improvement. Around 30%-50% of the loans fail to be detected.

Previous works on loanword detection not applying sound distance

Various approaches are used to detect loanwords. One approach to detect loanword is to apply

ancestral state reconstruction. State reconstruction is used in phylogenetics, and it aims to find the

common ancestors of individuals. Köllner & Dellert (2016) apply this method to trace the cognates

of words in order to discover the words sharing identical cognates so that loanwords are detected.

The assumption is that, “if a cognate class is reconstructed for some node v, but a different class

is reconstructed for its immediate ancestor”, “all leaves under v are possibly having undergone

borrowing”. The algorithm is tested on the database of Indo-European Lexical Cognacy Database,

and it is a database of cognate judgments in the Indo-European languages. The performance is not

ideal due to several limitations, such as the size of the database, the failure of detecting borrowing

outside the language sample, etc.

Besides above mentioned approaches, Mi et al., (2014) utilize the string similarity to represent

pronunciation similarity to detect Chinese and Russian loanwords in Uyghur. The approach is

based on the idea that a loan word shares similar pronunciation with the corresponding word from

the donor language. This principle is applied by van den Ark et al. (2007) and Mennecier et al.

(2016). The difference is that Mi et al. (2014) use string similarity to represent the similarity of

pronunciation. There are two major challenges to use string similarity to detect loanwords. One is

the change of spelling, and the other one is suffixes of Uyghur words. Mi et al. (2014) apply

characters alignment to solve the problem of the change of spelling, and classification-based

models to solve the later. The application of these two methods enables Mi et al. (2014) to measure

the string similarity between two words, and a loanword is identified on a given threshold. Mi et

al. (2014) apply different string similarity algorithms to compare the performances of them on

loanword detection. The method is evaluated by a corpus introduced by Mi et al. (2014). The

corpus is trained from city names mapping table, and the test set includes materials from web. The

result is considered as “efficiently” with the highest F1 score 73.18 for detecting Chinese

loanwords, and 76.93 for detecting Russian loanwords.

6

Previous work on sound distance

Sound distances between words have been utilized in different linguistic topics for years, and the

Levenshtein algorithm is the main algorithm to calculate sound distance. Moreover, refined

algorithms have been introduced in order to provide more sensitive sound distance measurement.

This method has been commonly used in the study of dialects, including relatedness and

classification (Nerbonne et al., 1996; Nerbonne et al., 1999; Nerbonne & Kretzschmar, 2003;

Heeringa, 2004). Van der Ark et al. (2007) apply the Levenshtein algorithm to obtain sound

distances for language classifications instead of dialect classification. Also, a refined Levenshtein

algorithm is applied to measure foreign accents strength (Wieling et al., 2014).

Conclusion

Loanword detection has been pursued by previous studies, but there are plenty of rooms for

improvements upon the previous studies. Comparing the above mentioned works, the approaches

used by Köllner & Dellert (2016) and Mi et al. (2014) to detect loanwords might not be as effective

as applying sound distance. The work of Köllner & Dellert (2016) has shown that the performance

of applying ancestral state reconstruction to detect loanword is not good. On one hand, the success

of applying ancestral state reconstruction for loanword detection highly rely on the accuracy of the

expert notations in the database. On the other hand, Köllner & Dellert (2016) states that purely

considering cognate class is not sufficient to detect loanwords. Hence, considering phonological

representations instead of cognate class is encourage by Köllner & Dellert (2016). In the case of

Mi et al. (2014), using the phonetic transcriptions of the words might be more representative of

the pronunciations of the words than strings. In other words, calculating the sound distance directly

from the phonetic transcriptions is more accurate than string similarity used by Mi et al. (2014).

Van der Ark et al. (2007) and Mennecier et al. (2016) apply Levenshtein algorithm to calculate the

sound distance between words to detect loanwords. However, loanword detection is not the

primary purpose of applying Levenshtein algorithms to measure sound distances in these two

studies. Moreover, the performance of applying the original Levenshtein algorithm is not

satisfactory, even when taking care to avoid aligning vowels and consonants. Since more refined

algorithms have not been applied to loanword detection yet, the purpose of this dissertation is to

explore the possible improvement of applying refined Levenshtein algorithms. Nevertheless,

Mennecier et al. (2016) state that the Levenshtein algorithm has no bias to words in one language

group. Meanwhile, Mennecier et al. (2016) suggest applying more sensitive measurements of

sound distances in loanword detection.

2. METHODOLOGY

2.1 Overall Design of the Experiment

The data used in this experiment consists of phonetic transcriptions of words from various

locations in Central Asia. The concepts underlying these words are from the Swadesh list, a list

containing approximately 200 concepts that are argued to exist in all languages. The data are from

7

two language families, Turkic and Indo-Iranian. This experiment aims at comparing the

performances of three edit distance algorithms in detecting loanwords between these two language

families. There is more than one pronunciation per word per language family because there are

various languages in a language family and various recordings of multiple informants at each data

collection site. The pronunciation of every word of every informant in Turkic family is compared

to every pronunciation in the Indo-Iranian family. The sound distance between two pronunciations

from either language family is calculated by three different algorithms. For each algorithm, a list

of tuples is generated containing the information of concept, the distance value, and a pair of

phonetic transcriptions (Table 2). To generalize, the pairs of pronunciations of words for a concept,

𝑐, is represented as:

(𝑡1, 𝑖1) , (𝑡1, 𝑖2), … , (𝑡1, 𝑖𝑛−1) , (𝑡1, 𝑖𝑛), (𝑡2, 𝑖1), … , (𝑡𝑚−1, 𝑖1), (𝑡𝑚−1, 𝑖2), … , (𝑡𝑚, 𝑖𝑛−1), (𝑡𝑚, 𝑖𝑛)

Given:

𝑡: Phonetic transcription of the word for 𝑐 in the Turkic family;

𝑚: The number of phonetic transcriptions of the words for 𝑐 in the Turkic family;

𝑖: Phonetic transcription of the word for 𝑐 in the Indo-Iranian family.

𝑛: The number of phonetic transcriptions of the words for 𝑐 in the Indo-Iranian family.

Hence, a generated tuple is represented as:

(𝑐, distance(𝑡𝑥, 𝑖𝑦), 𝑡𝑥, 𝑖𝑦) 𝑥 ∈ 𝑚, 𝑦 ∈ 𝑛

A loanword is detected when the sound distance between two words is smaller than a given

threshold. Finally, the results are compared to the gold standard. The gold standard is part of the

dataset used in this dissertation. An expert marks the origin of the words with a code in the dataset.

Within one concept, if a word from the Turkic family and a word from the Indo-Iranian family

share the same code, it means that one of the words is loaned from the other. Precision/recall and

F1 score are used to evaluate the performance of an algorithm used to detect loanwords. Three

algorithms are applied to calculate the sound distance. Therefore, there are three groups of

precision/recall and F1 score values. The performances of these three algorithms are evaluated by

comparing their respective evaluation values. In order to evaluate the robustness of algorithms

dealing with independent data, cross validation is applied.

8

('animal', '0.0273098', 'ʒanwar', 'hajvɔn')

('animal', '0.0277859', 'ʒanwar', 'hajβɔn')

('animal', '0.0228481', 'ʒanwar', 'hajwɔn')

('animal', '0.0312264', 'ʒanwar', 'zindene')

…

('animal', '0.00959365', 'hajwan', 'hajvɔn')

('animal', '0.0100698', 'hajwan', 'hajβɔn')

('animal', '0.005132', 'hajwan', 'hajwɔn')

('animal', '0.0309691', 'hajwan', 'zindene')

…

('back', '0.0362989', 'arqa', 'puʃt')

('back', '0.0346792', 'arqa', 'mijʊn')

('back', '0.0364408', 'arqa', 'pəʃt')

('back', '0.0342844', 'arqa', 'mijɔn')

…
Table 2. An example of results when applying the PMI-based algorithms to calculate edit distance.

2.2 Algorithms

The Levenshtein algorithm is the basis of the refined algorithms used in this dissertation. The

Levenshtein distance is a popular algorithm to measure the edit distance between two strings as

well as determine the alignment (Levenshtein, 1965). The edit distance between two strings is

represented by the minimal operations to transform one string to another. There are three different

operations: insertions, deletions, and substitutions in the simplest version of the algorithm. Each

operation is assigned a cost of 1. The algorithm proceeds as follows. A matrix is created, with the

source string being placed in the column vertically, and the target string placed in the row

horizontally (Table 2). An extra symbol ‘#’ in added in the first place of each string. Denote s1 as

the source string with a length of m, s2 as the target string with a length of n, i as an index in s1, j

as an index in s2, and d[i,j] as a cell in the matrix. d[i,j] represents the string distance between sub-

string of s1 from 0 to the ith character, and sub-string of s2 from 0 to the jth character. In the first

row (d[0,j], as j is 0 to n) and first column (d[i,0], as i=0 to m) of the matrix, fill in the integer from

0 to n, and 0 to m, respectively. For each value of d[i,j] (as i=1..m, j=1..n), it is equal to the

minimum value of the values adjacent, or diagonal to it (specifically d[i-1,j], d[i,j-1], and d[i-1,j-

1]), plus the substitution cost. Substitution cost is 0 if s1[i]=s2[j], otherwise it is 1. This procedure

iterates until the matrix is completely filled. The value in the right bottom corner (d[m,n]) is the

Levenshtein distance between these two strings. Tracing back to the path leading to the

Levenshtein distance in d[m,n] can extract the alignment of the strings as well as the operations

used to obtain the result. The pseudo-code for realizing Levenshtein algorithm is presented in Code

1.

9

function LevenshteinDistance(string s1, string s2):

 #This function shows the transfer from s1 to s2

 m=len(s1)

 n=len(s2)

 #Define a table d[i,j] with a size of (m+1)X(n+1).

 for i from 0 to m:

 for j from 0 to n:

 #d[i,j]represents the distance between string s1[:i] and string s2[:j].

 declare int (d[i,j])

 for i from 0 to m:

 d[i,0]:=i

 for j from 0 to n:

 d[0,j]:=j

 for j from 1 to n:

 for i from 1 to m:

 if s[i]=s[j]:

 sub_cost:=0

 else:

 sub_cost:=1

 d[i,j]:=min(d[i-1,j]+1, #deletion

 d[i,j-1]+1, #insertion

 d[i-1,j-1]+sub_cost) #subsitution

 return d[m,n]

Code 1. Pseudo-code for Levenshtein algorithm.

The following example shows the application of Levenshtein distance on an IPA transcription

(Table 3). In this example, it takes at least three operations to transform “/mɔdar/” to “/ɔna/”

(deleting [m], replacing [d] by [n], and deleting [r], yielding the alignment shown as below). Hence,

the edit distance between /mɔdar/ to /ɔna/ is 3. The algorithm guarantees that the minimal-cost

alignment is found.

 # ɔ n a

0 1 2 3

m 1 1 2 3

ɔ 2 1 2 3

d 3 2 2 3

a 4 3 3 2

r 5 4 4 3
Table 3. Applying the Levenshtein algorithm to transform phonetic transcript /mɔdar/ (“mother” in Tajik) to /ɔna/

(“mother” in Uzbek). The gray boxes in the table indicate the path of transformation from one string to the other.

Obviously, the Levenshtein distance fails to reflect the pronunciation distance between two words

in fine detail. For example, the Levenshtein distance between /modar/ and /mɔdar/ is the same as

the Levenshtein distance between /modar/ and /mʊdar/. However, the pronunciation of /modar/ is

more similar to /mɔdar/ than to /mʊdar/ in people’s perception. The cost of substituting /o/ for /ɔ/

should be smaller than the cost of substituting it for /ʊ/. Hence, it is necessary to modify operation

cost in Levenshtein algorithms so that a more sensitive edit distance can be applied to measure

pronunciation distance. The refined algorithms used in this project change the cost of the

m ɔ d a r

 ɔ n a

1 0 1 0 1

10

operations in Levenshtein algorithms by considering various aspects related to pronunciation

measurement. For instance, Heeringa (2004) proposed a VC-sensitive2 Levenshtein algorithm,

which avoids the substitution between vowel and consonant. This is realized by increasing the

substitution cost between vowel and consonant to 2, for instance (Code 2).

#This function is used to check if two characters are both vowels or

#consonants.

function check_vowel_consonant(character a, character b):

 if both a and b are vowels or both a and b are consonants:

 return True

 else:

 return False

function LevenshteinDistance(string s1, string s2):

 #This function shows the transfer from s1 to s2

 m=len(s1)

 n=len(s2)

 #Define a table d[i,j] with a size of (m+1)X(n+1).

 for i from 0 to m:

 for j from 0 to n:

 #d[i,j]represents the distance between string s1[:i] and string s2[:j].

 declare int (d[i,j])

 for i from 0 to m:

 d[i,0]:=i

 for j from 0 to n:

 d[0,j]:=j

 for j from 1 to n:

 for i from 1 to m:

 if s[i]=s[j]:

 sub_cost:=0

 else if check_vowel_consonant(s[i],s[j])==True:

 sub_cost:=1

 else:

 sub_cost:=2

 d[i,j]:=min(d[i-1,j]+1, #deletion

 d[i,j-1]+1, #insertion

 d[i-1,j-1]+sub_cost) #subsitution

 return d[m,n]

Code 2. Pseudo-code for VC-sensitive Levenshtein algorithm.

The VC-sensitive Levenshtein algorithm needs improvement. The example of /modar/, /mɔdar/,

and /mʊdar/ shows that the substitution of vowels for vowels should be discriminated more finely.

This is the reason a more sensitive sound distance algorithm that explores more features must be

used. Heeringa (2004) utilizes spectrograms to reflect phonetic and acoustic features which are

applied to measure segment distance, and other variants are motivated in similar ways.

2 VC-sensitive means vowel and consonant sensitive.

11

The substitution cost in the Levenshtein algorithm is 1, but the refinements vary the substitution

costs instead of always using one. Actually, insertion or deletion is considered a substitution

between a segment and an empty segment. Basically, the substitution cost is decided according to

the segment distance between two segments involved in the substitution. They are summarized as

follow:

 PMI-based Levenshtein algorithm (Wieling et al., 2009): the segment distance is decided

by pointwise mutual information (PMI) value between two segments. The PMI value

depends on the strength of co-occurrence of two segments in a corpus of alignments.

 Spectrogram-based Levenshtein algorithm (Heeringa, 2004): the segment distance is

decided by the acoustic features of those segments. Acoustic features of a sound are related

to the intensity or loudness of various frequencies at a specific time, and these features are

normally visualized in a spectrogram.

 Sound-Class-Based Levenshtein algorithm (List, 2012): Segment distance is decided by

the “sound class” of segments. Sounds are grouped into different sound classes according

to specific phonetic and phonology theories. Segment distances vary according to the

substitution within or between sound classes.

2.3 Data

Mennecier et al. (2016) conducted a survey to explore the language variety of the Central Asian

region and utilized the data to measure the relatedness of languages and detect loanwords. The

data is documented and it is publicly available for the study of loanwords detection in this

experiment. The data was collected from 23 sites in three Central Asian countries, namely

Uzbekistan, Kyrgyzstan, and Tajikistan. These sites are regarded as displaying “complex human

and linguistic geography”. There are 88 informants and they are from the three countries. Generally,

the informants are males who are over 40 years old, for genetic testing reasons. Genetic testing is

a common strategy in collecting similar data. It allows tracing the linguistic history and genetic

signal of an informant to determine the common genetic history, the similarity of culture

(language), and the degree to which the two signals match. The mother tongues of these informants

are: Kazakh, Kyrgyz, Karakalpak, Uzbek, Tajik, and Yaghnobi. These languages are from two

language families, Turkic and Indo-Iranian. (Table 4). Besides their mother tongues, these

informants also understood Russian well since they all went to school during the times of the Union

of Soviet Socialist Republic (USSR).

A 200-word extended Swadesh list in Russian is shown to the informants and they are required to

translate the words in the list orally into their mother tongues. Each word in the Swadesh list

represents a concept. The pronunciations are digitally recorded and manually transformed into

phonetic transcription. In total, each informant produces 200 pronunciations, resulting in more

than 17000 recordings. There are approximately 88 phonetic transcriptions for a Russian word

representing a concept. Sometimes, the number of pronunciations for a word is lower than 88

because the data is not valid. For example, some informants did not pronounce the word related to

the concept properly.

12

Turkic Indo-Iranian

Kazakh

Kyrgyz

Karakalpak

Uzbek

Tajik

Yaghnobi

Table 4. The languages in the dataset and their classification in language families.

The expert classification is marked in the dataset as well. Within a concept, each pronunciation is

marked with a letter and the pronunciations with identical letters are considered cognates. Hence,

a word from the Turkic family (or the Indo-Iranian) bearing the same letter as another word in the

Indo-Iranian family (or the Turkic) means that one of the words is a loanword3. Notably, it is

common that pronunciations of a concept in one language family are assigned to different cognate

classes, because there are multiple languages in a language family, and informants may know

multiple ways to translate a Russian word representing a concept. In this dissertation, within one

concept, if a word from the Turkic family and a word from the Indo-Iranian family share the same

cognate, it means that one of the words is loaned from the other language. This is the gold standard

presented in the data.

The concepts in the Swadesh list include numbers, adjectives, nouns, verbs, and pronouns. It

should be noted that the order of the concepts in the data is arranged in a certain pattern. For

example, numbers come first in the list, and they are followed by commonly seen adjectives (such

as “big” and “long”). Appendix I is the list of the concepts in the data used in this dissertation.

3. PMI-BASED LEVENSHTEIN ALGORITHM FOR MEASURING SOUND DISTANCE

In terms of measuring sound distances, the original Levenshtein algorithms in which each

operation cost one is not entirely appropriate. The fact that it does not take specific features of

sounds into consideration results in a failure to provide sensitive sound distances. For instance, a

correct pairwise alignment of the phonetic transcriptions is one of the keys to generate sound

distance, but it is not guaranteed by using the original Levenshtein algorithm. Considering the

string /soʊfa/ and /ʂafa/, the pronunciations in English and Chinese, respectively for the word

‘sofa’. The Levenshtein algorithm leads to three different alignments:

All the edit distances of alignments are three if the operation cost is always one. However, it is

obvious that alignment A is not appropriate since /o/ aligns with /ʂ/. A slight modification (VC-

sensitive Levenshtein algorithm) is applied to forbid a vowel from being aligned to a consonant

by raising the cost of substitution between vowel and consonant, so that situation A can be avoided

(Heeringa, 2004). Unfortunately, this slight improvement fails to offer preference in case of

3 Normally, “cognate” is different from “loanword”. However, Mennecier et al. (2016) indicate that “cognate”

includes “borrowing” in this case because they use the word “cognate” loosely.

s o ʊ f a

 ʂ a f a

1 1 1 0 0

s o ʊ f a

ʂ a f a

1 1 1 0 0

s o ʊ f a

ʂ a f a

1 1 1 0 0

A B C

13

alignment B or C. Therefore, more features should be included to make a decision. In addition to

this VC-sensitive Levenshtein algorithm, Wieling et al. (2009) introduce pointwise mutual

information (PMI) as a segment weighting to generate edit distance between phonetic

transcriptions. The core of the algorithm is that the substitution cost is decided by PMI-based

segment distances rather than one. Further in this chapter include the introduction of this PMI-

based Levenshtein algorithm, followed by its implementation. The application of PMI-based

Levenshtein algorithm in the sound distance is explained in detail. Finally, the result and

evaluation of the algorithm are presented.

3.1 Introduction to PMI-based Levenshtein Algorithm

PMI (Church & Hanks, 1990) is used to measure the strength of the tendency of two objects to co-

occur. It is reflected by the probability of the co-occurrence of objects x and y (𝑝(𝑥, 𝑦)), and the

independent occurrence of x (𝑝(𝑥)) and y (𝑝(𝑥)) respectively, assuming x and y are independent.

PMI is defined as:

𝑃𝑀𝐼(𝑥, 𝑦) = log2(
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)

In the case of applying PMI to measure segment distance,

 𝑝(𝑥, 𝑦): the probability of segment x and segment y that are aligned together. It is estimated

by the number of times x and y that are aligned together divided by the total number of

aligned segment pairs in the dataset.

 𝑝(𝑥) or 𝑝(𝑦): the probability of segment x (or y) occurring. It is estimated by the number

of times x (or y) occurs divided by the total number of segments in the dataset. The

assumption is that x and y are independent.

A greater PMI value indicates more frequent co-occurrence of two segments. It is intuitive that a

more frequent co-occurrence of two segments reflects smaller segment distance between them. In

other words, a greater PMI value indicates a smaller segment distance as well as smaller edit cost.

Normalization is used to scale the PMI value to represent segment distance. The PMI values of

each segment pair are subtracted from the maximum PMI value so that the minimum segment

distance is 0 and the values can represent segment distance intuitively (Table 5). When substituting

one segment with the other, the substitution cost is the segment distance led by PMI value. The

operation of insertion and deletion can be regarded as special cases of substitution, which is

substituting an empty segment with a segment (insertion), or substituting a segment with an empty

segment (deletion).

Applying PMI values and segment distances extracted from it can lead to a more accurate

alignment and a more sensitive sound distance between two phonetic transcriptions. Wieling et al.

(2009) introduce the procedure to obtain the alignments with PMI values. The first step is to create

string alignments using the VC-sensitive Levenshtein algorithm. With these alignments, the PMI

values of each segment pairs are calculated and normalized to segment distance using the method

introduced above. The Levenshtein algorithm is applied again to generate new alignment pairs,

using the new segment distances as substitution cost. Iteratively calculating PMI values and

segment distances over the new alignment, and generating new alignments with new segment

14

distances can lead to better alignment coverage. This means that the procedure stops when

alignments remain unchanged.

Alignments

abcd dabc bdca dbac dbac dbac dabc dbac abcd cabd

acbb bcda dcab dcab badb dcab dcab acdb dcab dbca

(x,y) Nr(x,y) Nr(x) Nr(y) p(x,y) p(x) p(y) pmi(x,y) distance

(a,b) 3 20 22 0.075 0.25 0.275 0.125531 1.94847

(a,c) 5 20 19 0.125 0.25 0.2375 1.074001 1

(a,d) 4 20 19 0.1 0.25 0.2375 0.752072 1.321928

(b,c) 11 22 19 0.275 0.275 0.2375 2.074001 0

(b,d) 6 22 19 0.15 0.275 0.2375 1.199531 0.874469

(c,d) 1 19 19 0.025 0.2375 0.2375 -1.17393 3.247928
Table 5. Here is an example how PMI-base segment distances are calculated according to alignments. Assume a, b,

c, and d, are segments and the alignments of sequences containing these segments are shown in the top table

(alignment). The PMI values and related parameters that are needed to PMI values are presented in the table. In the

column of PMI, the greatest value is 2.07 for segment pair (b, c). Hence, the PMI value of each pair is subtracted

from 2.07, and the respective results are their distances. As a result, the smallest distance is always 0.

Consider again the example of “sofa” in English and Chinese, in order to determine a more suitable

alignment between alignment B and C, it is possible to utilize a PMI-based segment distances list

generated from a big data set. Initially, the substitution cost is always one in any circumstance.

Assume there is a dataset containing a list of English and Chinese words in phonetic transcriptions.

Applying the VC-sensitive algorithm can generate a list of word alignments from English and

Chinese, respectively. After that, PMI-based segment distances are calculated according to these

alignments. Applying the Levenshtein algorithm again with new segment distances generates new

word alignments. This procedure is iterated until the alignments remained unchanged.

Simultaneously a list of segment distances is generated as well. The segment distance between [a]

and [ʊ], and between [a] and [o] should be included. If the segment distance between [a] and [ʊ]

is smaller than [a] and [o], the substitution cost to use [a] to substitute [ʊ] is smaller than to

substitute [o]. In other words, alignment C should be the alignment of /soʊfa/ and /ʂafa/ because

the total cost of operation is smaller than alignment B. Code 3 is the pseudo-code presenting the

algorithm which results in the most appropriate alignment between two strings.

3.2 Realizing PMI-based Levenshtein Algorithm

This algorithm is implemented by utilizing the RuG/L04 tool developed by Peter Kleiweg from

the Groningen group4. RuG/L04 is designed for dialectometrics and cartography, and it has been

applied to derive pronunciation distances between sounds with the original Levenshtein algorithm

(Van Der Ark et al., 2007), as well as with the PMI-based Levenshtein Algorithm (Wieling et al.,

2014) in the previous studies. The procedure to utilize RuG/L04 to realize the PMI-based

4 http://www.let.rug.nl/~kleiweg/L04/

15

Levenshtein algorithm is based on the work of Wieling et al. (2014), in which they apply the

algorithm to measure foreign accents strength in English. Since RuG/L04 allows defining the

operation cost, the operation cost is defined by PMI values to realize the PMI-based Levenshtein

algorithm.

dataset=[string a, string b, string c, ...]
segment_list=[]

#Assign the strings in the dataset to a list called segment_list.

for string in dataset:
 for segment in string:
 segment_list.append(segment)
 end

end

#For all possible pair combinations of segments from segment_list, initialize

#the segment distance between segments in a pair as 1.

segment_pairs_table:= all possible segment pairs

for segment_pair in segment_pair_table:

 segment_distance_list[segment_pair]=1

string_pair_table := all possible combination in dataset
#alignment(X,Y) function is to generate alignment using Levenshtein

#algorithm.
#Argument X is a list of string pairs. Argument Y is a segment distance list

#indicating the substitution cost.
alignment_list=alignment(string_pair_table,segment_distance_list)

#PMI_based_segment_distance(X) function is to calculate the segment distance

#using PMI values.
#The argument X is a list of aligned strings.
segment_distance_list=PMI_based_segment_distance(alignment_list)

do:
 new_alignment_list=alignment(string_pair_list,segment_distance_list)
 segment_distance_list=PMI_based_segment_distance(new_alignment_list)
until:
 new_alignment_list doesn't change anymore.

Code 3. PMI-based Levenshtein algorithm for generating alignment between two strings.

In this dissertation, the two language families, Turkic and Indo-Iranian, play the role of “locations”

in RuG/L04. The various phonetic transcriptions under each concept in the dataset are considered

different “dialects” in each “location”. The purpose of this experiment is to identify loanwords at

the word level. A detected loanword is one of the phonetic transcriptions in a pair of phonetic

transcriptions. In other words, one of the words in the detected pairs is loaned. Hence, the

“locations” should contain only one pronunciation so that the distance is calculated by a pair of

phonetic transcriptions rather than a pair of “phonetic transcription lists”.

Defining initial operation cost is required beforehand in RuG/L04. The initial operation cost

satisfies the requirement of VC-sensitive algorithms. All operations cost one, except the case of

substitution between vowel and consonant (the cost is higher than one). According to Wieling et

16

al.’s (2009) method, a VC-sensitive Levenshtein algorithm is applied to the whole dataset so that

a list of PMI-based segment distances is outputted. In the case of substitution, the PMI value is a

measurement of co-occurrence of two segments. Insertion and deletion are considered as a special

case of substitution, that one of the segment is an empty string. The newly generated PMI-based

segment distances are used as the operations costs to calculate the pronunciation difference of each

phonetic transcription pairs between Turkic and Indo-Iranian. Eventually, a list of pronunciation

distances is generated.

In this pair, a collection of phonetic transcriptions of words from Central Asian languages in the

Swadesh list is used. It is worth noticing that the diacritics in the phonetic transcriptions have been

ignored for the sake of effectiveness (Wieling et al., 2014). It means there is no difference among

[z̥], [z̩] and [z]. Following the above procedure, there are two sections to calculate the distance

between phonetic transcriptions: generating PMI-based segment distances, and calculating

distances. There are four steps to generate PMI-based segment distances:

1. Transforming the original data file to the appropriate format. As mentioned above, a list of

PMI-based segment distances should be generated with the whole dataset. The data

arrangement is designed as Table 6. The first column is the name of the two language

families, and the first row is the 183 concepts in English (only three concepts are shown in

Table 6). The phonetic transcripts are filled in the cells and they are split by ‘/’. Missing

data exists and it is filled with empty space. For example, there is missing data in the cell

of concept ‘one’ in Turkic. Hence, two consecutive “/” are found in the cell because of

missing data between “/”.

2. Generating a csv file for each concept. Based on the data format in Table 6, a csv file is

generated for each concept by a provided python script in RuG/L04. A csv file of a concept

contains the phonetic transcripts for that concept in both language families (Table 7 left).

3. Tokenizing data and generating initial segment distances. Each phonetic symbol in the data

files is transformed to be represented by an integer (Table 7 right). Meanwhile, initial

segment distances are calculated according to feature values considering all phonetic

transcriptions in the dataset.

4. Generating the PMI-based segment distance. In order to generate PMI-based segment

distance, an initial distance value, which is generated in the last step, should be provided.

The program “leven” not only outputs the distance between two “locations” but also

updates segment distance table by outputting a file containing the PMI-based segment

distances. Meanwhile, “leven” allows setting a parameter of small fraction number. This

number is added to the frequency avoiding frequency of zero (1e-80 is used as shown in

the tool manual). The file containing PMI-based segment distances is used for calculating

the distance between phonetic transcriptions.

In summary, RuG/L04 requires data in the format of Table 6. Each concept in Table 6 has its own

file as shown in Table 7. RuG/L04 compares the sound between the Turkic and the Indo-Iranian

family per concept. In Table 6, there is more than one pronunciation under a family. Applying

“leven” to those concepts actually outputs the distance between two groups of pronunciations. In

other words, the distance is calculated in the concept level (later in this chapter). In order to

calculate the distance between two pronunciations, the data needs to be rearranged so that there is

only one pronunciation under a family per concept.

17

 ‘one’ ‘two’ ‘three’ …

Turkic bɪr / brɪw / bɪrɪw / / brɪw /

brɪw / bɪr / bər / bər / bər /

bər / bir / bir / bir / bir̯ / bir̯ /

bir / bir / bir / bir / bɪr / bər /

bɪʃ / biʃ / bir / bər / bər / bər

/ bər / bər / bər / bər / bər /

bər̯ / bər / bər / bɪr / ber / bər

/ bɪr / bər / bər / bər / bɪr / bɪr

/ bɪr / bɪr / bɪr / bər /

jekə / jekə / jɪkjew / jɪkə /

jeka / jekʲew / jɪkə / jikə /

jɪkə / jɪke / jɪkə / jeki / jeki /

jeki / jekɪ / jeki / jeki / jeki /

jeki / jeki / jikʲe / ɛkkɪ / ɛkʲɪ /

ɛkkʲɪ / jeke / jɪkɐ / jɪkɐ / jɪkə

/ jekke / jika / jɪkʲe / jekə /

jɪkɐ / jɪkɐ / jɪkɐ / jɪkɐ / jɪkə /

jɪkɐ / jɪkɐ / ikkʲe / ikkʲe / ikkʲe

/ ikkʲe / ikkʲe / ikta / ikkʲe /

ikkʲɪ / ikki / ikkʲe /

ʉʃʲ / ʉʃʲ / ʉʃʲjʊː / ʉʃ / ʉʃ /

ʃuː / ʉʃ / yʃ / yʧ / øʃ / ʉʃ /

yʧ / yʧ / yʧ / yʧ / yʧ / yʧ

/ yʧ / yʧ / yʧ / ʉʧ / yʧ / yʧ

/ yʧ / yʧ / ʉʃ / ʉʃ / ʉʃ / yʧ

/ ʉʃ / yʧ / ʉʃ / ʉʃ / ʉʃ / ʉʃ /

ʉʃ / yʧ / ʉʧ / ʉʃ / uʧ / yʧ /

yʧ / yʧ / ʉʧ / uʃta / ʉʧ / ʉʧ

/ uʧ / uʧ /

…

Indo-

Iranian

jak / jak / jak / jakta / jak /

jak / jak / jak / jak / jak / jak

/ jaktə / jaktɐ / jak / jak / jak

/ jak / jakta / jak / jak / jak /

jak / jak / jak / jaktə / jak /

jakta / jak / jak / jak / jaktɒ /

jak / jakta / jak / iː / iː / iː / iː

/ iː /

du / du / du / duttə / dʊ / dø

/ dʊ / dø / dø / dø / du / dutɐ

/ dʉtɐ / dʊ / du / dʊ / də /

dutta / du / dø / du / dø / dø /

du / dyttə / døː / døtta / døː /

du / du / døttɒ / dyː / duttɐ /

du / dʊː / døː / dʊ / dʉ / dʊː /

sʲɛ / se / se / setta / sʲe / se

/ sɛ / se / sʲe / sʲɛ / se / sʲetɐ

/ sʲetɐ / se / se / se / se /

sʲeta / se / se / se / se / sʲe

/ se / sʲeta / seː / seˑta / sʲeː

/ se / se / seta / se / sʲeta /

sʲe / saraj / traj / tʲiraj / traj

/ tɪraj /

…

Table 6. The first few columns of the arrangement of data used by RuG/L04.

“one”

%utf8

: turkic

- bɪr

- brɪw

- bɪrɪw

-

- brɪw

- brɪw

- bɪr

- bər

…

: iranian

- jak

- jak

- jak

- jakta

- jak

- jak

…

%utf8

: turkic

+ 36 34 5

+ 36 5 34 4

+ 36 34 5 34 4

+ 36 5 34 4

+ 36 5 34 4

+ 36 34 5

+ 36 39 5

…

: iranian

+ 7 2 23

+ 7 2 23

+ 7 2 23

+ 7 2 23 32 2

+ 7 2 23

+ 7 2 23

…

Table 7. Every concept has its own file. This is an example of concept ‘one’. Phonetic transcripts for concept ‘one’

(left), and its transformation in integers (right). Notice that there is missing data on the left, and it is ignored in integer

format.

18

With the generated PMI-based segment distances, the distance between phonetic transcriptions

can be calculated. Another data arrangement is designed as Table 8. Importantly, the duplicate

phonetic transcriptions in a language family per concept need to be deleted to avoid repetition

results. The first row is the title showing the concepts and indexes. The title is indicated as index-

concept-title here. For instance, the title ‘0_0_one’ represents a phonetic transcription pair, /bɪr/

and /jakta/, the first phonetic transcriptions in the Turkic family of concept ‘one’, and the first

phonetic transcriptions in the Indo-Iranian family of concept ‘one’ (the index starting from 0). In

total, there are more than 25 thousand unique phonetic transcription pairs. Based on the data format

presented in Table 8, a group of csv files are generated by the python script as mentioned above.

The content of the file is a pair of phonetic transcriptions corresponding to the index-concept title

(Table 9, the first column of each title). Each unique phonetic symbol in the data files is

transformed to be represented by a unique integer (Table 9, the second column of each title)5. The

distances of those 25+ thousand unique phonetic transcription pairs are calculated with the “integer

data” and the PMI-based segment distances.

 ‘0_0_one’ ‘0_1_one’ … ‘1_0_one’ ‘1_1_one’ …

Turkic bɪr bɪr … brɪw brɪw …

Indo-Iranian jakta jaktə … jakta jaktə …

Table 8. For concept ‘one’, the arrangement of data used by RuG/L04.

“0_0_one” “0_1_one” …

%utf8

: indo_iranian

- bɪr

: turkic

- jak

%utf8

: indo_iranian

+ 36 34 5

: turkic

+ 7 2 23

%utf8

: indo_iranian

- bɪr

: turkic

- jakta

%utf8

: indo_iranian

+ 36 34 5

: turkic

+ 7 2 23 32 2

Table 9. The first column of “0_0_one” and “0_1_one” is the content of the csv file “0_0_one” and “0_1_one”

respectively. They are the phonetic transcriptions pairs corresponding to their respective index-concept title. The

second column is the content of the files containing integers corresponding to phonetic segments.

The “leven” program is applied to each phonetic transcription pair inputting the PMI-based

segment distance and integer data. There are more than 25 thousand files containing one pair of

phonetic transcriptions in each of them. As a result, more than 25 thousand pronunciation distances

are generated (Code 4). For the purpose of future evaluation, the distance values, concepts, and

phonetic transcription pairs are arranged in tuples as shown in Table 1, such as:

('one', '0.0355222', 'bɪr', 'jak')

Besides considering the pronunciation distance of a pair of single phonetic transcriptions, it is also

worthwhile to explore the loanwords on the concept level by considering pronunciation distance

between language families per concept. “On the concept level” means to discover the concept that

is “borrowed” from a language. For instance, most of the words representing the concept “person”

are loanwords (either from Turkic family to Indo-Iranian family, or opposite). Hence, the concept

5 In practice, the integer data can be extracted based on the integer data in Table 7 by deleting the duplicated

integers and rearranging them into the format of Table 9.

19

“person” is considered as a “borrowed concept” in a language. As mentioned previously, the

various phonetic transcriptions per concept in the dataset are treated as different “dialects” in each

“locations” as regards the software. Therefore, each concept is possibly represented by a

pronunciation distance between “dialects” in Turkic and “dialects” in Indo-Iranian family. In other

word, there is more than one phonetic transcription per language family per concept, which means

there are multiple variants within one language family per concept. Hence, the phonetic

transcriptions in a family are grouped together per concept, and each concept can be associated

with a (mean) distance value as a result. Similarly, if the distance value of a concept is small

enough, the word representing the concept in the Turkic family is probably borrowed from the

Indo-Iranian family, or vice versa.

It should be noticed that, when there is a list of phonetic transcriptions representing a concept in a

language, the distances of a concept between two language families is related to the distances of

natural pairs and the number of phonetic transcriptions representing the concept from each family.

A natural pair is a pair of transcripts formed by one transcript from each list, and it has the smallest

sound distance among all possible pairs. In RuG/L04, the distance between two language families

per concept is equal to the minimal non-zero distance of natural pair divided by the number of

natural pairs6 (Nerbonne & Kleiweg, 2003).

6 More details are introduced in Nerbonne & Kleiweg (2003).

20

#Use the python script in RuG/L04 to transform the dataset(as in Table 5).

#one,two...are the concept titles.

one,two,...:=python.py(dataset_concept)

#The integer format of the data are generated, as well as the initial segment

distance.

one.integer, two.integer,...,initial_distance:=

tokenize([one.data, two.data, three.data,...], configuration_file):

#Output the pmi-based distance.

leven_distance_between_families, pmi_distance:=

leven(data=[one.integer, two.integer,...], distance=initial_distance)

#The index_concept_title are generated as in Table 8.

#Every index_concept_title has unique phonetic transcription pair (in inte-

ger) per concept.

0_0_one.integer, 0_1_one.integer,…,0_0_two.integer,0_1_two.integer,…:=

 deleting duplicated phonetic transcriptions and rearranging[one.inte-

ger,two.integer,...]

#distance_list stores all the sound distances of each lexicon meaning.

distance_list=[]

for file in [0_0_one.integer, 0_1_one.integer,0_2_one.integer,...]:

 file.dis:=

 leven(data=file,distance=pmi_distance,output_segment_distance=False)

 distance_list.append(file.dis)

Code 4. The procedure of realizing PMI-based Levenshtein algorithm using RuG/L04, and calculating distance

between phonetic transcription pairs.

3.3 Results and Evaluation

As a result of calculating the sound distance between words from Turkic and Indo-Iranian family,

each phonetic transcription pair has a file containing the PMI-based sound distance value between

the two language families. The distances are extracted and handled by a python script. Before

determining loanwords according to these distances values, the statistical description and related

facts of the distances values are explored (Table 10).

Min 0.00000

1st Qu. 0.02909

Median 0.03325

Mean 0.03113

3rd Qu. 0.03559

Max. 0.04420
Table 10. Statistical description of the sound distances derived by the PMI-based algorithm.

Figure 1 is the histogram of sound distances derived from all the word pairs between Turkic and

Indo-Iranian generated by all concepts. The figure shows that the distribution of sound distances

is skewed to the right, which means that most distance values are relatively large. According to

21

our assumption of determining loanwords using sound distances, loanwords are the minority on

the left side of the histogram. This corresponds to the fact that the loanwords are the minority

according to expert classification. In this experiment, two approaches are applied to determine the

threshold which is the boundary of loanwords or not. One is determining the threshold by

examining several hundred potential thresholds. The other one is to calculate the outlier and use it

as the threshold.

Figure 1. Histogram of sound distances derived by PMI-based algorithm.

3.3.1 Determining the Threshold

Determining a threshold to detect loanwords means that the word represented by one of the

phonetic transcriptions in a pair is classified as a loanword if the pair has a sound distance value

smaller than a selected threshold. The predicted loanwords are compared to the gold standard and

they are evaluated by precision/recall as well as the F1 score (Manning et al., 2008). Precision is

the percentage of true positive, which means the percentage of correctly detected loanwords among

the words detected as loanwords. It reflects how “precise” the detection is. The recall is the

percentage of loanwords that are correctly detected. It reflects the ability to extract the relevant

items (loanwords). F1 score considers both precision and recall to measure the quality of the

detection.

a= No. of correctly detected loanwords (true positives)

b= No. of incorrectly detected loanwords (false positives)

c=No. of all the words detected as loanwords (true positives + false positives)

d=No. of loanwords (true positives + false negative)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑎

𝑐
, (𝑐 = 𝑎 + 𝑏)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑎

𝑑

𝐹1𝑠𝑐𝑜𝑟𝑒 =
2 ∙ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

Distance

Counts

22

Inspired by Mennecier et al. (2016) and Van der Ark et al. (2007), a group of evenly spaced values

over an interval between the minimum value (other than 0) and the average value of the distance

list are chosen as potential thresholds in order to spot a suitable threshold. Since the histogram

skews to the right, it is a reasonable assumption that using the mean value (or above mean) as

threshold leads to a low possibility to achieve the best performance. Theoretically, using a larger

number to divide the potential threshold interval ensures that the most suitable threshold is

obtained because of its coverage of more threshold values. However, it raises the cost of

computation simultaneously. In this case, there are 200 potential thresholds chosen from the

interval between 0.0037 (the minimum value other than 0) and 0.0311 (average value). Figure 2 is

the plot of precision, recall, and F1 score against 200 potential threshold values.

Figure 2.Precision, recall, and F1 score against the 200 potential thresholds.

Precision is over 0.974 at the small threshold value, while recall is very low. In fact, only around

6% loanwords from the gold standard are detected at the low threshold. Precision slightly drops

with the rising of the threshold, while the recall value climbs dramatically. The absolute slope

value of recall is obviously greater than precision. At a threshold value of around 0.02, Precision

suddenly drops significantly, and the recall keeps climbing steadily. After the interaction between

precision and recall, precision keeps dropping and recall almost reaches 1.0 at a threshold of over

0.03. As for the value of the F1 score, it climbs in the same way as recall before intersection of the

lines and drops in the same way as precision after the interaction.

Figure 2 shows that a tradeoff exists between precision and recall: the higher the recall, the smaller

the precision. Meanwhile, the threshold value is positively correlated to recall because a higher

threshold value has a higher tolerance and allows more words to be classified as loanwords. It is

difficult to determine the performance of loanword detection by solely applying precision or recall.

Hence, the F1 score is used to reflect the performance. F1 score peaks at 0.784 at the threshold

0.021. The precision and recall are 0.846 and 0.730, respectively. It is summarized as:

Thresholds

Values

23

Best threshold 0.021

F1 score 0.784

Precision 0.846

Recall 0.730
Table 11. Summary of the performance using the PMI-based Levenshtein algorithm to detect loanwords in the data

including all the concepts.

Meanwhile, the loanwords at the concept level are detected as well (as mentioned at the end of

Section 3.2). The detected concepts which are considered “loanwords” are reflected at the word

levels. Each phonetic transcription pair is represented by a concept in English. Among the phonetic

transcription pairs predicted as loanwords, the concepts presenting those phonetic transcriptions

are analyzed. The distribution of the number of concepts existing in the predicted loanwords set

shows that the concepts appearing frequently are the concepts predicted as being represented by

loanwords.

Which loanwords fail to be found and which words are incorrectly classified as loanwords? Table

12 presents several randomly-chosen examples of these two situations. In general, the reason for

failing to detect the loanwords is that the pronunciations of the relevant words are significantly

different. The first part of the table shows that the phonetic transcriptions of the words are not

similar, which leads to a large sound distance. This shows that the phonological adaptation of

loanwords possibly results in a huge pronunciation difference. Meanwhile, the idiosyncratic

pronunciation of the informants contributing to the data might affect the result as well. For instance,

the words for the concept “flower” are generally loanwords, and most of the pronunciations are

/gul/, /gyl/, or /gʉł/. However, one of the informants whose mother tongue is Tajik says /kul/,

which is not detected. There are also words which are incorrectly classified as loanwords. The

second part of Table 12 presents words with similar pronunciations which are not loanwords.

Actually, the sound distances of these phonetic transcription pairs are quite close to the threshold

(0.021), and this is probably the reason of misclassification (for instance, the distance between

/bajlaʊ/ and /bastak/ is 0.0205; the distance between /pustlɔq/ and /pust/ is 0.0167).

Loanwords that not detected

Concept Phonetic transcription pair (Turkic, Indo-Iranian)

‘person’ /adam/ (Karakalpak), /ɔdamzɔt/ (Tajik)

‘correct’ /tørøs/ (Karakalpak), /durust/ (Tajik)

'flower' /gʉl/, (Kazakh), /kul/, (Tajik)

'breast' /kukrɨk/, (Kazakh), /qʊqrak/, (Tajik)

'to dig' /ʧaβlamɔq/, (Uzbek), /kɔftan/, (Tajik)

Words incorrectly detected as loanwords

Concept Phonetic transcription pair (Turkic, Indo-Iranian)

‘bark’ /pustlɔq/ (Kyrgyz), /pust/ (Tajik)

‘bone’ /sujak/ (Uzbek), /suɣun/ (Tajik)

‘worm’ /kurt/ (Kyrgyz), /kirm/ (Tajik)

‘to tie’ /bajlaʊ/ (Karakalpak), /bastak/ (Tajik)

‘narrow’ /tar̯/, (kyrgyz), /tank/ (Yaghnobi)
Table 12. Several examples that loanwords are not detected and words are incorrectly detected as loanwords using

the PMI-based algorithm.

24

3.3.2 Cross Validation

In order to evaluate the performance of the model when it deals with independent data, a cross

validation is conducted. Cross validation is a commonly used model validation technique. Assume

a k-fold cross validation is conducted. Firstly, the dataset is split equally into k pieces. One of the

pieces is used as a testing set, and the other k-1 pieces are used as a training set. After the model

is trained by the training set, the testing set is applied to the model to evaluate its performance.

The procedure is iterated for k times, and a different piece is used as the testing set each time.

Eventually, there are k evaluation results (precision, recall, or F1 score).

In this experiment, a 10-fold cross validation is conducted. The dataset is shuffled before being

split because the concept is arranged in a specific order. For instance, the first five concepts in the

data are numbers; at the end of the data, the concepts are mainly pronounced and interrogatives.

After the dataset is split into a training set and a testing set, the phonetic transcription pairs in the

training set are used to find the threshold outputting the highest F1 score using the method

introduced in Section 3.4. For the sake of computational cost, the “best threshold” is found by

investigating 10 potential thresholds rather than 200. The “best threshold” is then used to decide

the loanwords in the testing set. Comparing the predicted loanwords against the expert-classified

loanwords in the testing set returns evaluation results including ten precision values, ten recall

values, and ten F1 score values. Finally, the mean values of the ten precisions, the ten recalls, and

the ten F1 scores are the results that reflect the performance of the model. Figure 3 is a diagram

illustrating this process. The result of the 10-fold cross validation is shown in Table 13.

Precision 0.760

Recall 0.795

F1 score 0.768
Table 13. Mean scores in 10-fold cross validation for the PMI-based Levenshtein algorithm.

25

Figure 3. Diagram illustrating the process of conducting cross validation.

3.4 Discussion

Generally, choosing an appropriate threshold for this task is not that intuitive. Van der Ark et al.

(2007) detect loanwords at the word level with a similar method and dataset but applying a simple

Levenshtein distance rather than a PMI-based sound distance. Van der Ark et al. (2007) suggests

that the determination of the threshold relies on the tolerance of “noise”. Since this experiment

aims to compare the performances of various sound distance calculation algorithms in detecting

loanwords, the F1 score is an appropriate indicator of algorithm performance because of its

consideration of precision and recall simultaneously. The approach applied in this experiment to

determine the threshold is computationally expensive. An alternative is to detect the outliers in the

set of distance values. Then the threshold is simply equal to first quartile minus 1.5 times the

difference between the first quartile and the third quartile (the lower outlier boundary). Although

the threshold leading to the highest F1 score value is not guaranteed, it reduces the cost of

computation.

…

Iteration 10 Iteration 2 Iteration 1

Testing
Set

Training
Set

MODEL

EVALUATION
Evaluation

Result

Best
threshold

26

4. SPECTROGRAM-BASED LEVENSHTEIN ALGORITHM FOR MEASURING

SOUND DISTANCE

Using the original Levenshtein algorithm fails to reflect the sound features of phonetic

transcriptions. Heeringa (2004) introduces a so-called VC-sensitive sound distance which raises

the penalty of substituting a vowel with a consonant, and vice versa. However, it is necessary to

consider more features for the sake of determining segment distances between vowels and between

consonants, as well (See the “sofa” example in Chapter 3). Hence, Heeringa (2004) takes

advantage of the spectrogram to investigate the acoustic representation of vowels and consonants

so that a more sensitive sound distance scheme between phonetic transcriptions can be realized.

Speech sounds have their specific acoustic characteristics (Reetz & Jongman, 2011), and the

spectrogram is an ideal visualization of the acoustic features of sound samples.

Similar to the PMI-based algorithm (Wieling et al., 2009), Heeringa (2004) determines the

segment distances between two phonetic symbols based on their acoustic features and applies the

segment distances to the Levenshtein algorithm. Three sound representations based on a

spectrogram are introduced by Heeringa (2004) in order to measure segment distances acoustically.

Instead of a common spectrogram, two variants of the spectrogram are applied as acoustic

representations of sounds. The first variant is Barkfilter, in which Bark-scale is used in the y-axis

of a spectrogram rather than linear Hertz scale as in a normal spectrogram. Bark-scale has merit in

matching the human perception of sound frequency. The second variant is cochleagram, a

modification of Barkfilter. Bark-scale is used in cochleagram as well, but the loudness of each

frequency is given instead of intensity. Besides these two variants of the spectrogram, formant

track is used to represent acoustic features of sounds by giving formants values of each time step

as the representation of sounds (Figure 4). In this part of the experiment, these three spectrogram-

based representations of sounds are implemented to measure the segment distances and apply those

segment distances in Levenshtein algorithms for loanwords detection. The sound distances

calculated by these three representations of sounds are called spectrogram-based sound distances.

Further in this chapter, the mechanism of measuring spectrogram-based segment distance is

introduced. Furthermore, a tool for implementing the spectrogram-based Levenshtein algorithm is

explained by presenting the procedure of applying the tool to calculate the sound distances between

the Turkic and the Indo-Iranian family per concept. Finally, the result of the predicted loanwords

based on the spectrogram-based sound distances is presented and analyzed so that the performance

in loanword detection is evaluated.

27

Figure 4. Different acoustic representation of sounds pronounced by John Wells (Figure Heeringa, 2004). There

are four different sounds represented in the (from top to bottom) spectrogram, Barkfilters, cochleagrams, and

sound tracks respectively. The x-axis of the graphs is time. The y-axis of the graphs is frequency in Hertz (in

case of Spectrogram and formant tracks) or Bark (in case of Barkfilter and cochleagram).

28

4.1 Introduction to Spectrogram-based Levenshtein Algorithm

A spectrogram is a three-dimensional visual representation of a sound sample (Figure 4 Row 1).

The x-axis represents time, and the y-axis represents frequency in Hertz. The darkness of the colors

reflects the intensity of frequency at a specific time. One of the applications of a spectrogram is to

identify sounds phonetically since different sounds have different acoustic features reflected in a

spectrogram. For instance, the distance between formants in the lowest band (F1) and the second

lowest band (F2) varies in different sounds (Figure 5, see section 4.1.1 about formants), which

means formant values are representative of some sounds. Hence, the acoustic features of sounds

can be utilized to calculate the segment distances and these segments distances are applied in the

Levenshtein algorithm. As mentioned above, Heeringa (2004) introduces two modifications of

spectrograms, Barkfilter and cochleagram, to measure segment distances.

4.1.1 Barkfilter, Cochleagram, and Formant Tracks

The common spectrogram represents frequencies in linear Hertz scale. However, the human

perception of frequency is not linear, but logarithmic. Therefore, Heeringa (2004) uses the

Barkfilter as sound representation (Figure 4, Row 2). In Barkfilter, the Bark-scale is used instead

of a linear scale, because the Bark-scale is closer to human perception of frequency. Heeringa

(2004) uses the software Praat7 to obtain intensity values in Bark-scale, and the intensity values

are used to calculate the sound distances. In Praat, Schroeder et al.’s (1979) formula is used for the

purpose of transforming Hertz values into Bark-scale values:

𝐵𝑎𝑟𝑘 = 7 × ln (
𝐻𝑒𝑟𝑡𝑧

650
+ √1 + (

𝐻𝑒𝑟𝑡𝑧

650
)

2

)

Figure 6 is a plot of Bark value against linear Hertz frequency. The plot shows that the Bark scale

is linear below 1000Hz, and becomes approximately logarithmic over 1000Hz. This matches the

way a human would perceive the frequency of sounds.

Besides Barkfilters, Heeringa (2004) uses cochleagrams to represent sounds (Figure 4 Row 3). A

cochleagram is similar to the Barkfilter in that they both use the Bark-scale, but in a cochleagram

it returns the loudness of frequencies in time instead of intensity. Loudness is what people actually

perceive, and it is related to intensity as well as frequency. Similar to the Barkfilter, Heeringa

(2004) uses Praat to obtain the loudness values of sounds. In Praat, the same formula is used to

calculate the Bark-scale in cochleagrams.

7 Praat is a software for phonetic analysis of speech. More information: http://www.fon.hum.uva.nl/praat.

29

Figure 5. This figure shows the F1 and F2 of three different vowels [i], [u], and [a]. The distance between F1 and F2

of [i] is greater than [u], and [u] is greater than [a] (image created by Wikipedia user ish ishwar in 2005).

Formant track is the third representation of sounds used by Heeringa (2004). In a spectrogram, the

use of small analysis windows makes individual harmonic blends and bands appear. The middle

frequency of a band at a point of time is a formant, and a formant track is formed by connecting

formants at a range of continuous time (Figure 4 Row 4). A formant in the lowest band is called

F1, a formant in the second lowest band is called F2, etc. (Figure 5). Heeringa (2004) uses the

formants from F1 and F2 to represents sounds since different sounds have their own specific F1

and F2 (Rietveld and Van Heuven, 1997). The Bark-scale is used in this case as well, but the

transformation is conducted by the formula of Traunmüller (1990), which is:

𝐵𝑎𝑟𝑘 =
26.81 × 𝐻𝑒𝑟𝑡𝑧

1960 + 𝐻𝑒𝑟𝑡𝑧
− 0.53

The formula is recommended for the phonetic project. The plot of this formula is shown in Figure

6.

Figure 6. Plot of Schroeder et al. (1979) formula (upper line) and Traunmüller (1990) formula (lower line) (Heeringa,

2004).

30

4.1.2. Measuring Segment Distances Acoustically

In order to measure segment distances acoustically for all sounds in the IPA alphabet, sound

samples are required. A tape called The Sounds of the International Phonetic Alphabet on which

all sounds in IPA alphabet are produced by John Wells and Jill House is available and Heeringa

(2004) uses it to extract acoustic data for all the sounds. Spectrogram-based segment distances are

measured by considering the spectrogram or formant track representation of sounds. Related

values, including intensity, loudness, and formants, can be extracted for every sound in the IPA

alphabet applying the above mentioned methods. It is notable that the sound sample used by

Heeringa (2004) is canonical, and the sounds may be different from the sounds in the Central Asian

data collection.

The spectrogram-based representations of sounds are related to the duration of pronouncing a

sound. It is important to normalize the duration of sound to ensure the sounds are comparable.

Hence, the sound is analyzed in a unit of the time step. A spectrogram divided by units of the time

step is called a spectrum, and a formant track divided by units of the time step is called a formant

bundle. Here a spectrum or a formant bundle is called a slice. Within a slice, there are numerous

intensity, loudness, or formants values depending on the Barkfilter, cochleagram, or formant tracks

that are applied. Assume there are two segments, s1 and s2, and they have m and n slices,

respectively. The collections of slices are:

𝑠1 = {𝑠11, 𝑠12, … , 𝑠1𝑚 }

𝑠2 = {𝑠21, 𝑠22, … , 𝑠2𝑛 }

In order to normalize the length of duration, s1 is duplicated n times and s2 is duplicated m times.

As a result, there are 𝑚 × 𝑛 slices in each segment.

𝑠1 = {𝑠111, 𝑠112, … , 𝑠11𝑛,𝑠121, 𝑠122 … , 𝑠12𝑛, … , 𝑠1𝑚1,𝑠1𝑚2,…, 𝑠1𝑚𝑛 }

𝑠2 = {𝑠211, 𝑠212, … , 𝑠21𝑚,𝑠221, 𝑠222 … , 𝑠22𝑚, … , 𝑠2𝑛1,𝑠1𝑛2,…, 𝑠1𝑛𝑚 }

Eventually, 𝑚 × 𝑛 pairs of slices are generated. For each pair of corresponding slices, the

Euclidean distance between them is calculated. Assume there are v values in each slice belonging

to a pair (𝑠1𝑖𝑗 , 𝑠2𝑘𝑙), the distance between two slices within a pair is:

𝑑(𝑠1𝑖𝑗 , 𝑠2𝑘𝑙) = √∑(𝑠1𝑖𝑗
𝑎 − 𝑠2𝑘𝑙

𝑎)2

𝑣

𝑎=1

 (𝑖 ∈ [1, 𝑚], 𝑗 ∈ [1, 𝑛], 𝑘 ∈ [1, 𝑛], 𝑙 ∈ [1, 𝑚])

The distance between two segments 𝑠1, 𝑠2, is equal to the sum of the Euclidean distances between

each pair of corresponding slices, divided by the number of slices 𝑀 × 𝑁.

31

4.1.3 Applying Segments Distance to the Levenshtein Algorithm

The purpose of introducing spectrogram-based segment distances is to provide more sensitive

segment distances leading to a more precise representation of sound distance between two phonetic

transcriptions. The spectrogram-based segment distance is applied to the operation weights in the

Levenshtein algorithm. There are three operations to transform one transcript to another in the

Levenshtein algorithm, and all three operations cost one in the default algorithm. Similar to the

PMI-based Levenshtein algorithm, determining a suitable alignment between two phonetic

transcriptions is important to decide the minimum edit distance between them, and using more

sensitive segment distances in operation weights is beneficial in the determination. Considering

again the example of ‘sofa’ in English and Chinese, which the potential alignments repeated below:

The VC-sensitive algorithm avoids alignment A, which matches a vowel to a consonant, but fails

to choose between B and C. Applying spectrogram-based segment distances can determine which

is the more suitable alignment between B and C, given that the segment distance between [o] and

[a] is different from the distance between [ʊ] and [a]. As long as a suitable alignment is found, the

sound distance between two phonetic transcriptions is determined by summing the operation cost.

Deletions and insertions are regarded as a segment pair between a normal sound and a silent sound.

A silent sound indicates that the values within a spectrum or formant bundle are zero.

4.2 Realizing Spectrogram-based Levenshtein Distance

Heeringa (2004) develops a tool that calculates the spectrogram-based segment distances. The tool

is used for measuring pronunciation differences between two dialects, as well as producing the

visualization of the result. Utilizing this tool returns the sound distances between a pair of phonetic

transcriptions from the Turkic and the Indo-Iranian families with spectrogram-based segment

distances. The Turkic family and the Indo-Iranian family are regarded as the “dialects” in the tool

analogously. Rather than outputting the sound distances between any two “dialects” (in fact, they

are the Turkic and Indo-Iranian families in this case), the tool is modified for the purpose of

returning the sound distances of the phonetic transcription pairs. The input phonetic transcription

data of the tool is required to be in the form of Extended Speech Assessment Methods Phonetic

Alphabet (X-SAMPA). X-SAMPA is an extended version of SAMPA, and it is used to transform

all IPA phonetic symbols into 7-bit ASCII8. Here is an example of transforming /ʒwɒn/ (which

means “thick” in Kazakh from the Turkic family) into X-SAMPA:

8 See http://www.phon.ucl.ac.uk/home/sampa/ipasam-x.pdf for more details about X-SAMPA.

s o ʊ f a

 ʂ a f a

1 1 1 0 0

s o ʊ f a

ʂ a f a

1 1 1 0 0

s o ʊ f a

ʂ a f a

1 1 1 0 0

A B C

http://www.phon.ucl.ac.uk/home/sampa/ipasam-x.pdf

32

The input of the tool is two files, in which the phonetic transcriptions are stored and compared

against each other. Table 14 is the data format used in the tool for outputting spectrogram-based

sound distance. Phonetic transcripts per concept per family are separated by a “/” and concepts in

a family are separated by a new line tag “\n”. Two data files are generated for Turkic and Indo-

Iranian family respectively using Python. The tool requires these two files as input, and the

distances are calculated by comparing the phonetic transcriptions from each file in the same line

(e.g. the phonetic transcriptions in Line One in Turkic file compares to the ones in Line Two in

the Indo-Iranian file). If there are five lines (in other words, five concepts in this case), for instance,

of phonetic transcriptions in both files, five distance values (between pronunciations of the same

concept) are calculated.

Concept Turkic family Indo-Iranian family

‘one’

‘two’

‘three’

‘four’

‘five’

…

1 bIr / 1 brIw / 1 bIrIw / 1 brIw / …

1 jek@\ / 1 jek@\ / 1 jIkjew / 1 jIk@\ / …

1 }s_h / 1 }s_h / 1 }s_hju: / 1 }s / 1 }s / …

1 t2rt / 1 t2rt / 1 tw2rt / 1 t_h2rt / 1 t2rt / …

1 b_hIs / 1 b_hIs / 1 b_hes / 1 b_hIs / …

…

1 jak / 1 jak / 1 jak / 1 jakta / 1 jak / …

1 s_hE / 1 se / 1 se / 1 setta / 1 s_he / …

1 tSahOr / 1 tSOr / 1 tSOr / 1 tSOrta / …

1 pandZ / 1 panZ / 1 panZ / 1 panZta / …

1 kalOn / 1 kalOn / 1 kalOn / 1 kalOn / …

…
Table 14. This table shows part of the pronunciations in X-SAMPA format of five concepts (‘one’, ‘two’, ‘three’, ’four’,

and ‘five’) from the Turkic family and Indo-Iranian family. Each concept is represented in one line, and the

pronunciations are separated by “/”. The number “1” in front of each pronunciation functions as a label and it has

no influence on the result. The 183 concepts are listed line by line in each file.

As shown in Table 14, there is more than one pronunciation in every line in either file. Applying

the tool to this data format generates distances on the concept level (later in this chapter). In order

to generate distances on the word level, there should be only one pronunciation in every line.

Hence, the data should be rearranged in another format. The duplicated data in a language family

per concept is deleted to avoid repeated phonetic transcription pairs. A file containing the phonetic

transcriptions in the Turkic family and a file containing the phonetic transcriptions in the Indo-

Iranian family are created for each concept. Hence, concept ‘one, for instance, has two files called

‘one_turkic’ and ‘one_indoiranian’ respectively, and the content of each file is:

IPA X-SAMPA

ʒ Z

w w

ɒ Q

n n

/ʒwɒn/

ZwQn

33

‘one_turkic’ ‘one_indoiranian’

1 bIr

1 brIw

1 bIrIw

1 b@\r

1 bir

1 bIS

1 biS

1 jak

1 jakta

1 jakt@\

1 jakt6

1 jaktQ

1 i:

Table 15. The content of file ‘one_turkic’ and ‘one_indoiranian’ for the Spectrogram-based algorithm.

In order to ensure that every phonetic transcription in a family is compared to every phonetic

transcription in the other family, the phonetic transcriptions are arranged in a certain way. Assume

there are 𝑚 unique phonetic transcriptions denoted as 𝑡𝑥 (𝑥 = 1,2, … , 𝑚) in the Turkic family, and

𝑛 unique phonetic transcriptions denoted as 𝑖𝑦 (𝑦 = 1,2, … , 𝑛) in the Indo-Iranian family for the

given concept. Each phonetic transcription in the Turkic family is duplicated n times one by one,

while all the phonetic transcriptions in the Indo-Iranian family are duplicated together for m times.

In general, the data per concept is arranged as in Table 16. Table 17 is an example showing the

data arrangement of concept ‘one’.

Turkic Indo-Iranian Turkic file after

duplication

Indo-Iranian file

after duplication

Phonetic transcription

pairs

𝑡1

𝑡2

𝑡3

⋮
𝑡𝑥

⋮
𝑡𝑚

𝑖1

𝑖2

𝑖3

⋮
𝑖𝑥

⋮
𝑖𝑛

𝑡1

𝑡1

𝑡1

⋮
𝑡1

𝑡2

𝑡2

𝑡2

⋮
𝑡2

⋮

𝑡𝑚

𝑡𝑚

𝑡𝑚

⋮
𝑡𝑚

𝑖1

𝑖2

𝑖3

⋮
𝑖𝑛

𝑖1

𝑖2

𝑖3

⋮
𝑖𝑛

⋮

𝑖1

𝑖2

𝑖3

⋮
𝑖𝑛

𝑡1, 𝑖1

𝑡1, 𝑖2

𝑡1, 𝑖3

⋮
𝑡1, 𝑖𝑛

𝑡2, 𝑖1

𝑡2, 𝑖2

⋮
𝑡2, 𝑖𝑛

⋮
𝑡𝑛, 𝑖𝑚

Table 16. The data arrangement for using the tool to output spectrogram-based distance.

The two files of a concept are used as the input of the tool. The output is a list of pronunciation

distances between phonetic transcription pairs per concept. This procedure is iterated for all the

concepts. Eventually, every concept has its list of distance values. Various spectrogram-based

segment distances are prepared in advance. Three sets of sound distances using Barkfilter,

𝑚

𝑛

𝑛

𝑛

34

cochleagram, and formant tracks as acoustic representations are generated by changing the

parameter in the executable file. Similar to the PMI-based method, the diacritics in the transcripts

are ignored for the sake of simplification in this case. For the purpose of further evaluation, the

distance values, concepts, and phonetic transcription pairs are arranged in tuples as shown in Table

2, as follow:

('animal', 3.6941, 'ʒanwar', 'hajvɔn')

Turkic file of concept ‘one’ Indo-Iranian file of concept ‘one’ pairs

1 bIr

1 bIr

1 bIr

1 bIr

1 bIr

1 bIr

1 brIw

1 brIw

1 brIw

1 brIw

1 brIw

1 brIw

…

1 jak

1 jakta

1 jakt@\

1 jakt6

1 jaktQ

1 i:

1 jak

1 jakta

1 jakt@\

1 jakt6

1 jaktQ

1 i:

…

bIr, jak

bIr, jakta

bIr, jakt@\

bIr, jakt6

bIr, jaktQ

bIr, i:

brIw, jak

brIw, jakta

brIw, jakt@\

brIw, jakt6

brIw, jaktQ

brIw, i:

…
Table 17. Data arrangement for concept “one” for generating distance based on the spectrogram-based algorithm.

Moreover, it is possible that the loanword is detected on the concept level. In this case, the sound

distance is calculated between two lists of phonetic transcriptions, instead of between two phonetic

transcriptions. Heerigna (2004) calculates the distance between two lists of phonetic transcriptions

by finding natural pairs from two lists, as well. The distance between two lists of phonetic

transcriptions is then determined by the distances of natural pairs and the number of phonetic

transcriptions. Unlike the method used in Nerbonne & Kleiweg (2003), the sum of the distances

of natural pairs is divided by the number of phonetic transcriptions9.

4.3 Result and Evaluation

Three lists of tuples (each tuple including concept, distance, phonetic transcription in the Turkic

family, and phonetic transcriptions in the Indo-Iranian family) are created by using the three

acoustic representation of segment distances in the Levenshtein algorithm. Table 18 is the

statistical information of sound distance values generated by each method. The histograms of the

three sound distance lists show that the distributions of the sound distance values are similar.

Unlike the distance values generated by the PMI-based algorithm (Figure 1), the sound distance

values are approximately normally distributed (the p-values of Shapiro-Wilk normality test for

these three distances lists are all greater than 0.3). Moreover, the number of potential loanwords

(the distance values on the left of the x-axis that are smaller) are more frequent than the extreme

high distance values on the right of the x-axis.

9 See Heeringa (2004) Chapter 5 for more details.

35

A word from a phonetic transcription pair is classified as a loanword if the sound distance between

these two phonetic transcriptions is smaller than a chosen threshold. An interval between the mean

value and the minimum value of a list of sound distance values is divided into evenly spaced values,

and these values are the potential thresholds. As a result, a predicted loanword list is generated for

each acoustic representation. The predicted loanwords are compared against the gold standard,

loanword classifications determined by an expert. Also, a 10-fold cross validation is conducted to

explore the performance with independent data.

 Barkfilter

Cochleagram Formant Tracks

Statistical

description

 Min. :0.000

 1st Qu. :3.389

 Median :4.254

 Mean :4.319

 3rd Qu. :5.175

 Max. :9.581

 Min. :0.000

 1st Qu. :3.395

 Median :4.264

 Mean :4.306

 3rd Qu. :5.196

 Max. :9.688

 Min. :0.000

 1st Qu. :2.982

 Median :3.732

 Mean :3.749

 3rd Qu. :4.579

 Max. :8.343

Histogram

Table 18. Statistical description and visualizations of sound distances between phonetic transcriptions of the words

from the Turkic and Indo-Iranian families by applying Barkfilter, cochleagram, and formant tracks to measure

segment distance.

Table 19 presents selected thresholds achieving the highest F1 scores, and the corresponding

precision/recall score. (the explanation of these values is in Chapter 3). Simultaneously, a graph is

created for the result of each acoustic representation, which shows the plot of the evaluation results

against 200 potential thresholds between mean and minimum.

The results of using the Barkfilter and cochleagram are similar, and the plots of the Barkfilter and

cochleagram can be considered as identical. On the other hand, the F1 score of using formant

tracks has a tiny disadvantage compared to the ones of the other two. In addition, using the formant

track representation provides higher precision since the threshold is significantly lower than the

other two representations. Although there is a difference between the plot of formant tracks and

the plot of the Barkfilter or cochleagram, the trends of all three plots are similar.

At the low threshold values, the precision is as high as around 0.95 while recall is very low. With

the rise of threshold values, precision drops slowly, but there is a significant drop at threshold

value of around 1.5 for the Barkfilter and the Cochleagram, while precision keeps smoothly

dropping for the formant tracks. A similar development may be seen for recall. For the Barkfilter

36

and Cochleagram, recall rises sharply but suddenly remains flat at a threshold value of around 1.0,

and begins to climb again at a threshold value of around 1.5. But recall keeps rising in a similar

slope for formant tracks. After the intersection of the lines, precision drops steadily and recall

keeps climbing, reaching a value of almost 1.0. This phenomenon has been explained as the

tradeoff between precision and recall. The trend for F1 score line is similar to the trend for recall.

The F1 score peaks at 0.7427, 0.7441, and 0.7364 using Barkfilter, cochleagram, and formant track.

Although the peak F1 scores are not very different, using formant tracks tends to return higher

precision, while the other two tend to favor recall.

 Barkfilter Cochleagram Formant Tracks

Threshold 2.1381 2.1560 1.5585

Precision 0.7467 0.7332 0.7915

Recall 0.7387 0.7553 0.6884

F1 score 0.7427 0.7441 0.7364

Precision,

recall, and

f1 score

against

200

Potential

thresholds

Table 19. Results and evaluation of applying Barkfilter, cochleagram, and formant tracks to detect loanwords.

4.4 Cross Validation

A 10-fold cross validation is applied to assess this model as well. There are ten values of precision,

recall, and F1 score for the Barkfilter, cochleagram, and formant tracks representations. Table 20

shows the mean value of the evaluation results.

 Barkfilter Cochleagram Formant tracks

Precision 0.7370 0.7024 0.6835

Recall 0.7646 0.7482 0.7721

F1 score 0.7379 0.7127 0.7068
Table 20. Mean value of each evaluation results of a 10-fold cross validation.

4.5 Discussion

As argued in Chapter 3, the F1 score is the standard of deciding the “good performance” of an

algorithm in loanword detection. The performance of formant track is not as good as the other two

representations. Since using the Barkfilter and the cochleagram return nearly identical F1 scores,

either Barkfilter or cochleagram is an appropriate representative of the spectrogram-based

Levenshtein algorithm in loanword detection. Besides, the results also show that there is almost

37

no difference between using Barkfilter and Cochleagram. This means that considering human

perception in the representation of sound distances has little effect on loanword detection. On the

other hand, the results in cross validation show that the Barkfilter representation has the highest

F1 score with 0.7379, which means the Barkfilter performs better than the other two

representations when dealing with independent data.

5. SCA SOUND ALGORITHM FOR MEASURING SOUND DISTANCE

Both the PMI-based and the spectrogram-based Levenshtein algorithms are modifications of

Levenshtein distance, in which they provide alternative approaches to calculate the substitution

cost. Besides calculating distance values between two sequences, these methods are capable of

providing corresponding sequence alignments (this is the original purpose of proposing PMI-based

algorithm). Actually, alignment analysis is important in sequence comparison.

Refined algorithms can output a sound distance between phonetic transcriptions, leading to a more

appropriate sequence alignment simultaneously. Conversely, an appropriate sequence alignment

can assist in determining a distance value reflecting pronunciation distance more accurately. List

(2012) proposes a modified sound class alignment (SCA), which is used for phonetic alignments

based on sound classes. With the improved phonetic alignment proposed by List (2012), a refined

distance between phonetic transcriptions is calculated giving the formula of Downey et al. (2008).

Downey et al. (2008)’s formula, derived from the ALINE algorithm (Kondrak, 2000), is used to

calculate the distance between two phonetic transcriptions when the alignment of the two

transcriptions are given. In sum, phonetic alignment analysis and distance calculation are two

results of SCA-based sound distance algorithm. The algorithm is realized by LingPy, a python

library for historical linguistics (List and Forkel, 2016). Further in this section, the algorithm of

SCA is introduced, as well as the formula based on the ALINE algorithm. Furthermore, the

implementation of SCA and phonetic distance calculation is explained. Finally, the result of

predicting loanwords and the corresponding evaluation of these algorithms are presented as well

as the comparison to similar methods previously applied in this dissertation.

5.1 Introduction to the SCA Sound Distance Algorithm

The SCA sound distance algorithm consists of two components: phonetic alignment and distance

calculation. The phonetic alignment algorithm proposed by List (2012) is the core of his

modification, in which sound classes are applied to a basic pairwise sequence alignment (PSA)

model and its extensions. In addition, scoring functions are required to reflect the weights of

transitions between sound classes. Also, prosodic features are considered to determine gap

penalties and substitution costs. In conclusion, sound classes, the corresponding scoring functions,

and prosodic profiles constitute a sequence model in SCA. List (2012) summarizes that phonetic

alignment in SCA is conducted in four stages:

38

1) Tokenization: phonetic transcription is tokenized into phonetic segments.

2) Class conversion: phonetic segments are converted to be represented by sound classes and

prosodic profiles through an SCA sequence model.

3) Alignment analysis: List (2012) applies DIALIGN, an extension of PSA, for alignment

analysis.

4) IPA conversion: The sound classes are converted back to phonetic segments.

After two phonetic transcriptions are aligned, the distance between them is calculated. The

algorithm used to calculate the distance is proposed by Downey et al. (2008), and the algorithm is

a modification of ALINE algorithm.

5.1.1 Alignment- introduction to PSA

-Sequence modeling in SCA

The sequence model in SCA consists of sound classes, scoring function, and prosodic profiles10.

Sound classes are used to represent phonetic segments in PSA due to the disadvantages of using

phonetic sequences directly. Although using phonetic segments in PSA is intuitive, the

disadvantage is that different languages might have completely different pronunciation systems,

which makes the alignment language dependent. The concept of sound class is proposed by

Dolgopolsky (1964), and the main idea is that sounds are divided into different classes according

to their phonetic correspondences. In other words, sounds in a given class regularly appear in

phonetic correspondence. The sound class model of Dolgopolsky has been used for automatic

cognate identification, by investigating the sound classes of the first two consonants of the words

(Turchin et al., 2010). Originally, Dolgopolsky introduces ten sound classes, while List (2012)

applied an extension Dolgopolsky model with 28 sound classes (Table 21).

No. CI. Description Examples No. CI. Description Examples

1 A unrounded back vowels a, α 15 P labial plosives p, b

2 B labial fricative f, β 16 R trills, taps, flaps r

3 C dental / alveolar affricates ʦ, ʣ, ʧ, ʤ 17 S sibilant fricatives s, z, ʃ, ʒ

4 D dental fricatives θ 18 T dental / alveolar plosives t, d

5 E unrounded mid vowels e, ε 19 U rounded mid vowels ɔ, o

6 G velar and uvual fricatives ɣ, x 20 W labial approx. / fricative v, w

7 H laryngeals h, ʔ 21 Y rounded front vowels u, ʊ, y

8 I unrounded close vowels i, ɪ 22 0 low even tones 11, 22

9 J palatal approximant j 23 1 rising tones 13, 35

10 K velare and uvular plosives k, g 24 2 falling tones 51, 53

11 L lateral approximants l 25 3 mid even tones 33

12 M labial nasal m 26 4 high even tones 44, 55

13 N nasal n, ŋ 27 5 short tones 1, 2

14 O rounded back vowels ɶ, ɒ 28 6 complex tones 214
Table 21. An extension of Dolgopolsky model with 28 sound classes used in List (2012).

Dolgopolsky’s approach forbids the transitions between sound classes despite the fact that they

occur. Scoring functions are designed to represent the probabilities of transition from one sound

10 Secondary sequence structure is also part of sequence modelling in SCA. It segments a word into syllables rather

than sound units. It is useful in monosyllabic languages like Chinese.

39

class to another. List (2012) applies a theoretical approach to derive the scoring functions11. It

considers the directionality of sound changes. The directionality of sound changes means changing

from class A to class B is observed while the reverse direction (from B to A) is hardly ever seen.

For instance, velar plosives are easily palatalized to affricates, and then to sibilants ([k] or [g] is

palatalized to [ʧ], [ʦ], [ʤ], [ʣ], then to [ʃ], [ʒ], [z], [s]). But the opposite direction (changing from

[ʃ], [ʒ], or [ʧ], [ʦ] to [k], [g]) is rare. A directed weighted graph is used to derive scoring function.

Generally, any two closely connected sound classes are connected by a directed edge with a weight,

and the weight reflects the probability of changing between those two sound classes. A smaller

weight means a higher changing probability. Figure 7 illustrates the direction of changing dentals

to affricates weights as 2 while changing from dentals to fricatives weights 4. Hence, the

probability of changing dentals to affricates is higher than the probability of changing dentals to

fricatives.

Figure 7. An example presents weights of sound changing (List, 2012).

Prosodic profile, introduced by List (2012b), is a vector representation of a sequence. A score is

assigned to each segment according to its sonority decided by the sonority hierarchy (Geisler,

1992), and each segment is assigned to various prosodic environments which are ordered by a

hierarchy of strength. The hierarchy of strength leads to relative weights reflecting the penalty of

introducing gaps and a bonus for matching environments (Table 22). Each sequence is represented

by sound classes and prosodic profiles through the above-defined sequence model, along with

scoring functions deciding the probability of transitions between sound classes. Table 22 illustrates

the correspondences of phonetic segments, sound classes, and relative weight for a Bulgarian word

jabǎlko /jabəlka/ (‘apple’).

In conclusion, the sequence model used in SCA model of List (2012) is based on the extension of

Dolgopolsky model containing 28 sound classes. The scoring function is theoretically derived

according to directionality and probability of sound changing. The prosodic profile contributes to

determining relative weights, which is used for modifying scores of gap penalty and substitution.

11 Scoring function can be derived by an empirical approach, in which the probabilities are derived according to the

sound correspondence frequencies in the language of the world (Brown et al., 2013).

40

Phonetic transcriptions j a b ə l k a

Sound classes J A P E L K A

Prosodic profile 6 7 1 7 5 1 7

Prosodic environment # v C v c C w

Relative weight 7 3 5 3 4 5 1

Relative scores for Sonority (Prosodic profile): plosives (1), affricates (2), fricatives (3), nasals

(4), liquids (5), glides (6), and vowels (7)

Prosodic environment and hierarchy (Relative weight value in the bracket): #(7, word-initial

consonant) > V(6, word-initial vowel)> C(5, ascending sonority)> c(4, descending sonority)>

v(3, sonority peak)>$(2, word-final consonant)> w(1, word-final vowel)
Table 22. An example of converting phonetic transcriptions to sound classes, and assigning relative weights. The

bottom two rows are sonority hierarchy and prosodic environment hierarchy respectively.

-PSA and its extension

The first PSA algorithm is known as Needleman-Wunsch alignment algorithm (Needleman &

Wunsch, 1970). Similar to the Levenshtein algorithm (Table 3), the basic PSA algorithm proceeds

by creating a matrix in which scores are filled by comparing two sequences per segment. The path

leading to the final score is found by backtracking. In the Levenshtein algorithm, three operations

of transforming a sequence to another are introduced and various scores (cost) of these operations

are determined. PSA applies a different method. Basic PSA defines that the score is -1 if two

segments fail to match or one of them is null (empty), while the score is 1 if two segments match.

Therefore, the basic PSA alignment algorithm is also a Levenshtein distance. The difference is that

PSA alignment algorithm calculates the similarity between sequences rather than distance.

Modifications are made for the various alignment problems. One of the modifications is the

structural extensions12. Structural extensions allow alignment between two sequences considering

the full sequences (global), the partial sequences (local), or a combination of these global and local

(DIALIGN). A global alignment tends to treat every segment in a sequence equally, and a local

alignment tends to only align partial sequences because of the fact that only part of the sequence

is comparable to the other in many cases. DIALIGN conducts alignment analysis globally by

considering the whole sequence, as well as analyzing local alignment.

5.1.2 Distance- ALINE Algorithm and its Modification

As long as two phonetic transcriptions are aligned applying the methods introduced above, the

distance between the pair of phonetic transcriptions is calculated. In order to obtain a distance

value accurately representing the degree of dissimilarity of two phonetic transcriptions, phonetic

features ought to be included. List (2012) applied the formula proposed by Downey et al. (2008)

to calculate the sound distances between two phonetic transcriptions after the alignment analysis

is conducted. The formula of Downey et al. (2008) is a modification of the ALINE algorithm from

Kondrak (2000). The ALINE algorithm is proposed specifically for phonetic transcriptions, and it

generates similarity scores between phonetic transcriptions for phonetic alignment (Kondrak,

2000). In the ALINE algorithm, each segment is represented as a vector including features in

12 Another modification is substantial extensions, and it aims to modify the scores by considering phonetic features

linguistically.

41

various categories, such as vowel length, phonation etc., and these features are applied to generate

similarity scores between phonetic transcriptions13. One of the main disadvantages of ALINE

algorithm is that the raw score is not appropriate for comparison between pairs. For instance, the

similarity score between /pu/ and /pu/ (50) is different from the similarity score between

/tausebasai/ and /tausebasai/ (230), despite the fact that each pair has identical pronunciations.

Normalization is required in order to overcome the above-mentioned disadvantage of ALINE

algorithm. Downey et al. (2008) improve the algorithm via normalizing the score by the average

score of word self-comparisons. Assume two phonetic transcriptions 𝑝1and 𝑝2, and the similarity

score between them is 𝑠. The similarity score between 𝑝1(or 𝑝2) and itself is 𝑠1 (or 𝑠2).

The normalized similarity score 𝑠𝑛𝑜𝑟𝑚 between 𝑝1and 𝑝2 is:

𝑠𝑛𝑜𝑟𝑚 =
2𝑠

𝑠1 + 𝑠2

The formula is changed to represent distance (dissimilarity) rather than similarly:

𝑑 = 1 −
2𝑠

𝑠1 + 𝑠2

The distance ranges from 0 to 1 while converging to 1 implies that the two phonetic transcriptions

become more similar. The normalization considers the lengths of phonetic transcriptions and

penalty of mismatching.

5.2 Realizing SCA Sound Distance Algorithm

It is convenient to apply the SCA sound distance algorithm using the python library LingPy (List

and Forkel, 2016). LingPy is a series of open-source Python modules which is developed for

quantitative analysis in historical linguistics. It integrates the various methods allowing users to

conduct data analysis, such as sequence alignments, tokenization, searching cognates, and distance

calculation. The SCA sound distance algorithm by List (201) is realized in LingPy by using

appropriate functions and parameters.

Code 5 is the python code for calculating the distance between two phonetic transcriptions. Firstly,

the phonetic transcriptions are tokenized into phonetic segments with function:

ipa2tokens(ipa)

After that the pair of phonetic transcriptions is paired:

align_pair_ipa=align.pairwise.Pairwise(tokenized_ipa1,tokenized_ipa2)

The pair is aligned and the parameters indicate that the distance value is outputted and the SCA

method is used:

align_pair_ipa.align(distance=True, method='sca')

13 Detail is in Kondrak (2000).

42

As noted above, the SCA model allows three extensions of PSA which are global, local, and

DIALIGN respectively. In this experiment, “global” is applied, which is the common method to

treat every segment equally like the other distance algorithms used in this dissertation.

The distance is extracted by

distance=align_pair_ipa.alignments[0][2]

from lingpy import *

phonetic_paris=[ipa1,ipa2]

Tokenizes the phonetic transcriptions into phonetic segments.
for ipa in phonetic_paris:
 tokenized_ipa_pairs.append(ipa2tokens(ipa))

Pairs the two tokenized phonetic transcriptions.
align_pair_ipa=align.pairwise.Pairwise(tokenized_ipa_pairs[0],to-

kenized_ipa_pairs[1])

Aligns the pair of tokenized phonetic transcriptions.
The two parameters specify that the distance will be outputted and the

method used is SCA.
align_pair_ipa.align(distance=True,method='sca')

Output aligned phonetic transcriptions and distance between them.
aligned_ipa1,aligned_ipa2,distance=align_pair_ipa.alignments[0]
Code 5. Python code for determining the distance between two phonetic transcriptions using the SCA algorithm.

It is notable that distance between phonetic transcriptions generated by LingPy is possibly higher

than 1, which contradicts the formula of Downey et al. (2008). The reason is that the VC sensitive

algorithm (introduced in section 2.2) is applied by LingPy, and the SCA algorithm is realized upon

the VC sensitive algorithm. It means that substituting a vowel for a vowel or consonant affects the

distance derived by the SCA-based algorithm because VC sensitive algorithm avoids the

substitution between consonant and vowel. This causes the possibility of obtaining a negative

similarity value. In other words, the distance value may be more than 1 according to the distance

formula.

It is straightforward to build an appropriate data structure to store the phonetic transcription pairs

so that the data structure is applied in Code 5. Each pair is represented as a three-element tuple

including concept and the two phonetic transcriptions. More than 25 thousands pairs are generated

and they are put in a list, as:

[('one', 'bɪr', 'jak'),

('one', 'bɪr', 'jakta'),

('one', 'bɪr', 'jaktə'),

('one', 'bɪr', 'jaktɐ'),

…

('other', 'boʃqa', 'diga'),

('other', 'boʃqa', 'ani'),

('other', 'boʃqa', 'axti')]

43

Eventually, a list of tuples is generated. Each tuple consists of the concept, a pair of phonetic

transcriptions, where one transcription comes from a Turkic family language and the other from

an Indo-Iranian family language, and the distance value between them. Each generated pair

consists of one phonetic transcription in one language family, and one from the other per concept

(as mentioned in Section 2.1). There are more than 25 thousands tuples in the result list, and each

tuple is in the format of:

('animal', 0.60769, 'ʒanwar', 'hajvɔn')

5.3 Result and Evaluation

A list of tuples containing the concept, distance values, and a pair of phonetic transcriptions are

generated applying SCA distance algorithm implemented by LingPy library. The distance values

are the sound distances between phonetic transcriptions from the Turkic family and the Indo-

Iranian family. Table 23 is the statistical description presenting related facts of the distance values

generated from all the word pairs from all the concepts.

Min. 0.0000

1st Qu. 0.5789

Median 0.7077

Mean 0.6642

3rd Qu. 0.8142

Max. 1.1670
Table 23. Statistical description of the sound distances derived from the SCA-based algorithm.

Figure 8 is the histogram presenting the distribution of distance values. In general, the distribution

is slightly skewed to the right. The majority of the values are between 0.6 and 0.9. Both extremely

low distance values and extremely high values are not common. This histogram is similar to the

one generated by the PMI-based algorithm (Figure 1). The notable feature is that there is a small

“peak” at the values below 0.1, and those values are regarded as potential loanwords. This fact

might lead the algorithm to detecting more loanwords compared to the MI-based algorithm.

Figure 8. Histogram of sound distances between phonetic transcriptions from the Turkic and Indo-Iranian family

using SCA distance algorithm.

Distance

Counts

44

5.3.1 Determining Threshold

The word represented by one of the phonetic transcriptions in a pair is classified as loanword if

the sound distance of the pair is smaller than a selected threshold. Using the methods above, 200

potential threshold values are generated by evenly dividing an interval between smallest distance

values other than zero (0.1667) and the mean of the distance values (0.6642) into 200 pieces. The

threshold leading to the highest F1 score value is the most suitable threshold. F1 score and other

evaluation values are calculated by comparing detected loanwords to the gold standard. Figure 8

is a plot presenting the precision, recall, and F1 scores under the 200 potential thresholds. Similar

to the plots generated by PMI-based and spectrogram-based methods, there is a tradeoff between

precision and recall values. Precision drops down from the high value at small threshold values,

while recall climbs up from the low value to high along with the increasing of thresholds. It is

notable that recall increases rapidly under threshold value of 0.1, while precision drops in a stable

manner. This fact is reflected by the gathering of low distance values under 0.1 in the histogram

(Figure 7). Recall rises more moderately after threshold is higher than 0.1, but the absolute slope

value is still greater than the one of precision dropping. The intersection is at the threshold value

of around 0.31. Precision keeps declining to a low level, and recall remains rising to almost 1 with

the rising of threshold values. The F1 score is used to reflect the performance of the algorithm. It

climbs up in a similar way as recall climbs before the intersection, and drops down afterward. The

highest F1 score is at the threshold of 0.297. The evaluation values are summarized below:

Threshold 0.297

F1 score 0.8512

Precision 0.8834

Recall 0.8213
Table 24. Summary of the performance using SCA-based algorithm.

Figure 9. Precision, recall, and F1 score against the 200 potential thresholds.

5.3.2 Cross Validation

A 10-fold cross validation is conducted in order to examine the performance of the algorithm when

independent data is used. The method is illustrated in Figure 3. The average precision, recall, and

F1 score of the cross validation values are summarized as follows:

Values

Thresholds

45

Precision 0.8346

Recall 0.8019

F1 score 0.8128
Table 25. Mean scores in 10-fold cross validation for the PMI-based Levenshtein algorithm.

5.4 Discussion

The SCA distance algorithm outperforms PMI-based Levenshtein algorithm and spectrogram-

based Levenshtein algorithm when comparing F1 score. While applying LingPy to tokenize

phonetic transcriptions, certain segments fail to be segmented probably. For instance, /pf/ is

probably /p͡f / and LingPy is capable of segmenting /p͡f / as a sound unit, but LingPy treats /pf/ as

two separated units. This might slightly affect the distance values. Since /pf/ is used in the other

algorithms, the side effect caused by this pitfall is negligible.

6. COMPARISON OF THE THREE ALGORITHMS

So far, a model is designed to detect the pairs of the words containing loanwords. The core of the

model is to discover the best value as a threshold to classify loanwords, and the F1 score is used

to represent the performance of an algorithm at a given threshold. Thus, the model is able to

evaluate the performances of the three refined edit distance algorithms in loanword detection. The

performance of the three algorithms is compared from various perspectives. First of all, the

performances of the algorithms in loanword detection are compared by directly comparing the

evaluation values derived from the models. Meanwhile, the performance of the algorithms dealing

with independent data is compared as well (cross validation). Secondly, the distributions of the

distance values derived from these algorithms are compared in order to explore the distribution

differences. Thirdly, the results of detected loanwords are compared. There is a list of predicted

loanwords generated by using each algorithm to detect loanwords. Every list contains correctly

detected loanwords, incorrectly detected loanwords, loanwords that are not detected, etc. The

characteristics of these words in each algorithm are investigated and compared to other algorithms.

Fourthly, an alternative method, detecting outliers, is used to classify loanwords rather than

discovering the threshold outputting the highest F1 score. Comparison between these two methods

is related to the practical application of applying this model to detect loanwords.

6.1 Comparing Performances

6.1.1 Thresholds and Performances

A threshold is required to classify loanwords. If the distance value of a pair of words is lower than

a threshold, this pair is classified as containing a loanword. Otherwise, there is no loanword in the

pair. The “best threshold” is obtained by examining 200 potential thresholds from the interval

between the minimum distance value and the mean value of the distances of each algorithm. The

F1 score is used to evaluate the performance of an algorithm at a given threshold.

The graphs in the right column of Table 26 show the values of precision, recall, and the F1 score

of the selected 200 potential thresholds per algorithm. The graphs present the change of the three

46

evaluation values along with the increase of threshold values. In general, precision is positively

correlated to the threshold, while recall is negatively correlated to the threshold. The graphs of

each algorithm in the right column of Table 26 show that precision is high (almost 1.0) at small

threshold values, and it keeps declining while the threshold increases. In contrast, recall is low at

the smaller threshold values, and it keeps climbing while the threshold increases. The F1 score is

the result of considering both precision and recall. The F1 score climbs along with the increasing

of thresholds, peaks at a certain point (the best threshold), and keeps dropping after the peak.

Although the shape of the lines varies in each algorithm, the trends are identical as described above.

Evidently, the SCA-based edit distance algorithm outperforms the other two. The F1 score of

applying the SCA-based algorithm to detect loanwords is more than 0.85, which is significantly

higher than the F1 score derived from PMI-based algorithms (0.7847) or Barkfilter algorithm

(0.7427). Meanwhile, both corresponding precision and recall values of the SCA-based algorithm

are higher than the other two as well (Table 27).

47

 Distribution

(Solid line: the position of best

threshold.

Dash line: the position of lower

outlier boundary.)

P/R, Fl score against 200 potential

thresholds

(Blue solid line: precision;

Red dash line: Fl score;

Green mixed solid and dash line:

recall.)

PMI

Lower Outlier boundary: 0.01934

Best threshold: 0.021

Spectrogram

(Barkfilter)

Lower Outlier boundary: 0.71

Best threshold: 2.1381

SCA

Lower Outlier boundary: 0.22595

Best threshold: 0.297

Table 26. Comparison of the three algorithms. The first column is the histogram presenting the distribution of distance

values derived by each algorithm. The second column is the plots of evaluation values against 200 potential thresholds

of each algorithm.

48

 PMI Spectrogram SCA

F1 score 0.7847 0.7427 0.8513

Precision 0.8405 0.7467 0.8831

Recall 0.7357 0.7387 0.8218
Table 27. F1 score, precision, and recall of the three algorithms when the best threshold is used. In other words, the

highest F1 score of each algorithm and their corresponding precision and recall.

6.1.2 Determining Threshold Using Lower Outlier Boundary

An alternative method to extract an appropriate threshold is to calculate the lower outlier boundary

of the list of distance values. In a list of the observation points, outliers are the points that are

distant from other points. Mathematically, it is defined as the points outside the range of:

[𝑄1 − 𝑘(𝑄3 − 𝑄1), 𝑄3 + 𝑘(𝑄3 − 𝑄1)]

Where:

𝑄1 is the first quartile of a list;

𝑄3 is the third quartile of a list;

𝑘 is a positive constant.

Tukey (1977) proposed that k=1.5 indicates an “outlier”. The lower outlier boundary is the

boundary separating the outliers that are smaller than the other points from the rest. In other words,

lower outlier boundary is

𝑄1 − 1.5(𝑄3 − 𝑄1)

If a distance value of a pair of word is lower than the defined lower outlier boundary, the distance

value is exceptionally smaller than the other distance values. The pair of words classified as an

outlier is exceptional to other pairs as well. Hence, it is intuitive to classify a pair of words

containing a loanword if the distance value of the pair is lower than the lower outlier boundary.

Generally, the value of the lower outlier boundary is lower than the best threshold per algorithm

(Table 28). Since the lower outlier boundary values differ from the best threshold, the F1 scores

derived from the lower outlier boundary values are probably lower than those derived from the

best thresholds. The difference of F1 scores is very small in case of PMI-based algorithm, while

the difference is slightly more obvious in case of SCA-based algorithm. However, the difference

of F1 score in case of Barkfilter is huge. The F1 score is only 0.2971 when the lower outlier

boundary is used as threshold. The reason is that the lower outlier boundary value is much smaller

than the best threshold. The more standard normality of the distribution of distance values from

Barkfilter-based algorithm leads to fewer outliers compared to the outliers in case of the other two

algorithms. Using a low value as threshold possibly causes low recall value. Actually, the recall is

0.1771 when using the lower outlier boundary as the threshold in case of Barkfilter algorithm.

Using the lower outlier boundary value as threshold tend to obtain higher precision (using

Barkfilter algorithm is considered an extreme situation). In practice, this method reduces

computational cost dramatically, and the bias to precision can be ignored, (sometimes it may be

preferred) unless it causes extreme low recall.

49

 PMI Barkfilter SCA

Lower Outlier boundary value/

its corresponding F1 score

0.01934/0.7516 0.71/0.2971 0.22595/0.7867

Best threshold value/

its corresponding F1 score

0.021/0.7847 2.1381/0.7427 0.297/0.8513

Table 28. Comparison of performances between using lower outlier boundary as the threshold and using best

threshold value as the threshold.

6.1.3 Cross Validation

Cross validation is used to evaluate the performance of a model when dealing with independent

data. The data of pairs of words are split into a training set and a testing set.

In this dissertation, applying one of the three algorithms to the model to detect loanwords with

training data outputs a best threshold for each algorithm, and the best threshold is applied to the

testing data so that the performance of the model is evaluated. In order to reduce the computational

cost, there are only ten (instead of 200) potential thresholds selected by evenly dividing the interval

between the minimum distance value and the mean of distance values into ten parts. The cross

validation result shows that the SCA-based algorithm outperforms the PMI-based algorithm and

the Barkfilter-based algorithm, and the PMI-based algorithm outperforms the Barkfilter-based

algorithm. This performance ranks are identical to those obtained by using the best thresholds from

200 candidates. In order to explore the performance of dealing with independent data, the cross

validation result ought to be compared to the situation that cross validation is not conducted. To

ensure comparability, the evaluation result generated by determining the best threshold from ten

candidates (instead of 200) is compared to the cross validation because ten potential thresholds are

used in each iteration in the cross evaluation. It turns out there is no huge difference between those

two evaluation results in case of all three algorithms (Table 29). In other words, the respective

loanwords detection models generated by the three algorithms is capable to deal with independent

data.

 PMI Spectrogram SCA

Cross validation

Precision 0.760 0.7370 0.8346

Recall 0.795 0.7646 0.8019

F1 score 0.768 0.7379 0.8128

10 thresholds

Precision 0.8808 0.7273 0.8752

Recall 0.6628 0.7488 0.8293

F1 score 0.7564 0.7379 0.8516
Table 29. Cross validation results of the three algorithms, and performances of obtaining best threshold from “ten

threshold candidates”.

It should be noticed that the cross validation result of the PMI-based algorithm may not accurately

reflect the actual ability to deal with independent data. The reason is that the PMI value between

segments should be calculated based on the data in training set rather than all data. Hence, simply

using distance values calculated according to the PMI values derived from the whole data set may

affect the result of cross validation in this case. There is a possible solution. In each iteration, PMI

values between all segment pairs are calculated based on the word pairs in training set, and the

50

distance values of the word pairs in training set and testing set should be calculated based on that

PMI values. Considering the size of this dissertation, this is suggested in future works.

6.2 Comparing Distribution of Distance Values

There are approximately 25K distance values between two phonetic transcriptions generated per

algorithm. The number of distance values is not the same per algorithm because certain phonetic

transcriptions fail to be compared to the others in an algorithm. The difference of distance values

quantities among the algorithms are small compared to the total number of the distance values

(Table 30), the difference will not affect the comparison of the three algorithms.

Algorithm Number of distance values

PMI 25103

Barkfilter 25237

SCA 25290
Table 30. The number of distance values generated by each algorithm.

Table 31 provides a statistical summary of the distance values derived by the three algorithms. The

statistical descriptions include features of distance values, such as mean, median, etc., and these

features offer an overview of the data distribution with concrete digits. Since the mechanisms of

calculating distance are different from each other, it is meaningless to compare the statistical

description among the three algorithms quantitatively. In order to compare the distribution of the

distance values, using histograms is more appropriate.

 PMI Barkfilter SCA

Min. 0 0 0

1st Qu. 0.02909 3.389 0.5789

Median 0.03325 4.254 0.7077

Mean 0.03113 4.319 0.6642

3rd Qu. 0.03559 5.175 0.8142

Max. 0.04420 9.581 1.1670
Table 31. Statistical descriptions of sound distances derived from each algorithm.

A histogram is commonly used to visualize the distribution of data. Hence, observing the

histogram contributes to interpreting the distance values generated from an algorithm. Meanwhile,

it is intuitive to realize the approximate percentage of loanwords focusing on the low distance

values. The first column of Table 26 shows the histogram of each algorithm. The distributions of

the distance values extracted from the PMI algorithm and the SCA algorithm are similar in that

the two histograms are skewed to the right. Hence, the low distance values are not common in

these two situations, and the majority of the distance values gather in a narrow interval covering

relatively high values. On the other hand, the distance values derived from spectrogram-based

algorithm are normally distributed, where both low and high distance values are infrequent. The

majority of the distance values cluster around the mean of the distance values. In the case of SCA,

it is notable that there is a small peak at the position of extreme small distance values in its

histogram, while the number of distance values increases along with the increase of distance values

until they peak at a certain point in the other two cases.

51

The position of the best threshold of each algorithm is marked as a solid line in the respective

histogram (Table 26 first column). In the histogram generated from the PMI-based algorithm, the

best threshold is at the middle of the interval between the minimum value and the mean value. In

the case of the other two algorithms, the best thresholds are closer to the smallest distance value.

Obviously, the best threshold affects the number of detected loanwords per algorithm (Table 32).

It is intuitive to estimate the number of detected loanwords derived from each algorithm by

observing the distribution before the best threshold line in the respective histogram. In the case of

the PMI-based algorithm, although the best threshold is more to the middle of the histogram than

the SCA-based algorithm, there are fewer word pairs classified as containing loanwords.

Meanwhile, the number of word pairs classified as containing loanwords in the case of the

Barkfilter-based algorithm is less than the one in the case of the SCA-based algorithm in spite of

the similar positions of their best threshold.

Algorithm Number of detected loanwords

PMI 1815

Barkfilter 1661

SCA 1984
Table 32. The number of predicted loanwords generated by each algorithm using their respective best threshold.

6.3 Comparing Results of Detected Loanwords

Using the best threshold in the model with each algorithm results in a list of word pairs which are

predicted to involve a loan. There are three predicted loanword lists corresponding to each

algorithm. Some expert-classified loanwords are not found in a predicted loanword list using one

of the algorithms to detect loanwords, or not found in any predicted loanword list (false negative).

On the other hand, some pairs are not classified as containing loanwords by experts, but they

appear in the predicted loanword lists (false positive). The third list consists of genuine words that

were classified correctly as such. Figure 10 is a Venn diagram presenting the relations of the

predicted loanword lists of each algorithm and gold standard. The rectangle contains all the pairs

of words in the data. The circle in the light color represents the pairs containing loanwords in gold

standard. The three circles represent the pairs detected as containing loanwords by the three

algorithms respectively. The intersections of the different sets represent possible situations about

loanwords across each predicted loanwords list of an algorithm. For instance, some pairs are

detected by one or some of the algorithms, and they may be in or outside the gold standard.

6.3.1 Result Analysis

When a word is borrowed from a donor language, adjustments are required in order to fit the

linguistic features of the recipient language. Previous studies show that there are phonological

adjustments when loanword are adapted into the recipient language because of the phonological

features and constraints of the recipient language (Yip, 1993; Tsuchida, 1995; Miao, 2005). By

sketchily studying the gold standard, the patterns of phonological adaptation between the Turkic

family and the Indo-Iranian family may be discerned. The results explain the reason for the

superior performances of the SCA-based algorithm as we will explain shortly.

The study of the gold standard shows that epenthesis (or deletion) and substitution appear in the

phonological adaption of loanwords between the Turkic family and Indo-Iranian family.

52

Epenthesis or deletion means that a segment is added or deleted when a word is borrowed by

recipient language (Table 33), while substitution means a segment is substituted with one or more

segments. Notably, the major operation is the substitution.

Figure 10. Venn diagram showing schematically the overlap between the genuine loanwords and those predicted by

the algorithms. For instance, the intersection between the set of gold standard and any one of the algorithm set

represents the correctly predicted loanwords of each algorithm. The part of the intersection of the three algorithm

sets outside gold standard represents the loanwords that incorrectly detected by all the three algorithms.

('correct', 'tuːra', 'tøɣri')

('forest', 'wʊrmon', 'urmʊn')

('meat', 'gwʉʃt', 'guʃt')

('lake', 'kwøl', 'kul')

('old', 'kwønʲe', 'kʉjna')
Table 33. Examples of epenthesis (or deletion) in phonological adaptation when borrowing words.

The substitution of some segments for others is regular. For instance, [a] is commonly substituted

for (or by) [e], [ɔ], and [ɒ], but it is rarely substituted for (or by) [u]. Table 34 is the summary of

the substitution patterns. The segments that are interchangeable share similar pronunciations (at

least their pronunciations are similar according to human perception). More importantly, Table 34

shows that the sound segments are divided into groups to some degree. It implies that the lower

distance value between any two segments within a group can raise the probability of detecting

loanwords correctly.

Gold standard

PMI

SCA

Spectrogram

53

 Commonly seen Segments

that are interchanged

Examples (a,b,c) from gold standard

a: concept

b: phonetic transcription in Turkic family

c: phonetic transcription in Indo-Iranian family

Vowels [a], [e], [ɔ], [ɒ] ('animal', 'hajβan', 'hajβɔn')

('short', 'kʲelte', 'kalta')

('fruit', 'miβe', 'meva')

('breast', 'køkrʲek', 'kukrak')

('wing', 'qanat', 'qanɔt')

('wind', 'ʃamɒl', 'samɔl')

[i] ,[ɨ], [ɪ], [ə] ('smooth', 'silləq', 'siłłɪq')

'smooth', 'tekɪs', 'tɛkkəz')

('correct', 'tuːrə', 'tuɣri')

('root', 'tɒmɨr', 'tɒmər')

('fruit', 'mʲɪva', 'miva')

('straight', 'tʊrɨ', 'tɔɣri')

('louse', 'bɪt', 'bit')

('breast', 'kukrɨk', 'qʊqrak')

[ə], [u], [ɜ], [ʉ],[ø], [ʊ],[ɔ] ('egg', 'tuxum', 'txəm')

('egg', 'tqʊm', 'txəm')

('dog', 'kəʧək', 'kuʧuk')

('louse', 'ʃubəʃ', 'ʃʊpʊʃ')

('forest', 'wɔrman', 'urmʊn')

('flower', 'gul', 'gøl')

('forest', 'wɔrman', 'ørmɔn')

('breast', 'køkrøk', 'kʉkrak')

Consonants [k], [q], [g] ('leaf', 'parak', 'barg')

('breast', 'køkrɛk', 'kukraq')

[q], [x], [χ] ('blood', 'qan', 'xun')

('back', 'ɔrqa', 'arχa')

[t], [d] ('tree', 'tʲerɛk', 'daraxt')

('sea', 'tʲeŋɪz̥', 'deŋiz̥')

[β], [v], [w], [f] ('animal', 'ajβan', 'hajvɔn')

('animal', 'hajβan', 'hajwon')

('to dig', 'kaβlɛm', 'kɔftan')

('fruit', 'miwe', 'mʲeva')

[ʧ],[ʃ], [ʤ], [j], [s] ('dust', 'ʃaŋ', 'ʧaŋ')

('to live', 'ʤaʃa', 'jaʃam')

('star', 'ʤɨldɨz̥', 'jɨldɨz̥')

('bird', 'qʉs', 'kuʃ')

('star', 'ʃʉldɨz̥', 'jɨldɨz̥')
Table 34. Summary of segment substitution between loanwords in the gold standard from the data of Central Asian

languages.

The importance of regular segment substitution is reflected in the PMI-based algorithm, the

spectrogram-based algorithm, and the SCA- based algorithm. The segment distance in the PMI-

based algorithm is based on the probability of two-segment alignment. On the other hand, the

54

segments in the same group in Table 34 may have similar acoustic features due to the similar

pronunciations of the segments in the same group. In the case of the SCA-based algorithm, the

division is similar to the division generated by sound classes (Table 21). Since all these three

algorithms reflect the features of segment substitution in loanwords, why does the SCA-based

algorithm outperform the other two? The reason may be related to two aspects.

The first reason is that the SCA-based algorithm uses DIALIGN alignment (considering full and

partial sequence) between two sequences before calculating the distance, while the sequence

alignments of the other two algorithms are based exclusively on segment distance. Hence,

alignment and distance calculation are more independent in the SCA-based algorithm.

The second reason is the method of distance calculation. In the SCA-algorithm, the distance

between two segments within a sound class is zero, and the distance between two segments from

different sound classes has a fixed distance according to which two sound classes are compared.

This is the reason for the small peak at the low value in the histogram of SCA-algorithm result

(Figure 8) probably. Also, it explains the frequent appearance of identical sound distance values.

Moreover, the distance between segments from two varied sound classes is larger than the two

from the same sound class. In the case of the other two algorithms, the distance between any two

segments is unique and more concrete in general. Unlike the SCA-based algorithm, the distance

between two segments within a sound class is almost never zero. Nevertheless, the distance

between any two segments within a group is smaller than two from two different groups.

In summary, although PMI-based algorithm and spectrogram-based algorithm provide more

concrete sound distances between two segments than what SCA-based algorithm does theoretically,

the distance calculation scheme of the SCA-based algorithm is superior in detecting loanwords.

Assigning “zero distance” to any two segments within a sound class is more appropriate given the

fact that substitution within a sound class models the phonological adaptation of loanwords

between Turkic language family and Indo-Iranian language family. The smaller difference

between two segments within a sound class raises the probability of classifying two sequences

involving those two segments as containing loanword.

7. CONCLUSION

There are various refined edit distance algorithms which are sensitive in measuring the sound

distance between two words, and loanwords can be detected by comparing distances between pairs

of words. This dissertation attempts to compare the performance of applying three refined edit

distance algorithms to measure sound distance, and the derived distance values are applied to

detect loanwords. The algorithms used in this dissertation are the PMI-based edit distance

algorithm, the spectrogram-based edit distance algorithm, and the SCA edit distance algorithm.

The performance evaluations of the three algorithms in loanword detection show that the SCA-

based algorithm outperforms the PMI-based algorithm and the spectrogram-based algorithm, and

the PMI-based algorithm is slightly better than the spectrogram-based algorithm. Moreover,

realizing SCA-based algorithm is more convenient than the other two algorithms. The tools used

to calculate the PMI-based distance and spectrogram-based distance require the tedious

preparation of pre-processing the data, and it is complicated to use those tools is complicated since

they are based on a non-popular platform. In contrast, SCA-based distance is released by a Python

library, which is efficient, and the pre-processing of data is straightforward. The convenience of

55

calculating SCA-based distance is beneficial to the development of an application for loanwords

detection. In conclusion, the result shows that it is feasible to apply Levenshtein distance to

represent the sound distance between two words written in phonetic transcriptions, and it is

effective to apply the sound distance between words for loanword detection between two unrelated

languages. Amongst the algorithms investigated in this dissertation, applying the SCA-based

algorithm is appropriate to detect loanwords, and it outperforms algorithms and methods (such as

ancestral state reconstruction (Köllner & Dellert, 2016) and string similarity (Mi et al., 2014)) used

in previous studies as well.

Each pair of words is assigned a distance value representing the sound distance between the words

in a pair. The model introduced in this dissertation classifies the loanwords by an empirically

determined threshold. In other words, if the distance value of a pair is lower than the threshold, the

pair is classified as containing loanword, otherwise, it is not. Determining an appropriate threshold

is core to classifying loanwords. Using the “200 potential thresholds” method we are able to find

the best threshold which leads to the highest F1 score. The pitfall is that the computational expense

is high since the model needs to be run for 200 times.

In practice, the search for the best thresholds from the potential thresholds can be terminated as

soon as the F1 score begins to decline because there is only one extremum in the line of the F1

score. “Only one extremum” implies that the highest value before value declines is the highest

value globally. Obviously, early termination of the investigation of potential thresholds reduces

the cost of computation. An alternative method is simply to use lower outlier boundary as a

threshold. Although the best performance may not be reached, the computational expense is

reduced significantly. It is notable that the F1 score is not the only indicator of reflecting the

performance because the highest F1 score is not always desired. High precision may be desired if

incorrect detection is not tolerated, while high recall may be desired if it is required to detect more

loanwords. Therefore, using F1 score as an indicator of performance is not always appropriate.

It is possible that the pronunciation of word w1 from language A is similar to the pronunciation of

word w2 from language B, but neither w1 nor w2 is a loanword. For instance, the comparison

section above shows that all the pairs of some words are expertly classified as “not loanword”, but

they are predicted as loanwords whatever algorithm is used. The concept “I” is mainly pronounced

as /mʲen/ in Turkic family, and /man/ in the Indo-Iranian family. These two pronunciations are not

cognates. However, their pronunciation is similar enough that the models developed by all the

three algorithms classify this pair containing a loanword (Table 10).

 Distance Lower outlier boundary Best threshold

PMI 0.0106 0.0193 0.021

Barkfilter 0.7628 0.71 2.1381

SCA 0.04 0.22595 0.297
Table 35. The distance between /mʲen/ (Turkic family) and /man/ (Indo-Iranian family) generated from the three

algorithms. Comparing with the respective lower outlier boundary and best threshold, the distances are lower or a

little higher than lower outlier boundary. Hence, /mʲen/ and /man/ have similar pronunciation.)

If a pair of words are not cognates but share similar pronunciation and meaning, they are called

false cognates. Examples of false cognates are ‘saint’ (/sɛ/̃) in French and ‘聖 (sheng)’ (/ʂəŋ/) in

Mandarin (meaning “saint”), ‘斬る (kiru)’ / kʲirɯ/ in Japanese and ‘kill’ /kɪl/ in English. The words

representing the concept “I” in Turkic family and Indo-Iranian family are probably false cognates.

https://en.wikipedia.org/wiki/Mid_central_vowel#Mid_central_unrounded_vowel
https://en.wikipedia.org/wiki/Mid_central_vowel#Mid_central_unrounded_vowel

56

The existence of false cognates may influence the principal hypothesis of this dissertation. The

result of applying the model introduced in this dissertation shows that there are only 48 pairs of

words (accounting for less than 0.2% of the total pairs of words) are incorrectly detected as

containing loanwords no matter which algorithm is used. Although detecting loanwords via the

sound similarities between words is not always reliable, false cognates has little effect to the

performance of the model due to their low proportion.

A sensitive distance value is important to accurately represent the sound difference between words,

and this is one of the reasons for applying the refined algorithm to calculate sound distance.

However, the algorithms used in this experiment are not perfect. For instance, the sound samples

used in the spectrogram-based algorithm for extracting acoustic features may not be representative,

meaning that the data might fail to reflect the acoustic features of pronunciation in at least some

languages.

As for PMI-based algorithm, the PMI of two segments is influenced by the dataset itself because

the calculation of PMI depends on the available data. The performance of the algorithm in

loanword detection may be worse than the cross validation result. The pitfall of the algorithms

may influence the performance of the algorithm in loanwords detection.

For the purpose of loanword detection, these algorithms can be improved in future study. For

instance, the sound samples used in the spectrogram-based algorithm might be collected by other

people with different mother tongue so that the bias to certain accents is diminished.

It is possible that the performance of these algorithms in loanword detection could vary if evaluated

on similar data of other languages instead of languages in Central Asia. Applying the model to

other languages would be useful in order to examine the universality of the model. Besides, the

evaluation of the performance of the refined edit distance algorithms in loanword detection would

be more convincing. Moreover, an application can be developed properly for loanword detection

between two unrelated languages, for instance an application with user-friendly interface. Such an

application would be useful for the studies in historical linguistics.

BIBILOGRAPHY

Brown, Cecil., Holman, Eric., & Wichmann, Søren. (2013). Sound correspondences in the world's

languages. Language, 89(1), 4-29.

Church, Kenneth., & Hanks, Patrick. (1990). Word association norms, mutual information, and

lexicography. Computational linguistics, 16(1), 22-29.

Delz, Marisa. (2013). A theoretical approach to automatic loanword detection (Master thesis,

Eberhard-Karls-Universität Tübingen).

Dolgopolsky, Aharon. (1964). Gipoteza drevnejšego rodstva jazykovych semej Severnoj Evrazii

s verojatnostej točky zrenija [A probabilistic hypothesis concerning the oldest relationships

among the language families of Northern Eurasia]. Voprosy jazykoznanija, 2, 53-63.

Downey, Sean., Hallmark, Brian., Cox, Murray., Norquest, Peter., & Lansing, Stephen. (2008).

Computational feature-sensitive reconstruction of language relationships: Developing the

57

ALINE distance for comparative historical linguistic reconstruction. Journal of

Quantitative Linguistics, 15(4), 340-369.

Geisler, Hans. (1992). Akzent und Lautwandel in der Romania (Vol. 38). Gunter Narr Verlag.

Haspelmath, Martin., & Tadmor, Uri. (2009). Loanwords in the world's languages: a comparative

handbook. Walter de Gruyter.

Heeringa, Wilbert. (2004). Measuring Dialect Pronunciation Differences using Levenshtein

Distance (Doctoral dissertation, University of Groningen)

Köllner, Marisa., & Dellert, Johannes. (2016). Ancestral state reconstruction and loanword

detection. Universitätsbibliothek Tübingen.

Kondrak, Grzegorz. (2000). A new algorithm for the alignment of phonetic sequences. In

Proceedings of the 1st North American chapter of the Association for Computational

Linguistics conference (pp. 288-295). Association for Computational Linguistics.

Kondrak, Grzegorz., & Hirst, Graeme. (2002). Algorithms for language reconstruction (Vol. 63,

p. 5934). Toronto: University of Toronto.

Levenshtein, Vladimir. (1965). Binary codes capable of correcting deletions, insertions and

reversals. Doklady Akademii Nauk sssr 163: 845–848. In Russian.

List, Johann-Mattis (2012) SCA: phonetic alignment based on sound classes. In: New Directions

in Logic, Language and Computation. Lecture Notes in Computer Science 7415: 32-51.

Springer: Berlin Heidelberg.

List, Johann-Mattis. (2012b). Multiple sequence alignment in historical linguistics. Proceedings

of ConSOLE XIX, 241, 260.

List, Johann-Mattis and Forkel, Robert (2016): LingPy. A Python library for historical linguistics.

Version 2.5. URL: http://lingpy.org, DOI:

https://zenodo.org/badge/latestdoi/5137/lingpy/lingpy. With contributions by Steven

Moran, Peter Bouda, Johannes Dellert, Taraka Rama, Frank Nagel, and Simon Greenhill.

Jena: Max Planck Institute for the Science of Human History.

Mennecier, Philippe., Nerbonne, John., Heyer, Evelyne., & Manni, Franz. (2016). A Central Asian

Language Survey. Collecting data, measuring relatedness and detecting loans. Language

Dynamics and Change, 6(1), 57-98.

Mi, Chenggang., Yang, Yating., Wang, Lei., Li, Xiao., & Dalielihan, Kamali. (2014). Detection

of Loan Words in Uyghur Texts. In Natural Language Processing and Chinese Computing

(pp. 103-112). Springer, Berlin, Heidelberg.

Miao, Ruiqin. (2005). Loanword adaptation in Mandarin Chinese: Perceptual, phonological and

sociolinguistic factors (Doctoral dissertation, Strony Brook University).

Needleman, Saul., & Wunsch, Christian. (1970). A general method applicable to the search for

similarities in the amino acid sequence of two proteins. Journal of molecular biology, 48(3),

443-453.

58

Nerbonne, John., Heeringa, Wilbert., & Kleiweg, Peter. (1999). Edit distance and dialect proximity.

Time Warps, String Edits and Macromolecules: The Theory and Practice of Sequence

Comparison, 15.

Nerbonne, John., Heeringa, Wilbert., Van den Hout, Erick., Van der Kooi, Peter., Otten, Simone.,

& Van de Vis, Willem. (1996). Phonetic distance between Dutch dialects. In CLIN VI:

Proceedings of the sixth CLIN meeting (pp. 185-202).

Nerbonne, John., & Kleiweg, Peter. (2003). Lexical distance in LAMSAS. Computers and the

Humanities, 37(3), 339-357.

Nerbonne, John., & Kretzschmar, William. (2003). Introducing computational techniques in

dialectometry. Computers and the Humanities, 37(3), 245-255.

Paradis, Carole., & LaCharité, Darlene. (1997). Preservation and minimality in loanword

adaptation. Journal of linguistics, 33(2), 379-430.

Peperkamp, Sharon., & Dupoux, Emmanuel. (2003). Reinterpreting loanword adaptations: the role

of perception. In Proceedings of the 15th international congress of phonetic sciences (Vol.

367, p. 370).

Reetz, Henning., & Jongman, Allard. (2011). Phonetics: Transcription, production, acoustics, and

perception (Vol. 34). John Wiley & Sons.

Rietveld, Toni. and Van Heuven, Vincent. (1997). Algemene fonetiek. Coutinho, Bussum.

Schroeder, Manfred., Atal, Bishnu., and Hall, J. L. (1979). Optimizing digital speech coders by

exploiting masking properties of the human ear. Journal of the Acoustical Society of

America, 66(6), 1647–1652.

Swadesh, M. (1955). Towards greater accuracy in lexicostatistic dating. International journal of

American linguistics, 21(2), 121-137.

Swadesh, Morris. 1972. What is glottochronology? In Morris Swadesh (ed.), The Origin and

Diversification of Languages, 271–284. London: Routledge & Kegan Paul.

Traunmüller, Hartmut. (1990). Analytical expressions for the tonotopic sensory scale. The Journal

of the Acoustical Society of America, 88(1), 97-100.

Tsuchida, Ayako. (1995). English loans in Japanese: Constraints in loanword phonology. Working

Papers of the Cornell Phonetics Laboratory, 10, 145-164.

Tukey, John. (1977). Exploratory data analysis.

Turchin, Peter., Peiros, Ilia., & Gell-Mann, Murray. (2010). Analyzing genetic connections

between languages by matching consonant classes. Journal of Language Relationship, 3,

117-126.

Wieling, Martijn, Bloem, Jelke, Mignella, Kaitlin, Timmermeister, Mona, & Nerbonne, John

(2014) Measuring foreign accent strength in English. Language Dynamics and

Change, 4(2), 253-269.

Wieling, Martijn., & Nerbonne, John. (2015) Advances in dialectometry. Annual Review of

Linguistics 1, 243‒264.

59

Wieling, Martijn, Prokić, Jelena, & Nerbonne, John (2009) Evaluating the pairwise string

alignment of pronunciations. Proceedings of the EACL 2009 workshop on language

technology and resources for cultural heritage, social sciences, humanities, and education.

26-34. Association for Computational Linguistics.

Van Der Ark, René., Mennecier, Philippe., Nerbonne, John., & Manni, Franz. (2007). Preliminary

identification of language groups and loan words in Central Asia. In Proceedings of the

RANLP Workshop on Computational Phonology (pp. 12-20).

Yip, Moira. (1993). Cantonese loanword phonology and Optimality Theory. Journal of East Asian

Linguistics, 2(3), 261-291.

60

Appendix I

List of concepts from the extended Swadesh list in the data used in this dissertation.

one rope to think rain round

two skin to smell river sharp

three meat to fear lake dull

four blood to sleep sea smooth

five bone to live salt wet

big fat to die stone dry

long egg to kill sand correct

wide horn to fight dust near

thick tail to hunt earth far

heavy feather to hit cloud right

small hair to cut fog left

short head to pull sky name

narrow ear to scratch wind I

thin eye to dig snow you

woman nose to swim ice he

man mouth to fly smoke we

person tooth to walk fire you

child tongue to come ashes they

wife nail to lie to burn who ?

husband leg to sit road what ?

mother knee to stand mountain where ?

father hand to turn red when ?

animal wing to fall green how ?

fish belly to give yellow not

bird neck to hold white other

dog back to squeeze black

louse breast to wash night

butterfly heart to wipe day

snake liver to pull year

worm to drink to throw autumn

tree to eat to tie warm

forest to bite to sew cold

stick to suck to say full

fruit to spit to sing new

seed to blow to play old

leaf to breathe to freeze good

root to laugh sun bad

bark to see moon rotten

flower to hear star dirty

grass to know water straight

