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Abstract

Thematic role-filler prediction refers to the prediction of certain words corresponding to
given thematic roles, while selectional preference refers to a word’s tendency to co-occur
with other words that belong to certain lexical sets. Traditional approaches for thematic
role-filler prediction or selectional preference rely either on hand-crafted resources such as
word-net or on unsupervised machine learning mechanisms such as distributional similarity
metrics. Throughout this research, we investigated the use of deep learning approaches for
semantic role-filler prediction. Taking a large amount of automatically role-labeled text
as input, the model is expected to predict a suitable role-filler given the target semantic
role and the context of other role-fillers. In order to enable our model to present a high
quality distributed representation of a semantic role under different contexts, the arguments
of the predicate should take contextual information (e.g the entire noun phrase or sentence)
into consideration. In our experiments, we explored various ways to embed important
words contained in the noun phrase or sentence for semantic roles. The experimental results
indicate that building factored rolespecific word embedding matrices and factored rolespecific
classifiers are effective methods for sharing role and word information through the neural
network. Regarding meaning composition, we apply a deep learning method for processing
sequential data and sentence meaning. We further explore usage of attention mechanism to
obtain a weighted meaning representation based on the Recurrent Neural Network(RNN)
or word embeddings. We explore their performance at the phrase level and sentence level.
Experimental results of perplexity indicate that the attention mechanism performs better
at the phrase level than at the sentence level. Meanwhile, at the sentence level, the RNN
is an effective method for sentence meaning representation. Furthermore, based on the
evaluation of thematic fit difference, the attention mechanism applied in sentence level are
also important for contextual meaning extraction.
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Chapter 1

Introduction

1.1 Thematic role and role-fillers prediction

Thematic roles refer to a role that an entity expressed in the sentence. Usually, the task of
thematic role labeling in natural language processing attempts to answer questions such as
"who did what to whom?" [56]. To a large extent, the role that a noun or noun phrase plays
in a sentence is closely related to the predicate verb. Usually, thematic roles can be defined
differently. They can either be coarse-grained or fine grained (Geranmayeh [25]). Another
concept related to thematic or semantic roles (Ferretti et al. [24]) is verb-specific thematic
role concepts, where other thematic roles incorporate the verb-specific information. They
proposed the concept that verb meaning and situation structure is related among the entities
that commonly participate. Thematic roles concerned in this project include the role of agent,
patient, location, time and instrument. When unspecified, we will also include the verb as
one type of thematic role that the project will try to predict. All the other roles will then be
marked as other roles. Here the concept of agent, refers to the participant which the meaning
of the verb specifies as doing or causing something while patient, which the meaning of the
verb specifies as doing or causing something[22] .

Thematic fit is the extent to which an entity fits a thematic role in the semantic frame
of the event. The task of thematic role-filler prediction aims to find the most appropriate
word for a target thematic role, given related context information or other thematic role
information. In that case, the task of thematic role-filler prediction is also closely related
with selectional preference. Whereas the latter refers to the word tendency of co-occurrence
with some certain words in certain semantic classes. Either in the task of thematic role filler
prediction or words’ preference selection, the word’s thematic role or semantic classes is not
the only situation that must be taken into consideration, due to the fact that the process is a
logical consequence of word’s meaning (McCawley [44]). For example, the direct subjects
for the word eat should be animate while it’s direct objects should be edible. However,
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Introduction

according to (Sayeed et al. [62]), the drawback of previous studies on roll-filler prediction
is entirely due to information about the "frequency of the word collocation, the syntactic
dependences collected through corpus data and handmade grammars". Meanwhile how to
effectively integrate the context information into the the task is the main focus of this thesis.

1.2 Thesis motivations

Given different context information The hardworking boy goes to ?? and The sick boy goes
to ??. The possible role-filler for location may be different. For example, school for the
former sentence and hospital for the latter. In this project, given the input sentences, the
thematic roles for each word or noun phrase, as well as the target role, we are expected to
predict the role-fillers. So the research objective of this project is to effectively learn the
role and word annotation of given sentences and combine the given information together for
target role-filler prediction.

As mentioned in the previous part, there are similar tasks for thematic role-filler predic-
tion and selectional preference learning. However, most of the literature focuses only on the
content words of thematic roles, such as only the noun for the role of agent, patient and the
verb for the verb predicate [20, 62]. Meanwhile, there isn’t much research so far looking
into the context information, especially the modifier of head noun of each thematic role.
Furthermore, in previous researches, researchers tend to rely heavily on the Distributional Se-
mantic Models (DSM), in which they extract the distributional information of high dimension
vectors and similar words are defined based on the vector similarity achieved by the model.
While one drawback of DSM is that the information for similar words extraction is heavily
relied on the training data and the relation links defined in the model. This restricts the task,
due to it being only effective on word pairs or triples [6, 40], and being rarely implied into
context information of learning of a whole noun phrase or sentence.

In the recent years, the use of neural networks has dominated the learning of words’
distribution using optimization [71]. The implementation of the neural network in the work
of (Van de Cruys [73]) also shows its advantages in overcoming data sparsity problems. Thus,
this project tends to explore the use of neural approaches for context information combination
as well as for related thematic role-filler prediction.

1.3 Thesis structure

The thesis is organized as follows. Chapter two introduces the reader to the field of thematic
role-filler prediction by introducing firstly the concept of thematic roles and their functions
in constructing natural languages. Then it explores the various ways in which previous
research has experimented with thematic role filler prediction, thematic fit acquisition and
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selectional preference acquisition. After that, it also explores how the methods improved
from role based methods to unsupervised machine learning mechanisms. Furthermore, it
also summarizes the previous methods for learning context information of a given sentences/
noun phrases, and finally the necessities of adapting neural approaches for thematic role
prediction or selectional preference acquisition, as well as the possible methods for neural
approaches in thematic role-filler prediction.

Chapter three introduces detailed information about the proposed methods, of which
there are two. First of all, we proposed the application of Recurrent Neural Network (RNN)
on sequence of sentence processing. Later, we explain the attention mechanisms which have
been proved effective in some other Natural Language Processing (NLP) tasks by assigning
weighted interpretation for certain hidden states. Moreover, we also discuss how to solve the
problem of wordrole information sharing within the model. When given different contexts,
the thematic roles for certain word will change.The proper use of word-role embedding in
this project can reduce the learning parameters as well as improve training efficiency of target
role-filler prediction. Building a word-role parameter sharing matrix seems to be efficient
way to solve this problem.

Chapter four describes how the experiments are carried out with a neural approach. The
first part describes the training data and its preprocessing. The second part explores the
word embedding used for experiment and the training model of word2vec. In this part, we
also introduce the evaluation metrics. As there are limited resources for evaluation data for
our project, we describe briefly how we construct our own data for thematic fit difference
evaluation. The final part of this chapter introduces the training details and methods we used
to prevent over fitting.

Chapter five shows the performance results of the different models we experimented
with for context information learning and thematic-role filler prediction. It introduces the
perplexity results and the models’ performance on thematic fit based on human rating.

Chapter six consists of conclusions to be drawn from both of the approaches, and offers
insight towards potential research directions for the future.
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Chapter 2

Literature Review

This section contains the overview of topics and previous studies that have been conducted
relevant to thematic role-filler prediction and context information learning. The aim of this
chapter lies in twofold: first of all, we intend to provide basic information of the thematic
role and thematic role-filler prediction, so to understand the methodology and discussion
of the current work. Second, we will discuss the current research done in the related area
and possible techniques for solving the problem, which may offer us the inspiration of the
proposed method for our project.

2.1 Thematic roles and thematic role-filler prediction

In this part, we focus on the concept of thematic roles and their role-filler prediction. We will
also provide information on the current research that has been done for target prediction.

2.1.1 Thematic roles and thematic role-filler prediction

Thematic roles usually refer to a set of semantic roles that a noun phrase has in relation to
the verb (predicate) in the sentence. Given a sentence, usually all the noun phrases will fill in
a semantic role for the given predicate. According to the relation between the predicate and
the noun phrases, there are usually several different types of semantic roles such as Agent,
Patient, Location and so on. Typical semantic roles will also include the adjuncts such as
Locative, Temporal, Manner, Cause et al [79]. One of the basic Natural Language Processing
task involved with thematic role is the task of semantic role labeling (SRL), which aims to
discover the predicate-argument structure of each predicate in a given input sentence [79].
Usually, the realization of SRL, which is a supervised learning process, is closely related to
the syntactic information contained in the sentences. Meanwhile, the information of SRL
can be applied into practical tasks such as information extraction, question answering and so
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on [8, 64]. Apart from that, the projects for thematic role-filler prediction, which are usually
supervised machine learning tasks, are learned mainly based on the annotated semantic roles
provided in the training data. In our project, as mentioned again, there are five types of
thematic roles included, which refer to the role of Agent, Patient, Location, Time, Instrument.
All the other semantic roles such as Result, Goal are all marked as other roles. Also, the
predicate among each sentences are also regarded as the role of verb. The example illustrated
below shows the information of the semantic role of each noun or noun phrase respectively
with the predicate of the sentence.

• (The hungry boy)[Agent] eats[Verb] (cake)[Patient] (with a knife)[Instrument] (in the kitchen)[location]

• (The sick boy)[Agent] took [Verb] (medicine)[Patient] (in the hospital)[location]

Given the context information, such as the nouns and their thematic roles, the task is to
prediction the noun head for target roles. As mentioned in 1.1, the task of thematic role-filler
prediction is closely related to the role of the thematic fit evaluation or the word’s selectional
preference. Here the thematic fit refers to the extent to which the nouns or noun phrases fit a
thematic role given the predicate of the sentence according to (Sayeed et al. [62]). The task
of selectional preference concerns about the semantic restrictions that a word imposes on the
environment in which it occurs[11]. Similar to thematic role-filler prediction, the exploration
of a word’s selectional preference is based on the observed frequencies of co-occurring words
or phrase pairs together with their semantic role classes. This is why exploring the previous
researches related to thematic fit evaluation or words’ selection preference is quite necessary
to help us understand the task of thematic role-filler prediction.

2.1.2 Distributional Model for thematic role-filler prediction

In the early stage, the calculation of thematic fit or selectional preference relies mainly on
hand-crafted resources, such as Wordnet. In these types of methods, the class information
is essential for preference selection. Usually the researchers focus on the the verb to class
relation extraction and learning or class to class learning. In a study presented by [2], they
propose a class to class relation learning integrated with the information extracted from
Wordnet. Meanwhile,(Clark and Weir [17]) found a generalized level of preferential class
for word selection according to the hierarchy structure of Wordnet. However, as (Ritter et al.
[59]) commented, even though these methods produce a human-interpretable output, the
classification models often suffer in quality due to an incoherent taxonomy, an inability to
map arguments to a class (poor lexical coverage), and word sense ambiguity.

Recent methods for thematic fit evaluation or selectional preference modification focuses
on the data driven methods. For example, to learn the selectional preference of given words,
(Rooth et al. [60]) used an Expectation-Maximization (EM) clustering algorithm which is
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based on the probability of co-occurring data in the corpus. Also, in the work presented by
(Ritter et al. [59]), they propose an Latent Dirichlet Allocation (LDA) method. They focus
on the latent topics and their topic distribution according to relations. They also combined
the advantages of a class based method to produce human interpretable classes to describe
the classes and their relations. The combination of the distributed method with the previous
class based method increased their model’s performance for selectional preference induction.
Another topic on selectional preference learning model is proposed by (Séaghdha [63]),
also with the adaptation of the LDA method. They assume the predicate in the sentence
is associated with a distribution over semantic classes. This method enables them to draw
multinomial distribution of predicates in sentences over all the semantic role classes as well
as enables them to have multinomial distribution of semantic classes over the type. The usage
of Bayesian techniques is also beneficial for learning probabilistic models of selectional
preference and enables the effective learning of unknown words.

Apart from exploring the relation between thematic topics and their semantic classes,
more popular methods recently conducted in this field are based on the distribution space of
the words in corpus. To induce selectional preference, (Erk et al. [23]) proposes a method that
uses corpus-driven distributional similarity metrics to learn the possible word co-occurrences.
The use of distributional model is based on the assumption that words will share semantic
similarities if they occur in the similar context[40, 53]. Basically, most of this research is
based on Distributional Semantic Models (DSM) which extract the distributional information
in high-dimensional vectors in order to define distributional/semantic similarity in terms of
vector similarity [58, 59, 63].

The state-of-art DSM is proposed by Baroni and Lenci[6], named the Distributional
Memory model(DM). The DM model is a multi-functional model, where the distributional
information can be shared for different semantic tasks such as preference selection,word
similarity judgments, discovering synonyms, or concept categorization. In their paper, they
introduce the way of processing word pairs as triples. In these word-word pair triples, two
of the sets are the two sets of objects while the third one denotes the relation between two
objects. The concept of the triple information is also applied over text level, where the
relation triple is between two sets of strings of content words in the text while the relation
indicate the link between these words. This concept is also further developed into corpus
level to present the words pairs and their relations among the whole corpus. A weighted
matrix is also applied to learn the weighted distribution of tuples among the whole corpus.
To train the weights for tuples, the DM model takes the form of an order-3 tensor, where two
of the tensor axes represent words and the third axis represents the syntactic link between
them. The application of this three-way tensor, especially the use of the third axis, allows
the model to fully exploit the potential of corpus-derived tuples. Another feature for this
three-order tensor is that the data stored in the tensor is called local mutual information
(LMI), which is the basis for preference selection. By implementing this DM model, (Lenci
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[40]) presents a computational model of the dynamic composition and updates the verb
argument expectations using DM model. The work proves that DM can successfully predict
the thematic fit between an agent-verb pair and a patient-noun argument of the same verb.

The description of selectional preference or thematic fit evaluation in this part shows that
the research on these tasks mainly focuses on the frequencies of word pair co-occurrences
and the target word’s semantic roles or classes. Amongst this research, the DM model has a
much better performance due to the fact that it’s a corpus driven approach for analyzing the
distributional similarities among words in similar or different classes. However, despite the
good performance of the DM model in different NLP tasks, the results from these models
depend heavily on how exactly the distribution space is defined, while having no principled
way of optimizing the space [71]. Meanwhile the advantage of a neural network approach is
that the model can be trained to optimize the distributional representation for the task [71] as
well as to overcome the data sparseness problem[73] . Thus, a few researchers have explored
the neural approach for thematic fit or selectional preference.

2.1.3 Neural Approaches for thematic role-filler prediction

Recently, neural networks have becoming very popular in Natural Language Processing
tasks. Furthermore, (Bengio et al. [9]) also demonstrate the effectiveness of neural language
models in the application of language modeling. However, only little research has explored
the application of neural networks in selectional preference or thematic fit in literature.

One of the early applications of neural approaches in similar tasks of selectional pref-
erence is done by (Tsubaki et al. [72]). They propose a neural network model for co-
composition of arguments/predicates. This model shows the effectiveness of adapting
arguments/predicate meaning representations with the overall semantic information. (Van de
Cruys [73]) apply two neural network architectures to multi-way selectional preference,
where the neural models learn to discriminate between felicitous and infelicitous arguments
for a particular predicate. To solve the problem of event detection, Dasigi and Hovy [21]
introduce a novel technique using neural networks to model the representation of events
as the composition of their predicate with the semantic information. His works proves
the effectiveness of Recursive Neural Network (RNN) in semantic composition based on
semantic tree structured data.

An inspiring research that relates closely to our project is presented by [71]. Their
work focuses on learning the representation of events and related thematic roles in order to
calculate the probability distribution over the possible role filler of specific missing roles.
As the predictability of these words depends heavily on the relationship of these words to
other nouns and verbs in a large quantity of the corpus, they present a neural network model
to learn the words and their role embedding. Besides, the model is compositional with that
fact that it can handle several role-fillers at the same time and thus predicts the role filler
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from a combined representation of the co-concurrence of participants in the same event or
the predicate itself.

Based on the same data from (Sayeed et al. [62]), (Tilk et al. [71]) present a novel
Neural Network (NN) model for the probability distribution generation. The structure of
their NN model includes a non-linear hidden layer and a Softmax output layer. In their
task, there are many problems they need to consider. First, in the embedding layer, the
word embedding should be different depending on the context, as the word in agent role
might be different from that in a patient role. Second, the classifier layer should be different
for each target role, as the target role filler for various roles will be different depending
on the context. In that the case, the two sets of parameters W and W ′ for the two layers
should be different. Keeping a separate model for the input and target role pair raises the
problem of a lack of parameter sharing matrices. Their solution is to share the role-specific
embedding and classifier weights together in the NN in order to to enable the combination of
all input-target role pair models into a single one. Inspired by work from Memisevic and
Hinton [47], Sutskever et al. [69], they proposed a method of forming a 3-way tensor for the
embedding and classifier layer respectively. Each tensor consists of three factor matrices
which will alleviate the efficiency and solve parameter sharing problems. To train the model’s
parameters with the factored tensors, they also report the effectiveness of using AdaGrad as
the gradient algorithm.The drawback of this approach is that the number of parameters grows
rapidly as the vocabulary size increases. Thus, tensor factorization is used to reduce the
number of parameters. Generally, they have implemented two type of NN: the incremental
mode,l which is a Recurrent NN, can include the information of word order and the content
words and their roles. The other one is the non-incremental model, which adds all of the
input of the context together into the word embedding layer.

In this section, we introduce the distributional approach and neural approach for a related
task. As mentioned above, both the DSM and NN approaches show promising results for the
NLP tasks of selectional preference and thematic fit. However, research in both the traditional
DSM model and the NN approach [40, 62, 71, 73] build their semantic spaces by splitting
the verb arguments or the noun head of arguments into separate vector dimension. Thus most
of these frameworks are based on the interaction between topics or the head noun of each
semantic class with its predicate. Even though some of the researches such as framework
presented by Lenci [40] can handle multiple word pairs or triples preference selection, the
context information referring to the participants is usually ignored. Although, examples
illustrated in 2.1.1 show that the context information or the modifier for each content phrase
such as sick boy or hungry boy may also influence occurrence of nouns or verb in other
semantic classes under the condition of a similar predicate. Thus, it’s also necessary for us to
explore the influence of context information on thematic fit or selectional preference.
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2.2 Context information Composition

2.2.1 Context information used in selectional preference or thematic
fit

In the previous section 2.1, the thematic fit models for a distributional approach or a neural
approach tend to span a sequence of words or a word window into a set of words in order
to separate each of the words with their predicate. Though all these models show good
performance in word pair or triples selection, they will also lose the valuable context infor-
mation for word inter-correlation. In that case, another trend for the NLP task on selectional
preference is to explore the contextual information in the DSM model.

The first attempt to do so comes from (Ruiz-Casado et al. [61]), who propose the concept
that the semantic similarity between two word-forms is based on their similarity between
context. This concept basis enables them to use context information for hyponymy or
synonymy detection. For example, in the sentences below, the woman is defined as the
hyponym of queen.

• a. The Prime Minister honored the queen with his presence.

• b. The Prime Minister honored the women with his presence.

Under the condition of sharing same context information, if the word queen in sentence a
can be substituted by the word woman, they will define the latter one as the hyponymy of the
former. So, in order to get the context information among word pairs, they introduce this
unsupervised learning method. And they present a context-window overlapping algorithm to
collect a list of contexts where word1 appears. It counts in how much of this context shows
in the cooccurence to substitute word1 with word2.This methods shows good performance
in the synonym detection test which outperform the approach based on history information
without context.

Followed by (Ruiz-Casado et al. [61]), (Agirre et al. [1]) introduce a context-based model
to study word similarity and relatedness. Similar to the previous research, they determine the
word similarity based on the context similarity between two word sets. This model adopts
a richer context representation by considering entire word window contexts as features,
while keeping the same computational vector-based model. Though its performance for the
similarity evaluation task is much more compatible than the existing methods, this approach
suffers from a very high-dimensional feature space resulting in data sparseness problems
[46].

Later, (Melamud et al. [46]) introduces a generic distributional similarity scheme to
effectively learn the joint contexts. Also based on the concept that similar words can be
substituted in the same context,they calculate the probability of words given the similar

10



2.2 Context information Composition

context information. To overcome the problem of data sparseness, they use the Kneser-Ney
n-gram model [36] and their model outperforms the existing DSM in their tests. Though the
implementation of an n-gram language model is an effective method to define word similarity
or selectional preferences, it is challenging to apply it into our project based on the fact
that each word is annotated with its semantic role information and the context will change
according to not only words information but also their semantic classes.

Another model for incorporating context information in a DSM is proposed by (Chersoni
et al. [13]). In their paper, they introduce a model of extracting verb context information
by syntactic dependencies (object,subject, complement). Like previous research which
mainly focuses on the linear window size information, the method of considering syntactic
dependency is more effective , especially for verbs and their context information extraction.
The models are later tested on the verb similarity tasks and shows that the joint contexts
method is comparable to or even better than single dependency methods. However,taking
the whole sentences’ information into consideration, the syntactic structure based method
for getting context information between other semantic role classes, such as the relation
information between location and agent in the sentence, is much more complex.

On the one hand, based on the above research, we may assume that the context information
compositing model may also influence the predictions of thematic role filers tasks. [71]
only take the single noun as the head of input for the semantic roles, it’s necessary for us to
combine the context information of noun phrase in the role-filler predication task.

However, on the other hand, most of the DSM methods used in this previous research
use abstract information from a linear word window or based on the syntactic structure.
Though these machine learning techniques have shown promising performance for context
information composition, their limited window size is not able to handle long-dependency
information. Thus, most of this previous work only focuses on the selectional preference or
semantic fit of one or two words pairs related to the predicate. Meanwhile, integrating the
long dependency information for context information between semantic roles such as agent
and location in the case of the sick boy is taken by his parents to the hospital is still an open
issue. Since neural approaches show advantages in handling large amount of data as well as
information composition and feature extraction for long-dependency sentence, we will try to
explore a neural approach for our task.

2.2.2 Possible methods for context information composition

As the goal for our project is to investigate the influence of context information in role-filler
predication, the input will be a noun phrase instead of a single noun from the arguments of the
verb. The method used in the previous work, which takes the word’s position in vocabulary
as one-hot vector input, does not satisfy our requirement for embedding. For this reason,
word2vec is a more appropriate way for us to handle words embedding in the phrase. The
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major problem for our project is to achieve effective embedding of the context information.
With this goal in mind, there are some specifications that are necessary when developing the
system.

First of all, in noun phrases, not all the words share the same importance as role filler
predication, due to its word type or semantic/syntactic relation with the head. For example,
in the sentence ** will affect the boy’s system, in the NP of patientrole, words such as system
and the won’t be as important as body for the prediction of virus. Thus, we need to put more
weights on the words which may have a decisive effect on the predication.

Secondly, besides the modifier or compound word which may affect the meaning of head,
there are long dependency issues we need to take into consideration. As there are many
long sentences in any corpus, it is also important for the model to capture the necessary
information from the word whose position is far away from the head noun. In the example
"the boy who is sitting on the bus, and playing with classmates will go to **". Here, the word
classmate in the noun phrase of agent may be a good hint for the prediction of location as
school instead of hospital.

Bearing this in mind, the priority issues during the method exploration for our project
is to satisfy both finding weighted embedding of words among sentences and being able
to handle information with long-term dependency. In the following part, I will discuss the
possible methods we may use for noun phrase meaning representation and sentence meaning
composition. We will also discuss the possible reasons for why they are preferred or not.

Straightforward methods for sentence meaning embedding

As suggested from the previous research into DSM, the multidimensional word vectors
is quite effective in NLP tasks as they represent the words’ meaning by distributional
information and reflect the semantic similarities. Though the word vectors are effective
for thematic fit or selectional preference based on single nouns or verb in the sentence,
their application on sentence information composition should be investigated with effective
methods.

The most common method for vector combination is averaging all the vectors in the
sentences. However, the way of simply averaging word meaning is not sensitive to word
orders according to (Landauer and Dumais [38]).

• a. It was not the sales manager who hit the bottle that day, but the office worker with
the serious drinking problem.

• b. That day the office manager, who was drinking, hit the problem sales worker with a
bottle, but it was not serious.

12
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As examples shown above from the research of (Landauer and Dumais [38]), both sentences
include the same sets of words but present different meanings. Thus averaging the vectors
in the sentence may not be an effective way for information learning. Apart from that,
these examples also indicate the importance of syntactic structure for semantic information
learning, because the difference between two example sentences is realized by different
syntactic order of the same sets of words.

(Mitchell and Lapata [54]) presented some other straightforward but potentially effective
methods for sentence or phrase meaning composition. One of the most frequently used
methods for sequences of words meaning representation is addition. The advantage of
addition for sequence is that it will keep the vector in the same dimension. However, the
drawback of addition is its independence from sequence orders and will not capture the
meaning difference with words arranged with different syntactic structure. Instead of simply
adding all word vectors in the sequence for meaning representation, (Mitchell and Lapata
[54]) propose an weighted score for words with different syntactic structure. Another method
they proposed for sequence meaning composition is multiplication among word vectors.
They apply the proposed methods into sentence similarity detection tasks and the results
show that the way of multiplication function is superior to the additive one.

Compositional Phrase Embedding

Compositional phrase embedding refers to the computing of phrase embeddings from words
embedding by using various kinds of compositional functions. Most of the common ap-
proaches for it is to use pre-defined composition operators similar to the method mentioned
above. In the research presented by (Erk et al. [23]), they presented a phrase meaning
composition methodology using vector computation. Whereas the contribution from their
method compared with other research is that, the vector they used combines both the word’s
information and the expectations of the word. For example the vector representation of word
catch is combined with its own lexical meaning together with the object information of words
such as he, fielder,dog and with the subject information with ball, cold, drift.

Another related work is presented by (Milajevs et al. [52]), where they introduce a tensor
based approach for sequence meaning composition which can be applied into any of the
compositional tasks. Their proposed method is based on the generalization of the notion of
vectors, named tensors. They introduced a vector v as an element of an atomic vector space
V, while a tensor z is the element of tensor space of the addition or multiplication of several
atomic vector spaces such as V,W or Z. Then, during the experiment, the meaning of nouns
are vectors and meanings of the predicates are tensors. The meaning of the string of words is
obtained by applying the compositions of multi-linear map of the tensors to the vectors.

Under the topic of phrase meaning composition, some researches focus on the adjective-
noun(AN) meaning composition[54, 7]. (Mitchell and Lapata [54]) introduce two ways
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of AN composition: addition and multiplication. In both methods, adjective and noun are
regarded as word vectors. For addition, the meaning composition is realized by adding the
linear projection of two vectors (with weighted matrices for each vector). At the mean while,
multiplication refers to the adaptation of weight tensor for projecting the two vectors into their
meaning composition. Similar to this method, (Baroni and Zamparelli [7]) regard adjectives
in the attributive position as linear function of noun tensors in AN meaning composition.
Therefore, they derive the AN meaning by multiply the noun vector with the weight matrix
of adjectives. Though these researches focus on AN instead of noun phrase (NP) meaning
composition, their effectiveness further prove the necessity of using word vectors in meaning
composition.

As most of the compositional modes can not make good enough use of the weighted
information of each word to fulfill our task requirement, we won’t talk about the details of
those methods. However, one of the models proposed by (Yu and Dredze [78]) might be
relevant to our task. Their model learns composition functions that rely on phrase structure
and context and can produce a weighted summation of embeddings of component words.
For example in an NP which has a flat structure, all the words would modify the head nouns,
therefore it enables their model to favor the head in the compositional embedding. Apart
from that, their model can be trained with both unlabeled and labeled data, and the linear
conformation function makes it fast to train.

Even though the model they proposed has lots of advantages, which may be helpful for
our task, there is one drawback: they treat every sentence or phrase as compositional. While
it may not be suitable for non-compositional phrase such as idioms. The ideal method might
be building a model for a general phrase , which has been tried by ([77, 29]). However,as
both of these two researchers are trained on only transitive verb pairs in a bigram model, they
won’t be able to handle multi-gram phrases in our case.

Apart from phrase meaning composition, (Coecke et al. [18]) proposed a mathematical
framework for sentence meaning composition. To capture the meaning of each word in the
sentence and combine them informatively, they involve two categories of natural language
information: vector space for words’ meaning representation, and Pregroups for grammar
structure of each sentence. For each sentence, each word is assigned with a syntactic type and
vector space based on the syntactic information. Later the sentence meaning is computed by
syntactic reduction based on these tensor space. There are two ways of syntactic reduction for
positive or negative sentences and their proposed methods cover various types of sentences
meaning composition. However, as the proposed meaning composition depends on the
syntactic structure of sentences, taking both syntactic and semantic information for meaning
composition will make our project much more complex.
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Recursive Neural Network

In natural languages, the syntactic roles of language tend to be recursive, and sometimes a
noun phrase in sentence may also contain some other noun phrase such as in the example the
hungry boy who is super hungry right now ....... In the field of natural language processing,
the recursive neural network refers to the NN that usually applies the same set of weights
recursively over a syntactic or semantic structure. This enables it to successfully learn
sequence and tree structures in natural language processing.

As mentioned in the previous section, the syntactic structure plays an import role in
semantic information integration. Thus, it is necessary for us to explore the possible approach
involving integrating syntactic structure of sequence of words into a composition meaning.
The syntactic tree illustrated below shows its nature of recursion. furthermore, with the help
of recursive NN, the context information of sick boy, hungry boy and the corresponding
patient role-filler cake, medicine in the examples shown below can be easily focused on the
NP of the sentence and the NP under the tree node of VP (verb phrase).

The Recursive NN has proved its efficiency in semantic tasks such as semantic com-
position [67, 21]. Two types of tree structures have been applied in the previous study for
semantic meaning composition. (Dasigi and Hovy [21]) introduce the semantic relation
based tree structure for anomalous event detection while (Socher [66] Socher et al. [67])
choose syntactic tree structure and sentiment tree structure respectively for semantic meaning
composition.
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In the thesis presented by (Socher [66]), he proposes an Recursive NN based model to

learn features and phrase representations which can also handle long-term dependency and
un-seen n-grams. This multi-functional model is called a Compositional Vector Grammar
Parser (CVG), which is able to both parse the syntactic structure of a sequence and present the
phrase compositional meaning. The multi-functional model makes use of both probabilistic
context free grammars (PCFG) and Recursive NN structure, which means it can capture the
discrete categorization of phrases into NP or VP as well as capture fine-grained syntactic and
compositional semantic information among phrases and words [66]. Also, the combination
of PCFG and Recursive NN enables the model to deal with ambiguity between sentences
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with the same syntactic structure. Examples of ambiguity despite identical syntactic structure
sentence is listed below.

(1) They ate cake with forks.

(2) They ate cake with dogs.

The realization of phrase meaning composition in CVG is also based on word vectors.
According to [66], the weighted score for each node in the tree structure that is combined into
the sequence meaning is determined by the categories of the child constituents. This child
constituent based weighted score composition allow different composition functions when
combining different types of phrases.The detailed explanation of Recursive NN sequence
meaning composition is shown in the figure 2.1 below.

Fig. 2.1 Syntactically Untied Recursive Neural Network
Socher [66]

As demonstrated in Figure 2.1, the first parent node is calculated as :

p(1) = f (W (B,C)[cb]) (2.1)

where W (B,C) is a weight matrix and its value is determined by the child constituent b,c.
Apart from calculating the parent node’s vector, a composition score is also calculated based
on the Recursive NN and the PCFG. Here, the PCFG is used to define the log probability of
combining the two child constituents in syntactic level. The score for p(1) is listed as:

s(p(1)) = (v(B,C))T p(1)+ logP(P1 → B,C) (2.2)

where the probability of P1 ⇒ B,C is referred from the PCFG. Then, the calculation of the
next parent vector is based on its child constituent as well as the phrase vector p(1):

p(2) = f (W (a,p1)[ap(1)]) (2.3)
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The score for this parent node composition is calculated as :

s(p(2)) = (v(A,P1))T p(2)+ logP(P2 → A,P1) (2.4)

Later, the model is trained based on the combination scores of each parent nodes in the
sentence and is assigned with a composition matrix, where it is able to assign more weight
scores to the head nouns rather than the adjective or determiners in the sentence.

Although Recursive NNs shows potential in combining sequence information with
weighted scores among different categories of words in one sentence [66], we can not
directly adopt it into our model as there is thematic role information missing from the infor-
mation composition. Therefore we need to further explore the application of Recursive NNs
in the field of anomalous event detection, which interprets the words in a sentence based on
their thematic roles with a Recursive NN architecture.

The application of Recursive NNs in the field of semantic information detection is
presented by (Dasigi and Hovy [21]), where they adopt an semantic role structured Recursive
NN architecture. To learn whether an event used in newspaper titles is anomalous or not,
they use unsupervised learning methods to integrate the semantic role-fillers’ information in
the sequence and then learn the event-semantic role-fillers composition with a supervised
method. To learn the thematic role-fillers information in the sentence, they introduce an
event tree, where the structure is formed based on the noun phrases’ semantic role with the
related event in the sentence. Below, the figure is an example of event tree for the sentence
Two Israeli helicopters kill 70 soldiers in Gaza trip [21].

The method for semantic compositional model consist of two parts: the first part denotes
to the argument composition in the sentence referring to the related event while the second
part includes the event composition with the related arguments. To realize the first task, all
the parameters for node composition among the sentence are the same and then contrastive
estimation methods are adopted in order to learn the compositional scores in this way:

argminJarg = argminmax(0,1− s+ sc) (2.5)

where s refers to the score of the composition of the entire argument while sc refers to
a randomly replaced word in the argument at each time. Later, the event composition is
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calculated by the combining the argument score and the event representation together with the
label of the event (being normal or not with the given context of argument). The evaluation
result shows that their proposed method can be applied successfully into anomalous event
detection.

The use of event tree based Recursive NNs for event detection may offer some inspiration
for our task. However, during their training, the detection of being normal or anomalous is
only a binary classification, while the classes for role-filler prediction in our task range into
the whole vocabulary of the training corpus, as each word appearing in training corpus may
be a possible role-filler for a given context. Besides, during their second part of composition,
namely the "event composition", the representation of predicate information and its label
plays a dominate role in meaning composition. However, in our project, given different
context, the role-filler of verb might also be expected. Thus, the proposed method by
(Dasigi and Hovy [21]) can not effective get all sentence meaning composition when the
verb information is missing.

From the previous application of Recursive NNs in semantic meaning composition and
event type detection, the Recursive NN shows advantages in assigning a higher score for
relation weights such as attributes and lower score for the weights of determiners. The
nature of Recursive NNs in this field may enable us to get the determinant information
for target-role filler prediction. However, there are several problems we need to take into
consideration with this method. First of all, we need to extract all the words included in noun
phrase, parse them with the dependency parser and then update the the syntactic relation
information in our training corpus. Considering the comparatively large size of the training
corpus, this type of data annotation will be very time-consuming. What’s worse, the input
of our model will require not only the word2vec and the word’s semantic role but also the
relevant syntactic relation label among each word. The several different types of input will
make the architecture of model more complex and may easily lead to over-fitting. Apart from
that, determining relation weight matrices for word combinations will require manual work
for rule construction, which is not scientific at all, as one certain type of relation words may
require different weights under various contexts.

2.3 Summary

In this part, we introduced the concepts for thematic role-filler prediction and the previous
work conducted for it or related tasks such as selectional preference detection or thematic
fit prediction. These works indicate the efficiency of using multidimensional distributional
word vectors in finding a similar or related word. Following on from their work,we will also
use word vectors for model learning and target word prediction.
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Apart from that, we have also discussed several possible methods that have been explored
for context information integration or sequence meaning learning. Among all these methods,
the most straightforward way is word (or word vector) addition or multiplication. However,
as (Landauer and Dumais [38]) mentioned, these methods are not sensitive to word orders
and may have difficulty in distinguishing sentence ambiguity. Thus we may only use word
addition as a baseline for our experiment. Even though there are compositional phrase
embedding model presented from the previous work by (Milajevs et al. [52], Yu and Dredze
[78]) and so on, most of the models will focus still on the verb predicate and the head nouns
of its semantic argument, which are usually bigram or trigram models. Thus, these methods
can not be applied into our task for sentence meaning composition. Among the neural
network approaches, the model architecture proposed by [71] offers us an inspiring idea for
effectively sharing words and their thematic role information during model training. Followed
by their description, we will also use an factored word-role embedding for individual word
information learning. Research presented by [66, 21] shows the potential of Recursive
NN phrase meaning composition for anomalous event detection or meaning composition.
Meanwhile, in (Dasigi and Hovy [21])’s work, the meaning composition of phrases is
dominated by the event meaning. In our project, we should assign equal importance to the
thematic role fillers in the given sentence and will also use the verb as the target word for
training. In this case, the event or verb dominated composition method is not suitable for
us. Moreover, [66]’s method requires both syntactic and semantic information for learning,
which will increase the number of parameters for the model to learn.

With this in mind, in the next chapter, we will introduce the proposed method for learning
thematic role and role-filler embedding together with context information in a sequence.
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Chapter 3

Proposed Approaches

In this chapter, we will give a detailed description about the approaches to be adapted in
our project. As discussed in the previous chapter, there are two important issues we need to
figure out. First, we need to explore how to combine sentence/phrase information properly
with a given sentence. Second, the model should effectively combine information about the
word and it’s corresponding thematic roles. The second concern is based on the fact that
given different context, the dog barks and the boy likes the dog, the thematic role for dog
changes. Thus, to solve the first problem, we propose a recurrent neural network architecture
for weighted sentence/phrase information learning. While considering word-role information
sharing, we adapt a factorized-tensor suggested by (Tilk et al. [71]).

3.1 Recurrent Neural Network for Contextual Information

3.1.1 Simple Recurrent Neural Network

A Recurrent Neural Network (RNN) is another type of artificial neural network which
features a model consisting of a sequence of inputs with a dynamic memory structure. As it
applies its function iteratively on a sequence of inputs, it takes the input as a series of time
step w1,w2, ......wn and processes the sequence of inputs one by one. At the same time, it can
also take information stored in the previous steps into account. Specifically, for each time
step, the RNN will update the hidden state (hi) of the current input together with the hidden
state (hi−1) from the previous time step. Here the hidden state refers to the transformed
word vector (word embedding) and a weight matrix added with a bias that also takes the
previous hidden state into account. The unrolled architecture of the RNN is shown in figure
below[Colah].

At time step t, with the given input word vector wt , the current hidden state is calculated
with the following equations:

21



Proposed Approaches

Fig. 3.1 An unrolled recurrent neural network[Colah]

st = f (Wwt +Ust−1 +b)

yt =V st

P(wt |w1..wt−1,Θ) = so f tmax(yt)

(3.1)

where Θ = {W,U,V,b}. W,U,V are matrix parameters, b is the bias, wt is the input word
vector and st−1 is the hidden state at time t-1. During training process, the weight matrix
W,U,V are shared across time steps. Here f refers to some non-linear activation function
such as tanh or ReLU. The starting state s0 is set to 0 to denote the initial state of the memory.
If the target of this RNN is to predict the next word given the previous word history, then the
probability of the next word is calculated with the so f tmax activation function. The equation
for so f tmax is shown below:

p(x|h) = exp(yi)

∑ j exp(y j)
(3.2)

So the probability of each word wi given the context h is estimated by normalizing all values
in y.

The reason for choosing an RNN for our sentence learning project is based on its ability
to maintain a hidden layer of neurons with recurrent connections to their own previous values
for an input sequence. So given sentence the hungry boy is eating ?? , if we are trying to
predict the role-filler of patient, the previous information provided by the RNN is sufficient
to get the target word. The application of RNN’s in language modeling and NLP tasks has
already shown their good performance [49, 51]. Work presented by (Tilk et al. [71]) also
proves the potential of using RNN’s for sequenced information processing.

The training of a simple RNN is done by Back-propagation Through Time (BPTT). Here
back-propagation (BP) is used to calculate the error contribution of each neuron after a given
batch size of data. The target for neural network training is to minimize the error between
predicted result and the real output, so the idea behind BP is to use an optimization algorithm
for finding the weight matrix with stochastic gradient descent (SGD) of the loss function or
error. As RNN processes a sequence of input data, the concern for BPTT is that the weight
matrix for the NN at each time step is different. For a traditional Feed Forward NN, during
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the training process the gradient is back-propagated to the previous layer with the recurrent
connection along the NN. BPTT differs from BP in a feed-forward NN in that the gradient
of BPTT can be propagated into two ways: it can be propagated through the hidden state
to the input layer of data or it can go back to the previous step on the same layer. (Here
feed-forward NN is a traditional NN architecture in which the information for each input
moves forward and there is no interaction between inputs.)

Despite the advantage for learning time step information for sequenced inputs, RNN also
has problems with training. Usually, there are two types of problems during RNN training,
namely vanishing gradient and gradient explosion [32]. These drawbacks also preclude RNN
from retaining memory of more distant, long-dependency steps. During BP through time, the
gradient can grow exponentially large while sometimes it will decrease dramatically to zero.
Both of these problems cause difficulties with training. The problem of gradient explosion
can be solved by clipping the gradient during training, while to solve the second problem of
vanishing gradient, there are several methods proposed in the previous research. In the work
proposed by Mikolov et al., they extend the basic structure of an RNN with an additional
feature layer. The feature layer is connected to both the hidden layer and the output layer of
the RNN and contains complementation information for their specific task. The equation
below explicitly explains how the structure of the model was modified.

st = f (Wwt +Ust−1 +F ft +b)

yt =V st +G ft
P(wt |w1..wt−1,Θ) = so f tmax(yt)

(3.3)

Besides the vector and weight matrix mentioned in the previous equation for the simple
RNN structure, here F,G refer to weight matrix for the additional feature layer. Apart
from adding an additional feature layer, (Le et al. [39]) introduce a simple modification: to
play a initialization trick by using Rectified Linear Units (ReLU) as the activation function.
However, these extensions are all based on a simple RNN architecture. Even though these
methods have been proven to make RNN’s acquire additional information, they cannot
be trained effectively with BP for complex RNN models. The most successful method
applied to sequential modeling in general are Long-Short Term Memory (LSTM) networks
which include gate cells to explicitly deal with the vanishing gradient problem. Thus in the
following part, we will explore the mechanism of LSTM for acquiring long-dependency
sentence processing.
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Fig. 3.2 The repeating module in an LSTM contains four interacting gates

3.1.2 LSTM

Long-Short Term Memory network (LSTM), proposed by (Hochreiter and Schmidhuber
[34], is one specific type of RNN, which can overcome the problems that gradient descent
has. Unlike a simple RNN, LSTM’s integrate a linear memory unit into the hidden state so
that the gradient can flow smoothly during the BPTT with the help of a memory cell. The
application of these memory gates depends on the current input wt and the previous hidden
state ht−1.

Normally, there are four gates in a single LSTM neuron. The forget gate ft is used to
directly control the memory flow ct and sever the connection with the previous steps, the
input gate it decides the amount of input to be incorporated, the output gate ot controls the
amount of memory flow to be produced for the task, and finally the candidate memory unit
c̃t contributes to the current memory flow. After getting c̃t for the current candidate memory,
we then decide the new information to be kept in the new memory cell. The new memory
cell is updated by the combination of the candidate memory cell and the input gate. At the
same time, the forget gate is also employed to determine the amount of information that can
be updated from the previous memory cell. Finally, the new hidden state ht is updated with
the information stored in the current memory cell together with the output gate. The overall
illustration of LSTM is shown in Figure 3.2 [Colah]. The computational details for the gates
that make up the LSTM are shown in the equations in 3.4

ft = σ(Wf wt +U f ht−1 +b f )

it = σ(Wiwt +Uiht−1 +bi)

ot = σ(Wowt +Uoht−1 +bo)

c̃t = tanh(Wcwt +Ucht−1 +bc)

ct = ft ⊙ c̃t−1 + it ⊙ c̃

ht = ot ⊙σ(ct)

(3.4)
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Fig. 3.3 The interaction among single GRU layer

where Θ = {Wf ,Wi,Wo,U f ,Ui,Uo,b f ,bi,bo,bc,Ws,WE}. All W’s and U’s are matrix param-
eters, b’s are bias parameters, WE is the word embedding matrix, wt is the word embedding
(from the WE matrix) at time t, and ht−1 and ct−1 are the hidden state vectors and context
vectors at time t-1, respectively. The symbol ⊙ represents element-wise multiplication. σ

refers to the element-wise application of the sigmoid function on the input vector, which
produces an output vector whose elements are in the range (0,1].

This demonstration of an LSTM shows that, unlike a simple RNN, where the current
hidden state is overwritten at each time step, the LSMT can capture the previous and current
memory through the different functional gates within it [16]. With this functionality, if some
important information is detected at the early stage of an input sequence, the LSMT can
capture this information and retain it as a long distance dependency. Thus, it can be applied
for context information learning over a long sentence in out project.

LSTM’s can be efficiently implemented by computing all gates in one single matrix
multiplication, then applying the activation functions on different parts of the output. In
practice, there are several variations of LSTM implementation. One derivation of an LSTM
is the Gated Recurrent Unit (GRU) [14], in which the gates are implemented differently than
the original LSMT.

Unlike traditional LSTM’s, a GRU combines the input gate and forget gate into a single
update gate. Further, the cell memory state and hidden state are also merged together. There
are two main states in GRU. One of these is the unit update state zr, which determines how
much information the unit used to update its information. The other, rz is the reset state.
If rz is set close to zero, it will allow the current hidden h̃ state to forget all the previous
information. An illustration of a GRU is shown in Figure 3.3 [Colah]. The computation
details for the gates in a GRU are shown in Equation 3.5 below.

25



Proposed Approaches

zt = σ(Wz · [ht−1,xt ])

rt = σ(Wr · [ht−1,xt ])

h̃t = tanh(Wxt +Uz(ht1

⊙
rt))

ht = (1− zt)ht−1 + zt h̃t

(3.5)

The terms representing the GRU in this equation are similar to those in Equation 3.4. However,
there are apparent differences between them. Unlike the LSTM, which has four gates (forget
gate, input gate, output gate and memory gate), there are only two gates in a GRU. Here ot is
the update gate and rt is the reset gate at time step t.

⊙
signifies element-wise multiplication.

From Figure 3.2 and Figure 3.3, it is easy to recognize the similarity between LSTM’s
and GRU’s; both can retain previous content and add new content to the hidden state. In
general, the four gates in an LSTM and the two gates in a GRU provide many advantages
for NN training [16]. Firstly, due to the forget gate of the LSTM and the update gate of
the GRU, important features from previous states are maintained and remembered in the
current state. There features again allow them to deal with input sequences that have long
dependencies. Moreover, the existing gates also provide "shortcut paths that bypass multiple
temporal steps", allowing error to be back-propagated easily without vanishing too quickly
[16].

Empirical research from (Bahdanau et al. [5]) shows that there is not much difference in
performance between these two types of NN. However, GRU has a simpler structure and can
be trained faster than an LSTM. We will try both approaches for this project.

3.1.3 Attention Mechanism

The attention mechanism is mainly inspired by the mechanism of human vision. Given a
visual input of scenery, a human tend to focus his or her attention on specific parts of the
scenery to analyze it, as opposed to analyzing the whole scene. The task of summarizing the
content of an image is also known as image captioning. (Xu et al. [75]) introduce a neural
approach with an attention mechanism for the task of image captioning. Recently, attention
mechanisms have also been applied to NLP tasks. Among these applications, popular and
successful ones are related to the task of Machine Translation (MT).

The standard neural approach usually adapted in MT is sequence-to-sequence learning, in
which the model takes a sequence of words as input with an encoder, which then transforms
them into an internal representation. Later, the new representation is transformed by a
decoder into anther sequence of words in the target language. Both the encoder and decoder
are RNN’s. For a sequence of input (x1,x2, ...xn), the encoder will produce a sequence of
hidden states (h1,h2, ...,hn). Usually, with an RNN such as an LSTM, the hidden state will
contain information primarily from the current input as well as information for the previous
state of the sequence. The attention layer added on top of the encoder is a feed-forward layer,

26



3.1 Recurrent Neural Network for Contextual Information

Fig. 3.4 The attention mechanism added on top of LSTM layer.

which enables the system to know how much information it should take from the input to
get the output of the decoder. This is realized by assigning a weighted score α to the input
of the decoder, which is the output of the encoder ht at time step t. Thus, given contextual
information from the encoder side ct , and ht , the attention score for the decoder is computed
as:

et = f (Ws[ct ,ht ])

α = so f tmax(e1,e2, .....et)
(3.6)

where i = 1,2, ....T . Here f is a linear or non-linear function. The attention score α indicates
how much the attention is focused on each of the input words for the decoder. Then the
context vector c is calculated by using these weights and the hidden state of the encoder h:

c =
t

∑
T

atht (3.7)

Here the equations shown for et are generic and there is much variation for different NLP
tasks [42, 57, 76, 80]. Unlike Neural MT, which takes sequences of words as input and
produces another sequence of words as the output, our task takes a sequence of words as
input but aims to predict a single word as the target. As with the context vector c from the
encoder, the attention representation in our task is modified as:

et = tanh(Wht +b) (3.8)

Then the attention score α for each word in the sentence and its context vector c is calculated
as the previously shown in Equation 3.6. As mentioned before, the attention layer is usually
added on top of a LSTM or RNN neural network layer. The architecture of a Attention
mechanism added on top of LSTM, as used in our project, is shown in Figure 3.4.
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Taking the hidden state ht of LSTM output at time step t, the attention score α is
calculated within a feed-forward layer. It is then multiplied with the corresponding hidden
state ht to get the weighted representation for each ht and then the context vector for the
input sequence is calculated by summing all of the weighted hidden states together.

3.1.4 Summary

In this section, we introduced the architecture of RNN, LSTM, and an attention mechanism
for learning contextual information for our project. The main benefit of an RNN compared
to a simple feed-forward neural network is that it can process a sequence of input sentences
and capture contextual information. The recurrent connections in an RNN allow the model
to ’memorize’ the previous inputs and save them in the model’s internal state. Having the
’memorized’ information available enables the RNN model to not simply map the input
sequence to output directly, but also to make use of the previous inputs for predicting the next
outputs. In this way, the use of an RNN allows relevant contextual information to be used for
classification. Previous studies have highlighted its effectiveness in time series prediction,
such as speech recognition, text classification, and music transcription [27, 4, 65].

However, the range of contextual information that the standard RNN can process is
quite limited. One of the problems during sequence information processing for an RNN is
that the influence of previous inputs on the current hidden layer can either decay or blow
up. The problem of vanishing gradient [32, 33] makes it difficult for a simple RNN to
capture information which requires more than 10 time steps between the input and the target
prediction [32]. In contrast, the architecture of LSTM can overcome the problem of vanishing
gradients by applying memory cells in the hidden state instead of non-linear hidden units
operated by RNN. As explained in Section 3.1.2, using functional memory cells allows the
LSTM to store and access information over long periods of time, thus avoiding the problem of
vanishing gradients. Previous research has proven the success of LSTM’s in tasks that require
long-range memory for processing such as speech recognition [27], sentiment analysis of
sentences [70], and context free and context sensitive grammars [26]. Based on the previous
researchers, the success of LSTM’s in modeling long-range information also leads us to
explore its effectiveness in role-filler prediction.

Previous applications indicate the success of LSTM’s in processing global contextual
information for sequence inputs. However, LSTM’s do not have strong attention ability for
each hidden state of the units within the global context [41]. Due to the recurrent structure
of LSTM’s and RNN’s, the contextual information (hidden representation) of each step is
fed to the next one. Therefore, for each time step, the current contextual information is only
influenced by the previous steps and is quite local [41]. In contrast, as mentioned in Section
3.1.3, an attention mechanism could help to capture additional features in the sequential input.
The use of an attention layer in the NN can serve to indicate which segments of the sequence
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are more important or relevant than others for specific tasks. Recently, attention mechanisms
were shown to be successful in many NLP tasks such as machine translation [42], caption
generation based on images [75] and capturing 3D action [41]. To our knowledge, there
are no previous studies focused on attention learning for thematic role-filler predictions or
selectional preferences based on attention on the sentence level. Consequently, it is necessary
to explore its performances in these types of tasks.

3.2 Factorized tensor for word-role embedding and classi-
fier

As mentioned in Chapter 2, the specific thematic role of a given word depends heavily on its
contextual information. In the example boy eats cake and take care of the boy, the thematic
role for the boy differs, as it is agent in the first case and patient in the latter case. This is the
same for target role-filler classification, in which providing different contextual information
on whether boy is the agent or patient changes the filler verb filler. In that case, how to solve
the problem of role and word information sharing is also one of the challenges of our project.

The naive way of solving this problem is to train separate models with the word having
different roles as input. However, given the raw number of n in our task, the number of
models needing modification would be n2, which is expensive and time consuming to train. It
is also difficult to preserve interaction between different models, as target role-filler prediction
requires several roles to be provided as information.

As suggested by (Tilk et al. [71]), to solve this problem, we will adapt a role-specific
word embedding matrix and classifier matrix across the model. These two shared matrices
enable us to combine all the input words together with their role into a single model. The
advantage of having a single model for training is that we avoid needing to have multiple
models for training. This also enables the interaction between input word-role pairs.

Furthermore, as mentioned in the previous chapter, instead of using a one-hot vector as
input, we will use a word embedding for training. The use of word embeddings is due to
the fact that words are represented as vectors, so those belonging to similar semantic classes
can be mapped to nearby points. The same idea is also applied to role embedding. There are
several possible methods for word-role pair embedding, such as addition, concatenation, and
multiplication. However, simple addition can not preserve the relation between word-role
pairs, as discussed in Chapter 2. While concatenation is common for word vector composition
in NLP tasks, with respect to word-role pair composition, we may need to add another layer
such as kernel in the convolutional NN for further feature extraction. After comparison, we
will follow the method of element-wised multiplication for word-role pair vectors, as its
efficiency has been proven for word-role embedding [71]. To solve the problem of parameter
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Fig. 3.5 Three-way tensor of size |V |× |R|× |H|

Fig. 3.6 CP composition for an order three tensor

sharing between the word-role embedding and classifier in the model, a three-way tensor is
formed as shown Figure 3.5 below.

Even though the three-way tensor enables parameter sharing between the word-role
matrix and classifier matrix, given the vocabulary size |V | of 50,000, role number |R| of 7,
and vector size as |H| of 256, the number of parameters for model learning will be around
85M. To reduce the number of parameters in the three-way tensor, we follow a Tensor
Decompositions proposed by (Hitchcock [31]). According to [31], a tensor can expressed as
the sum of a finite number of rank-one tensors. This idea is further improved by (Carroll and
Chang [12]), called the CANDECOMP/PARAFAC decomposition (CP). CP decomposition
factorizes a tensor into a sum of component rank-one tensors. Given a three-way tensor in
our case, its decomposition can be calculated as [37]:

χ ≈
R

∑
r=1

ar ◦br ◦ cr (3.9)

where R is a positive integer and ar and ar ∈ RI,br ∈ RJ,cr ∈ RK for r = 1, ....,R. Element-
wise, it can be written as :

xi jk = airb jrckr (3.10)

where i = 1, ..., I, j = 1, ...,J,k = 1, ...K. This is illustrated in Figure 3.6 [37]
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So assuming the lateral slice of χ represents the role-specific weight matrices, where j
refers to the specific role, we can then write each matrix as [71]:

W = Adiag(rB)C (3.11)

where r is the role vector and diag is the diagonal matrix with the argument vector on the
main diagonal and zeros elsewhere [71]. A and C represent the factor matrices into which the
embedding tensor is factored. Thus for each input word, its role-specific word embedding
vector e is computed by taking from the factored embedding tensor the row corresponding
to the word being indexed and the column corresponding to the role being indexed, as we
explained above:

e = wAediag(rBe)Ce (3.12)

where w,r refer to the word and role. A similar method is applied to the factored target
role specific classifier tensor: the classifier is computed by Equation 3.13, given the context
information, which is the hidden state h from the NN, the target role tr.

c = hAcdiag(trBc)Cc

y = so f tmax(c+b)
(3.13)

The prediction for target role-filler is then calculated with so f tmax, the output of which
represents the probability distribution over the output vocabulary.

3.3 Model Architecture

Based on the proposed method in 3.1, 3.2, the diagram for general structure of the models
adapted in our project is as follows:
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Input: As sequence of words iw; The set thematic roles corresponding to each word ir; The
target role we need to predict tr;

Output: The word as filler for the target role tw;

1. Set the required input (iw, ir, tr) into NN model

2. With information of iw, ir, get the role-specific word embedding e from Equation
3.12

3. Get the hidden states hr of embedded vectors with Equation 3.1, Equation 3.4, or
Equation 3.5

4. (Optional) Get the weighted context information c with Equation 3.6 and 3.7 by
attention mechanism

5. With the input information of tr and c (or hr), get the target-role specific classifier
in Equation 3.13

6. Predict the possible role-filler tw for target role with so f tmax in Equation 3.13

return tw;
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Chapter 4

Experimental Setup

In this section, we will cover detailed information on the training data and its preprocessing
to meet the requirements for our project. Additionally, we will also cover the preprocessing
for Word2vec, as it is an important representation of word meanings in this Neural network-
based approach. Then, we will list several types of NN models we have tried previously for
thematic role-filler prediction and the possible evaluation methods for model performance.
At the end of this chapter, we will also provide the technical details for NN training and
optimization.

4.1 Data sets

The training data used in our project is from UKWaC, which is constructed from web pages
crawled from the .uk web domain, using medium-frequency words from the BNC British
National Corpus) as seeds. The corpus consists of 138 million sentences with about 2 billion
words.

Corpus Annotation To annotate the sentences in UKWaC, SENNA is used in the project.
SENNA is a high performance role labeler and generates PropBank style role labels[20].
The advantage of using SENNA as a Semantic Role Labeling (SRL) tool is that its data
processing performance is fast and robust and could also process large amounts noisy data
such as in UKWaC [62]. Its annotations are based on raw text, and for SRL it does not
require additional information such as syntactic parsing trees. The semantic roles it annotates
includes ARG0 and ARG1, which are verb-specific roles. According to PropBank [10], most
of the Arg0 label is assigned to arguments which are understood as agents, experiencers.
The ARG1 label is usually assigned to the patient argument while other modifiers such as
location (LOC) and manner (MNR) are also provided by SENNA.

Head extraction After SRL, the heads for each semantic role are also extracted according
to the work described by Sayeed et al. [62]. Two types of head-finding algorithm are
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Fig. 4.1 Sample data in training corpus

introduced. One is based on the syntactic dependency information produced by the parser
Malt. The other linear method is based on the Part-Of-Speech tagger information which
is provided by SENNA. This is relevant because during training processing, these heads
will be used as the target word for the specific role-filler. According to previous work by
Sayeed et al. [62], all of these information is stored in XML structured files: As shown in
the figure above, for each sentence, the governor (verb predicate) , and its dependencies is
stored. While for each dependency, the source information, semantic role, head are save. In
addition, all words in source are replaced by their lemma, together with the POS information
and their position in the sentence.

Predicate-arguments Pair Extraction During data processing, each word is extract
from the sentence according to their semantic roles and words positions in the sentence.
Furthermore, their partof speech tagger (POS) information is also extracted. Lastly, we find
the top 50,000 most frequently used words and map all the corresponding words, POS, and
semantic roles as integers. The final format for each sentence is stored as a list in python,
which consists of elements in thematic roles. Each thematic role element contains information
on [Role, Head,HeadPOS,Noun phrase, Noun phrase POS] (POS refers to Part-of-Speech
tag). An example input and its explanation is listed as below.

[[1,304,17, [1346,50001,304], [29,42,17]], [0,1088,33], [2,783,12, [50001,498,783], [42,5,12]]]

[[Role1,Head1,Head1 POS, [Noun phrase1], [Noun phrase1 pos]], [Role2,Head2,Head2 pos]

[Role3,Head3,Head3 POS, [Noun phrase3], [Noun phrase3 pos]]

Data Segmentation After extraction, around 200 million verb-argument samples are
extracted from the corpus. We take 10% of these as validation data and another 10% as
testing data. The rest is used as training data. During the training process, for sentences with
multiple arguments, we assign each argument as the target role for each training sample.
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4.2 Word embedding with Word2vec

As discussed from previous chapters, word embeddings have been popular for different
NLP tasks, including tasks for thematic fit and word preferential selection. In NLP tasks,
word embedding refers to representing words using vectors. These vectors are created by
mapping other representation of words, such as integers or one-hot encoding vectors to a low
dimension vector. Following such previous research, we will also apply word embeddings to
model training.

In brief, the advantages of using a word embedding instead of a simple one-hot encoding
lie in two aspects: firstly, with the increase in vocabulary size, the dimension of the one-hot
vector for each input word may become extremely large. As a result, the weights in the weight
matrix from the connected hidden layer would also increase. In contrast, the dimension of a
word embedding is independent of the vocabulary size or number of input items and could
be kept in a lower dimension. Secondly, one-hot encoding cannot provide any semantic
information for input words. However, word embeddings can present semantic information
about input words when trained effectively. This feature of word embeddings may benefit
the model’s prediction performance.

Word2vec, introduced by (Mikolov et al. [50]) allows words to be mapped to vector
representations using neural networks. This method enables us to represent words with low
dimension vectors in many NLP tasks. Consequently, we will also employ this method for
word embedding. There are several variations for the application of word2vec. However,
the general idea is to capture the words’ semantic meaning by checking which words are
possible to co-occur within certain window size. It learns the words’ semantic meaning by
learning their contextual information where the words are used in the corpus.

In the application of word2vec, our first concerns is to use the pre-trained word2vec
from by Google word2vec model. For the Google word2vec model, the word embeddings
are trained on the Google News dataset, with a vocabulary of 3 million words. One of
the essential advantages of using pre-trained word2vec is that, it can reduce the number
of training parameters in the model (compared with training word2vec within the model
architecture). And it will decrease the training time. However , one drawback of using
Google word2vec specifically in our project is that, all the word representations are derived
from American English words (trained on the corpus of Google news). In order to load
word2vec model offered by Google, we need to firstly convert all the words in Birth English
into American English (such as biscuit VS cookie or flat VS apartment or colour VS color
). During conversion, it’s shown that, among the top 50,000 words in our training corpus,
16,167 words are missing of vector representation, either due to the words gap between two
corpora or the failure of conversion from British English to American English. Some of the
missing words and their frequencies in the training corpus are listed in the Table 4.1.
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Missing word Frequency Missing word Frequency

and 881589 enquiry 69843
prise 60509 judgement 34425

authorisation 10371 acknowledgement 8918
londoner 7878 livingstone 6643

Table 4.1 Some important missing words and their frequency during British-American
English conversion

Consequently, the word embedding is finally trained based on our training corpus,
UKWac, with 2 million vocabulary. There are several training algorithms for word2vec and
the one used for our word2vec model is Continuous Bag of Words (CBOW) Learning with
hierarchical softmax [48]. The learning of word vector is based on the relationships between
pair of words. According to Mikolov et al. [48], the CBOW model predicts a word given its
context. Here context refers to both the right and left contexts words, and the word order is
ignored.

In order to feed our data properly into the training model of word2vec, we extract all raw
sentences from the XML described in Section 4.1 . Later, we use the python package nltk
and the lemma dictionary produced previously from SENNA to normalize all the sentences
and then convert each sentence into a list of words. During the training of word2vec, we use
a context size of 5 and exclude words with frequencies lower than 10 in our corpus. Finally,
we produce word2vecs with 200 dimensions, 300 dimensions and 400 dimensions separately
to see its effect on word meaning representation during the model training.

Apart from the word embedding, we also apply the POS information and role information
for model training. Although embeddings are mainly applied for word vectors, they are not
exclusive applications for NLP tasks. Regarding the sequence of POS taggers or roles as
integers, the word2vec mechanism can also transfer them into embedding vectors. With this
application, we can capture the meaning representation for these role and POS taggers as
well.

4.3 Experimental models

In Chapter3 and Chapter 2, we have discussed several possible methods for word-role em-
bedding and also the context information learning. With this in mind, during the experiment
period, we tried several NN architectures, each of which we shall introduce in the following
section.

We believe that in addition to the word embedding, the POS for each word will also help
to learn the context for meaning extraction. Of all words in the noun phrase of an argument,
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the head noun and its adjective modifier or noun modifier will usually influence the role-filler
prediction. So, word w1, ...,wi in each input sequence is represented as the concatenation
of the word embedding and the POS embedding. Research by Tilk et al. [71] has already
proven the efficiency of factored role-specific word embedding and factored classifier for
parameter sharing among all words in a vocabulary with different role information within a
given context. Because of that, we will generally adapt this method as described in Section
3.2, representing each word in the input sequence as its role-specific embedding vector e.
Where not explicitly noted, we regard the input for each model as the sequence of factored
role-specific word embedding ei from Equation 3.12 instead of wi word vectors.

During the experiments, in general, we focused on two types of contextual information
extraction and composition. The first method focuses only on the noun phrase information
presented in the Agent and Patient fillers. The second type takes the whole sentence as input
for information representation learning.

4.3.1 Sentence based NN model

As discussed previously, RNN models, especially LSTM models, can be used to deal with
a sequence of input. With its functional gates, a LSTM can capture important information
from the previous state as well as remember information from current state. These features
enable LSTM’s to deal with sequences from long-dependencies. The attention mechanism
can interpret the model by showing the importance of the elements for the input sequence for
prediction. With the attention model, we can create a context vector and attend to different
weights on the elements, avoiding the necessity of encoding all the information only in the
last hidden state. Given this, it is necessary to explore the effect of LSTM and the attention
mechanism in our project. Bearing this in mind, we have explored different types of models.

Non-incremental model based on word-role embedding

The method used for non-incremental model (NON_WR model) is described in [71]. After we
get the role-specific word embedding from Equation3.12, we simply sum all the embedding
elements ei together to get the sentence representation. We then apply a parametric rectifier
non-linearly to get the hidden state representation [30].

h = PReLU(
N

∑
i=1

ei +b) (4.1)

where h will be applied to the role-specific classifier c . The target word is then predicted
based on Equation 3.13. We set this model as a baseline for meaning composition.
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Fig. 4.2 General structure for first three models

Simple RNN model based on word_role embedding

The difference between the simple RNN model (RNN_WR) and NON_WR model in the
previous section is that instead of summing all the elements from the word-role embedding,
we apply a simple RNN layer to the embedding layer. Then the hidden state hi is captured by
the previous hidden state hi−1 as well as the current embedding ei. Detailed information is
shown below:

ht = PReLU(Wet +Uht−1 +b) (4.2)

where W,U are weight matrices in the RNN layer. This RNN layer adds information about
the previous hidden state to the current embedding through W,U . The last hidden state hn is
then used for role-specific classifier embedding and target word prediction, again by Equation
3.13.

LSTM model based on word_role embedding

Similar to the the RNN_WR model, the LSTM-based word_role embedding model (LSTM_WR)
takes the embedding layer as input, then returns a single hidden state h for the input sequence,
with Equation 3.4. Then like the RNN_WR, the hidden state is used for classifier embed-
ding and target word prediction with Equation 3.13. The general structures of NON_WR,
RNN_WR, and LSTM_WR models are illustrated in Figure 4.2

Attention based on RNN layer

Recently, attention mechanism added on top of RNN layer has been applied in several NLP
tasks [80, 42]. We will also follow their application and set weighted scores αi for each step
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Fig. 4.3 General structure for attention based models

of hidden state hi in the RNN layer (usually LSTM or GRU). The context vector c is then
captured based on the hidden state hi and the attention score αi. Detailed information is
mentioned in Section 3.1.3. Instead of using h for role-specific classifier embedding mention
in LSTM_WR model, we will use the c in Equation 3.13 for target word prediction.

Attention based on word_role embedding

Most of the attention mechanisms are applied to the RNN layer, but Choi et al. [15] introduce
their approach of directly extracting attention score based on the word-embedding. Besides,
the recent state of the art for MT [74] also indicates the potential of learning attention simply
based on the word embedding. Inspired by their work, we propose to create the context
vector by only focusing attention on the word_role embedding instead of hidden states from
the RNN or word embedding (Attention_WR). In that case, given the word_role embedding
ei as input sequence, the attention score α and context vector c are calculated as :

at = tanh(Wet +b)

α = so f tmax(a1, ...at)

c =
T

∑
i

αiei

(4.3)

The attention vector is then applied in Equation 3.13 again for target word prediction. The
general structure for the attention based model is shown in Figure 4.3.
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Attention based LSTM with Word embedding only

Even though the factored role-specific word embedding and role-specific classifier embedding
have been proven to be effective in parameter sharing and thematic role-filler prediction,
we also experimented with a model of Attention_LSTM_W2V. This model is similar to the
Attention_LSTM model. However, instead of taking a word-role embedding as input for
the LSTM layer, the Attention_LSTM_W2V model only takes information from the word
embedding. All the other computation procedures are the same as the Attention_LSTM
model as mention above. We also set this model as a baseline to check the performance of
rolespecific word embedding.

4.3.2 Noun phrase based attention model

In noun phrase based model (NP_attention model), we only extract noun phrase information
from the Agent and Patient roles and then use a shared layer to learn the weighted information
of each NP. After obtaining the weighted context information ci for each NP, we sum them
together with the word-role embedding from other roles. Then the context information for the
whole sentence is used for role-specific classifier embedding to predict the target role-filler.
The specific learning diagram for this model is shown as :

1: for argument in agent, patient do
2: extract NP information;
3: for wi in NP , get the role-specific word embedding ei
4: Get the recurrent hidden state hi for each embedding vector ei.
5: Get weighted NP representation Cn p with the attention mechanism
6: end for
7: for argument in other roles do
8: extract the head of argument
9: get role-specific word embedding ei of head

10: end for;
11: sum the new representation of each role together to get the new hidden state hc1
12: add a non-linear activation function on hc1 to get new hidden hc2
13: get role-specific classifier c based on hc2 and target role tr
14: predict target word with the classifier c

Table 4.2 shows the general information of the models we’ve experimented during the
project.
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Model name Description

NP_Attention Attention mechanism applied on LSTM layer within NP for
agent and patient

NON_WR Nonincremental model applied to the wordrole embedding
RNN_WR Simple RNN model applied to the wordrole embedding
LSTM_WR LSTM model applied to the wordrole embedding
Attention_LSTM Attention mechanism applied on top of LSTM layer which is

based on wordrole embedding
Attention_WR Attention mechanism applied on top of wordrole embedding
Attention_LSTM_W2V Attention mechanism applied on top of LSTM layer which is

based on word embedding

Table 4.2 Models and description

4.4 Evaluation Matrices

4.4.1 Perplexity

Perplexity (PP) is one of the most frequently used evaluation method for language models,
as it can be easily calculated and its score indicates the probability distribution of a given
model. Given a language model and a test corpus, the perplexity of language model (LL) can
be calculated as [35]:

PP = exp(− 1
N

N

∑
i

log(p(wi|hi))) (4.4)

where N is the number of words in the test corpus, wi is the the word to be tested, and hi

is the history of wi. The idea underlying PP is that, a lower score of PP indicates better
performance of the model to predict words in the test corpus.

During application, instead of testing the probability of each word in the test data, we
will only test that of the target role-filler. For example, given the input sequence below, if the
target word is medicine, we will then only count the probability of medicine, instead of all
other words in the sentence.

• (the sick boy)[agent] takes[verb] ??[patient]

During the experiment, it is also noted that PP should be calculated with the same test data set
as all models, while the vocabulary size should also be kept the same. The main advantage
of PP is that it is fast to perform and independent to other complex systems. Therefore, in
this thesis, PP will be the main measurement used for experiments.
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4.4.2 Evaluation on thematic fit rating

To check our model’s performance and its arguments meaning composition, we also evaluated
the effectiveness of our model with human thematic fit rating. Human ratings for thematic fit
are usually obtained by asking participants to rate how common or typical the test argument
is, given a certain event verb as contextual information [55, 28, 45]. However, most of these
data only contain event-argument pairs, such as secretary address letter or speaker address
group, so they rarely contain contextual information. In order to test our model’s performance
in thematic role-filler with given context information, we built our own evaluation data based
on previous studies.

The first type of data we attempted to modify is derived from the experimental stimuli
offered by Matsuki et al. [43]. In their stimuli, sentences are marked as typical or atypical in
regards to the filler of instrument or patient used in a given context. Examples are shown
below:

1. (Typical) Jessie used a shortcut to avoid the annoying traffic because he heard that
there had been an accident on his usual route. He was in a hurry to get to work because
he had an important meeting that morning.

2. (Atypical) Jessie used a payment to avoid the annoying traffic because he heard that
the freeway was jammed. He hated paying tolls, but he was in a hurry to get to work
that morning.

3. (Typical) John used a joystick to control the brand-new game that he bought yesterday.
He had to stop using the regular controller because of the blisters on his both thumbs.

4. (Atypical) John used a joystick to control the brand-new television that he bought
yesterday. He is a heavy gamer, and likes to control everything with his joystick.

In the first two examples, the judgment of being typical or not is based on the proper use of
role filler of instrument. Whereas in the second two sentence pairs, the judgment is based on
the role filler of patient.

Based on the context information given in the stimuli, we rewrite the sentence as:

(3) Jessie avoided the annoying traffic with a shortcut.

(4) Jessie avoided the annoying traffic with a payment.

(5) With a joystick, he controls the brand-new game that he bought yesterday.

(6) With a joystick, he controls the brand-new television that he bought yesterday.

There are in total 48 sentence pairs extracted for patient and instrument role filler prediction.
All the samples are annotated with SENNA for their thematic roles and POS tags. Next, the
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head noun for each role is manually extracted from the annotated data. After annotation, all
necessary thematic roles, words, and POS are mapped into integers as described in Section
4.1.

During evaluation, if the target word such as shortcut is an unknown word in our corpus,
we skip the sentence pair. The evaluation method follows that of Lenci [40], Tilk et al. [71],
which is based on accuracy of expected direction of thematic fit difference . Given the
modified sentences in Example 1 and Example 2 as the query Jessie avoided the annoying
traffic, and given instrument as the target role, if the model assigns a higher probability to the
typical item shortcut than to the atypical one payment, we count it as an accurate prediction.
The same method is applied to the evaluation of agent roll filler.

The second type of evaluation data follows the experiment stimuli offer by Amsel et al. ,
in which they conducted research on Event knowledge activation during language processing
as recorded with an electroencephalogram (EEG). The stimuli they used offer seven types
of modality information. Given the first sentence as contextual information, the experiment
participants are tested on their reaction to four word fillers for the second sentence. Examples
of this data are shown below.

(7) Jordana’s husband slipped a special anniversary gift around her wrist right before
the big dinner. All evening the guests were staring at her sparkly ??? in admiration.
[bracelet, sandals, guests, pony ]

(8) Yesterday, a baby cow was born on the floor in my family’s old barn. It lay on the
soft golden ??? while it rested. [hay, bus, farm, soldier]

Four words are provided to the participants within the given context and participants are
asked to fill in the blanks for the second given sentence of each sentence pair. In the first
example, among the four words provided, bracelet is the expected word. The second one
sandals is the socalled Perceptuomotorrelated word. The third word guests is the event-
related word while the last one pony is the unexpected word. Given the example above, we
only adopt the expected word and unexpected word for the purpose of our evaluation. As we
need to modify the given stimuli to fit out purpose of evaluation, without enough contextual
information, the perceptuomotorrelated word and event_related word usually are not atypical
enough for the model to distinguish the contextual information. The modified sentences are
shown below:

(9) All guests admire the sparkly [bracelet, pony].

(10) The baby cow lay on the soft golden [hay, soldier].

The evaluation method for this is similar to the previous one from Matsuki et al. [43]’s stimuli.
Given the query of the sparkly bracelet is admired by and the sparkly pony is admired by, we
proceed to analyze the probability of the agent filler guest in each model’s prediction. If the
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probability of guest in the first query is higher than that in the second, we record a success.
Later, accuracy is also compared amongst the 100 sentence pairs.

4.5 NN training

4.5.1 Implementation

We implemented the models mentioned above with the Deep learning framework Keras, and
the pre-trained word2vec is based on the python package Gensim. During processing of the
evaluation data, we also use SENNA for SRL and POS tagging.

During the training of the NN, we also adapted several methods for modeling optimization.
To prevent over-fitting, we used dropout and early stopping. In this context, dropout refers to
dropping the hidden state units out of the NN randomly during training [68]. In effect, this
removes the hidden state and all its incoming and outgoing connections. Another method
to prevent over-fitting is early-stopping and reducing the learning rate, which is monitored
on the validation loss. As mentioned before, during data segmentation we select a separate
set of data as validation data. After each epoch of training, the loss for the validation data is
measured. If the loss does not decrease, we reduce the learning rate by a certain proportion.
However, if the learning rate reaches a threshold and performance does not improve, training
is halted automatically. In order to tackle the problem of gradient explosion, we have also
used the gradient clipping method. The norm of the gradient is clipped if its value is greater
than 1. During training, we tried different variants of LSTM. The results indicate that GRU
performs better than traditional LSTM. Therefore, the result reported later is for a GRU-based
LSTM model. As for the optimizer, we have used AdaGrad, following the suggestion of Tilk
et al. [71]. The advantage of AdaGrad is that it is able to increase the learning rate for more
sparse parameters while decreasing the learning rate for those that are less sparse. For the
GRU version, we also attempted the Adam optimizer. Its performance was not worse than
AdaGrad. Therefore, we may also explore the adaptation of Adam in all the other models in
future work.

In conclusion, to find the correct hyperparameters for training, we have tried different
values for learning rate, hidden layer, dropout rate etc. However, due to the long computa-
tional time required for training during each experiment, we did not perform all the possible
combinations of the parameters. Because of that, it is possible that there are more accurate
parameters than those used in this project.
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Model name LR H E N dropout Optimizer

NP_Attention 0.01 256 256 5*107 0.3 / 0.4 AdaGrad
Non_WR 0.005 256 256 5*107 0.3 / 0.4 AdaGrad
RNN_WR 0.01 256 256 5*107 0.3 / 0.4 AdaGrad

LSTM_WR 0.001 256 256 5*107 0.3 / 0.4 Adam
Attention_LSTM 0.005 256 256 5*107 0.3 / 0.4 AdaGrad

Attention_WR 0.005 356 356 5*107 0.3 / 0.4 AdaGrad
Attention_LSTM_W2V 0.001 256 256 5*107 0.3 / 0.4 AdaGrad

Table 4.3 Number of hyperparameters applied for each model

4.5.2 Hyper parameters

Table 4.3 shows the training parameters for each model. LR refers to learning rate; H, E to
hidden layer size and embedding layer size, and N to the number of training samples per
epoch.
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Chapter 5

Results and Discussion

In this part, we will present the results for different models’ with respect to their perplexity
and performance in thematic fit evaluation.

5.1 Perplexity

Table 5.1 shows the overall results of the perplexity we have tested on all the models (the
lower perplexity the better performance). In the table, PP stands for the perplexity score,
Val_acc refers to the validation accuracy. while Test_acc indicates the accuracy of test data.
Apart from the models that we have described in the previous chapter, we also tested the
perplexity on (Tilk et al. [71]) model of Head_Noun_RNN. Instead of taking the whole
sentence information into consideration, Head_Noun_RNN only takes the content word of
each thematic role as the input word, and it applies a simple RNN layer after the rolespecific
word embedding. Later, Head_Noun_RNN used the last hidden state of RNN as the input for

Model name PP D_PP Val_acc Test_acc

NP_Attention 887 3.41 0.063 0.063
Non_WR 985 3.45 0.055 0.055
RNN_WR 1088 4.32 0.055 0.055

LSTM_WR 834 3.28 0.066 0.065
Attention_LSTM 1012 3.82 0.064 0.065

Attention_WR 1374 5.00 0.042 0.043
Attention_LSTM_W2V 5838 13.23 0.020 0.021

Head_Noun_RNN 913.3 3.38 0.062 0.062

Table 5.1 Perplexity and accuracy comparison between different models
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the factored classifier embedding in Equation 3.13. The comparisons between our models
and Head_Noun_RNN can illustrate whether our model can perform successfully for content
information extraction of each argument, when processing the sentence or phrase.

Comparison with baseline Attention_LSTM_W2V model

As described in Section 4.3, we use the model Attention_LSTM_W2V as a baseline for
testing the performance of word_role embedding in our project. Different from all the other
models, Attention_LSTM_W2V leans the context information simply based on the word2vec
embedding instead of the factored role_word embedding. In general, the PPL for all these
models are quite different. But the results show that, Attention_LSTM_W2V has the highest
PPL score and the lowest accuracy for either validation data or testing data among all these
models. Similar to the results from (Tilk et al. [71]), this proves the necessity of using
factored role_word embedding for thematic role-filler prediction tasks.

Comparison with baseline Non_WR model

In Section 4.3, we also introduce another baseline model Non_WR, where we apply addition
for the word_role embedded vectors in the input sentence. Firstly, out observation found that
Non_WR and RNN_WR have similar performance regarding to perplexity or validation and
test accuracy. Whereas in (Tilk et al. [71])’s paper, they also reported the similar performance
of nonincremental model and incremental model for thematic role-filler prediction based
on the content noun. The incremental model in [71] is similar to our model of RNN_WR.
Secondly, LSTM_WR out-performs both RNN_WR and Non_WR in PPL, which again
indicates the advantages of LSTM in processing long sequence of data with its functional
memory cells. Thirdly, the PPL performance of Attention_WR (where context information is
represented by the weighted addition of word_role vectors) is not as ideal as the Non_WR
model. This may indicate that for our task, the attention scores, which are learned based
on the global contextual information among the whole sentence, might not be as effective
as that of the single local information (the vector information for each input of word_role
embedding or the hidden state of RNN).

Comparison among attention mechanism

During the experiment, we applied four types of attentional learning for sequence information
processing. Among these models, NP_Attention focuses on the noun phrase meaning
composition whereas the other three models apply an attention mechanism for the whole
sentence. Table 5.1 shows that all the attention mechanisms applied in sentence level have a
higher perplexity than that from the noun phrase level. Moreover, the attention applied in
noun phrase level outperforms that of the single Head_Noun_RNN. This result on one hand
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indicates the effectiveness of NP_Attention in contextual information extraction. On the
other hand, it also proves the power of LSTM as hidden state learning than that of a simple
RNN, because in NP_Attention, the weighted contextual information is based on the LSTM
hidden states.

In summary, the result shows that, LSTM_WR has the lowest perplexity score among
all the models. It’s performance is much better than the simple RNN model or the non-
incremental model. This again proves the effectiveness of LSTM in dealing with long
sentence. While, for the attention models, all the attention mechanisms applied in sentence
level have a higher perplexity than that of the single RNN or LSTM. However, as we observe
from the result, the NP_attention model show similar performance to the LSTM_WR, which
may indicate that the attention mechanism is more effective in dealing with noun phrases
(shorter sequence of words ) rather than long sentence. Furthermore, both the LSTM_WR
and NP_Attention has better performance than the model in (Tilk et al. [71]), which may
indicate that, LSTM_WR and NP_attention can extract the content word information among
the sentences or phrases. Meanwhile, Attention_LSTM_W2V has the highest perplexity of
all these models , this result proves the effectiveness of the rolespecificword embedding for
parameters sharing in the model training process.

We also provide the accuracy results for validation and test data. Compared with all
the other models, LSTM_Attention and LSTM_WR has a better performance. Despite the
higher perplexity score in testing data, we are expecting LSTM_Attention to have better
performance for thematic fit evaluation based on its high validation accuracy. Meanwhile
the model with word2vec instead of word-role embedding as input has the lowest accuracy.
Likewise, the result shows the necessity of using factored role_word embedding for thematic
role-filler prediction.

5.2 Thematic fit evaluation

During the experiment, we have evaluated thematic fit on two types of data. The first type of
data is based on the experiment stimuli mentioned in (Matsuki et al. [43]), where we focus
on the prediction of patient and instrument. The second type of evaluation data is modified
from the paper of [3] for verb and agent filler prediction.

5.2.1 Thematic fit difference on Patient, Instrument fillers

As shown in Chapter 4, the example sentence pairs for patient and instrument fit evaluation
is listed below:

(11) Jamoes caught the elusive baseball with a glove before it fell into someone else’s
hands
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Model name Patient Instrument

NP_Attention 0.558 0.617
Non_WR 0.574 0.575
RNN_WR 0.460 0.550

LSTM_WR 0.574 0.625
Attention_LSTM 0.510 0.525

Attention_WR 0.489 0.550
Attention_LSTM_W2V 0.510 0.525

Head_Noun_RNN 0.553 0.575

Table 5.2 Evaluation on thematic fit difference for Patient and Instrument

(12) Jamoes caught the elusive baseball with a net before it fell into someone else’s hands

Given the same context, if the model can assign a higher probability to the typical instrument
filler glove than an atypical one net, we count the model’s prediction as an accurate one.
During evaluation, we will skip the sentence pair if the target word is an unknown word in
our vocabulary. Finally, there are 47 sentence pairs for patient filler and 40 sentence pairs
for instrument filler evaluation. Table 5.2 shows the accuracy result based on the evaluation
data. Unfortunately, there is no significant difference among all the models, as the number of
sentence pairs for evaluation is limited. However, among all the models, the NP_Attention
has a higher accuracy on instrument prediction while LSTM_WR has a slightly better result
for patient role prediction.

5.2.2 Thematic fit difference on Agent, Verb fillers

In this section, we evaluate all of the models’ performance on Agent, Verb fillers’ prediction
based on stimuli in (Amsel et al. [3]). The example data is listed below:

(13) The artists choose a bright red lipstick in the makeup show.

(14) The artists choose a bright red concrete in the makeup show.

In the example above, a bright red lipstick is an typical example in the given context whereas
a bright red concrete is an atypical one [3]. Similar to the evaluation in Section 5.2.1,
given two different context and same role-filler (here agent, verb) as the target word, if the
model can assign a higher probability to the word in the typical sentence than that in the
atypical sentence, we count model’s prediction as an accurate one. This evaluation can help
to illustrate the models’ performance in context information extraction and their ability to
distinguish typical and atypical context. During evaluation, if the target word in the sentence
is out of vocabulary, we will skip that sentence pair. In total, there are 115 sentence pairs
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Model name Verb Agent

NP_Attention 0.757 0.739
Non_WR 0.686 0.748
RNN_WR 0.652 0.730

LSTM_WR 0.765 0.739
Attention_LSTM 0.800 0.748

Attention_WR 0.626 0.613
Attention_LSTM_W2V 0.130 0.172

Head_Noun_RNN 0.783 0.703

Table 5.3 Evaluation on thematic fit difference for Verb and Agent

available for Verb filler prediction and 111 for Agent filler prediction. The result for thematic
fit difference evaluation is illustrated in Table 5.3.

From Table 5.3, we observe that, the baseline model Attention_LSTM_W2V has the
lowest accuracy in both verb and agent filler prediction. This again indicates the necessity of
word_role pair embedding for our task. For another baseline model Non_WR, it has highest
accuracy in agent filler prediction, together with the Attention_LSTM model. Whereas
NP_Attention, LSTM_WR and Attention_LSTM outperform the baseline for verb filler
prediction. Despite the high perplexity, Attention_LSTM achieves the best performance for
either verb or agent filler prediction. It may indicate the effectiveness of Attention_LSTM in
real data prediction and its penitential in processing whole sentence as input sequence .

As mentioned in Section 5.1, we also test the performance of content word prediction
model Head_Noun_RNN. The evaluation result shows that, for the prediction of verb filler,
only Attention_LSTM model outperform the one based on content words. This on one hand
proves the effectiveness of Attention_LSTM in contextual information extraction. On the
other hand, it may indicate that during verb filler prediction, the contextual information is
not as important as that for patient fillers. Whereas with the aspect to agent filler, most of the
models we’ve experimented outperform the single head model with only content word. This
also proves that the content of agent fillers depend heavily on their contextual information.
Furthermore, both the Non_WR and Attention_WR models have highest accuracy for agent
filler prediction.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this work, we explored methods to predict thematic role-fillers based on phrase or sentence
information. To fulfill the task, we trained our words embedding with CBOW algorithm for
word meaning representation, as it showed an advantage in presenting semantic similarities
as well as keeping vector dimension fixed despite the change of vocabulary size. For the
overall task, we proposed two methods: first of all, to process sequence information, we
propose the use of RNN for sentence or phrase meaning learning. To further explore the
weighted meaning composition in sequence information, we explored the use of attention
mechanism on top of either RNN or word embedding. Second, to learn the shared parameters
between word and role pairs, we followed the work from (Tilk et al. [71]) to build factored
role-specific word embedding matrices for word meaning embedding and later to build
factored role-specific context embedding matrices for target word classification.

The performance of models is later evaluated based on perplexity and thematic fit related
to human rating. The perplexity result shows that the attention mechanism is more effective
in phrase level meaning composition than sentence level. One possible reason is, in phrase
level, the head noun will play a dominant role in thematic meaning representation, thus it
was easier for the model to assign the higher score for it to learn. Meanwhile the LSTM
neural network proved its power in processing long dependency sentences. Furthermore, our
results prove the effectiveness of using wordrole embedding matrices for parameter sharing
during the role-filler prediction task. All the models adopting a role specific word embedding
outperform the ones using only word2vec as input. The use of non-incremental model and
simple RNN model shows similar performances in our task, which are similar to Tilk et al.
[71]’s experiment results. Whereas, according to the thematic fit evaluation on all the models,
the attention model for sentence level prediction shows better performance in both verb and
patient filler prediction. This illustrates the importance of attention mechanism in contextual
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meaning extraction for our project and also indicate its potential for processing sequence
input of whole sentences.

6.2 Future work

6.2.1 Theoretical part

Based on the performance of our task, we observe that, the attention mechanism works better
in phrase level compared to the sentence level information processing. How to improve its
performance in the sentence level is the further focus of our task. One of the possible ways
to deal with the weighted meaning composition in the sentence level is inspired by the paper
from (Vaswani et al. [74]). (Vaswani et al. [74]) split sentence into multiple parts which share
the identical layer of weight learning. While in every part, the weighted meaning for each
word is derived from multihead mechanism. Taking word embedding as input, each word is
split into multiple parts (head) from the embedding dimensions. The weighted score is then
based on the linear projection of keys and query which is derived from its own embedding
feature. As a state of art method in machine translation, it is possible for us to explore its
performance in thematic role-filler prediction in the future.

6.2.2 Evaluation

Since we use perplexity for performance comparison, one of the important points we need to
bear in mind is to ensure all the models share the same data for testing. Moreover, the test
data should be representative. During the experiment, we have applied several processing
methods to ensure all the models shared the same data for training and testing while the data
is segmented based on the proportion of 80% for training, 10% for testing and the other 10 %
for validation. It is possible to explore the effect of cross-validation, by assigning the training,
testing, and validation data randomly for each epoch, which would make those data more
representative.

Another concern about the evaluation is that, due to the limited number of evaluation
data, some performance of the models may not indicate significant differences (for the filler
prediction of patient and instrument). Thus in the future, improvements could be made to
collect more proper data for evaluation.
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Appendix A

Evaluation data for Patient, Verb filler

(the sentences shown bellow are normalized with python nltk toolkit. )

• she avoided the annoying interest with a payment

• she avoided the annoying interest with a shortcut

• she avoided the annoying traffic with a shortcut

• she avoided the annoying traffic with a payment

• with a cauldron, she brew the medicinal potion for her twelve year old daughter

• with a kettle, she brew the medicinal potion for her twelve year old daughter

• with a kettle, she brew the medicinal tea for her twelve year old daughter

• with a cauldron, she brew the medicinal tea for her twelve year old daughter

• he caught the elusive baseball with a glove before it fell into someone else’s hands

• he caught the elusive baseball with a net before it fell into someone else’s hands

• he caught the elusive trout with a net before it fell into someone else’s hands

• he caught the elusive trout with a glove before it fell into someone else’s hands

• she colored her beautiful hair with a dye

• she colored her beautiful hair with crayons

• she colored her beautiful picture with crayons

• she colored her beautiful picture with a dye
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Evaluation data for Patient, Verb filler

• with a joystick, he control the brand-new game that he bought yesterday

• with a remote, he control the brand-new game that he bought yesterday

• with a remote, he control the brand-new television that he bought yesterday

• with a joystick, he control the brand-new television that he bought yesterday

• with a white-out, she covered the minor error after she had discoverd the misspelling

• with a band-aid, she covered the minor error after she had discoverd the misspelling

• with a band-aid, she covered the minor scrape after she had discoverd the misspelling

• with a white-out, she covered the minor scrape after she had discoverd the misspelling

• with the scissors, she cut the expensive paper that she needed for her project

• with a saw, she cut the expensive paper that she needed for her project

• with a saw, she cut the expensive wood that she needed for her project

• with scissors, she cut the expensive wood that she needed for her project

• with a fork, she ate the homemade pasta that was stuffed with large piece of crab

• with a spoon, she ate the homemade pasta that was stuffed with large piece of crab

• with a spoon, she ate the homemade soup that was stuffed with large piece of crab

• with a fork, she ate the homemade soup that was stuffed with large piece of crab

• with a bottle, she fed the adorable infant who was born just two week ago

• with a bucket, she fed the adorable infant who was born just two week ago

• with a bucket, she fed the adorable pig who was born just two week ago

• with a bottle, she fed the adorable pig who was born just two week ago

• with a fireplace, she heated the frozen cabin that her grandma left to her

• with a oven, she heated the frozen cabin that her grandma left to her

• with a oven, she heated the frozen pie that her grandma left to her

• with a fireplace, she heated the frozen pie that her grandma left to her

• with a bat, he hit the dirty baseball really hard while playing in the backyard
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• with a hammer, he hit the dirty baseball really hard while holding a beer in his other
hand

• with a hammer, he hit the dirty spike really hard while holding a beer in his other hand

• with a bat, he hit the dirty spike really hard while playing in the backyard

• he held the antique photograph with a frame during his art class

• he held the antique photograph with a clamp during his art class

• he held the antique wood with a clamp during his art class

• he held the antique wood with a frame during his art class

• with a rifle, he killed the unfortunate deer that they had been purusing for an hour

• with a harpoon, he killed the unfortunate deer that they had been purusing for an hour

• with a harpoon, he killed the unfortunate whale that they had been purusing for an hour

• with a rifle, he killed the unfortunate whale that they had been purusing for an hour

• with a match, he light the cheap cigarette in the motel near the airport

• with a lantern, he light the cheap cigarette in the motel near the airport

• with a lantern, he light the cheap room in the motel near the airport

• with a match, he light the cheap room in the motel near the airport

• with the scissors, he opened the old package that he found in the basement

• with the canopener, he opened the old package that he found in the basement

• with the canopener, he opened the old soup that he found in the basement

• with the scissors, he opened the old soup that he found in the basement

• with an alarm, she protected the precious car that she purchased a month ago

• with an fence, she protected the precious car that she purchased a month ago

• with an fence, she protected the precious property that she purchased a month ago

• with an alarm, she protected the precious property that she purchased a month ago

• with a horse, he pulled the old-fashioned carriage from the barn to the park
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Evaluation data for Patient, Verb filler

• with a pick-up truck, he pulled the old-fashioned carriage from the barn to the market

• with a pick-up truck, he pulled the old-fashioned trailer from the barn to the market

• with a horse, he pulled the old-fashioned trailer from the barn to the park

• with coins, she purchased the hand-made candy at the farmer’s market

• with credit, she purchased the hand-made candy at the farmer’s market

• with credit, she purchased the hand-made clothes at the farmer’s market

• with coins, she purchased the hand-made clothes at the farmer’s market

• with a rope, he secured the large boat properly so that no strong wind would blow it
away from the dock

• with a lock, he secured the large boat properly so that no strong wind would blow it
away from the dock

• with a lock, he secured the large door properly so that no one would break into his shed

• with a rope, he secured the large door properly so that it wouldn’t fall over in his truck
on his way home

• with a dish, he served the fabulous dessert following the main course last night

• with a mug, he served the fabulous dessert following the main course last night

• with a mug, he served the fabulous tea following the main course last night

• with a dish, he served the fabulous dessert following the main course last night

• with a shovel, he spread the fresh dirt all around the flower bed so that it made a nice
mound

• with a knife, he spread the fresh dirt all around the flower bed so that it made a nice
mound

• with a knife, he spread the fresh jam all around the his toast so that it covered the
whole thing

• with a shovel, he spread the fresh jam all around world’s largest loaf of bread

• with a hose, she washed her filthy car after she came back from the beach

• with the shampoo, she washed her filthy car after she came back from the beach
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• with the shampoo, she washed her filthy hair after she came back from the beach

• with the hose, she washed her filthy hair after she came back from the beach

• with a rag, she wiped her greasy counter which became really dirty while she was
making pancakes

• with a rakleenexg, she wiped her greasy counter which became really dirty while she
was making pancakes

• with a rakleenexg, she wiped her greasy nose which became really dirty while she was
cleaning the garage

• with a rag, she wiped her greasy nose which became really dirty while she was cleaning
the garage

• with the paper, she wrapped the wonderful gift for her daughter who was coming to
dinner that night

• with the tinfoil, she wrapped the wonderful gift for her daughter who was coming to
dinner that night

• with the tinfoil, she wrapped the wonderful leftover for her daughter who was going
back to her apartment

• with the paper, she wrapped the wonderful leftover for her daughter who was going
back to her apartment
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