
European master in Language and Communication Technologies

AUTOMATED MULTILINGUAL
COGNATE RECOGNITION

&
TRANSITION-RULE EXTRACTION

Master’s thesis.

By:

M·S·KROON, BA

Supervisors:

dr. G·BOUMA†

dr. É·BUCHI‡

RIJKSUNIVERSITEIT GRONINGEN†

&
UNIVERSITÉ DE LORRAINE‡

xxiv.viii.mmxvi

Abstract
The task of automated cognate recognition is useful for many fields of lin-
guistics, but only a handful of studies have dealt with multiple languages
at once. In the research put forth in this thesis a system is developed and
evaluated that can automatically recognize cognates throughout multiple
languages using multilateral transition rules. An SVM is also tested on the
same data. It was found that adding more languages in the equation of cog-
nate recognition and using multilateral transition rules improves cognate
recognition. The result of this thesis is a list of extracted cognate tuples, a
list of multilateral transition rules and their probability, and a multilingual
cognate-recognition system.

ii

Acknowledgements
First and foremost I would like to thank my supervisors, Gosse Bouma
and Eva Buchi, for their invaluable help, their thorough reading and hard
(sometimes late-night) work.

I would also like to thank Maxime Amblard, Miguel Couceiro and Gosse
(this time as the local coordinator of the LCT programme in Groningen)
for making sure that everything went as smoothly as possible with respect
to the administrative differences between the two universities.

Finally, I would like to thank my parents, my brother, my friends and
Masha for feeding me, their support and their love, without which this
thesis would not have been possible.

iii

Contents
1 Introduction 1

2 Background 3

3 Outline of the research 5

4 Data 7
4.1 The Europarl corpus . 7

4.1.1 Lemmatization . 8
4.1.2 Trimming . 10
4.1.3 cdec’s word alignment algorithm . 11
4.1.4 Further preselection . 11
4.1.5 A note on compounds . 12

4.2 Training, development and test sets . 12

5 Probability theory 15
5.1 Substring transitions . 15

5.1.1 P(a : b : c) . 16
5.1.2 P(a : b : c : d) . 17
5.1.3 P(a : b : c : d : e) . 18
5.1.4 Generalization . 19

5.2 String transitions . 20
5.2.1 Generalization . 22

6 Description of the systems 23
6.1 Machine learning system . 23

6.1.1 Weighting . 23
6.1.2 Substring alignment . 26
6.1.3 Threshold determination . 28

6.2 Extraction system . 29

7 Results 31
7.1 Transition-rules learner . 31
7.2 Observed and expected probabilities . 32
7.3 Cognate-recognition system . 32
7.4 SVM . 33

8 Discussion 36

Bibliography 41

iv

CONTENTS v

Appendix 43

A Excerpt of database 44
A.1 English, Danish, German and Swedish . 44
A.2 Danish and Swedish . 46

B Excerpt of found transition rules 48

C Extended Swadesh list 51

D Expected probabilities 63
D.1 P(A : B : C : D) . 63

D.1.1 As two-way transitions . 63
D.1.2 As three-way transitions . 64

D.2 P(A : B : C : D : E) . 65
D.2.1 As two-way transitions . 65
D.2.2 As three-way transitions . 66
D.2.3 As four-way transitions . 67

1. Introduction
For centuries linguists have researched the genetic relationship between languages. Languages have
been classified into language families, where each member of the family was derived from a common
ancestral. Even within these language families, languages are classified into branches of languages
that exhibit even more lexical and grammatical similarities. English, for example, is a member of
the Indo-European language family, and more specifically a member of the Germanic branch of the
Indo-European languages. More specifically yet, English is classified as a West-Germanic language,
just as Frisian, Dutch, Afrikaans and German are, among many other languages (Lewis, Simons, &
Fennig, 2016). These West-Germanic languages share more linguistic phenomena than languages
from different branches, such as English and Nepali, an Indo-Arian (and thus an Indo-European)
language – these languages are eventually related, but the two languages diverged much earlier
than the languages in the West-Germanic branch did, and have therefore undergone many different
changes over time and therefore bear fewer resemblances.

Languages can, for example, undergo certain phonological changes. If a phonological change
occurred in one group of languages, but did not occur in another group, that means that the two
groups diverged before the change took place and that the languages inside the groups diverged later.
For example, Grimm’s law (McColl Millar & Trask, 2007) describes a set of sound changes that only
occurred in the development of Proto-Indo-European (the common ancestral of all Indo-European
languages) into Proto-Germanic (the common ancestral of all Germanic languages); Grimm’s law
did not occur in any other branches of the Indo-European languages.

Words between two languages that have the same etymological origin are called cognates. Some-
times the cognatic relation between two words is not as obvious, as for example in the French lait
‘milk’ and the Ancient Greek γάλα (gen. γάλακτoς) ‘milk’, but the more related the languages are
(i.e. the later the languages diverged and therefore the more sound changes they have undergone
together), the easier it is to recognize two cognates. In the Germanic languages (both West- and
North-Germanic), recognizing cognates is relatively easy. Usually, cognate recognition is done by
the use of string resemblance: cognates tend to share graphemic features. One could (and some do)
also use sound correspondences, such as ‘if Dutch has <d>, then English has <d>’, to recognize
cognates. See chapter 2 for a more detailed explanation of different approaches.

However, sound correspondences between two languages may not be very exact. For instance,
the example above is not true in every case: in many cases it is the case that ‘if Dutch has <d>,
then English has <th>’. The probability that Dutch <d> actually corresponds to English <d> is
therefore not very high, as it often corresponds with English <th>. The correspondences <d>:<d>
and <d>:<th> are not the most reliant. If another language is added to the equation, though,
the correspondences get a much higher confidence (or probability), such as ‘if Dutch has <d>
and German has <t>, then English has <d>’ and ‘if Dutch has <d> and German has <d>,
then English has <th>’. These correspondences (or rules) are true in almost a 100% of the cases.
Adding another language in the equation of cognate recognition should thus give better results:
the calculated probability for a triple of words being cognates must be more accurate than the
probability for a pair of words.

Algorithms and natural language processing (NLP) tools have been developed for automated
cognate recognition (Kondrak, 2001; Bergsma & Kondrak, 2007a; Cysouw & Jung, 2007; List, 2012;

1

CHAPTER 1. INTRODUCTION 2

Wang & Sitbon, 2014; Rama, 2015; Xu, Chen, & Li, 2015, among others). All of these systems,
however, only take two languages as input, while the results should be better in terms of accuracy,
precision and recall if it considers multiple languages – only a handful of studies have dealt with
multiple languages at once, but these systems do not produce correspondence rules (Bergsma &
Kondrak, 2007b; Hall & Klein, 2010, 2011, among others). I hypothesize, however, that cognate
recognition can be improved by using sound-correspondence rules between multiple languages to
come to a more confident decision (i.e. the set of cognates will have a higher probability of being
cognates). The research put forth in this thesis, therefore, focuses on the development of a system
for automated cognate recognition that takes more than two languages as input and which returns a
list of observed sound-correspondence rules and their probabilities, and can calculate the probability
that all words in a tuple are cognates.

The system was developed based on Germanic languages only – in particular on three West-
Germanic (English, German and Dutch) and two North-Germanic languages (Danish and Swedish).
The system was also evaluated on these languages. The result of this thesis is a universal1 multilin-
gual automated cognate recognition system, a list of extracted tuples of Germanic cognates using
said system, and a set of discovered sound-correspondence rules. Excerpts of the latter two can be
found in appendix A and B respectively.

In chapter 2, I shall place this research in the existing literature. In chapter 3, I shall explain
the outlay of this research. Results of the system can be found in chapter 7, a discussion of the
thesis can be found in chapter 8.

Before everything else, it needs to be discussed how some technical terms are used in this thesis.

Cognate: Trask (2000) defines a cognate as “[a] language or a linguistic form which is historically
derived from the same source as another language/form”. In this thesis, cognates are confined
to linguistic forms that are derived from the same source; the possible meaning of cognate
language is not used here. In this research the term cognate also excludes doublets. Loans
are considered cognates. Calques2 of which all morphemic constituents are cognates with the
corresponding morphemic constituents from the source are also considered cognates. E.g. the
Swedish word skyskrapa is a calque of the English skyscraper : since both parts, sky and skrapa,
are cognates of English sky and scraper respectively, the word pair skyscraper-skyskrapa is
considered a cognate pair. Furthermore, I do not consider semantics for cognates; words can
be cognates, even though meaning something else (false friends).

Cognacy: Cognacy is used as the state of being cognates.

Etymon: Trask (2000) defines an etymon as “the form from which a later form derives”. I use this in
the same manner.

Transition: In this thesis I use the word transition as meaning correspondence. Even though correspon-
dence is the term used in comparative linguistics, I decided to use transition because the
cognate recognition system developed can to some degree be considered a weighted finite-
state transducer, where the term transition is more commonly used. Hence also the notation
a:b/p (as these notations are used in weighted finite-state transducers as well), meaning that
a and b transition into each other (or correspond) with a probability p.

1The system was written in such a way that it can process any number of any languages: it does not only work
on five Germanic languages.

2Trask (2000) defines a calque as “a type of borrowing, where the morphemic consituents of the borrowed word
or phrase are translated item by item into equivalent morphemes in the new language”.

2. Background
The task of automated cognate recognition is useful for many fields of linguistics. It has of course
been a central problem in historical and comparative linguistics to detect cognates, and with the
increasing amount of data in historical linguistics, the need for automated methods for cognate
recognition grew as well. Cognates are also used for measuring language change and language
diversity; pairs of cognate words can be used as indicators of the perceived difficulty of texts for
L2-learners. In machine translation cognates are useful, too, with cognate words not seldom being
the best translation of each other (Kondrak, Marcu, & Knight, 2003).

Although automated cognate recognition seems to be a solved problem, the existing systems
can be improved (humans can still recognize cognates better). As I hypothesize, using sound-
correspondence rules between multiple languages to come to a more confident decision, which has
never been done before, should benefit automated cognate recognition and improve results.

The majority of the automated cognate recognition systems that have been developed already
use orthographical information only (Simard, Foster, & Isabelle, 1993; Danielsson & Muehlenbock,
2000; Mann & Yarowsky, 2001; Inkpen, Frunza, & Kondrak, 2005; Mulloni & Pekar, 2006; Bergsma
& Kondrak, 2007b, among others), and are based on string resemblance between two possible
cognates. For this, several different techniques have been investigated, such as the Levenshtein
distance (Levenshtein, 1966), XDICE, (Brew, McKelvie, et al., 1996) and LCSR (Melamed, 1995).
Some other systems take into account phonetic information of words as well to recognize cognates
(Guy, 1994, among others). My system as put forth in this thesis will only focus on orthographical
information of words, however its design allows for phonetic input as well: it will be able to work
with texts that are transcribed in IPA (or any other phonetic notational system), but this will
require redefining what consonant, vowel and semivowel characters are for the system first.

A handful of systems focus on distinguishing cognates that have the same meaning from false
friends by implementing semantic information (i.e. meaning) of words (Kondrak, 2004; Wang &
Sitbon, 2014). Brew, McKelvie, et al. (1996) and Frunza and Inkpen (2006) do this by using
parallel corpora: the matched cognates have the same meaning and therefore are not false friends.
Kondrak (2001) uses the words’ dictionary definition to measure their semantic distance. The list
of extracted cognates that is one of the results of this thesis will not contain false friends either, as
the cognates are extracted form a parallel corpus (see chapter 3 and section 4.1). The developed
system will, however, be able to recognize false friends as cognates – this would require another
presentation of the data (i.e. a non-parallel corpus).

Malmasi, Dras, et al. (2015) combine the string-distance approach and the parallel-corpus ap-
proach by aligning a parallel sentence on a word level and detecting pairs of cognates based on
the Jaro-Winkler distance (Winkler, 1990). This resulted in a system with a performance with an
f-score of 0.63. My approach is rather similar but takes one step more. A parallel corpus is aligned
on a word level, and all word tuples with a relatively low Jaro-Winkler distance are removed.1
This results in a list of possible cognates. My system then calculates a probability of the words
in the tuple actually being cognates; if the probability is below a certain threshold, they are not
considered cognates (see chapters 3 and 6 for a description of the developed system).

1The Jaro-Winkler distance, confusingly, is more a similarity measure than a distance. Therefore, the lower the
Jaro-Winkler distance, the less alike the words are.

3

CHAPTER 2. BACKGROUND 4

My system calculates the probability that words in a tuple are cognates through a set of phoneme
correspondences it has found earlier (or grapheme correspondences if the input is not phonetically
transcribed; these correspondences I call transitions (see chapter 1)). Few other systems take into
account transitions (Barker & Sutcliffe, 2000; Koehn & Knight, 2000; Gomes & Lopes, 2011, among
others). Mulloni and Pekar (2006) did not consider transition rules, and noticed that many errors
in cognate detection by their system were due to single-letter substitutions that are incorrect.
They suggest that a possible solution to this problem could be to introduce weighting for detected
transition rules: this is exactly what my system does. Guy (1994) did a similar thing to calculate
probabilities for transitions using the chi-square statistic, but he only did this in words with the
same meaning, thus ignoring false friends. My system does not make a distinction between same-
meaning cognates and false friends, and detects transition rules between cognates in the broader
sense, as defined by me in chapter 1.

So in short, this research places itself among the existing literature in the following way: i)
my system recognises cognates throughout more than two languages, whereas most systems deal
with language pairs; ii) though all existing systems that deal with more than two languages do not
consider transition rules, my system does; iii) although using only orthographical information of
the input tuples, my system does not recognize cognates based on string resemblance but rather
on discovered transition rules, which the majority of the other systems do not; the system does
have the ability to process phonetically transcribed data, but this would require slight tweaking;
and iv) my system uses semantic information of possible cognates to determine if they are in fact
cognates by extracting the tuples of possible cognates from a parallel corpus, comparably to some
other existing systems.

3. Outline of the research
In this chapter it shall be explained how the problem of cognate recognition and the compilation
of a cognate database will be tackled.

Cognate recognition will be performed on a list of possible cognates. It would be ill-considered
to take all words from a corpus for a few languages and test all combinations of words for cognacy;
this will result in a multitude of combinations (with five corpora of 1,000,000 words each, the
number of combinations would already be 1030; in reality, the used corpora contain up to 50.6
million words, resulting in an even larger number of combinations) which will simply take too much
time, will likely result in memory overflows for a computer, and would be unnecessary. It would
be unnecessary because it is clear as day that the words Zimbabwean and tafeltenniscoach are not
cognates: the majority of combinations do not even have to be considered as possible cognates and
can be ignored.

The list of possible cognates must therefore be confined. In order to do this, a parallel corpus
will be used, which will be aligned on word level, so that words that are each other’s translation
are aligned; in closely related languages cognates are not seldom translations of each other. The
number of possible cognate tuples shall be further diminished by removing those tuples in which
the lengths of the words differ too much and which have too low a string resemblance. The data
selection will be discussed in 4.1.

Before cognate recognition can take place, the computer needs to learn what cognates look like.
For this purpose, I have written a machine learning algorithm that: i) discovers substring-transition
rules for cognate tuples1 of any length (such as ‘if Dutch has a <d>, English has <th>’ and ‘if
Dutch has a <d> and German has a <t>, English has <d>’) and calculates their probabilities;
ii) finds the best substring alignment for a tuple of possible cognates (such as in Figure 3.1); and
iii) then calculates the probability that all words in the tuple are cognates of each other. It then
calculates a probability threshold beyond which the words in the tuple are or are not cognates.

ˆch u r ch ϵ$
ˆK i r ch e$
ˆk e r k ϵ$

Figure 3.1: An example of substring alignment for an English, German and Dutch word. ‘ϵ’
represents the empty string, ‘ˆ’ represents the beginning of a word, ‘$’ represents the end of a word.

Albright and Hayes (2006) presented the Minimal Generalization Learner, a system that learns
transition rules between word pairs and can apply these rules to a set of words to predict an expected
form. Their system works rather well, for example, on discovering the paradigm of English past
tenses, where it will discover in which cases past tenses are formed with the suffix -/d/, with the
suffix -/id/ or rather with a vowel change such as in strong verbs. In the system developed for
this research, these kinds of transition rules need to be discovered as well. However, the MGL

1The technical term cognate tuple corresponds to what is called in historical linguistics a cognate set, which is
defined as a set of words “which are directly descended from a single ancestral form in the single common ancestor
of the languages in which the words [...] are found, with no borrowing” (Trask, 2000, p. 62).

5

CHAPTER 3. OUTLINE OF THE RESEARCH 6

only works with one-way transitions, and only for input pairs (such as present tense-past tense). I
therefore had to develop a multilateral transition learner that can discover n-way transition rules
between input tuples of any length.

Substring alignment has been researched before. Covington (1996) presents an algorithm to
find the best substring alignment of two strings. However, their algorithm does not use weights for
possible alignments other than preferring consonant-to-consonant transitions and vowel-to-vowel
transitions. The alignment is also done with substrings being single characters only, whereas my
system should be able to align substrings of different lengths. In grapheme-to-phoneme alignment
(Pagel, Lenzo, & Black, 1998, among others), aligning substrings of different lengths is an issue as
well, but grapheme-to-phoneme alignment deals with input pairs only. I therefore had to design a
substring aligner that aligns any number of strings on a substring level, that can align substrings
of different lengths (such as th with d) and that uses transition-specific weights to find the best
alignment.

A discription of the developed algorithm can be found in chapter 6. The training, development
and test data that were given to the system, will be discussed in section 4.2.

The system will also calculate the average of the probabilities it assigns to the tuples that are
cognates (which can be found in the training, development and test set). Not only does it calculate
the observed probability, but also the expected probability based on the probabilities of subsets of
words in the tuple being cognates. For example, for the transition tuple (a, b, c) it will calculate
the observed probability P (a : b : c), as well as the expected probability based on P (a : b), P (a : c)
and P (b : c). How the observed and expected probabilities can be compared is shown in chapter 5.

This machine learning algorithm will be run on all combinations of the five languages on which
this research focuses: English, Danish, German, Dutch and Swedish – the reason why these lan-
guages are focused on is because the corpus used for this research (Europarl (Tiedemann, 2012);
see section 4.1) is available for those five Germanic languages; and Europarl is used because it is
available for so many Germanic languages. All combinations are tested so that results can be com-
pared, to see if results improve with more languages. A support vector machine (SVM) will be run
on the data as well, to compare my system’s performance. Ciobanu and Dinu (2014) experiment
with SVMs to learn orthographic changes (i.e. transitions) and to detect cognate pairs, too.

For the cognate extraction, the system will be run on prepared tuples of possible cognates
extracted from the Europarl corpus. It will then write all tuples for which it calculated a probability
higher than the established threshold to a file.

4. Data
4.1 The Europarl corpus
The corpus on which the developed system was run is a part of the freely accessible Europarl corpus
(Tiedemann, 2012), of which the English-Danish, English-German, English-Dutch, and English-
Swedish parallel corpora were used. The Europarl corpus was used because of its parallel nature,
which was very convenient for the approach that was used (for which see chapter 3). This led to the
choice of using the Europarl corpus, along with Europarl being the parallel corpus that is available
in the most Germanic languages.

The Europarl corpus is a collection of proceedings of the European Parliament starting from
1996. The latest update was released in 2012; it now contains sentence-aligned texts for 21 lan-
guages, containing 753.73 million tokens and 30.11 million sentences. For most languages lemmas,
part-of-speech (POS) tags and sometimes even morphological tags are provided for each word in
every sentence as well. For this research, only sentence-aligned texts for English and Danish, Ger-
man, Dutch and Swedish were used, totalling to 372.9 million words and 7.75 million sentences.
See table 4.1 for the number of sentences and words throughout the used parts.

Sentences English words L2 words
English-Danish 1,968,800 48,574,988 44,654,417

English-German 1,920,209 47,818,827 44,548,491
English-Dutch 1,997,775 49,469,373 50,602,994

English-Swedish 1,862,234 45,703,795 41,508,712

Table 4.1: The number of sentences and words in the used parts of the Europarl corpus.

The Europarl corpus files were retrieved from the OPUS (open parallel corpus) website by
Tiedemann (2012).1 OPUS is an online collection of texts, which are provided with linguistic
annotation. However, the compiled collection has not undergone manual corrections, meaning that
the data can be somewhat noisy.

Along with the texts and their annotations, some linguistic tools have been made available on the
website as well, such as tools for tagging and parsing. In order to prepare the data for this research,
I used a tool that replaces all words in the Europarl data by their lemmas with POS tags. However,
for Danish and Swedish lemma information is not provided. For Swedish, at least morphological
tags are provided (i.e. very specific POS tags which also contain morphological information), which
were later used for lemmatization.

The resulting files with the aligned texts were then joined into one large file, so that all sentences
that did not occur throughout all five languages were removed. The result was a file with 1,401,234
lines with five sentences in five languages meaning the same thing, with words reduced to a lemma–
POS-tag tuple where possible.

1http://opus.lingfil.uu.se/

7

http://opus.lingfil.uu.se/

CHAPTER 4. DATA 8

4.1.1 Lemmatization
As for the languages for which no lemmas were provided, Danish and Swedish, the texts had to
be lemmatized in order for the alignment on word level and the cognate recognition to be more
accurate. Even though there are several lemmatizers for Danish and Swedish, there were no open-
access lemmatizers. Jörg Tiedemann did suggest using Robert Östling’s pipeline available from
GitHub, but after long and hard trying I could not get it working. I was also recommended a
lemmatizer for Danish, but it required database files I had no access to. I then decided to write
simple lemmatizers for Danish and Swedish myself.

The Danish lemmatizer takes a relatively small word-to-lemma database (18,390 tuples) from
the Danish Dependency Treebank v1.0 (DDT) (Kromann & Lynge, 2004). The lemmatizer takes
this as its lexicon. It then takes a word from the corpus, along with its POS tag, and sees if
it can find it in the lexicon taken from the DDT. If not, it makes a set of all possible stems
from which the word could have been derived given the Danish morphology and the word’s POS
tag. If a stem does not contain any vowel, it is ignored. Then, if a stem has a common end-
ing, that is to say a derivational-morphologically productive suffix, that stem will be taken as the
lemma. Endings considered common are: -ion, -ing, -else, -hed, and -itet for nouns, -sk for ad-
jectives and -ere for verbs. If the word does not have a common ending, the lemmatizer checks
if any of the stems in the set of possible stems is in the lexicon. It also considers the possi-
bility that the word is a compound, trying to split it in such a way so that all parts, minus
possible linking morphemes, are in the lexicon (or have a common ending). Because of the way
Germanic compounds work, only the POS tag of the last part of the potential compound has to
correspond to the POS tag of the word; all other parts can be of any POS tag. If the system
cannot find a suitable lemma for the word using any of these techniques, the word will be added
to the lexicon, mapped to itself as lemma: the lemmatizer simply does not know the word in
any way, and it would be very time consuming to walk through the whole algorithm checking for
the word’s lemma every time the system encounters it. For the pseudo-code, see Algorithm 1.

Algorithm 1: Danish lemmatizer
Result: Reduce a Danish word to its lemma
Read DDT lexicon;
for word do

if word in lexicon then
return lemma;

else
make set of possible stems;
for possible stem do

if pos. stem contains a vowel then
if pos. stem has common ending then

return lemma;
else if pos. stem in lexicon or compound then

return lemma;
else

save word to lexicon;
return word

CHAPTER 4. DATA 9

The part of the Danish lemmatizer that checks whether a word is a compound, first checks
if the word is in the lexicon. If it is not, it breaks the word up into syllables, using the pyphen
package for Python, and then gives back all possible partitions of those syllabifications. Then for
all possible partitions, for all parts in the partition, it makes a set of all possible stems the part
could have been derived from, stripping them from all possible linking morphemes, except for the
last part. If, then, for every part at least one of those possible stems is in the lexicon or has
a common ending (ignoring POS tags), and the last part is in the lexicon (taking into account
its POS tag), the compound is added to the lexicon, and the algorithm returns the lemma by
joining all non-final parts and the lemma of the last part. For pseudo-code, see Algorithm 2.

Algorithm 2: Compound checker
Result: Return the lemma of a compound
if word in lexicon then

return lemma
else

syllabify word;
for possible partition of syllables do

for part in pos. partition do
make set of stems;
if (any of those stems in lexicon or has common ending) and last part in lexicon
then

add word to lexicon;
return non-final parts + last part’s lemma

The Swedish corpus is provided with POS tags containing morphological information. The
Swedish lemmatizer is therefore based on these tags, as every tag already implies the morphemes to
be stripped and the lemma from which the word was derived. Nevertheless, to improve speed and
accuracy, the Swedish lemmatizer uses a lexicon: SALDO (Borin, Forsberg, & Lönngren, 2013), an
extensive Swedish lexicon containing semantic and morphological information. The lemmatizer was
also given the most frequent (if not all) irregular inflections, retrieved from the Learning Swedish
website (Swedish Institute et al., 2015).2 For every word, the lemmatizer first checks if it is in the
lexicon. If it is, the word is reduced to the lemma as provided in SALDO. If it is not, the lemmatizer
analyses the morphological POS tag accompanying the word, and checks if the word is irregular or
strips it of the appropriate morphemes, taking into account some spelling or phonological processes
that may occur. For pseudo-code, see Algorithm 3.

2http://learningswedish.se/

http://learningswedish.se/

CHAPTER 4. DATA 10

Algorithm 3: Swedish lemmatizer
Result: Reduce a Swedish word to its lemma
Read SALDO lexicon;
Read irregulars from Learning Swedish;
for word do

if word contains vowel then
if word in lexicon then

return lemma;
else

analyse POS tag;
if word in irregulars then

return lemma;
else

return lemma using Swedish morphology;

The lemmatizers reduced the number of word types by an average 29.87%: from 372,207 to
267,543 for Danish and from 403,867 to 276,188 for Swedish. Though unfortunately, the lemmatizers
were not evaluated for their accuracy, because I had no gold standard to test them on. However,
from what I saw, the results were acceptable, and having any lemmatizer would be better than
having none. My expectation is, though, that the Danish lemmatizer has better results than the
Swedish one, despite the Swedish one having a larger lexicon. This is partly because the Swedish
lemmatizer relies more heavily on the morphological tags, which are not always that accurate.

4.1.2 Trimming
After lemmatization all words were stripped of their POS tags; this might have caused for a slight
reduction of word types, with homonyms no longer being distinguished between by their POS tag.
All texts were furthermore stripped of everything that is not a letter or a hyphen (as some words may
contain a hyphen). All isolated hyphens were removed as well. After that, all lines that contained
any symbols from other alphabets (Greek, Cyrillic, or even other), were removed, resulting in a
file with 1,400,661 lines. This reduced the number of words and word types drastically, with an
average of 35.79% for words and 29.96% for word types. The size of the reduction can be explained
– partly – by the nature of the Europarl corpus: the corpus contains many names of laws and their
codes. The codes contain many digits and numbers, which are all different word types and which
were removed.

Before After Reduction
English 52,835,267 35,162,510 33.45%
Danish 51,068,477 32,089,638 37.16%

German 52,411,025 32,694,553 37.62%
Dutch 55,182,552 35,813,093 35.10%

Swedish 49,557,249 31,901,254 35.63%

Table 4.2: Number of words before and after
trimming per language.

Before After Reduction
English 183,258 74,0183 59.61%
Danish 267,543 226,697 15.27%

German 340,087 248,656 26.88%
Dutch 281,403 193,979 31.07%

Swedish 276,188 229,375 16.95%

Table 4.3: Number of word types before and
after trimming per language.

CHAPTER 4. DATA 11

4.1.3 cdec’s word alignment algorithm
Dyer et al.’s (2010) cdec contains several tools for decoding, aligning and learning for statistical
machine translation. It’s word alignment tool, called fast align, aligns two sentences on a word
level. In word alignment words that correspond in meaning between two parallel sentences are
aligned. In this research, word alignment was used to confine the number of word combinations
(between the five languages) that the cognate recognition system should check cognacy for (see
chapter 3). The fast align tool was chosen for its speed (hence the name) and its efficient
evaluation.

The fast align tool was given the parallel language pairs with English as the source language
and the other four languages as target languages. The output of the fast align tool is a file with
pairs of the indexes of the words that were aligned. These indexes then had to be translated into
words. The result is a five-column file with lines containing the word alignments throughout the
five languages. The file contains 35,162,510 lines, i.e. alignments, which is equal to the total number
of English words. This is because the fast align tool took English as the source language, finding
alignments for every word.

4.1.4 Further preselection
Then, all lines that only occured once were removed; those are likely to be noise, and would greatly
increase run time and decrease accuracy. In this process 33,599,374 alignments were removed,
leaving 1,563,136.

Additionally, all lines in which the length of words differed too much were removed as well,
because they are very unlikely to be cognates. The lines in which the length difference between the
longest word and the shortest word in the line was greater than or equal to 5 letters were removed.
As a final step all lines in which the Jaro-Winkler distance (Winkler, 1990) between the words in
the line is smaller than 0.4 were removed, too. This was done so that lines with words that are too
dissimilar will not be tested for cognacy, because it is very likely the words will not be cognates.
This reduced the number of lines to 318,651 lines.

It was also planned to merge certain lines. Two lines for which in every column the two fields
are identical or one of the two fields is empty, could be merged, as demonstrated in Figure 4.1. The
newly formed line could then itself be subject to merging, such as in Figure 4.2. After merging, all
subset lines were removed.

and und och
and og und en
and og und en och

Figure 4.1: The merging of two lines.

1. and und
2. and og en
3. and en och

1,2. and og und en
3. and en och

1,2,3. and og und en och

Figure 4.2: The merging of three lines.

3It is striking to see how much fewer word types (after lemmatization and trimming) English uses, compared to
the other languages. This has to do with the fact that English does not require compounds to be written as one
word, whereas the other languages do.

CHAPTER 4. DATA 12

1. and und
2. and og en
3. and en och
1. and und
2. and og en
3. and en och

1,2. and og und en
1,3. and und en och
2,3. and og en och

1,2,3. and og und en och

Figure 4.3: The merging of three lines with all possible combinations.

Due to an exponential blow-up this merging was not further pursued, as all newly formed lines
through merging had to be considered for merging as well, such as in Figure 4.3. This resulted
in millions of newly merged lines that had to be considered for merging with millions of other
lines, leading to a memory overflow.4 Although confining the number of lines for which the merger
algorithm had to test for possible merging (e.g. lines that already existed were not created, and lines
were stored in a clever way so that two lines containing two different German words, for example,
were not tested) decreased run time significantly, it could not prevent a memory overflow.

4.1.5 A note on compounds
Compounds in the Europarl corpus raised a few issues. Because English was used as the source
language for fast align, some compounds in the other languages corresponded to only a part of
the multi-word compound in English: for example, the Dutch word belastingbeleid ‘taxation policy’
would only correspond to either taxation or policy, while it should correspond to both words.
Because of this issue it was considered using German as the source language, because German
writes compounds as one word, and the one-word compound in Danish, Dutch and Swedish would
then be aligned to the whole compound in German, instead of just to a part of the compound
in English. Unfortunately though, the fast align algorithm crashed every time another source
language than English was used, probably due to a memory overflow (possibly because of the
number of word types). Another solution would be to split all compounds in all languages (which
would also happen to reduce the number of word types). The compound checker used for the Danish
lemmatizer could have been used to do so. I, however, decided against compound splitting, as the
results of compound splitting were too poor for all languages.

4.2 Training, development and test sets
For the training of the developed system an extended and slightly modified version of the Swadesh
list (Swadesh, 1955) was used. The original Swadesh list – a list of words that are very common
throughout languages, which is often used to compare languages – comprises 217 different words.

4On a machine with 8 GB of RAM. The memory overflow already occurred after processing a few hundred lines,
out of the 318,651.

CHAPTER 4. DATA 13

The modified version that was used for training purposes in this research is the Swadesh list for
English joined with the Swadesh lists for Danish, German, Dutch, and Swedish.

The modified version of the Swadesh list was made in such a way that every line contains words
sharing their etymon, i.e. cognates, throughout the five languages (e.g. the line ‘I jeg ich ik
jag’). In the cases where a line of the joined Swadesh lists contained multiple etymons, the line
was split into multiple lines, such that every line contained only one etymon, and if a language did
not have a word from a certain etymon, the field was left blank (e.g. the line ‘thou du du du’,
in which the fourth, i.e. the Dutch, field is empty). This is shown in Figure 4.4, in which the line
containing only jij, was padded to ‘ye i ihr jij i’.

thou du du jij du →
{

thou du du du
jij

Figure 4.4: Splitting lines with two etymons.

If a language was the only one having a word from that etymon, the line was removed (among
which, for example, the English big (Onions 1966: “of unkn[own] origin, possible Scand[inavian]”).
In certain cases a cognate in one language can correspond to multiple cognates in the other; in
these cases a new line was added for every cognate (e.g. the English man is cognates with both the
German Mann ‘man’ and man ‘one’, resulting in the two lines ‘man mand Mann man man’ and ‘man
mand man man man’ respectively).5 The whole list was extended with a few lines of cognates that
are not in the Swadesh list so that the list totalled 500 lines. Note that all words on one line do
not necessarily mean the same thing. For the full extended, joined Swadesh list used for training
purposes, see appendix C. Of this list, 60% was used for actual training.

The developed system does not need lines of non-cognate words for training purposes; in the
training part, the system learns transition rules between languages, and calculates the probability
of those rules given the cognates it saw, for example ‘sk:sch:sk/1.0’ for Danish-German-Swedish,
which means that in 100% of the cases a Danish <sk>, a German <sch> and a Swedish <sk>
transition into each other, given each other.

The development set consisted of 20% of the extended Swadesh list, combined with the same
amount of non-cognate lines. These lines were taken from a 1000 random lines from the result of
the data preparation, which were removed from the full data. Lines that contained only cognates
(and which should therefore be labelled Y by the system) were removed. This resulted in a number
of lines that contained only non-cognate tuples and that should therefore be labelled N, meaning
that not all words in that line are cognates of each other.

The test set had the same composition as the development set.
A training set, development set and test set were made for every combination of languages (rang-

ing from size two to five, so 26 combinations in total), as the system was tested on all combinations.
However, as not all lines had all fields filled, the length of the extended Swadesh list differed per
combination. For example, if a line only contained Danish and Swedish, in any combination of lan-
guages that did not have either Danish or Swedish the resulting line contained only one language,
in which case it was removed; in a combination that did not have both Danish and Swedish, the
resulting line would be empty and thus removed as well. Any lines that became doubles because

5Do note that Dutch also has two cognates with the English man: man ‘man’ and men ‘one’. This particular case
would therefore result in four different lines (1 × 1 × 2 × 2 × 1 = 4), but for illustrative purposes that is ignored for
now.

CHAPTER 4. DATA 14

of the removal of some columns, were removed as well, so that all lines were unique. The length of
the resulting extended Swadesh list influences the length of the training set, development set and
test set. The lengths of the three sets for all combinations were as listed in table 4.4.

Training Dev. Test
da-de 178 120 118
da-nl 186 124 124
da-sv 214 142 142
de-nl 220 148 146
de-sv 179 120 120
en-da 190 128 126
en-de 191 128 126
en-nl 203 136 134
en-sv 187 124 126
nl-sv 182 122 124

da-de-nl 237 158 158
da-de-sv 232 154 154
da-nl-sv 238 160 158
de-nl-sv 237 158 158
en-da-de 241 160 162
en-da-nl 245 164 162
en-de-nl 241 160 160
en-da-sv 237 158 158
en-de-sv 235 156 158
en-nl-sv 243 162 162

da-de-nl-sv 282 188 188
en-da-de-nl 274 184 184
en-da-de-sv 268 178 178
en-da-nl-sv 277 184 186
en-de-nl-sv 269 180 180

en-da-de-nl-sv 300 200 200

Table 4.4: The length of the training set, development set and test set for all language combinations.

5. Probability theory
The transition probability of a tuple (or the confidence of the transition rule) can be compared
to the transition probabilities of the subsets of the tuple. The transition probability of the tuple
will be the observed probability; the expected probability is based on the probabilities of subsets
of the tuple. In what follows I shall demonstrate the derivations of how the observed and expected
probabilities can be compared.

5.1 Substring transitions
The observed probability of a rule a ⇒ b, in which a and b are substrings, graphemes, phonemes,
phones, or sequences of those, is defined as the total number of occurrences where a transitions into
b divided by the total number of occurrences of a, as illustrated in Equation 5.1.

Po(a ⇒ b) = n(a ∩ b)
n(a)

(5.1)

The observed probability of two substrings a and b transitioning into each other (i.e. a two-way
transition) is then defined as the square root of the product of the probabilities of a ⇒ b and b ⇒ a.1
This is illustrated in Equation 5.2.

Po(a : b) =

√√√√Po(a ⇒ b)
· Po(b ⇒ a)

=

√
n(a ∩ b)2

n(a) · n(b)
(5.2)

The observed probabilities of three, four and five substrings transitioning into each other are
similarly defined as in Equation 5.3, Equation 5.4 and Equation 5.5 respectively.

Po(a : b : c) = 3

√√√√√√
Po(a ⇒ b ∩ a ⇒ c)

· Po(b ⇒ a ∩ b ⇒ c)
· Po(c ⇒ a ∩ c ⇒ b)

= 3

√
n(a ∩ b ∩ c)3

n(a) · n(b) · n(c)
(5.3)

1I am not certain if this calculation actually leads to a true probability. The probabilities of substring transitions
are rather pseudo-probabilities. In the remainder of the thesis, I shall continue calling them probabilities, but bear
in mind that they are pseudo-probabilities, as it is unclear if they are true probabilities.

15

CHAPTER 5. PROBABILITY THEORY 16

Po(a : b : c : d) = 4

√√√√√√√√√
Po(a ⇒ b ∩ a ⇒ c ∩ a ⇒ d)

· Po(b ⇒ a ∩ b ⇒ c ∩ b ⇒ d)
· Po(c ⇒ a ∩ c ⇒ b ∩ c ⇒ d)
· Po(d ⇒ a ∩ d ⇒ b ∩ d ⇒ c)

= 4

√
n(a ∩ b ∩ c ∩ d)4

n(a) · n(b) · n(c) · n(d)
(5.4)

Po(a : b : c : d : e) = 5

√√√√√√√√√√√√

Po(a ⇒ b ∩ a ⇒ c ∩ a ⇒ d ∩ a ⇒ e)
· Po(b ⇒ a ∩ b ⇒ c ∩ b ⇒ d ∩ b ⇒ e)
· Po(c ⇒ a ∩ c ⇒ b ∩ c ⇒ d ∩ c ⇒ e)
· Po(d ⇒ a ∩ d ⇒ b ∩ d ⇒ c ∩ d ⇒ e)
· Po(e ⇒ a ∩ e ⇒ b ∩ e ⇒ c ∩ e ⇒ d)

= 5

√
n(a ∩ b ∩ c ∩ d ∩ e)5

n(a) · n(b) · n(c) · n(d) · n(e)

(5.5)

When assuming independence of the transitions, the expected probabilities can be calculated
from the probabilities of transitions of subsets of the transition tuple. For example, Po(a : b : c)
can be calculated based on Po(a : b), Po(a : c) and Po(b : c). This is useful, as it allows us to
compare expected and observed probabilities calculated for combinations of languages of different
lengths: this we want to do to evaluate whether adding a language to the equation will actually
help determining cognacy of words with a higher confidence. In what follows, I shall illustrate how
substring-transition probabilities can be calculated with probabilities of subsets of the substring-
transition tuple.

5.1.1 P(a : b : c)

Pe(a : b : c) = 3

√√√√√√
Po(a ⇒ b ∩ a ⇒ c)

· Po(b ⇒ a ∩ b ⇒ c)
· Po(c ⇒ a ∩ c ⇒ b)

= 3

√√√√√√
Po(a ⇒ b) · Po(a ⇒ c)

· Po(b ⇒ a) · Po(b ⇒ c)
· Po(c ⇒ a) · Po(c ⇒ b)

(5.6)

Given Equation 5.6:

• Pe(a : b : c) can be calculated with two-way substring transitions as in Equation 5.7.

CHAPTER 5. PROBABILITY THEORY 17

Pe(a : b : c) = 3
√

Po(a : b)2 · Po(a : c)2 · Po(b : c)2 (5.7)

5.1.2 P(a : b : c : d)

Pe(a : b : c : d) = 4

√√√√√√√√√
Po(a ⇒ b ∩ a ⇒ c ∩ a ⇒ d)

· Po(b ⇒ a ∩ b ⇒ c ∩ b ⇒ d)
· Po(c ⇒ a ∩ c ⇒ b ∩ c ⇒ d)
· Po(d ⇒ a ∩ d ⇒ b ∩ d ⇒ c)

= 4

√√√√√√√√√
Po(a ⇒ b) · Po(a ⇒ c) · Po(a ⇒ d)

· Po(b ⇒ a) · Po(b ⇒ c) · Po(b ⇒ d)
· Po(c ⇒ a) · Po(c ⇒ b) · Po(c ⇒ d)
· Po(d ⇒ a) · Po(d ⇒ b) · Po(d ⇒ c)

(5.8)

Given Equation 5.8:

• Pe(a : b : c : d) can be calculated with two-way substring transitions as in Equation 5.9.

Pe(a : b : c : d) = 4

√√√√Po(a : b)2 · Po(a : c)2 · Po(a : d)2

· Po(b : c)2 · Po(b : d)2 · Po(c : d)2

=

√√√√Po(a : b) · Po(a : c) · Po(a : d)
· Po(b : c) · Po(b : d) · Po(c : d)

(5.9)

• Pe(a : b : c : d) can be calculated with three-way substring transitions as in Equation 5.10.

CHAPTER 5. PROBABILITY THEORY 18

Pe(a : b : c : d) = 8

√√√√√√√√√√

Po(a ⇒ b) · Po(a ⇒ c) · Po(a ⇒ d)
· Po(b ⇒ a) · Po(b ⇒ c) · Po(b ⇒ d)
· Po(c ⇒ a) · Po(c ⇒ b) · Po(c ⇒ d)
· Po(d ⇒ a) · Po(d ⇒ b) · Po(d ⇒ c)

2

= 8

√√√√√√√√√√√√√√√

Po(a ⇒ b ∩ a ⇒ c) · Po(a ⇒ b ∩ a ⇒ d)
· Po(a ⇒ c ∩ a ⇒ d) · Po(b ⇒ a ∩ b ⇒ c)
· Po(b ⇒ a ∩ b ⇒ d) · Po(b ⇒ c ∩ b ⇒ d)
· Po(c ⇒ a ∩ c ⇒ b) · Po(c ⇒ a ∩ c ⇒ d)
· Po(c ⇒ b ∩ c ⇒ d) · Po(d ⇒ a ∩ d ⇒ b)
· Po(d ⇒ a ∩ d ⇒ c) · Po(d ⇒ b ∩ d ⇒ c)

= 8
√

Po(a : b : c)3 · Po(a : b : d)3 · Po(a : c : d)3 · Po(b : c : d)3

(5.10)

5.1.3 P(a : b : c : d : e)

Pe(a : b : c : d : e) = 5

√√√√√√√√√√√√

Po(a ⇒ b ∩ a ⇒ c ∩ a ⇒ d ∩ a ⇒ e)
· Po(b ⇒ a ∩ b ⇒ c ∩ b ⇒ d ∩ b ⇒ e)
· Po(c ⇒ a ∩ c ⇒ b ∩ c ⇒ d ∩ c ⇒ e)
· Po(d ⇒ a ∩ d ⇒ b ∩ d ⇒ c ∩ d ⇒ e)
· Po(e ⇒ a ∩ e ⇒ b ∩ e ⇒ c ∩ e ⇒ d)

= 5

√√√√√√√√√√√√

Po(a ⇒ b) · Po(a ⇒ c) · Po(a ⇒ d) · Po(a ⇒ e)
· Po(b ⇒ a) · Po(b ⇒ c) · Po(b ⇒ d) · Po(b ⇒ e)
· Po(c ⇒ a) · Po(c ⇒ b) · Po(c ⇒ d) · Po(c ⇒ e)
· Po(d ⇒ a) · Po(d ⇒ b) · Po(d ⇒ c) · Po(d ⇒ e)
· Po(e ⇒ a) · Po(e ⇒ b) · Po(e ⇒ c) · Po(e ⇒ d)

(5.11)

Given Equation 5.11:

• Pe(a : b : c : d : e) can be calculated with two-way substring transitions as in Equation 5.12.

Pe(a : b : c : d : e) = 5

√√√√Po(a : b)2 · Po(a : c)2 · Po(a : d)2 · Po(a : e)2 · Po(b : c)2

· Po(b : d)2 · Po(b : e)2 · Po(c : d)2 · Po(c : e)2 · Po(d : e)2
(5.12)

CHAPTER 5. PROBABILITY THEORY 19

• Pe(a : b : c : d : e) can be calculated with three-way substring transitions as in Equation 5.13.

Pe(a : b : c : d : e) = 15

√√√√√√√√√√√√

Po(a ⇒ b) · Po(a ⇒ c) · Po(a ⇒ d) · Po(a ⇒ e)
· Po(b ⇒ a) · Po(b ⇒ c) · Po(b ⇒ d) · Po(b ⇒ e)
· Po(c ⇒ a) · Po(c ⇒ b) · Po(c ⇒ d) · Po(c ⇒ e)
· Po(d ⇒ a) · Po(d ⇒ b) · Po(d ⇒ c) · Po(d ⇒ e)
· Po(e ⇒ a) · Po(e ⇒ b) · Po(e ⇒ c) · Po(e ⇒ d)

3

= 15

√√√√√√√
Po(a : b : c)3 · Po(a : b : d)3 · Po(a : b : e)3 · Po(a : c : d)3

· Po(a : c : e)3 · Po(a : d : e)3 · Po(b : c : d)3

· Po(b : c : e)3 · Po(b : d : e)3 · Po(c : d : e)3

= 5

√√√√√√
Po(a : b : c) · Po(a : b : d) · Po(a : b : e) · Po(a : c : d)

· Po(a : c : e) · Po(a : d : e) · Po(b : c : d)
· Po(b : c : e) · Po(b : d : e) · Po(c : d : e)

(5.13)

• Pe(a : b : c : d : e) can be calculated with four-way substring transitions as in Equation 5.14.

Pe(a : b : c : d : e) = 15

√√√√√√√√√√√√

Po(a ⇒ b) · Po(a ⇒ c) · Po(a ⇒ d) · Po(a ⇒ e)
· Po(b ⇒ a) · Po(b ⇒ c) · Po(b ⇒ d) · Po(b ⇒ e)
· Po(c ⇒ a) · Po(c ⇒ b) · Po(c ⇒ d) · Po(c ⇒ e)
· Po(d ⇒ a) · Po(d ⇒ b) · Po(d ⇒ c) · Po(d ⇒ e)
· Po(e ⇒ a) · Po(e ⇒ b) · Po(e ⇒ c) · Po(e ⇒ d)

3

= 15

√√√√Po(a : b : c : d)4 · Po(a : b : c : e)4 · Po(a : b : d : e)4

· Po(a : c : d : e)4 · Po(b : c : d : e)4

(5.14)

5.1.4 Generalization
These expected probabilities can be generalized as put forth in 5.15.

CHAPTER 5. PROBABILITY THEORY 20

Let Σ be the set of all substrings in the transition tuple;
Let Ct be the set of all combinations of length t of λ ∈ Σ;
s = |Σ|; c = |Ct|; s > t > 1;
Then:

Pe(λ1 : ... : λs) =

(
c∏

i=1
Po(γi ∈ Ct)

)E

with E = (s − 1)
(t − 1) ·

(
s
t

)
(5.15)

For example, Pe(a : b : c : d) based on three-way substring transitions would be:

Σ = {a, b, c, d};
Ct = {a : b : c, a : b : d, a : c : d, b : c : d};
s = |Σ| = 4; c = |Ct| = 4; t = 3;
Then:

Pe(λ1 : ... : λs) =

(4∏
i=1

Po(γi ∈ Ct)

)E

with E = (4 − 1)
(3 − 1) ·

(4
3
) = 3

8

Pe(a : b : c : d) =
(

Po(a : b : c) · Po(a : b : d) · Po(a : c : d) · Po(b : c : d)
) 3

8

(5.16)

Notice that the result of Equation 5.16 equals Equation 5.10, despite a slightly different notation.

5.2 String transitions

The probability of words Λ1 to Λs being cognates is defined as the nth root of the iterated product
of the probabilities of all aligned substring transitions λ1 to λn, where n is the number of substring
partitions (i.e. the length of the substring alignment (e.g. Figure 3.1)). See Equation 5.17. The nth

root is taken of the product to correct for the length of the alignments, so that longer words do not
necessarily have a (much) lower probability of being cognates.

P (Λ1 : ... : Λs) = n

√√√√ n∏
i=1

P (λ1i : ... : λsi) (5.17)

For example:

P (A : B) = n

√√√√ n∏
i=1

P (ai : bi) (5.18)

CHAPTER 5. PROBABILITY THEORY 21

Though it was shown in section 5.1 that the expected probabilities of all s-way substring transi-
tions can be calculated based on the observed probabilities of t-way substring transitions (s > t), it
cannot unthinkingly be concluded that Equation 5.7, Equation 5.9, Equation 5.10, Equation 5.12,
Equation 5.13 and Equation 5.14 hold for words Λ1 to Λs as well. In what follows I shall proof
that Equation 5.7 holds for words as well. For the proofs that the other equations hold for words
as well, I refer to appendix D.

P (A : B : C) = n

√√√√ n∏
i=1

P (ai : bi : ci) (5.19)

Given Equation 5.18 and Equation 5.19, Pe(A : B : C) can be calculated with two-way word
transitions, given Equation 5.7. Equation 5.20 proves that Equation 5.7 applies to words as well,
and not only to substrings.

Pe(A : B : C) = n

√√√√ n∏
i=1

3
√

Po(ai : bi)2 · Po(ai : ci)2 · Po(bi : ci)2

= n

√√√√ n∏
i=1

(
Po(ai : bi) · Po(ai : ci) · Po(bi : ci)

) 2
3

= n

√√√√(n∏
i=1

Po(ai : bi) · Po(ai : ci) · Po(bi : ci)

) 2
3

=

(
n∏

i=1
Po(ai : bi) · Po(ai : ci) · Po(bi : ci)

) 2
3n

=

(
n∏

i=1
Po(ai : bi) ·

n∏
i=1

Po(ai : ci) ·
n∏

i=1
Po(bi : ci)

) 2
3n

= 3

√√√√(n∏
i=1

Po(ai : bi) ·
n∏

i=1
Po(ai : ci) ·

n∏
i=1

Po(bi : ci)

) 2
n

= 3

√√√√(n∏
i=1

Po(ai : bi)

) 2
n

·
(

n∏
i=1

Po(ai : ci)

) 2
n

·
(

n∏
i=1

Po(bi : ci)

) 2
n

(5.20)

CHAPTER 5. PROBABILITY THEORY 22

Pe(A : B : C) = 3

√√√√√ n

√√√√ n∏
i=1

Po(ai : bi)

2

·

 n

√√√√ n∏
i=1

Po(ai : ci)

2

·

 n

√√√√ n∏
i=1

Po(bi : ci)

2

= 3
√

Po(A : B)2 · Po(A : C)2 · Po(B : C)2

(5.20)

5.2.1 Generalization
Given Equation 5.15 the calculation of the expected probability of word transitions can be gener-
alized as in 5.21:

Let Σλi be the set of substrings in substring-transition tuple i;
Let ΣΛ be the set of words in the transition tuple;
Let Cλti be the set of all combinations of length t of λ ∈ Σλi;
Let CΛt be the set of all combinations of length t of Λ ∈ ΣΛ;
s = |Σλi| = |ΣΛ|; c = |Cλti| = |CΛt|; s > t > 1;
Then:

Pe(Λ1 : ... : Λs) = n

√√√√√ n∏
i=1

 c∏
j=1

Po(γj ∈ Cλti)

E

with E = (s − 1)
(t − 1) ·

(
s
t

)
This equals:

Pe(Λ1 : ... : Λs) =

(
c∏

i=1
Po(Γi ∈ CΛt)

)E

with E = (s − 1)
(t − 1) ·

(
s
t

)

(5.21)

If, now, the observed and expected probabilities are not equal, that means that the transitions
are not independent. If the observed probability is higher than the expected probability, that means
that having more languages leads to more confident conclusions of words being cognates.

6. Description of the systems
In short, the machine learning system developed for cognate recognition first counts how often
substrings occur together between languages in a given list of cognate tuples (the training set; see
section 4.2). These combinations of substrings, which are considered possible substring-transition
rules, are given weights. It then tries to find, using these weights, the best substring alignment for
every cognate tuple, and calculates the probabilities of the transitions it has found in the alignments
(using the formulae in Equation 5.2, Equation 5.3, Equation 5.4 and Equation 5.5). When having
established the probabilities of the rules, the system uses the development set to determine a
probability threshold. All tuples for which a probability lower than the threshold is calculated, will
receive the label N, meaning that the words in the tuple are not cognates – all tuples for which a
probability higher than the threshold is calculated, will receive the label Y, meaning that the words
in the tuple are cognates. The system then uses the test set to evaluate the performance of the
system.

The system that extracts the cognates from the list of possible cognates (see section 4.1) will
use the determined threshold to extract the tuples in the list that are cognates, and saves them to
a file.

In what follows I shall describe the two systems in more detail: first the machine learning system,
then the extraction system.

6.1 Machine learning system

6.1.1 Weighting
The first line of the training-set file, the development-set file and the test-set file contains the
languages each column represents. This is important so that the system knows which languages it
is processing. The first thing, therefore, the system does is saving the languages.

The system then reads the training file, in which all words in the file are padded with the word-
boundary symbols ‘ˆ’ and ‘$’. Furthermore all double consonants are replaced by single consonants.
This is done to account for spelling differences that may occur between languages. For example,
Dutch and German often use double consonants, even though they are pronounced the same way
as single consonants.1 Admittedly in a few rare cases, this would generate errors, such as English
but and butt, but this was not considered a problem. All lines in the file are saved as tuples.

For every tuple the system compresses the tuple if there are empty fields, so that all fields in
the tuple are filled. In doing so, it remembers which languages all words in the tuple belong to.
For every word in the tuple, it then makes a set of all possible partitions of the word, taking into
account the possibility of an empty string existing between partitions. Consider Figure 6.1, in
which the word on the first line results in the possible partitions on the second line, which in turn
result in the possible ϵ-partitions (partitions with empty strings) as on the third line – all partitions

1This double-to-single-consonant reduction is not done iteratively: triple consonants are therefore reduced to
double consonants. This is not a problem, though, as triple consonants are not attested in the data. In fact, it could
only occur in German compounds where the first part ends in a double consonant and the second part starts with
the same consonant, which is extremely rare.

23

CHAPTER 6. DESCRIPTION OF THE SYSTEMS 24

on the second and the third line are saved in a set. This results in a exponential blow-up, the
longer the strings are, with Nϵ = 3n+1, where n is the length of the string. In order to reduce the
number of possible ϵ-partitions, partitions with parts containing both vowels and consonants were
taken out, as well as those in which two following parts in the partition (either with or without an
ϵ between them) contained vowels or semivowels. Graphemes which may represent semivowels (like
<y> or <w>) were allowed in the same part only if they followed a grapheme representing a vowel
(e.g. <oy>); if they preceded the vowel, I considered they were representing (semi-)consonants
(e.g. <yo>). This was done so that diphthongs are always treated as a unit.

ˆå$
[ˆå$] [ˆ,å$] [ˆå,$] [ˆ,å,$]

(
[ˆå$]

) (
[ˆ,å$]

[ˆ,ϵ,å$]

) (
[ˆå,$]

[ˆå,ϵ,$]

)
[ˆ,å,$]

[ˆ,ϵ,å,$]
[ˆ,å,ϵ,$]

[ˆ,ϵ,å,ϵ,$]

Figure 6.1: ϵ-partitions of the Swedish word å ‘river’. The four partitions on the second line result
in the ϵ-partitions on the third line.

The ϵ-partitions are then grouped based on their length for each language. Then for every
length, the system counts for every combination of partitions of that length between languages (so,
a combination of a partition of length l of the word of language L1, and a partition of length l of
the word of language L2, up to Ln) how often the aligned substrings occur together (the possible
substring transitions), and then adds that up to what it has found earlier, for every combination
of languages. So for example, in Figure 6.2 all lines are a possible partition for a word in the
tuple. It then adds 1 to the count of <o>, <u> and <oe> occurring together in English, German
and Dutch; it adds 1 to the count of <o> and <u> occurring together in English and German; it
adds 1 to the count of <o> and <oe> occurring together in English and Dutch; it adds 1 to the
count of <u> and <oe> occurring together in German and Dutch; etc. for every possible substring
transition. It does this for every possible combination of ϵ-partitions, for every length, for every
tuple.

In order to reduce the number of possible ϵ-partition combinations (which grows exponentially
with the length of the strings with NCϵ = 3L(n+1), where n is the length of the strings and L is the
number of languages), the system does not consider those in which any of the possible substring
transitions contains only empty strings. That is because substring alignments in which one of the
substring transitions contains only empty strings (ϵ goes to ϵ) are considered wrong or redundant:
the substring alignment could then as well be done without the ϵ-to-ϵ transition.

The result is a dictionary with counts of every possible substring transition for every language
combination. The substrings that occur more often together (on more or less the same position)
between the languages will have higher counts, because if, for example, every word in a tuple
contains a , and every word in another tuple contains a as well, but in only one tuple all
s are followed by an <r>, the possible substring transition br:br:br will have lower counts
than the possible substring transition b:b:b. Especially those transitions that are very unlikely
will have very low counts, such as the possible substring transition br:ϵ:oe.

After having counted all the possible substring transitions, the system divides the number of
times a possible substring transition occurs (i.e. the number of times the substrings occur together;

CHAPTER 6. DESCRIPTION OF THE SYSTEMS 25

b r o th e r
B r u d e r
b r oe d e r

⇓
en-de-nl en-de en-nl de-nl
Add: Nr. Add: Nr. Add: Nr. Add: Nr.
b:b:b 1 b:b 1 b:b 1 b:b 1
r:r:r 2 r:r 2 r:r 2 r:r 2
o:u:oe 1 o:u 1 o:oe 1 u:oe 1
th:d:d 1 th:d 1 th:d 1 d:d 1
e:e:e 1 e:e 1 e:e 1 e:e 1

Figure 6.2: An example of substring alignment for an English, German and Dutch word. All
possible substring transitions are counted, and added to the counts found earlier for the particular
transitions.

e.g. n(ben ∩ bde ∩ bnl)) by the sum of the occurrences of the substrings in each individual language
(e.g. n(ben) + n(bde) + n(bnl)). This value is multiplied by the number of languages, so that it is
adjusted for the relatively larger denominator the more languages there are. The resulting value
is the actual weight (not the possibility!) of the possible substring-transition rule. The calculation
of the weight can be generalized as in Equation 6.1, in which r is the possible substring-transition
rule, a is a substring that is part of the possible substring transition, l is the number of languages
and n(x) the number of occurrences of x.

wr = l ·
n

(
l∩

i=1
ai

)
l∑

j=1
n(aj)

(6.1)

The weights and possible substring-transition rules are then written to a file, except for those in
which all substrings in the possible substring-transition rule are a word-boundary symbol. These
word-boundary symbols in a sense also denote an empty string, and similarly to the substring
alignments with an ϵ-to-ϵ transition, substring alignments with a word-boundary-to-word-boundary
transition are considered wrong. Therefore the possible substring-transition rules with only word-
boundary symbols are removed, as they assign too much weight to wrong substring alignments.
Furthermore, all possible substring-transition rules in which one substring contains both word-
boundary symbols are removed as well, because these can only occur with one-letter words, which
are very few in number (two in English, four in Danish, one in German, two in Dutch and four in
Swedish (“jalu.ch – One letter words,” 2016)), and will make the weighting more noisy.

In pseudo-code, the weighting algorithm can be summarized to Algorithm 4.

CHAPTER 6. DESCRIPTION OF THE SYSTEMS 26

Algorithm 4: Possible substring-transition rule weighter
Result: Calculate a weight for every possible substring-transition rule
read languages as L;
read training set file as T ;
for tuple in T do

for word in tuple do
pad word with word-boundary symbols;
reduce double consonants in word to one;

compress so that tuple has no empty fields;
compress same fields in L as L′;
for word in tuple do

make set of ϵ-partitions of word as S;
group ϵ-partitions in S on length as Sl;

for every length l do
for combination in Sl1 × ... × Sln do

for possible substring transition in combination as PST do
for combination of languages in C(L′) as c do

n(PST) add 1
for substring in PST do

n(substring) add 1 for corresponding language;
for every PST do

weight = |L′| · n(PST)÷sum n(substring) for substring in PST

6.1.2 Substring alignment
The substring aligner, just as the weighter, reads the languages of the training file and then reads
the training file itself in the same way as the weighter (padding words with word-boundary symbols
and reducing double consonants). All lines are saved as tuples. Different to the weighter, though,
is that the substring aligner reads the possible substring transitions and their weights, which were
calculated by the weighter. It reads all possible substring transitions and weights for every language
combination, and saves everything to a dictionary.

Then the substring aligner tries to find the best substring alignment for every tuple in the
training set. In order to do this, it first compresses the tuple so that it has no empty fields, and
remembers which languages remain. It then changes every word in the tuple to the longest possible
ϵ-partition, again with diphthongs treated as a unit. After doing so, the system will consider every
possible vowel alignment – for example, for the cognate tuple church:Kirche:kerk, the possible
vowel alignments are u:i:e and u:e:e, as illustrated in Figure 6.3. Every possible vowel alignment
had to be considered as it sometimes led to wrong alignments if it did not do so.

ch u rch
K i rche
k e rk

and
ch u rch

Kirch e ϵ
k e rk

Figure 6.3: The possible vowel alignments for the cognate tuple church:Kirche:kerk.

These vowel alignments produce a three-way split of the strings, as can be seen in 6.3: the first

CHAPTER 6. DESCRIPTION OF THE SYSTEMS 27

part is ch:K:k, the second part is u:i:e and the third part is rch:rche:rk (for the first vowel
alignment). For every part it makes ϵ-partitions, and for every combination of ϵ-partitions of the
same length (having the same restrictions as the weighter in that it does not consider combinations
in which there are ϵ-to-ϵ transitions) it calculates a weight for the alignment by multiplying all
weights of the substring transitions (with a default of 0 if the substring transition is not attested),
and then taking the nth root of the product, where n is the length of the substring alignment.
The substring alignment of the part that has the highest weight will be considered the most likely.
Every part, then, has a weighted substring alignment. However, to improve run speed (reducing the
run time from days, possibly weeks, due to an exponential blow-up, to several hours), the first and
the third part are cut off after five characters. For example, if the Dutch word jurisprudentie is
aligned on the u, the parts would be cut off to rispr and denti. See Figure 6.4 for an illustration.

jurispr u dentie
rispr u denti

Figure 6.4: An illustration of the cut-off as performed on the first and third part after vowel
alignment.

The weight of the substring alignment of all parts combined (i.e. the whole words) are calculated
by multiplying the weights of the substring alignments of the individual parts. This is done for
every possible vowel alignment; the substring alignment with the highest weight will then be the
substring alignment for that cognate tuple.

Now that all cognate tuples have been aligned on a substring level, probabilities (and not weights)
are calculated for every substring transition. Every substring transition in every aligned cognate
tuple will be counted for every language combination, as well as the occurrences of substrings within
one language. The probabilities for all substring-transition rules will then be calculated with the
formulae as presented in Equation 5.2, Equation 5.3, Equation 5.4 and Equation 5.5 in section 5.1.
The rules, along with their probabilities, will then be written to a file.

In pseudocode, the substring aligning algorithm and probability calculation algorithm can be
summarized to Algorithm 5.

Algorithm 5: Substring aligner and substring-transition-rule probability calculator
Result: Calculate a probability for substring-transition rules
read languages as L;
read training set file as T ;
read weights as W ;
for tuple in T do

find best substring alignment for tuple, given W ;
for aligned tuple in T do

for substring transition in tuple do
for combination of languages do

n(substring transition) add 1;
for substring in substring transition do

n(substring) add 1 for corresponding language;
calculate probability for substring transitions using Equation 5.2, Equation 5.3, Equation 5.4
and Equation 5.5;
return substring-transition with probability

CHAPTER 6. DESCRIPTION OF THE SYSTEMS 28

6.1.3 Threshold determination
The probability threshold beyond which words in tuples are considered cognates is calculated using
the development set. The development set is read in the same fashion as the weighter and the
substring aligner read the training set. However, one major difference is that the development set
contains tuples the words of which are not cognates as well. This is dealt with by splitting the data
set in cognate tuple and non-cognate tuples and saving them to different lists. Rules are read in
the same way as the weights were read for the substring aligner.

For both cognate tuples and non-cognate tuples, the system first compresses the tuple so that it
has no empty fields, and remembers which languages remain. Then it tries to find the best substring
alignment for the words in the tuple in the same way as the substring aligner, only this time the
probabilities of the substring-transition rules are used instead of the weights. Another difference
is that the threshold determiner uses some sort of smoothing, so that substring alignments with
unattested substring transitions do not necessarily have a probability of 0. If a substring transition
is unattested, the system will not return a probability of 0, but rather a probability of 1

1+V in
which V is the number of substring types found in the training data for every language in the tuple.
This is loosely based on Laplace smoothing and gives rather good results. However, if the substring
transition is not attested, but all substrings involved in the transition are letters representing vowels
or diphthongs or all substrings involved are the same letter, the system returns 2

1+V , so that vowels
are more likely to transition into vowels and substrings are more likely to transition into themselves.
The probability of a substring alignment is then calculated by multiplying all probabilities of the
substring-transitions, and taking the nth root of the product, in which n is the length of the substring
alignment. The alignment with the highest probability will be returned as the best alignment: the
probability of the alignment is the probability of the words in the tuple being cognates.

Now that it knows the probability for all cognate tuples and non-cognate tuples, the system
will determine a probability threshold (all tuples with a higher probability than the threshold are
cognates, all tuples with a lower probability than the threshold are not) by finding the probability
for which as many cognate tuples as possible have a higher probability and at the same time as
many non-cognate tuples as possible have a lower probability. Therefore the probability for which
the distance between the number of false positives (tuples of non-cognates that have a higher
probability than the threshold) and the number of false negatives (tuples of cognates that have
a lower probability than the threshold) is the smallest, is the probability threshold that should
bear the best results. The distance between the number of false positives and the number of false
negatives is defined as in Equation 6.2.

∆ = |FN2 − FP 2| (6.2)

For the final evaluation of the system, it reads the test set and calculates a probability for
every tuple in the same manner as was done with the development set. Given the newly calculated
threshold, it calculates the number of true positives (tuples of cognates that have a higher probability
than the threshold), false positives (tuples of non-cognates that have a higher probability than the
threshold), false negatives (tuples of cognates that have a lower probability than the threshold)
and true negatives (tuples of non-cognates that have a lower probability than the threshold), and
returns an accuracy, precision, recall and f-score based on those numbers.

CHAPTER 6. DESCRIPTION OF THE SYSTEMS 29

In pseudocode, the probability-threshold calculator and evaluation system can be summarized
to Algorithm 6.

Algorithm 6: Probability-threshold calculator and evaluator
Result: Calculate threshold, evaluate system
read development set file as D;
read rules as R;
for Y and N labels in D do

for tuple in label list do
find best substring alignment for tuple, given R and smoothing;
remember probability;

for threshold between 0 and 1, step= 0, 001 do
calculate number of false positives;
calculate number of false negatives;
calculate distance;

threshold = threshold with minimal distance;
read test set file as T ;
for Y and N labels do

for tuple in label list in T do
find best substring alignment for tuple, given R and smoothing;
if label is Y then

if P(alignment)≥threshold then
TP add 1;

else
FN add 1;

else
if P(alignment)≥threshold then

FP add 1;
else

TN add 1;
return accuracy, precision, recall, f-score

6.2 Extraction system
The cognate-extraction system which was run on the list of possible cognates uses the same prob-
ability calculation as the probability-threshold calculator and evaluation system use, and uses the
threshold that was determined earlier. For every tuple of possible cognates, it calculates the prob-
ability that all words in the tuple are cognates of each other. If the calculated probability is higher
than the threshold (which differs for every language combination the system is run on), the extrac-
tion system writes the tuple to a file. In pseudo-code this can be summarized to Algorithm 7 on
page 30.

CHAPTER 6. DESCRIPTION OF THE SYSTEMS 30

Algorithm 7: Cognate-extraction system
Result: Extract cognate tuple from file
read data as D;
read rules as R;
read threshold as t;
for tuple in D do

calculate probability;
if probability ≥ t then

write tuple to file

7. Results
In order to compare results, all combinations of the five languages (ranging from two to five lan-
guages) were processed by the transition-rules learner, the cognate-recognition system and an SVM.
In what follows all results will be discussed for those three systems, as well as the observed proba-
bilities as opposed to the expected probabilities.

7.1 Transition-rules learner
The transition-rules learner found 37,098 rules in total throughout the 26 language combinations.
It was found that, as the number of languages in the combinations grew, the number of rules that
had a probability of 1.0 (i.e. 100%) declined. In the same manner the means of the probabilities of
all rules per combination declined. The average of the means of all probabilities for the transition
rules for two languages was 0.485, whereas for three, four and five languages it was 0.287, 0.233
and 0.179 respectively. The average means and their decline are shown in Figure 7.1.

Nr. of languages Average mean
2 0.485
3 0.287
4 0.223
5 0.179

2 3 4 50

0.1

0.2

0.3

0.4

0.5

Number of languages in combination

Figure 7.1: The average means of the found rules for the language combinations.

Figure 7.2 and Figure 7.3, for illustration, show the first ten rules (which happen to have a 100%
probability) for the combination Danish-Swedish and for the combination with all five languages
respectively. Despite the system ignoring partitions with parts containing both letters representing
a consonant and letters representing a vowel, there are rules that contain letters representing a
consonant and a y. This is because the letter <y> is defined for the system as both a semivowel
and a vowel, and a semivowel is treated the same as a consonant. Nonetheless, these rules are
rather precise. Remember that the symbols ˆ and $ denote word boundaries.

31

CHAPTER 7. RESULTS 32

Rule P
vn$:mn$ 1.0
ˆt:ˆt 1.0

ˆå$:ˆå$ 1.0
gt$:kt$ 1.0
ˆk:ˆk 1.0

ˆryg:ˆryk 1.0
ˆh:ˆh 1.0

rp$:rp$ 1.0
m:m 1.0

ˆkl:ˆkl 1.0

Figure 7.2: The first ten rules of the combi-
nation Danish-Swedish.

Rule P
rn$:rn$: rn$:rn$:rn$ 1.0
ls : ls : ls : ls : ls 1.0
ˆkn:ˆkn: ˆkn :ˆkn:ˆkn 1.0
ly$:lg$: lg$:lg$:lg$ 1.0
rm$:rm$: rm$:rm$:rm$ 1.0
ˆgl:ˆgl: ˆgl :ˆgl:ˆgl 1.0
ˆsn:ˆsn:ˆschn:ˆsn:ˆsn 1.0
ˆbr:ˆbr: ˆbr :ˆbr:ˆbr 1.0
mp$:mp$: mpf$:mp$:mp$ 1.0
ˆbl:ˆbl: ˆbl :ˆbl:ˆbl 1.0

Figure 7.3: The first ten rules of the combi-
nation with all five languages.

7.2 Observed and expected probabilities
For every combination of languages, the system also calculated the mean of the probabilities assigned
to all cognate tuples in the extended Swadesh list for that combination – which is the average of the
observed probabilities. For every combination, the system also calculated the mean of the expected
probabilities using the formulae in chapter 5.

It was found that the observed probabilities were higher than the expected probabilities. This
means that the decision whether a tuple contains cognates or not is more precise (or more confident)
when using transition rules for more languages, than when combining the calculated probabilities
of language combinations with fewer languages. For example, the probability that English book
and German Buch are cognates is found to be 0.498 (Po(booken : Buchde) = 0.498). For Dutch
boek probabilities are found to be Po(booken : boeknl) = 0.540 and Po(Buchde : boeknl) = 0.679.
The expected probability (calculated using Equation 5.7) that all three words are cognates of each
other is 3

√
0.4982 · 0.5402 · 0.6792 = 0.322. However, the observed probability that all three words

are cognates of each other is 0.485. Therefore using transition rules for more languages results in
more confident decisions. The means of the observed and expected probabilities for the language
combinations of length n are shown in Table 7.1 on page 33.

Run-time grew exponentially with about a minute for two languages, about six and a half
minutes for three languages, about an hour for four languages and about eighteen hours for five
languages.

7.3 Cognate-recognition system
The cognate recognition system was evaluated on the test set, as explained in section 6.1.3. The
average accuracy, precision, recall and f-score were highest with language pairs, and decreased as the
number of languages increased. The average f-score for language pairs was 0.850; for language triples
it was 0.819; and for language quadruples it was 0.773. The calculated probability thresholds went
down as the number of languages grew – this was to be expected as the average of the probabilities
of the transition rules went down as the number of languages increased as well. See Table 7.2 for
an overview of all average numbers; see Table 7.3 on page 34 for all numbers.

CHAPTER 7. RESULTS 33

Pe

n Po n − 1 n − 2 n − 3
2 0.478
3 0.256 0.211
4 0.174 0.134 0.099
5 0.120 0.091 0.065 0.0003

Table 7.1: The average means of the ob-
served probabilities for language combina-
tions of length n and the expected proba-
bilities based on language combinations of
length n − 1, n − 2 and n − 3 (where pos-
sible).

Nr. of languages Threshold Accuracy Precision Recall F-score Duration
2 0.112 0.850 0.846 0.857 0.850 00:04:09
3 0.059 0.817 0.810 0.829 0.819 00:31:14
4 0.037 0.777 0.793 0.760 0.773 14:09:05

Table 7.2: The average thresholds, performances in terms of accuracy, precision, recall and f-score,
and the run-time of the cognate-recognition system for language pairs, triples and quadruples.

Unfortunately, since the run-time for the system exploded exponentially so badly, I was not able
to evaluate the system for five languages. Given the run-times for the language pairs, language
triples and language quadruples, the average run-time per line can be expressed as T = 0.0287n ·
e1.06n2 with n the number of languages. This results in an estimation of, on average, 2683.67
seconds per line for five languages. Given that it has to process 700 lines (300 in the training set,
200 in the development set and 200 in the test set), the total run time would be about 51 days.

Thus, for the actual compiling of the list of cognates, I was not able to use the combination of
five languages. Instead of on the five languages, I therefore ran the system on the combination of
four languages with the highest performance: English, Danish, German and Swedish. Because of
the fact that Dutch was taken out of the data, all lines that had only one word in them or had
become a double due to the removal of the Dutch words were removed, resulting in 192,655 lines,
instead of the initially planned 318,651. I also ran the system on the language combination that
had the best results overall, which was Danish-Swedish. Danish and Swedish was run on 47,862
lines, also because of lines that became doubles or came to have only one word in them due to the
removal of English, German and Dutch words. A small excerpt of the extracted cognates can be
found in appendix A. As can be seen there, the system is not flawless: there are some errors.

7.4 SVM
The SVM that was run on the same data to be able to compare results uses a (simple) C-support
vector classification with a linear kernel, γ = 0.8 and a penalty parameter of 3. The input is the
lines (i.e. tuples of cognates and tuples of non-cognates) as strings, thus containing tab characters to
delimit the fields, on which a tf-idf vectorizer was applied on character n-grams to extract features.

CHAPTER 7. RESULTS 34

Languages Threshold Accuracy Precision Recall F-score Duration
da-de 0.148 0.814 0.863 0.746 0.800 00:04:56
da-nl 0.138 0.880 0.885 0.871 0.878 00:03:36
da-sv 0.105 0.923 0.895 0.968 0.925 00:04:20
de-nl 0.119 0.891 0.925 0.849 0.886 00:05:03
de-sv 0.125 0.843 0.860 0.817 0.838 00:04:51
en-da 0.106 0.850 0.824 0.889 0.855 00:03:55
en-de 0.087 0.795 0.776 0.825 0.800 00:04:30
en-nl 0.087 0.822 0.795 0.866 0.829 00:03:15
en-sv 0.085 0.874 0.841 0.921 0.879 00:03:33
nl-sv 0.117 0.805 0.794 0.820 0.806 00:03:35

da-de-nl 0.059 0.799 0.770 0.848 0.807 00:33:44
da-de-sv 0.081 0.884 0.873 0.896 0.885 00:43:50
da-nl-sv 0.067 0.818 0.798 0.848 0.822 00:29:51
de-nl-sv 0.061 0.849 0.877 0.810 0.842 00:31:57
en-da-de 0.046 0.779 0.747 0.840 0.791 00:37:53
en-da-nl 0.062 0.779 0.778 0.778 0.778 00:25:15
en-de-nl 0.055 0.814 0.821 0.800 0.810 00:25:46
en-da-sv 0.057 0.785 0.765 0.823 0.793 00:31:44
en-de-sv 0.045 0.835 0.812 0.873 0.841 00:27:50
en-nl-sv 0.059 0.827 0.863 0.778 0.818 00:24:28

da-de-nl-sv 0.052 0.814 0.824 0.798 0.811 18:59:14
en-da-de-nl 0.031 0.770 0.758 0.791 0.774 14:01:41
en-da-de-sv 0.032 0.816 0.811 0.820 0.816 15:28:06
en-da-nl-sv 0.040 0.781 0.882 0.645 0.745 07:26:49
en-de-nl-sv 0.031 0.706 0.691 0.744 0.717 14:49:33

Table 7.3: The thresholds, performances in terms of accuracy, precision, recall and f-score, and the
run-time of the cognate-recognition system for all language combinations. The best results are in
boldface.

The SVM was evaluated using 5-fold cross-validation. The results with the SVM were better than
those with my system, and it was much faster and therefore able to evaluate five language. On
average, the results did improve when given more languages. The average f-score for two languages
was 0.854, and 0.879, 0.874 and 0.880 for three, four and five languages respectively. On the other
hand, it was not able to produce rules or calculate observed and expected probabilities, whereas
my system is. See for all performance measures for all combinations Table 7.4 on page 35. Ciobanu
and Dinu’s (2014) SVM, applied to language pairs of Romanian with Italian, French, Spanish and
Portuguese, had an average f-score of 0.825. Their SVM used aligned word pairs as input and
n-grams as features.

CHAPTER 7. RESULTS 35

Languages Accuracy Precision Recall F-score
da-de 0.896 0.90 0.90 0.89
da-nl 0.870 0.87 0.87 0.87
da-sv 0.860 0.87 0.86 0.86
de-nl 0.872 0.87 0.87 0.87
de-sv 0.819 0.82 0.82 0.81
en-da 0.840 0.84 0.84 0.84
en-de 0.851 0.85 0.85 0.85
en-nl 0.855 0.86 0.86 0.85
en-sv 0.855 0.86 0.86 0.85
nl-sv 0.852 0.86 0.85 0.85

da-de-nl 0.904 0.90 0.90 0.90
da-de-sv 0.897 0.91 0.90 0.89
da-nl-sv 0.877 0.89 0.88 0.87
de-nl-sv 0.895 0.90 0.90 0.89
en-da-de 0.872 0.87 0.87 0.87
en-da-nl 0.872 0.87 0.87 0.87
en-de-nl 0.897 0.90 0.90 0.90
en-da-sv 0.864 0.87 0.86 0.86
en-de-sv 0.882 0.88 0.88 0.88
en-nl-sv 0.864 0.86 0.86 0.86

da-de-nl-sv 0.899 0.90 0.90 0.90
en-da-de-nl 0.889 0.89 0.89 0.89
en-da-de-sv 0.863 0.86 0.86 0.86
en-da-nl-sv 0.861 0.87 0.86 0.86
en-de-nl-sv 0.860 0.86 0.86 0.86

en-da-de-nl-sv 0.884 0.88 0.88 0.88

Table 7.4: The performances in terms of accuracy, precision, recall and f-score for the SVM. The
best results are in boldface.

8. Discussion
The observed and expected probabilities calculated by the system developed for this thesis suggest
that, indeed, the more languages, the more confident the decision whether all words in a tuple are
cognates is, which would confirm my hypothesis. However, my hypothesis seems to be disproven
by the results of the cognate-recognition system as the performances decreased the more languages
were used. On the other hand, the results of the SVM do confirm my hypothesis that using more
languages in cognate recognition improves results.

The decrease of rule confidence (as reported in Figure 7.1) was, perhaps, to be expected: even
though some rules may actually become more confident and more exact, such ‘if Dutch has a <d>
and German has a <t>, English has <d>’, most rules become less exact, as more languages means
more variation. This does mean, though, that language combinations of languages that are more
closely related should give better results. This is indeed supported by the fact that the combination
Danish-Swedish and German-Dutch bear the best results – those two pairs are the pairs of the most
closely related languages. Adding another language will result in a combination of languages that
are less closely related, resulting in lower results. My system can therefore also be used to measure
linguistic distance between languages in future research.

The speed by which the rule confidences (Figure 7.1) decrease with more languages is also
striking, especially when compared to the decrease of the probability thresholds (Table 7.2). The
probability thresholds decrease less quickly than the average rule confidences, meaning that the
distance between cognate tuples and non-cognate tuples decreases in terms of probability as the
number of languages grows. This could perhaps be solved by slightly changing the way substring-
transition-rule probabilities are calculated. The probabilities are now calculated as in Equation
8.1.

Po(λ1 : ... : λn) = n

√
n(λ1 ∩ ... ∩ λn)

n(λ1) · ... · n(λn)
(8.1)

Given that the relation between the average means of the substring-transition-rule probabilities
and the number of languages approaches P̄ = 1

n (where P̄ is the average probability and n is
the number of languages; see Figure 7.1), this could perhaps be corrected by taking the n2th root
instead of the nth root, as in Equation 8.2.

Po(λ1 : ... : λn) = n2

√
n(λ1 ∩ ... ∩ λn)

n(λ1) · ... · n(λn)
(8.2)

Doing this would result in the average means as in Table 8.1 on page 37. The average means are
now much closer to each other. What kind of impact this has on the thresholds and other results
is subject for future research, though.

36

CHAPTER 8. DISCUSSION 37

Nr. of languages Average mean
2 0.696
3 0.660
4 0.687
5 0.709

Table 8.1: The new average means of the found rules for the language combinations.

In the process of cognate extraction it was found that the list of cognate tuples found by the run
on Danish and Swedish (as opposed to the run on English, Danish, German and Swedish) was larger.
This is not unexpected. Of course, the combination Danish-Swedish had better results, but apart
from that more cognates are to be found between Danish and Swedish given this list of possible
cognates, as this list is extracted from a parallel corpus; all possible cognates are translations of
each other, so all cognates the system will find are ‘true’ friends, as opposed to false friends. Since
Danish and Swedish are so closely related (more so than with, say, German) they share more ‘true’
friends with each other than with German (Danish and Swedish are mutually intelligible; so much
even that when talking to each other, Danes will speak Danish and Swedes will speak Swedish). The
number of cognate quadruples (let alone quintuples) that are each other’s translation are relatively
rare.

Finding false-friend cognates could be done using cognate prediction or cognate production, in
which, given a set of transition rules, the form of a possible cognate is predicted (Mulloni, 2007;
Beinborn, Zesch, & Gurevych, 2013). My system’s transition-rules learner could be very useful for
this.

As for the run-times of the cognate-recognition system, it is a shame that they increased so
rapidly that it was impossible to evaluate the combination of five languages. This has of course to
do with the exponential and combinatorial approaches of the system, as explained in chapter 6.

It was also found that German severely impacted the run-time of the system. All runs that
included German were on average longer than those without German. In the same way, all runs
that included English or Dutch were on average faster (hence also that the run on the combination
English-Dutch was the fastest). Danish and Swedish did not seem to have such an impact. This can
be explained by the average length of the words. German has, on average, longer words than the
other languages. This results in more ϵ-partitions the system has to consider, resulting in a longer
run-time. Table 8.2 shows the average run-time of all runs with and without a specific language,
as well as the difference.

Language With L Without L Difference
da 4:52:17 5:07:04 0:14:46
de 5:29:20 2:39:27 -2:49:53
en 4:29:43 6:32:49 2:03:06
nl 4:47:14 5:22:35 0:35:21
sv 4:55:32 4:52:11 -0:03:21

Table 8.2: The average run-times with and without specific languages. The final column shows
the difference in run times. Notice that runs including German took, on average, almost three
hours longer. Those with English took almost two hours shorter, which is partly due to English
not writing compounds as one word and having relatively shorter words in general.

CHAPTER 8. DISCUSSION 38

Given that the SVM has better results in general and its results tend to go up when given more
languages, my system can be improved. To start with, the run-time can be and should be improved
in order for the developed system to be more efficient and more usable. This can be done by finding
a way that makes the system ‘smarter’ so that it reduces the number of possible combinations that
have to be considered in alignment, taming the exponential blow-up.

Also changing the way substring-transition-rule probabilities are calculated should be looked
into, as the average probabilities assigned to cognate pairs go down the more languages are pro-
cessed, while they, ideally, should go up. It could perhaps also be interesting to train the system
not on positive labels (cognates) only, but on negative labels (non-cognates) as well in order to
discover which substring-transition rules are in fact useful. Maybe the transition rule q:q does not
say anything about words being cognates. Possibly calculating information gain for every transition
rule can be useful here.

The system’s design in that it does not consider partitions of words in which parts contain
both letters representing a consonant and letters representing a vowel may have to change as well.
Even though it increases run-time, it does impair the system in its finding transition rules. For
example, some consonants may only change after certain vowels. More specifically yet, Dutch <ou>
corresponds with English before a <d> (so old:oud), which the current system cannot detect
due to the fact that the system would need to allow for partitions with parts containing both letters
representing a consonant and letters representing a vowel to find this rule.

The substring aligner can be improved in that it sometimes returns an alignment in which empty
strings alternate, such as in Figure 8.1. This can be solved by disallowing the system to do so, just
like Covington (1996) disallowed their system to have two ‘skips’ after one another.

ˆch ϵ u r ch$
ϵ ˆk e r k$

Figure 8.1: A wrong substring alignment in which empty string alternate.

Substring alignment can also be improved by adding a feature so that it recognizes alignments
that exhibit metathesis, such as in Figure 8.2. This also requires the allowing of partitions with
parts containing both letters representing a consonant and letters representing a vowel.

ˆb ur n ϵ$
ˆb ra n d$

Figure 8.2: A substring alignment with an alignment that exhibits metathesis.

By defining vowels, consonants and semivowels for every language separately, substring align-
ment could be improved as well. For instance, now it treats <y> as a semivowel for every language,
while it can only act as a (semi-)consonant in English, and not in Danish, German, Dutch or
Swedish.

Phonetic information could also help alignment on a substring level. If the system would prefer
alignments between phonemes (or graphemes) that share the place of pronunciation or the manner
of pronunciation, the results might improve. In a way, I already implemented some phonetic
information by disallowing partitions with parts containing both letters representing a consonant
and letters representing a vowel, and by assigning higher smoothed probabilities, so that vowels are

CHAPTER 8. DISCUSSION 39

more likely to transition into vowels and substrings are more likely to transition into themselves,
but the system might definitely benefit from more profound phonetic information.

The current system was not designed to recognize cognates that are derived with different
morphemes. For example, the Danish anholdelse ‘arrest’ and the Dutch aanhouding ‘arrest’ are
cognates, but are derived using different morphemes (-else vs. -ing, which are not cognates, as far
as morphemes can be cognates). In order for the system to recognize these two words as cognates, it
would need to be able to do partial cognate recognition (List, Lopez, & Bapteste, 2016). However,
in my attempt to improve the run-times I already added this feature, by having the system cut off
the parts before and after the aligned vowel (see Figure 6.4).

The calculation of the probabilities of the substring transitions could also be improved by apply-
ing smoothing. Smoothing was already applied to transitions that were not attested in the training
data, but not in those that were.

As for the actual cognate recognition (i.e. the assigning of the Y label or N label to tuples), there
could be improvements as well, also given that the SVM works better. A back-off decision-making
system could be used that starts looking for cognates in subsets of the tuple if it found that the
whole tuple is not a tuple of cognates. In the current system, one could regret that, when even
one of the five languages replaced the original cognate by a borrowing, the system will assign the
N label to the tuple, dismissing the whole tuple, while the words of all other languages might be
cognates. Therefore, if the system finds an N for the whole tuple, it should look for cognacy between
words in subsets of the tuple. For example, to the tuple and:og:und:en:och it will assign (or at
least, should) N, meaning that not all words in the tuple are cognates of each other. It should
then check if the subsets and:og:und:en, and:og:und:och, and:og:en:och, and:und:en:och and
og:und:en:och are cognates. It should, again, find that they are not. Then it should look in
even smaller subsets, until it finds that and:und:en is a cognate tuple and og:och is as well. This
back-off decision-making system should significantly improve results.

It may also be interesting to see how results are influenced if the system will use the transitivity
of cognacy (if A is a cognate of B and B is a cognate of C, then A is a cognate of C). However, from
what we have seen regarding expected and observed probabilities, using transitivity should make
the decisions of cognacy less confident. Nonetheless, it might be useful.

The Europarl corpus might not have been the most suitable corpus for this research, especially
given that the system was trained on (an extended version of) the Swadesh list. The Europarl corpus
contains relatively much jargon, terminology, names and loans, and relatively few old ‘normal’
words. The transition rules that the system learned might only be relevant for old ‘normal’ words,
and not for younger words which are not old enough to have undergone all the same sound changes.
On the other hand, this might have the system distinguish better between loans and true cognates
and maybe even calques.

Despite all these possible advantageous adjustments that can be made to the developed system,
the results of this thesis place themselves rather well in the existing literature of cognate recognition.
The accuracy, precision, recall and f-scores of all runs are comparable, sometimes even better, than
other systems. The results can also be, as said, very useful for cognate prediction. It could, following
from this, even be used for language reconstruction, because this system returns a list of transition
rules it has found, which in turn could be studied thoroughly. It would be interesting to compare
the found transition rules with those the comparative grammar of Germanic languages holds for
sound (Plotkin, 2008).

Some researchers have suggested using transition rules in string similarity measures (Nakov,
Nakov, & Paskaleva, 2009). The rules this system returns can be used for this purpose excellently.

CHAPTER 8. DISCUSSION 40

Because of its universal nature, this system cannot only be run on the five languages focused
on in this thesis, but can be run on all combinations of languages, even regardless of the alphabet
they are written in. Not only that, but the system can also be run on morphological data. Whereas
Albright and Hayes’s (2006) MGL can be used to discover patterns of vowel changes between present
tense and past tense in Germanic strong verbs, my system can be used to discover patterns of vowel
changes between present tense, past tense and past participles at the same time. In a way, I present
a multilateral MGL that even allows for the aligning of substrings of different lengths, which the
original MGL cannot do.

Furthermore it may be interesting to see how the adding of syntactic information to words
would influence the results of cognate recognition. Of course nouns are more likely to be cognates
with other nouns (strictly speaking, it is even so that only nouns can be cognates with other
nouns). Adding POS tags to words might therefore be beneficial and might result in better cognate
recognition.

It might also be interesting to see whether the use of diachronic corpora could benefit cognate
recognition. As said, the transition rules found in the (extended) Swadesh list might only apply
to old words. When given a diachronic corpus, the system might be able to find other rules for
words of different ages, and as a result of that be able to distinguish between true cognates and
borrowings. It would also, then, make fewer errors regarding non-cognate pairs that share huge
resemblance by chance, such as Latin dies and English day (Harper, 2016).

Another approach that could be beneficial is when the system adjusts its transition rules every
time it finds a new cognate tuple: some sort of bootstrapping. If, for instance, the system newly
finds that the tuple house:hus:Haus:huis:hus is a cognate tuple, it should change all transition
rules with hs, ous, ss, es, etc. so that they are adjusted for the newly found transitions. Whether
this would improve the results, I am not sure. I expect it would lead to very inexact rules, because
it applies some sort of training on errors as well, leading to erroneous transition rules, which will
in turn lead to more errors. This requires further looking into, though.

In short, the developed system could use many improvements. Nonetheless, the results are not
bad at all compared to already existing systems. The system presented here also fills a gap in
the literature in that it is a multilingual cognate-recognition system which also returns multilateral
transition rules. These multilateral transition rules have also proven to be useful, as they result in
higher probabilities than would be expected when combining transition rules with fewer languages.
Especially given the results of the SVM, I have shown that cognate recognition benefits from adding
languages in the equation. All improvements of the system and applications of the results, however,
I leave for future research.

Bibliography
Albright, A. & Hayes, B. (2006). Modeling productivity with the gradual learning algorithm: the

problem of accidentally exceptionless generalizations. Gradience in grammar: Generative per-
spectives, 185–204.

Barker, G. & Sutcliffe, R. F. (2000). An experiment in the semi-automatic identification of false-
cognates between English and Polish. In Proceedings of the Irish conference on artificial in-
telligence and cognitive science.

Beinborn, L., Zesch, T., & Gurevych, I. (2013). Cognate production using character-based ma-
chine translation. In Proceedings of the 6th international joint conference on natural language
processing (pp. 883–891).

Bergsma, S. & Kondrak, G. (2007a). Alignment-based discriminative string similarity. In Proceed-
ings of the 45th annual meeting of the ACL (pp. 656–663).

Bergsma, S. & Kondrak, G. (2007b). Multilingual cognate identification using integer linear pro-
gramming. In RANLP workshop on acquisition and management of multilingual lexicons.

Borin, L., Forsberg, M., & Lönngren, L. (2013). SALDO: a touch of yin to WordNet’s yang. Language
resources and evaluation, 47 (4), 1191–1211.

Brew, C., McKelvie, D. et al. (1996). Word-pair extraction for lexicography. In Proceedings of the
2nd international conference on new methods in language processing (pp. 45–55).

Ciobanu, A. M. & Dinu, L. P. (2014). Automatic detection of cognates using orthographic alignment.
In Proceedings of the 52nd annual meeting of the Association for Computational Linguistics
(Vol. 2, pp. 99–105).

Covington, M. A. (1996). An algorithm to align words for historical comparison. Computational
linguistics, 22 (4), 481–496.

Cysouw, M. & Jung, H. (2007). Cognate identification and alignment using practical orthogra-
phies. In Proceedings of the 9th meeting of the ACL: special interest group in computational
morphology and phonology (pp. 109–116). Association for Computational Linguistics.

Danielsson, P. & Muehlenbock, K. (2000). Small but efficient: the misconception of high-frequency
words in Scandinavian translation. In Conference of the Association for Machine Translation
in the Americas (pp. 158–168). Springer.

Dyer, C., Lopez, A., Ganitkevitch, J., Weese, J., Ture, F., Blunsom, P., . . . Resnik, P. (2010).
cdec: a decoder, alignment, and learning framework for finite-state and context-free transla-
tion models. In Proceedings of the 48th annual meeting of the Association for Computational
Linguistics.

Frunza, O. & Inkpen, D. (2006). Semi-supervised learning of partial cognates using bilingual boot-
strapping. In Proceedings of the 21st international conference on computational linguistics
and the 44th annual meeting of the Association for Computational Linguistics (pp. 441–448).
Association for Computational Linguistics.

Gomes, L. & Lopes, J. G. P. (2011). Measuring spelling similarity for cognate identification. In
Portuguese conference on artificial intelligence (pp. 624–633). Springer.

Guy, J. B. M. (1994). An algorithm for identifying cognates in bilingual word-lists and its applica-
bility to machine translation. Journal of Quantitative Linguistics, 1 (1), 35–42.

41

BIBLIOGRAPHY 42

Hall, D. & Klein, D. (2010). Finding cognate groups using phylogenies. In Proceedings of the 48th

annual meeting of the Association for Computational Linguistics (pp. 1030–1039). Association
for Computational Linguistics.

Hall, D. & Klein, D. (2011). Large-scale cognate recovery. In Proceedings of the conference on em-
pirical methods in natural language processing (pp. 344–354). Association for Computational
Linguistics.

Harper, D. (2016). Online etymology dictionary. Retrieved August 21, 2016, from http://www.
etymonline.com/

Inkpen, D., Frunza, O., & Kondrak, G. (2005). Automatic identification of cognates and false friends
in french and english. In RANLP (pp. 251–257).

Koehn, P. & Knight, K. (2000). Estimating word translation probabilities from unrelated monolin-
gual corpora using the EM algorithm. In AAAI/IAAI (pp. 711–715).

Kondrak, G. (2001). Identifying cognates by phonetic and semantic similarity. In Proceedings of the
2nd meeting of the North American chapter of the Association for Computational Linguistics
on language technologies (pp. 1–8). Association for Computational Linguistics.

Kondrak, G. (2004). Combining evidence in cognate identification. In Conference of the Canadian
Society for Computational Studies of Intelligence (pp. 44–59). Springer.

Kondrak, G., Marcu, D., & Knight, K. (2003). Cognates can improve statistical translation models.
In Proceedings of the 2003 conference of the North American chapter of the Association for
Computational Linguistics on human language technology: companion volume of the proceed-
ings of HLT-NAACL (Vol. 2, pp. 46–48). Association for Computational Linguistics.

Kromann, M. & Lynge, S. (2004). Danish Dependency Treebank v. 1.0. Department of Computa-
tional Linguistics, Copenhagen Business School.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics Doklady, 10 (8), 707–710.

Lewis, M. P., Simons, G. F., & Fennig, C. D. (Eds.). (2016). Ethnologue: Languages of the world
(19th ed.). Dallas, Texas: SIL International. Retrieved August 19, 2016, from http://www.
ethnologue.com

List, J.-M. (2012). LexStat: automatic detection of cognates in multilingual wordlists. In Proceedings
of the EACL 2012 joint workshop of LINGVIS & UNCLH (pp. 117–125). Association for
Computational Linguistics.

List, J.-M., Lopez, P., & Bapteste, E. (2016). Using sequence similarity networks to identify partial
cognates in multilingual wordlists. In Proceedings of the 54th annual meeting of the Association
for Computational Linguistics (pp. 599–605). Association for Computational Linguistics.

Malmasi, S., Dras, M. et al. (2015). Cognate identification using machine translation. In Australasian
language technology association workshop 2015 (p. 138).

Mann, G. S. & Yarowsky, D. (2001). Multipath translation lexicon induction via bridge languages.
In Proceedings of the 2nd meeting of the North American chapter of the Association for Com-
putational Linguistics on language technologies (pp. 1–8). Association for Computational Lin-
guistics.

McColl Millar, R. & Trask, R. L. (2007). Trask’s historical linguistics (2nd ed.). London: Hodder
Arnold.

Melamed, D. I. (1995). Automatic evaluation and uniform filter cascades for inducing n-best trans-
lation lexicons. In Proceedings of the 3rd workshop on very large corpora.

http://www.etymonline.com/
http://www.etymonline.com/
http://www.ethnologue.com
http://www.ethnologue.com

BIBLIOGRAPHY 43

Mulloni, A. (2007). Automatic prediction of cognate orthography using support vector machines.
In Proceedings of the 45th annual meeting of the ACL: student research workshop (pp. 25–30).
Association for Computational Linguistics.

Mulloni, A. & Pekar, V. (2006). Automatic detection of orthographic cues for cognate recognition.
In Proceedings of LREC’06 (pp. 2387–2390).

Nakov, S., Nakov, P., & Paskaleva, E. (2009). Unsupervised extraction of false friends from parallel
bi-texts using the web as a corpus. In RANLP (pp. 292–298).

Onions, C. T. (1966). The Oxford dictionary of English etymology. Oxford: Clarendon.
jalu.ch – One letter words. (2016). Retrieved August 19, 2016, from http://jalu.ch/languages/

one letter words.php
Pagel, V., Lenzo, K., & Black, A. W. (1998). Letter-to-sound rules for accented lexicon compression.

In Proceedings of the international conference on spoken language processing (Vol. 5, pp. 2015–
2018). Sydney, Australia.

Plotkin, V. (2008). The evolution of Germanic phonological systems: Proto-Germanic, Gothic, West
Germanic, and Scandinavian. Edwin Mellen Press.

Rama, T. (2015). Automatic cognate identification with gap-weighted string subsequences. In Pro-
ceedings of the 2015 conference of the North American chapter of the Association for Compu-
tational Linguistics: human language technologies (pp. 1227–1231). Denver, Colorado, USA.

Simard, M., Foster, G. F., & Isabelle, P. (1993). Using cognates to align sentences in bilingual
corpora. In Proceedings of the 1993 conference of the Centre for Advanced Studies on Collab-
orative research: distributed computing (Vol. 2, pp. 1071–1082). IBM Press.

Swadesh, M. (1955). Towards greater accuracy in lexicostatistic dating. International Journal of
American linguistics, 21 (2), 121–137.

Swedish Institute et al. (2015). Learning Swedish. Retrieved May 16, 2016, from http://learningswedish.
se/

Tiedemann, J. (2012). Parallel data, tools and interfaces in opus. In Proceedings of LREC’12
(pp. 2214–2218).

Trask, R. L. (2000). The dictionary of historical and comparative linguistics. Edinburgh: Edinburgh
University Press.

Wang, H. & Sitbon, L. (2014). Multilingual lexical resources to detect cognates in non-aligned texts.
In Proceedings of the Australasian Language Technology Association Workshop 2014 (Vol. 12,
pp. 14–22).

Winkler, W. E. (1990). String comparator metrics and enhanced decision rules in the Fellegi-Sunter
model of record linkage. In Proceedings of the Section on Survey Research Methods (pp. 354–
359). American Statistical Association.

Xu, Q., Chen, A., & Li, C. (2015). Detecting English-French cognates using orthographic edit
distance. In Proceedings of Australasian Language Technology Association Workshop (pp. 145–
149).

http://jalu.ch/languages/one_letter_words.php
http://jalu.ch/languages/one_letter_words.php
http://learningswedish.se/
http://learningswedish.se/

A. Excerpt of database
A.1 English, Danish, German and Swedish

EN DA DE SV
senegalese senegalesere senegalese senegales
pressure pressa
practice umsetzung
jalla jalla jalla jalla
bury begrava
site website
democracy demokratifond demokratifond
commissioner kommissionär
territorial territoriale territorium
bus bus
project projekt
guarantee garantera
heterosexual heteroseksuel heterosexuell heterosexuella
routine rutin
provide erstellen
usa usa
materialism materialisme materialismus materialism
uncontrolled unkontrolliert okontrollera
have avlös
robinson robinson robinson
instead anstatt
have sehen
regionalisation regionalisering regionalisierung
wil således
finlandisation finlandisering finlandisierung finlandisering
perpetually ständig
bi-regional biregional biregionalen biregional
security security
olle olle
introduce einbringen
financial finansverdene finanzwelt finansvärld
formulate formulierung formulera
concern sorgen
millennium millennium millennium millennium
green grøne grön
roulette roulette roulette roulette

Continued

44

APPENDIX A. EXCERPT OF DATABASE 45

EN DA DE SV
reconstruction genopbygning
africa östafrika
energy-efficient energieffektiv energieffektiv
de de sehr
hinge afhænge
assistant assistente assistent
standard standard standard
combined kombinere
salman salman salman salman
murko murko murko
concrete konkret konkret
report report report report
fish fisch
anomaly anomali anomalie anomali
coleague kolega kolegin
gas gas
seminar seminar seminarium
den den
shall lassen
where geraten
development development
retain erhalten
lira lire lira lira
isolation isolering
fly flyga
bernardino bernardino bernardino bernardino
record werden
call kalde
supplementary zusätzlich
financial finanskris
classical klassisk klassisch klassisk
norbert norbert norbert norbert
atlantic atlantisch
economics økonomi ekonomisk
kallas kallas kallas
rule regel
oli oli oli
continental continental continental continental
talent talent
on en en
integrity integritet integrität
an en
provide angive
around ansetzen

APPENDIX A. EXCERPT OF DATABASE 46

A.2 Danish and Swedish

DA SV
nordirland nordirland
attali attali
bono bono
inddeling indelning
santer santer
overalt överall
milinkievitj milinkevitj
medvirke medverka
ironi ironisk
mongoler mongol
programs program
forbundsråd förbundsråd
justeres justera
ikke-diskriminering ickediskriminering
kemikalierne kemikalie
fly flyg
udvælge utvald
placering placering
konsekvens konsekvent
genemføre genomföras
patakis patakis
institutionalisering institutionalisera
populistiske populistiskt
vertikal vertikal
eksportør exportör
stilistisk stilistisk
elev elev
lade laden
norm norm
interpol interpol
andry andry
djakourmas tsiakourmas
underskrift underskrift
segni segni
indefra inifrån
sis sis
undersøge undersökning
digitalt digital-tv
synder syndare
kernekraft kärnkraften
koordineret koordinerad

Continued

APPENDIX A. EXCERPT OF DATABASE 47

DA SV
ats ats
ineffektivitet ineffektivitet
helte hjälte
absurdum absurdum
skotland skottland
vise viser
certificering certifiering
over går
gensidig ömsesidiga
permanent permanent
balkan balkan
velinformerede välinformera
jadot jadot
økonomi ekonomisk
reduktion reduktion
funk funk
lærling lärlingar
åbning öpning
sabine sabine
gestapo gestapo
såsom såsom
fastsætte fastställa
legitimitet legitimt
fodfæste fotfäste
institut institute
rekrutering nyrekrytering
terroriserede terrorisera
overtrædelse överträdelse
regulatory regulatory
endesa endesa
medine medine
prostitueret prostituera
ods ods
forvaltningsret förvaltningsrät
dogmatismen dogmatism
uforudsete oförutsed
introducere introducera
velkomment välkommet
kolegialt kolegial

B. Excerpt of found transition rules

EN : DA : DE : NL : SV P
rn$: rn$: rn$: rn$: rn$ 1.000
ls : ls : ls : ls : ls 1.000
ˆkn : ˆkn : ˆkn : ˆkn : ˆkn 1.000
ly$: lg$: lg$: lg$: lg$ 1.000
rm$: rm$: rm$: rm$: rm$ 1.000
ˆgl : ˆgl : ˆgl : ˆgl : ˆgl 1.000
ˆsn : ˆsn :ˆschn: ˆsn : ˆsn 1.000
ˆbr : ˆbr : ˆbr : ˆbr : ˆbr 1.000
mp$: mp$: mpf$: mp$: mp$ 1.000
ˆbl : ˆbl : ˆbl : ˆbl : ˆbl 1.000
ˆsl : ˆsl :ˆschl: ˆsl : ˆsl 0.851
sh$: sk$: sch$: s$: sk$ 0.833
ˆr : ˆr : ˆr : ˆr : ˆr 0.787
ˆm : ˆm : ˆm : ˆm : ˆm 0.748
x$: ks$: chs$: s$: x$ 0.725
ˆu : ˆo : ˆu : ˆo : ˆo 0.723

ˆthr: ˆtr : ˆdr : ˆdr : ˆtr 0.712
mb$: m$: m$: m$: m$ 0.699
ght$: t$: cht$: cht$: t$ 0.696
ˆb : ˆb : ˆb : ˆb : ˆb 0.684
ˆsp : ˆsp : ˆsp : ˆsp : ˆsp 0.683
ft$: ft$: ft$: cht$: ft$ 0.678
ˆgr : ˆgr : ˆgr : ˆgr : ˆgr 0.665
ˆey : ˆæ : ˆei : ˆei : ˆä 0.660
ˆfl : ˆfl : ˆfl : ˆvl : ˆfl 0.629
ck$: k$: ck$: k$: ck$ 0.625
ˆst : ˆst : ˆst : ˆst : ˆst 0.624
lt$: lt$: lz$: t$: lt$ 0.619
ˆh : ˆh : ˆh : ˆh : ˆh 0.613
ee$: æ$: ie$: ie$: ä$ 0.608
ˆf : ˆf : ˆf : ˆv : ˆf 0.601
nd$: nd$: nd$: nd$: nd$ 0.597
ˆtw : ˆt : ˆzw : ˆtw : ˆtv 0.582
s$: s$: s$: s$: s$ 0.582
ˆl : ˆl : ˆl : ˆl : ˆl 0.576
ry$: rg$: rg$: rg$: rg$ 0.574
ˆstr:ˆstr: ˆstr : ˆstr :ˆstr 0.574
o$: o$: ei$: ee$: å$ 0.574

Continued

48

APPENDIX B. EXCERPT OF FOUND TRANSITION RULES 49

EN : DA : DE : NL : SV P
rt$: rt$: rz$: rt$: rt$ 0.574
ng$: ng$: ng$: ng$: ng$ 0.561
r$: r$: r$: r$: r$ 0.558
ˆa : ˆa : ˆa : ˆa : ˆa 0.517
p : b : f : p : p 0.506

ˆea : ˆæ : ˆe : ˆe : ˆä 0.500
ˆϵ : ˆj : ˆϵ : ˆϵ : ˆj 0.500

ˆsw : ˆs :ˆschw: ˆzw : ˆsv 0.495
f$: v$: b$: f$: v$ 0.488
ˆo : ˆe : ˆei : ˆee : ˆe 0.488
ˆfr : ˆfr : ˆfr : ˆvr : ˆfr 0.484
ˆg : ˆg : ˆg : ˆg : ˆg 0.467
ea$: ø$: ee$: ee$: ö$ 0.461
ˆw : ˆv : ˆw : ˆw : ˆv 0.460
ˆt : ˆt : ˆz : ˆt : ˆt 0.445
ˆdr : ˆdr : ˆtr : ˆdr : ˆdr 0.444
ˆsh : ˆsk : ˆsch : ˆsch : ˆsk 0.435
ˆn : ˆn : ˆn : ˆn : ˆn 0.432
sh : sk : sch : s : sk 0.427
ˆe : ˆe : ˆe : ˆe : ˆe 0.425
ˆea : ˆø : ˆo : ˆoo : ˆö 0.401
ˆe : ˆo : ˆau : ˆoo : ˆo 0.392
ˆfl : ˆfl : ˆfl : ˆfl : ˆfl 0.392
ow$: rg$: rg$: rg$: rg$ 0.379
gh : gt : cht : cht : kt 0.370
p : p : p : u : p 0.367
d$: d$: t$: d$: d$ 0.367
e$: ϵ$: ϵ$: ϵ$: ϵ$ 0.366
oy : øj : eu : ui : y 0.361
ˆth : ˆd : ˆd : ˆd : ˆd 0.361
r : rn : rn : r : rn 0.354
w : lm : we : we : ä 0.347
tc : k : ck : k : ck 0.343
sk : sk : sh : s : sk 0.339
v : v : b : v : v 0.335

rth$: rt$: rz$: rt$: rt$ 0.330
ˆd : ˆdr : ˆtr : ˆdr : ˆd 0.329
ˆst :ˆstj: ˆst : ˆst :ˆstj 0.325
m : vn : m : m : mn 0.310

ld$: l$: ld$: d$: l$ 0.301
l$: l$: l$: l$: l$ 0.298
ˆs : ˆs : ˆs : ˆz : ˆs 0.297
ng : ng : ng : ng : ng 0.295
t$: gt$: cht$: cht$: kt$ 0.293

Continued

APPENDIX B. EXCERPT OF FOUND TRANSITION RULES 50

EN : DA : DE : NL : SV P
oo : o : u : oe : o 0.293
ˆf : ˆf : ˆv : ˆv : ˆf 0.292
ˆk : ˆkv : ˆq : ˆkw : ˆkv 0.291

: g : g : g : g 0.290
ew : y : eie : uw : y 0.288
d : d : t : d : d 0.287
s : s : s : s : s 0.273
ˆk : ˆk : ˆk : ˆk : ˆk 0.268
a : a : a : a : a 0.264
ϵ$: ϵ$: n$: n$: ϵ$ 0.260
v : m : nf : jf : m 0.257
n : k : nk : nk : ck 0.241

ld$: ld$: ld$: d$: l$ 0.239
r : r : r : r : r 0.238

tch$: g$: ch$: k$: k$ 0.237
n : n : n : n : n 0.236
ˆb : ˆbj : ˆb : ˆb : ˆb 0.231
th$: d$: r$: r$: d$ 0.225
ckl : gl : ch : k : g 0.224
z : s : r : z : s 0.224
w : ø : wi : we : i 0.223
k$: g$: ch$: k$: k$ 0.218
mb : m : m : m : m 0.217
th$: nd$: hn$: nd$: nd$ 0.214
n : ng : ng : ng : ng 0.211
ee : y : ie : ie : y 0.204
ˆw : ˆϵ : ˆw : ˆw : ˆϵ 0.196
r : r : rz : rt : r 0.195

ow$: e$: ee$:eeuw$: ö$ 0.195
ee$: e$: ei$: ie$: e$ 0.195
l : l : l : l : l 0.192
t : d : : t : t 0.192

ck$: g$: ch$: k$: ck$ 0.190
l : ld : lt : d : l 0.189

ˆdr : ˆdr : ˆtr : ˆtr : ˆdr 0.188
b : b : f : f : p 0.187
ˆd : ˆdr : ˆtr : ˆdr : ˆdr 0.186
s : s : s : z : s 0.184

C. Extended Swadesh list

EN DA DE NL SV
I jeg ich ik jag
you jer euch jou er
you jer euch u er
ye i ihr jij i
ye i ihr gij i
thou du du du
he hij
he ie

han han
we vi wir wij vi
they de de

sie zij
this dette dies dit detta
that det das dat det
that det dass dat det
that det daß dat det
here her hier hier här
there der da daar där
who hvem wer wie vem
what hvad was wat vad
where hvor wo waar var
when wenn wen
when wann wen

hvornår wanneer
når när

how wie hoe hur
not nicht niet

ikke icke
all al all al all
many mangen manch menig mången
fele viel veel
some somme summig sommig
any einig enig

nogen någon
few få få

wenig weinig
other anden ander ander annan
one en ein een en

Continued

51

APPENDIX C. EXTENDED SWADESH LIST 52

EN DA DE NL SV
two to zwei twee två
three tre drei drie tre
four fire vier vier fyra
five fem fünf vijf fem
stoor stor stur stoer stor
great groß groot
long lang lang lang lång
wide vid weit wijd vid
broad bred breit breed bred
thick tyk dick dik tjock
heavy hebig hevig
sweer schwer zwaar

tung tung
small små schmal smal små
little liden lützel luttel liten
clean klein klein
short skort

kort kurz kort kort
narrow Narbe naar

eng eng
throng trang Drang drang trång
thin tynd dünn dun tunn
queen kvinde kween kvinna
queen kone kween kvinna
queen kvinde kween kona
queen kone kween kona

frue Frau vrouw fru
fru Frau vrouw fru

man mand Mann man man
man mand man man man
man mand Mann men man
man mand man men man
churl karl Kerl kerel karl

menneske Mensch mens människa
child kuld kull
kind Kind kind
barn barn barn
wife viv Weib wijf viv

Gatte gade
hustru hustru

husband husbonde husbonde
mage Macker makker make

mother mor Mutter moeder mor
father far Vater vader far

Continued

APPENDIX C. EXTENDED SWADESH LIST 53

EN DA DE NL SV
mother moder Mutter moeder mor
father fader Vater vader far
beast Bestie beest best
deer dyr Tier dier djur
fish fisk Fisch vis fisk
fowl fugl Vogel vogel fågel
hound hund Hund hond hund
louse lus Laus luis lus
snake snog Schnake snaak snok

slange Schlange slang
wyrm orm Wurm worm orm
worm orm Wurm worm orm
maddock maddike Made made matk
tree træ teer träd
tree træ teer trä
beam bom Baum boom
wold vold Wald woud vall
weald vold Wald woud vall
weld vold Wald woud vall
wold val Wald woud vall
weald val Wald woud vall
weld val Wald woud vall
bush busk Busch bos buske
scough skov skog
stock stok Stock stok stock
stick stikke sticka
pin pind pinne
stave stav Stab staf stav
staff stav Stab staf stav
stave stav Stab staaf stav
staff stav Stab staaf stav
fruit frugt Frucht vrucht frukt
ovest Obst ooft
seed sæd Saat zaad säd
fry frø frö
leaf løv Laub loof löv
blade blad Blatt blad blad
wort urt Wurzel wortel ört
root rod rot
bark bark bark bark
bloom blomme Blume bloem blomma
grass græs Gras gras gräs
rope reb Reif reep rep
rope reb Reif roop rep

Continued

APPENDIX C. EXTENDED SWADESH LIST 54

EN DA DE NL SV
tow Tau touw
tie tov tåg

Seil zeel
hide hud Haut huid hud
skin skind Schinde schinde skinn
fell fjeld Fell vel fjäll
flesh flæsk Fleisch vlees fläsk
meat mad met mat

kød kött
blood blod Blut bloed blod
bone ben Bein been ben
knuckle knogle Knochen knokkel knoge
fat fedt Fett vet fett
egg æg Ei ei ägg
ey æg Ei ei ägg
horn horn Horn hoorn horn
tail tavl Zagel teil tagel
start stjært Sterz staart stjärt

svans Schwanz svans
feather fjer Feder veer fjäder
feather fjer Feder veder fjäder
hair hår Haar haar hår
head hoved Haupt hoofd huvud
cup Kopf kop
ear øre Ohr oor öra
eye øje Auge oog öga
nose næse Nase neus näsa
nose næse Nase neus nos
mouth mund Mund mond mun
mouth mund Mund muide mun

Maul muil
tooth tand Zahn tand tand
tongue tunge Zunge tong tunga
nail negl Nagel nagel nagel
finger finger Finger vinger finger
foot fod Fuß voet fot
leg læg lägg
knee knæ Knie knie knä
hand hånd Hand hand hand
wing vinge vinge

Flügel vleugel
maw mave Magen maag mage
bouk bug Bauch buik buk
bellow bælg Balg balg bälg

Continued

APPENDIX C. EXTENDED SWADESH LIST 55

EN DA DE NL SV
belly bælg Balg balg bälg
yote gyde gießen gieten gjuta
tharm tarm Darm darm tarm
neck nakke Nacken nek nacke
halse hals Hals hals hals
ridge ryg Rücken rug rygg
back bag bak bak
breast bryst Brust borst bröst
heart hjerte Herz hart hjärta
liver lever Leber lever lever
drink drikke trinken drinken dricka
eat æde essen eten äta

spise Speise spijs spisa
bite bide beissen bijten bita
suck suge saugen zuigen suga
spew spy speien spuwen spy
spew spy speien spugen spy
spit spid Spieß spit spett
blow blæse blasen blazen blåsa

vaje wehen waaien vaja
breathe Brodem bradem

atmen ademen
ånde ahnden andas

laugh le lachen lachen le
grine greinen grienen grina
grine greinen grijnen grina
skratte skratta

see se sehen zien se
hear høre hören horen höra
wit vide wissen weten veta
wit vide wissen weten vita
ken kende kennen kennen känna
think tænke denken denken tänka
reek ryge riechen ruiken ryka
reek ryge riechen rieken ryka
smell smul smeulen

lugte lukta
fear fare Gefahr gevaar fara
sleep schlafen slapen
sweb sove sova
swab sove sova
live leve leben leven leva
die dø dö
starve sterben sterven

Continued

APPENDIX C. EXTENDED SWADESH LIST 56

EN DA DE NL SV
kill kvæle quälen kwellen kvälja
quell kvæle quälen kwellen kvälja

døde töten doden döda
umbringen ombrengen

drub dræbe treffen treffen dräpa
drib dræbe treffen treffen dräpa
fight fægte fechten vechten fäkta
fight fegte fechten vechten fäkta
stride streiten strijden strida

kæmpe kämpfen kampen kämpa
kæmpe kämpfen kempen kämpa
slås slåss
jage jagen jagen jaga

slay slå schlagen slagen slå
slay slå schlagen slaan slå
hit hitte hitta
cut kuta
cut kåta
snithe snide schneiden snijden snida
shear skære scheren scheren skära
split splitte spleißen splijten
cleave kløve klieben klieven klyva
deal dele teilen delen dela

skille skilja
stick stikke stechen steken sticka
cratch kradse kratzen kratse kratsa
grave grave graben graven gräva
grave grave graben graven grava
dig dige dika
delve telben delven
delve delben delven
swim svømme schwimmen zwemmen simma
fly flyve fliegen vliegen flyga
walk valke walken walken
waulk valke walken walken
leap løbe laufen lopen löpa
step stappen
go gå gehen gaan gå
come komme kommen komen komma
lie ligge liegen liggen ligga
sit sidde sitzen zitten sitta
stand stå stehen staan stå
rise rejse reisen rijzen risa
throw dreje drehen draaien dreja

Continued

APPENDIX C. EXTENDED SWADESH LIST 57

EN DA DE NL SV
wend vende wenden wenden vända
fall falde fallen vallen falla
give give geben geven ge
give give geben geven giva
yive give geben geven ge
yive give geben geven giva
hold holde halten houden hålla
squeeze quetschen kwetsen kväsa

klemme klemmen klämma
kneifen knijpen

thrutch trykke drucken drukken trycka
thrutch trykke drücken drukken trycka
rub rubbe

reiben wrijven
gnide gnida

wash vaske waschen wassen vaska
tvætte tvätta

wipe wippen veva
viske wischen wissen viska

rinse rense rensa
drag drage tragen dragen draga
drag drage tragen dragen dra
drag drage tragen dragen dragga
drag drægge tragen dragen draga
drag drægge tragen dragen dra
drag drægge tragen dragen dragga
draw drage tragen dragen draga
draw drage tragen dragen dra
draw drage tragen dragen dragga
draw drægge tragen dragen draga
draw drægge tragen dragen dra
draw drægge tragen dragen dragga

trække trechen trekken
tee ziehen tijgen
shove skubbe schieben schuiven skjuva
warp værpe werfen werpen värpa
cast kaste kasta
bind binde binden binden binda
sew sy sy

nähen naaien
tell tælle zählen tellen tälja
reckon regne rechnen rekenen räkna
say sige sagen zeggen säga
sing synge singen zingen sjunga

Continued

APPENDIX C. EXTENDED SWADESH LIST 58

EN DA DE NL SV
plaw pleje pflegen plegen pläga
plaw pleje pflegen plegen pläga
speel spille spielen spelen spela
lake lege leka
fleet flyde fließen vlieten flyta
drive drive treiben drijven driva

schweben zweven
glide glide gleiten glijden glida
flow vloeien
stream strømme strömen stromen strömma
rin rinde rennen rennen rinna
rin rinde rinnen rennen rinna
run rinde rennen rennen rinna
run rinde rinnen rennen rinna
freeze fryse frieren vriezen frysa
swell svulme schwellen zwellen svälla
sun Sonne zon

sol sol
moon måne Mond maan måne
star stjerne Stern ster stjärna
water vand Wasser water vatten
rain regne Regen regen regn
river Revier rivier
flood flod Flut vloed flod

elv Elbe älv
lake Lache laak
sea sø See zee sjö
mere mar Meer meer mar

hav Haff hav
salt salt Salz zout salt
stone sten Stein steen sten
sand sand Sand zand sand
dust dyst Dust duist dust

støv Staub stof
earth jord Erde aarde jord
bottom bund Boden bodem botten
cloud klode Kloß kluit klot
welkin Wolke wolk
sky sky sky
mist mist mist mist

Nebel nevel
tåge töcken
tåge tjocka
himmel Himmel hemel himmel

Continued

APPENDIX C. EXTENDED SWADESH LIST 59

EN DA DE NL SV
lift luft Luft lucht luft
wind vind Wind wind vind
snow sne Schnee sneeuw snö
ice is Eis ijs is
smoke Schmauch smook
reek røg Rauch rook rök
fire fyr Feuer vuur fyr

ild eld
ash aske Asche as aska
burn brænde brennen branden brinna
way vej Weg weg väg
road red red
berg bjerg Berg berg berg
bargh bjerg Berg berg berg
barrow bjerg Berg berg berg
berry bjerg Berg berg berg
red rød rot rood röd
green grøn grün groen grön
yellow gelb geel
yellow gehl geel
yellow gel geel
yellow gelb geluw
yellow gehl geluw
yellow gel geluw

gul gul
gul gål

white hvid weiß wit vit
swart sort schwarz zwart svart
swarth sort schwarz zwart svart
night nat Nacht nacht natt
day dag Tag dag dag
year år Jahr jaar år
warm varm warm warm varm

lun lugn
cold kold kalt koud kall
full fuld voll vol full
new ny neu nieuw ny
old alt oud
eld alt oud

gammel gammel gammal
good god gut goed god
slight slet schlecht slecht slät
slight slet schlicht slecht slät
slight slet schlecht slicht slät

Continued

APPENDIX C. EXTENDED SWADESH LIST 60

EN DA DE NL SV
slight slet schlicht slicht slät

dårlig dålig
foul ful faul vuil ful
stretch strække strecken strekken sträcka
right ret recht recht rätt
like lig gleich gelijk lik
round rund rund rond rund
sharp skarp scharf scherp skarp

hvas vass
dull dval toll dol
stump stump stumpf stomp stump
slow sløv schleh slee slö
slow sløv schleh sleeuw slö
smooth smeuïg
glad glat glatt glad glad
glad glad glatt glad glad
wet våd våt

nass nat
naß nat

fugtig feuchtig vochtig fuktig
blød bloß bloot blöt

dry drøj trocken droog dryg
tør dürr dor torr

correct korrekt korrekt correct korrekt
rigtig richtig richtig riktig

just just just juist just
near nær naar när
nigh nah na
nigh nach na
tight tæt dicht dicht tät
by bei bij bi
far fjern fern ver fjärran

højre höger
venstre winster vänster

at at åt
at ad åt
on å an aan å
to zu toe
to zu tot
too zu toe
too zu tot
with ved wider weder vid
with ved wider weer vid
with ved wieder weder vid

Continued

APPENDIX C. EXTENDED SWADESH LIST 61

EN DA DE NL SV
with ved wieder weer vid
in i in in i
mid med mit met med
mid med mit mee med
mid med mit mede med
and end und en än
and end und ende än
eke og auch ook och
if ob of
umbe om um om om
umb om um om om
name navn Name naam namn
glass glas Glas glas glas

slutte schließen sluiten sluta
lock luiken lucka
lock låg Loch lok lock
louk luge liechen lokken lucka
louk luge locken lokken lucka
slot Schüssel sleutel

nøgle nyckel
spoon spån Span spaan spån

Löffel lepel
sheath ske Scheide schede sked
fork fork Forke vork
gavelock gaffel Gabel gavel gaffel
gavelock gaffel Gabel gaffel gaffel
knife kniv kniv

Messer mes
flask flaske Flashe fles flaska
cheese Käse kaas

ost ost
north nord Nord noord nord
east øst Ost oost

øster Osten oosten öster
south syd Süd zuid syd
west vest West west väst

Westen westen väster
sheep Schaf schaap

får får
horse Ross ros russ

Pferd paard
hest Hengst hengst häst

cow ko Kuh koe ko
goat ged Geiß geit get

Continued

APPENDIX C. EXTENDED SWADESH LIST 62

EN DA DE NL SV
goose gås Gans gans gås
cat kat Katze kat katt
mouse mus Maus muis mus
rat rotte Ratte rat råtta
folk folk Volk volk folk
bed bed Bett bed bätt

seng säng
six seks sechs zes sex
seven syv sieben zeven sju
eight otte acht acht otta
nine ni neun negen nio
ten ti zehn tien tio
eleven elleve elf elf elva
twelve tolv zwölf twaalf tolv
king konge König koning konung
king kong König koning konung
king konge König koning kung
king kong König koning kung
thatch tag Dach dak tak
street Straße straat stråt
gate gade Gasse gas gata
toy tøj Zeug tuig tyg

D. Expected probabilities
D.1 P(A : B : C : D)

D.1.1 As two-way transitions

Pe(A : B : C : D) = n

√√√√√ n∏
i=1

√√√√Po(ai : bi) · Po(ai : ci) · Po(ai : di)
· Po(bi : ci) · Po(bi : di) · Po(ci : di)

=

(
n∏

i=1

Po(ai : bi) · Po(ai : ci) · Po(ai : di)
· Po(bi : ci) · Po(bi : di) · Po(ci : di)

) 1
2n

=

n∏

i=1
Po(ai : bi) ·

n∏
i=1

Po(ai : ci) ·
n∏

i=1
Po(ai : di)

·
n∏

i=1
Po(bi : ci) ·

n∏
i=1

Po(bi : di) ·
n∏

i=1
Po(ci : di)

1

2n

=

√√√√√√√√√√

n∏
i=1

Po(ai : bi) ·
n∏

i=1
Po(ai : ci) ·

n∏
i=1

Po(ai : di)

·
n∏

i=1
Po(bi : ci) ·

n∏
i=1

Po(bi : di) ·
n∏

i=1
Po(ci : di)

1
n

=

√√√√√√√√√√√√
n

√√√√ n∏
i=1

Po(ai : bi) · n

√√√√ n∏
i=1

Po(ai : ci) · n

√√√√ n∏
i=1

Po(ai : di)

· n

√√√√ n∏
i=1

Po(bi : ci) · n

√√√√ n∏
i=1

Po(bi : di) · n

√√√√ n∏
i=1

Po(ci : di)

=

√√√√Po(A : B) · Po(A : C) · Po(A : D)
· Po(B : C) · Po(B : D) · Po(C : D)

(D.1)

63

APPENDIX D. EXPECTED PROBABILITIES 64

D.1.2 As three-way transitions

Pe(A : B : C : D) = n

√√√√ n∏
i=1

8
√

Po(ai : bi : ci)3 · Po(ai : bi : di)3 · Po(ai : ci : di)3 · Po(bi : ci : di)3

=

(
n∏

i=1
Po(ai : bi : ci) · Po(ai : bi : di) · Po(ai : ci : di) · Po(bi : ci : di)

) 3
8n

=

n∏

i=1
Po(ai : bi : ci) ·

n∏
i=1

Po(ai : bi : di)

·
n∏

i=1
Po(ai : ci : di) ·

n∏
i=1

Po(bi : ci : di)

3

8n

= 8

√√√√√√√√√√

n∏
i=1

Po(ai : bi : ci) ·
n∏

i=1
Po(ai : bi : di)

·
n∏

i=1
Po(ai : ci : di) ·

n∏
i=1

Po(bi : ci : di)

3
n

= 8

√√√√√√√√√√√√√

 n

√√√√ n∏
i=1

Po(ai : bi : ci)

3

·

 n

√√√√ n∏
i=1

Po(ai : bi : di)

3

·

 n

√√√√ n∏
i=1

Po(ai : ci : di)

3

·

 n

√√√√ n∏
i=1

Po(bi : ci : di)

3

= 8
√

Po(A : B : C)3 · Po(A : B : D)3 · Po(A : C : D)3 · Po(B : C : D)3

(D.2)

APPENDIX D. EXPECTED PROBABILITIES 65

D.2 P(A : B : C : D : E)

D.2.1 As two-way transitions

Pe(A : B : C : D : E) = n

√√√√√√√√
n∏

i=1

5

√√√√√√√
Po(ai : bi)2 · Po(ai : ci)2 · Po(ai : di)2 · Po(ai : ei)2

· Po(bi : ci)2 · Po(bi : di)2 · Po(bi : ei)2

· Po(ci : di)2 · Po(ci : ei)2 · Po(di : ei)2

=

 n∏
i=1

Po(ai : bi) · Po(ai : ci) · Po(ai : di) · Po(ai : ei)
· Po(bi : ci) · Po(bi : di) · Po(bi : ei)
· Po(ci : di) · Po(ci : ei) · Po(di : ei)

2

5n

=

n∏
i=1

Po(ai : bi) ·
n∏

i=1
Po(ai : ci) ·

n∏
i=1

Po(ai : di) ·
n∏

i=1
Po(ai : ei)

·
n∏

i=1
Po(bi : ci) ·

n∏
i=1

Po(bi : di) ·
n∏

i=1
Po(bi : ei)

·
n∏

i=1
Po(ci : di) ·

n∏
i=1

Po(ci : ei) ·
n∏

i=1
Po(di : ei)

2
5n

= 5

√√√√√√√√√√√√√√√√

n∏
i=1

Po(ai : bi) ·
n∏

i=1
Po(ai : ci) ·

n∏
i=1

Po(ai : di) ·
n∏

i=1
Po(ai : ei)

·
n∏

i=1
Po(bi : ci) ·

n∏
i=1

Po(bi : di) ·
n∏

i=1
Po(bi : ei)

·
n∏

i=1
Po(ci : di) ·

n∏
i=1

Po(ci : ei) ·
n∏

i=1
Po(di : ei)

2
n

= 5

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

 n

√√√√ n∏
i=1

Po(ai : bi)

2

·

 n

√√√√ n∏
i=1

Po(ai : ci)

2

·

 n

√√√√ n∏
i=1

Po(ai : di)

2

·

 n

√√√√ n∏
i=1

Po(ai : ei)

2

·

 n

√√√√ n∏
i=1

Po(bi : ci)

2

·

 n

√√√√ n∏
i=1

Po(bi : di)

2

·

 n

√√√√ n∏
i=1

Po(bi : ei)

2

·

 n

√√√√ n∏
i=1

Po(ci : di)

2

·

 n

√√√√ n∏
i=1

Po(ci : ei)

2

·

 n

√√√√ n∏
i=1

Po(di : ei)

2

(D.3)

APPENDIX D. EXPECTED PROBABILITIES 66

Pe(A : B : C : D : E) = 5

√√√√Po(A : B)2 · Po(A : C)2 · Po(A : D)2 · Po(A : E)2 · Po(B : C)2

· Po(B : D)2 · Po(B : E)2 · Po(C : D)2 · Po(C : E)2 · Po(D : E)2

(D.3)

D.2.2 As three-way transitions

Pe(A : B : C : D : E) = n

√√√√√√√ n∏
i=1

5

√√√√√√
Po(ai : bi : ci) · Po(ai : bi : di) · Po(ai : bi : ei) · Po(ai : ci : di)

· Po(ai : ci : ei) · Po(ai : di : ei) · Po(bi : ci : di)
· Po(bi : ci : ei) · Po(bi : di : ei) · Po(ci : di : ei)

=

 n∏
i=1

Po(ai : bi : ci) · Po(ai : bi : di) · Po(ai : bi : ei) · Po(ai : ci : di)
· Po(ai : ci : ei) · Po(ai : di : ei) · Po(bi : ci : di)
· Po(bi : ci : ei) · Po(bi : di : ei) · Po(ci : di : ei)

1

5n

=

n∏
i=1

Po(ai : bi : ci) ·
n∏

i=1
Po(ai : bi : di) ·

n∏
i=1

Po(ai : bi : ei)

·
n∏

i=1
Po(ai : ci : di) ·

n∏
i=1

Po(ai : ci : ei) ·
n∏

i=1
Po(ai : di : ei)

·
n∏

i=1
Po(bi : ci : di) ·

n∏
i=1

Po(bi : ci : ei)

·
n∏

i=1
Po(bi : di : ei) ·

n∏
i=1

Po(ci : di : ei)

1
5n

= 5

√√√√√√√√√√√√√√√√√√√√√√

n∏
i=1

Po(ai : bi : ci) ·
n∏

i=1
Po(ai : bi : di) ·

n∏
i=1

Po(ai : bi : ei)

·
n∏

i=1
Po(ai : ci : di) ·

n∏
i=1

Po(ai : ci : ei) ·
n∏

i=1
Po(ai : di : ei)

·
n∏

i=1
Po(bi : ci : di) ·

n∏
i=1

Po(bi : ci : ei)

·
n∏

i=1
Po(bi : di : ei) ·

n∏
i=1

Po(ci : di : ei)

1
n

(D.4)

APPENDIX D. EXPECTED PROBABILITIES 67

Pe(A : B : C : D : E) = 5

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

 n

√√√√ n∏
i=1

Po(ai : bi : ci)

 ·

 n

√√√√ n∏
i=1

Po(ai : bi : di)

·

 n

√√√√ n∏
i=1

Po(ai : bi : ei)

 ·

 n

√√√√ n∏
i=1

Po(ai : ci : di)

·

 n

√√√√ n∏
i=1

Po(ai : ci : ei)

 ·

 n

√√√√ n∏
i=1

Po(ai : di : ei)

·

 n

√√√√ n∏
i=1

Po(bi : ci : di)

 ·

 n

√√√√ n∏
i=1

Po(bi : ci : ei)

·

 n

√√√√ n∏
i=1

Po(bi : di : ei)

 ·

 n

√√√√ n∏
i=1

Po(ci : di : ei)

= 5

√√√√√√
Po(A : B : C) · Po(A : B : D) · Po(A : B : E) · Po(A : C : D)

· Po(A : C : E) · Po(A : D : E) · Po(B : C : D)
· Po(B : C : E) · Po(B : D : E) · Po(C : D : E)

(D.4)

D.2.3 As four-way transitions

Pe(A : B : C : D : E) = n

√√√√√ n∏
i=1

15

√√√√Po(ai : bi : ci : di)4 · Po(ai : bi : ci : ei)4 · Po(ai : bi : di : ei)4

· Po(ai : ci : di : ei)4 · Po(bi : ci : di : ei)4

=

(
n∏

i=1

Po(ai : bi : ci : di) · Po(ai : bi : ci : ei) · Po(ai : bi : di : ei)
· Po(ai : ci : di : ei) · Po(bi : ci : di : ei)

) 4
15n

=

n∏
i=1

Po(ai : bi : ci : di) ·
n∏

i=1
Po(ai : bi : ci : ei)

·
n∏

i=1
Po(ai : bi : di : ei) ·

n∏
i=1

Po(ai : ci : di : ei)

·
n∏

i=1
Po(bi : ci : di : ei)

4
15n

(D.5)

APPENDIX D. EXPECTED PROBABILITIES 68

Pe(A : B : C : D : E) = 15

√√√√√√√√√√√√√√√√

n∏
i=1

Po(ai : bi : ci : di) ·
n∏

i=1
Po(ai : bi : ci : ei)

·
n∏

i=1
Po(ai : bi : di : ei) ·

n∏
i=1

Po(ai : ci : di : ei)

·
n∏

i=1
Po(bi : ci : di : ei)

4
n

= 15

√√√√√√√√√√√√√√√√√√√√

 n

√√√√ n∏
i=1

Po(ai : bi : ci : di)

4

·

 n

√√√√ n∏
i=1

Po(ai : bi : ci : ei)

4

·

 n

√√√√ n∏
i=1

Po(ai : bi : di : ei)

4

·

(n

√√√√ n∏
i=1

Po(ai : ci : di : ei)

4

·

 n

√√√√ n∏
i=1

Po(bi : ci : di : ei)

4

= 15

√√√√Po(A : B : C : D)4 · Po(A : B : C : E)4 · Po(A : B : D : E)4

· Po(A : C : D : E)4 · Po(B : C : D : E)4

(D.5)

	Introduction
	Background
	Outline of the research
	Data
	The Europarl corpus
	Lemmatization
	Trimming
	cdec's word alignment algorithm
	Further preselection
	A note on compounds

	Training, development and test sets

	Probability theory
	Substring transitions
	P(a : b : c)
	P(a : b : c : d)
	P(a : b : c : d : e)
	Generalization

	String transitions
	Generalization

	Description of the systems
	Machine learning system
	Weighting
	Substring alignment
	Threshold determination

	Extraction system

	Results
	Transition-rules learner
	Observed and expected probabilities
	Cognate-recognition system
	SVM

	Discussion
	Bibliography
	Appendix
	Excerpt of database
	English, Danish, German and Swedish
	Danish and Swedish

	Excerpt of found transition rules
	Extended Swadesh list
	Expected probabilities
	P(A : B : C : D)
	As two-way transitions
	As three-way transitions

	P(A : B : C : D : E)
	As two-way transitions
	As three-way transitions
	As four-way transitions

