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Abstract 

 

Automated Essay Scoring (AES) has for quite a few years now attracted 

substantial attention from government, language researchers and others 

interested in automatically assessing language proficiency. Sometimes the task is 

tackled by focusing on many variables (many of which are not relevant for the 

construct at hand) and sometimes by focusing on few (there are even cases of 

univariate analysis). However, typical real-word data includes various attributes, 

only a few of which are actually relevant to the true target concept (Landwehr, 

Hall, & Frank, 2005).  In this Master thesis, we investigate several machine 

learning algorithms which are part of the widely used WEKA package (University 

of Waikato) for data mining and analyze them not only in terms of how well they 

perform with regard to their accuracy in assessing essays in English manually 

annotated for more than 81 features, but also with regard to how they can be 

said to reflect research findings in Applied Linguistics. Some models, such as 

Logistic Model Tree (LMT) achieve better accuracy than others and expose the 

variables that correlate the most with proficiency level and which function most 

importantly in classification. We also explore the importance of feature selection 

for improving classifiers and to what extent automatic essay scoring systems and 

human raters might be said to differ in their scoring procedures. Finally, we 

explore how the variables that have been found to correlate the most with 

proficiency level can be implemented in an automatic system. The dataset used 

in our experiments comes from English essays written by Dutch students and 

collected within the framework of the OTTO project, which is financed by the 

OCW (Dutch Ministry or Education), European Platform and Network of 

Bilingual schools.  
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INTRODUCTION 

 

Automated Essay Scoring (AES) has for quite a few years attracted substantial 

attention from government, language researchers and other parties interested in 

automatically assessing language proficiency. One of the best known examples of 

Automated Essay Scoring is the system used in the TOEFL exam (Test of English 

as a Foreign Language), called E-rater. When it comes to AES, the task is 

sometimes tackled by focusing on many variables (many of which may not be 

relevant for the construct at hand) and sometimes by focusing on few (there 

even being cases of univariate analysis, in which a single feature/variable is 

used). However, typical real-word data includes various attributes, only a few of 

which are actually relevant to the true target concept (Landwehr, Hall, & Frank, 

2005).   

 

In this thesis, we investigate to what extent machine learning tools and 

techniques, such as those implemented in the widely used WEKA package 

(University of Waikato) can help us with our task at hand: classifying/scoring 

essays according to English proficiency level. We are also interested in how 

machine learning can help us make the task of automatic essay scoring more 

feasible, by investigating which features are more indicative of proficiency level 

and how they lend themselves to automatic, with a view to a truly automatic 

essay scoring system.  Given that machine learning is quite fitting for dealing 

with a large number of features and optimal at finding hidden patterns in data, 

we want to explore how suitable these algorithms are for dealing with the 

delicate and multivariate reality of second language proficiency.  We also 

investigate if and how the outputs of some classifiers might reflect findings and 

common practice in Applied Linguistics when it comes to proficiency level 

assessment.  Finally, we explore whether there might be fundamental differences 

in how Automatic Scoring Systems and human raters differ in their scoring 

procedures.  
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Chapter 1 introduces Machine Learning to the reader. Chapter 2 is anoverview of 

what Decision Trees are, how they are built and optimized and includes a short 

description of each of the DT classifiers we have explored. In Chapter 3, we 

introduce Bayesian Classifiers and show how their probabilistic approach to 

classification differs from that used in Decision Trees. Chapter 4 introduces the 

reader to our language data (set of holistically scored essays, annotated for more 

than 80 features) and deals with the results of the classifiers in our essay-scoring 

task in terms of accuracy, adjacent classifications, errors, mean scores, and 

correlation coefficient with human raters. The best classifier for our task, 

namely, Logistic Model Tree, is also discussed in this chapter. In Chapter 5 we 

discuss how our approach and results relate to work and findings in both the 

Automatic Essay Scoring and the Second Language Development literatures. 

Finally, Chapter 6 summarizes our work and presents possible future endeavors.  
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1. MACHINE LEARNING 

 

The Department of Engineering at Cambridge University defines machine 

learning as follows: 

 

Machine learning is a multidisciplinary field of research focusing on the 

mathematical foundations and practical applications of systems that learn, reason 

and act. Machine learning underpins many modern technologies, such as speech 

recognition, robotics, Internet search, bioinformatics, and more generally the 

analysis and modeling of large complex data. Machine learning makes extensive 

use of computational and statistical methods, and takes inspiration from biological 

learning systems. 1 

 

It is important to add here that one of the tasks of machine learning is to find 

patterns in and make inferences based on unstructured data.  

 

One of the traditional areas of application for machine learning is classification, 

which is precisely what we intend to do with our collection of essays. Based on 

our corpus of essays, we would like to have a system that is able to classify each 

essay into one of 6 possible levels (0-5) with regard to English proficiency. Two 

of the methods used in Machine Learning for classification are: supervised 

methods and unsupervised methods. In supervised methods, the system 

(classifier) has access to the class label of each data sample and takes the class 

into account when building a classifier, by looking at the specific characteristics 

(features and their corresponding values) of each class. In unsupervised 

methods, the system has no access to class labels and has somehow to infer what 

(and often how many) the real classes present in the data are. This can be done, 

for example, through clustering, that is, grouping together data samples which 

show similar patterns. Given that all the essays we use in our work have already 

been holistically scored by human raters (we know the proficiency level of each 

                                                        
1http://cbl.eng.cam.ac.uk/Public/MLG/ 
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essay), we will make use only of supervised methods.  The algorithms/classifiers 

used in machine learning belong to several distinct families, each one tackling 

problems in specific ways. The two families of classifiers that we will explore in 

this thesis are: Decision Trees and Bayesian classifiers. These will be explained in 

more detail in future sections.  Given the large number of features annotated in 

each essay and the large number of essays themselves, machine learning 

(performed here by means of the WEKA software) seems perfect for our task at 

hand. In addition, we will seek classifiers which not only show good classification 

accuracy but which are also transparent, that is, easy to interpret in the sense of 

(applied) linguistics. 

 

We now turn to Decision Tree schemes and explore what they are and how  

decision trees can be built and optimized. It is important that the reader 

understand this in order to see why DTs  are suitable for our essay-scoring task. 
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2.  DECISION TREES 

 

In this section, we look closely at what decision trees are and how they can be 

used in order to assign proficiency level to each one of the essays in our corpus 

based on the value of each feature. Moreover, we explore how decision trees are 

built and how they can be optimized by presenting the decision tree schemes we 

have experimented with in the scope of our work.  

 

 

2.1. Definition  

  

Decision Trees (DTs) are a specific machine learning scheme which is guided by 

what is usually termed as a “divide and conquer” approach. The basic idea of this 

approach is the following: if we must deal with a problem which may be too hard 

to tackle in its entirety all at once, let us then break it down into various sub-

problems/tasks (thus “dividing”) and find a solution to each of these sub-

problems, one at a time. In the end, we will end up with a solution to our original 

problem (thus “conquering”). 

 

In a classification problem, one is interested in assigning a class to a given input, 

based on the characteristics (attributes/features and their corresponding 

values) of that input. Classes (we will not deal with numeric classes in the 

examples below, but only with nominal/categorical ones) can come in basically 

an infinite number of shapes and colors, so to speak, as exemplified below: 

 

a) Yes or No (in the case of deciding whether someone should be hired 

or not) 

b) German, Hungarian, Portuguese, Dutch, Spanish (when trying to 

decide the language a document is written in, for example) 

c) Zero, One, Two, Three, Four or Five (if trying to decide which level of 

English a certain student is at based on an essay they have written) 
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d)  Spam/Non-Spam (when deciding whether a certain email is a spam 

or not).  

e)  and so forth.  

 

In all these problems, the scenario is the same. We have a group of features and 

corresponding values that we must analyze in order to decide which class a 

given sample (be it an essay, some weather data or an email) belongs to, in 

opposition to all the other classes it does NOT belong to.  

 

Within the family of classifiers we call Decision Trees; there are several possible 

implementations, each one with their own specificities and methods. 

Nevertheless, the “divide and conquer” approach defined above applies to all of 

them. We will briefly look at different implementations of DTs in section 2.6.  

 

2.2 – The Basic Idea 

 

Decision Trees are fairly simple to understand. They are basically a way of 

sorting data into different paths, each of which will eventually lead to a 

classification.  The tree will look similar to a genealogical tree from a distance. 

Each node inherits all the attribute values of their ancestors. At each point/node 

in a decision tree (with the exception of leaves), a question (or a combination of 

questions) is asked and according to the answer, data samples are allocated to 

one path/branch or another of the tree. This way, we start with our complete 

collection of samples at the top node of the tree and from then on at each node in 

the tree only a subset of the samples will be allocated to a specific branch. This 

process continues until no more questions are asked (no more 

attributes/features are checked) and a final classification is made. In the next 

section we exemplify this process, called “divide and conquer”, in more detail.  

 

2.3 - “Divide and Conquer”  

  

Every DT looks exactly the same at its root, that is, at its top-most node. A node 

in a DT, as mentioned above, is basically a point in the tree at which a decision 
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has to be made. The root node (from where the tree starts growing) contains all 

the samples that we need to classify. Consequently, this is the least informative 

point in the tree. From the root node, we must choose one attribute/variable to 

analyze in the samples in order to decide how to treat those samples from that 

point on (see the invented language identification example in Figure 1 below). 

We must therefore further grow the tree, creating branches that will leave the 

root node, each one associated with one specific value of the attribute/feature 

upon which they were created and containing a subset of the samples present at 

the root node.  

 

 Figure 1 – A possible language identification/classification task 

 

In our example above, after checking how often the letter “e” appears in each 

document, we are able to make an initial decision as to how to deal with a 

specific document from that point onwards.  DTs have two types of nodes: 

internal nodes and leaf nodes. Internal nodes are nodes in the tree that have 

child nodes themselves, whereas leaf nodes are nodes that do not branch any 

further.  

  

2.4 Building a Decision Tree  

 

Before building a decision tree, all we have is a collection of items (samples) we 

want to infer patterns from and which will hopefully help us classify unseen data 

in the future. All these items are at a place in the tree that we call “the root node” 

(see previous section), since it is from this node that we will start growing our 
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tree. The standard procedure of building DTs is by checking among all possible 

attributes in our training set for the one that helps the most in reducing our 

uncertainty (also referred to as “entropy”) as to which class a training sample 

belongs to and therefore helps to separate samples which are likely to belong 

together from those that are likely to be different.  

 

We have chosen to use a traditional example in machine learning, namely “the 

weather problem”, due to both its small number of attributes and to its intuitive 

understanding. It will help us with understanding the terminology needed. In 

this section and sections to follow, all tables and figures pertaining to the 

weather problem have been taken either from the book Data Mining: Practical 

Machine Learning Tools and Techniques, by Ian H. Witten & Eibe Frank (2005) or 

from running an analysis of the weather data in WEKA itself. The table below 

contains the data with respect to the weather problem:  

 

 

Figure 2 -Weather data (taken from WEKA) 

 

We have five variables and 14 instances (training samples) from which we have 

to build our DT (notice that this is fully supervised, since we know whether there 

will be a game or not). There are 4 predictor variables/attributes 

(outlook,temperature, humidity and windy), which are used to help predict 

another variable, called the class variable(in our case, the variable play).  Some of 
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the attributes are numeric (temperature and humidity), whereas others are 

nominal (outlook, windy and play). Numeric attributes (sometimes also loosely 

referred to as “continuous”) have as values either integers or real numbers, 

whereas nominal attributes (also called categorical) have a small set of possible 

values.   

 

For each node, we have to decide which attribute should be used to split it and 

also whether we should indeed split that specific node or simply turn it into a 

leaf node, at which a final classification will be made as to which class a sample 

that arrived at that node belongs to. The common ways of doing this are outlined 

in section 2.5. We can see below (Figure 3) a fully-grown tree for the weather 

problem:

 

  

 Figure 3 – A possible DT for the weather data (visualization in WEKA) 

 

We now proceed to showing the two most commonly used measures in deciding 

which attribute to use for splitting a node, namely, Information Gain and the Gini 

Index. Due to a lack of space, we will not discuss other methods, such as Gain 

Ratio or Purity (how pure in terms of containing only one class a node is).  
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2.4.1 Information Gain    

 

The notion of Information Gain (IG) is dependent on the more basic notion of 

information (or entropy). The information in a system can be said to be higher 

the more uncertainty there is in the system, that is, the more difficult it is to 

predict an outcome generated by the system. In a simple case, if we have 3 

colored balls, for example, and each one is of a different color, our chances of 

guessing the color of a randomly drawn ball is about 33%. However, if we had 10 

differently colored balls, our chances would be 10%. In this way, the second 

scenario/system is said to contain more information than the first. Information 

is usually calculated through a mathematical measure called entropy (the higher 

the entropy the higher the information and therefore the higher the uncertainty), 

represented by a capital (H). The formula for calculating entropy (whose result is 

usually given in bits due to the base of the log often being 2) is the following: 

   

 

  

It is important to note here that P is a probability distribution, in which the 

probabilities of each possible and discrete value Pi can take must add up to 1. 

Calculating the entropy at the root node of our weather problem, we get the 

following: 

 

Entropy at root = - 5/14 * log2 5/14 – 9/14 *log29/14 = 0.940 bits 

 

 We are now ready to calculate Information Gain for each attribute on which we 

might consider splitting a certain node. The basic idea behind it is to compare 

how much reduction in entropy/information each attribute is able to provide for 

our data and pick the one that provides the most reduction. We calculate IG for 

each possible attribute with relation to a specific node in the following manner, 

with the index i iterating over the child nodes of the current node: 
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Splitting on the attribute “outlook”, for example, at our root node, gives us the 

outcome shown in Figure 4: 

 

 

  Figure 4: First split on weather data  

(taken from ‘Data Mining Practical Machine Learning Tools and Techniques’) 

 

The IG for attribute “outlook” in our weather problem is therefore: 

 

 IG (outlook) = info [5,9] – info [2,3], [4,0], [3,2]  = 

 IG (outlook) = 0.940 – [5/14 * 0.971 + 4/14 * 0 + 5/14 * 0.971] =  

 0.940 – 0.693 = 0.247 bits 

 

If we calculate the IG for the other 3 attributes as well, we get: 

 

 IG (temperature) = 0.029 bits 

 IG (windy) = 0.048 bits  

 IG (humidity) = 0.152 bits 

 

Given that we are interested in choosing the attribute that leads to a maximum 

increase in Information Gain, we decide therefore to split on the attribute 
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outlook at the root node. We do this recursively for nodes created subsequently, 

and no descendent nodes of a node should be split on a nominal attribute already 

used further above in its path. With numerical attributes, this is fine. As we will 

shortly explore (section 2.5), DTs usually stop growing either when we run out 

of attributes to split on or when we decide that a certain node should not be split 

any further (this might be done during the training phase or based on a 

development set, after the tree has first been fully grown). In section 2.5 we also 

discuss two possible ways of pruning decision trees, that is, making them smaller 

and less overfit for training data, namely tree raising and tree substitution.  

 

2.4.2 Gini Index 

 

Another common method for deciding on which attribute to split a node is called Gini 

Index (referred to as only Gini from now on), whose formula for a given node N is the 

following: 

 

  Gini(N) = 1 – (P1
2 + P2

2 + P3
2 +…+ Pn

2)  

   where P1 …Pn are the relative frequencies of classes P1 to Pn  present at the node 

 

Calculating the Gini at our root node, we have: 

 

  Gini (root)  = 1 – (5/14 2+9/14 2) = 

  1 – (0.413 + 0.127 ) = 0.459 

 

We then calculate the Gini for each possible attribute with relation to a specific 

node in the following manner: 

 

 

Splitting on the attribute outlook, for example, at our root node, gives us then the 

following Gini value for this split:  
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Gini (outlook) = 5/14 * Gini (sunny) + 4/14 * Gini (overcast) + 5/14 * Gini 

(rainy) = 5/14 * [1-(2/5)2+ (3/5)2] + 4/14 * [1-(4/4)2] + 5/14 * [1-(2/5)2+ 

(3/5)2] 

= 5/14 * [1 - 0.376] + 4/14 * 0 + 5/14 * [1 - 0.376] 

=  2 * (5/14 * 0.624) 

= 0.446  

Calculating the Gini for attributes such as humidity and temperature is a little 

trickier in our case, given that these are not nominal attributes (in contrast to 

outlook or windy), but numerical ones. Numerical attributes need first to be 

discretized (grouped into a limited number of intervals) before being used in a 

task such as calculating the Gini. The typical way to discretize numeric attributes 

is by grouping the neighboring values together into interval groups in a way that 

we maximize the presence of a majority class in each of the groups. Due to the 

scope of this thesis, however, we will not get into the details of discretization and 

refer the reader to the book Data Mining – Practical Machine Learning Tools and 

Techniques (Witten & Frank, 2005) instead. We will use here a nominal version 

of the data (Figure 5) in order to calculate the Gini for the attributes windy, 

temperature and humidity:  

 

 

  Figure 5 – Weather data (nominal version, taken from WEKA) 
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Gini (humidity) = 7/14 * Gini (high) + 7/14 * Gini (normal) 

= 7/14 * [1-(3/7)2+ (4/7)2] + 7/14 * [1-(6/7)2+ (1/7)2] 

= 0.24489796 + 0.12244898  

= 0.367 

 

 

Gini (windy) = 8/14 * Gini (false) + 6/14 * Gini (true) 

= 8/14 * [1-(6/8)2+ (2/8)2] + 6/14 * [1-(3/6)2+ (3/6)2] 

= 0.214285… + 0.214285 

= 0.428 

 

Gini (temperature) = 4/14 * Gini (cool) + 4/14 * Gini (hot) + 6/14 * Gini (mild) 

= 4/14 * [1-(3/4)2+ (1/4)2] + 4/14 * [1-(2/4)2+ (2/4)2] + 6/14 * [1-(4/6)2+ 

(2/6)2] 

= 0.1071… + 0.1428… + 0.1904… 

= 0.4403 

 

Since we are interested in minimizing the Gini, we will choose the attribute 

humidity to split the root node. As we can see, Information Gain and Gini lead to 

different choices of attributes. This is due to the fact that both measurements have 

their specificities: IG is biased towards attributes with a large number of values and 

Gini prefers splits that lead to maximizing the presence of a single class after the split.  

Which one will turn out to be best will depend on the results on a test set.  

 

2.5 Optimizing Decision Trees  

  

A common practice in building Decision Trees is to first fully grow the tree (so 

that each leaf only contains samples belonging to one class) and then modify it. 

The inherent problem in using a fully-grown tree in a test set is that the model 

that has been built during the training phrase might, despite having very good 

classification performance on the training data, show poor classification results 

on the test set. This is due to the fact that the decision tree built might overfit the 
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training data and be therefore too specific, that is, customized to the training set. 

Decision Trees that accept some degree of impurity in their leaves usually do 

better when applied to new data. Modifying the fully grown tree so that it 

becomes more suitable for classifying new data is called post-pruning and 

usually consists of one (or both) of the following operations: subtree 

replacement and subtree raising.  

 

2.5.1 Subtree replacement 

 

Subtree replacement involves eliminating internal nodes of part of a tree 

(subtree) and replacing them by a leaf node found at the bottom of the subtree 

being eliminated. Figure 6 below, which represents labor negotiations in Canada, 

clarifies the idea. The label “good” indicates that both labor and management 

agreed on a specific contract. The label ”bad” indicates that no agreement was 

reached.  

 

 

  

 Figure 6 (subtree replacement): Taken from the book ‘Data Mining:  

 Practical Machine Learning Tools and Techniques’ (modified) 

 

As we can see, the whole subtree starting at the node working hours per week in 

Figure 6a has been replaced by the its leaf node bad in Figure 6b.  
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2.5.2 Subtree raising 

 

The idea of subtree raising is quite self-explanatory. A subtree that used to be 

lower down in a tree moves up to occupy a higher position, substituted for what 

was previously found in that position (Figure 7).  

 

 

Figure 7 (subtree raising): Taken from the book ‘Data Mining: Practical Machine 

Learning Tools and Techniques’ 

 

As we see, node C has been raised and substituted for node B.  

 

We have seen in this chapter that there are various ways to  build and optimize 

decision trees. The choice of method is usually driven by the accuracy of 

classification and a balance must be reached between having a decision tree built 

based on and optimized for the training data (which therefore classifies those 

training samples very well) and a tree that is able to perform well on unseen 

(new) test data. In the next section (section 2.6) we deal with each of the DT 

classifiers used in our experiments, each one with their own built-in ways of 

deciding on the optimal final decision tree.  

 

2 .6 DT schemes used in our experiments   

 

For the purposes of classifying our data (OTTO essay collection in English), we 

have experimented with 10 different decision tree schemes found in the WEKA 
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package (version 3.6.4): J48, BFTree, Decision Stump, FT, LADTree, LMT, NBTree, 

Random Forest, REPTree and Simple Cart. It would be beyond the scope of this 

thesis to describe each one in detail. Instead, we will briefly comment on 8 of 

them and discuss 2 of them (J48 and LMT) in more detail. The J48 scheme (an 

implementation in WEKA of the commonly used C4.5 algorithm) is an algorithm 

that has a long history in classification and which usually shows very good 

results. LMT, on the other hand, is a more recently-developed classifier and the 

one which proved to be the best for our task, not only in terms of classification 

accuracy but also in terms of better representing the construct we deal with in 

this thesis, namely, (written) language proficiency.  

 

2.6.1 BFTree 

 

This is a Best First Decision Tree classifier. Instead of deciding beforehand on a 

fixed way of expanding the nodes (breadth-first or depth-first), BFTree expands 

whichever node is most promising. In addition, it is able to keep track of the 

subsets of attributes applied so far and can thus go back and change some 

previous configuration if necessary. The Gini is the default measurement used for 

deciding which attribute to split on.  

 

2.6.2 Decision Stump 

 

A Decision Stump is a very simple DT, which is made up of the root node and 3 

child nodes (tertiary split). Therefore, a single attribute is selected to split the 

root node and the 3 created nodes are leaf nodes (at which a classification is 

made). One of the 3 branches coming out of the root node is reserved for missing 

values (if any) of the chosen attribute.  

 

2.6.3 FT (Functional Tree) 

 

Instead of checking at a certain point in the tree for one single attribute for all 

the classes, Functional Trees learn which attributes are more salient for each 

class at each point (node) in the tree and have the capacity to check for several 
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attributes at a node, by using a constructor function.  This is somehow similar to 

LMT (however, LMTs tend to be much more compact), which we will shortly 

discuss.  

 

 

 

2.6.4 LADTree  

 

The LADTree scheme (Logitboost Alternating Decision Tree) builds alternating 

decision trees that are optimized for a two-class problem (the classification problem 

we deal with in this thesis is a 6-class problem) and that make use of boosting. At 

each boosting iteration, both split nodes and predictor nodes are added to the tree.  

 

2.6.5 NBTree (Naïve Bayesian Tree) 

 

NBTree is a hybrid classifier: its structure is that of a decision tree as we have seen so 

far but its leaves are Naïve Bayesian classifiers which take into consideration how 

probable each feature value (in the training sample) is, given a certain class. In each 

leaf, the class assigned to a sample is the one that maximizes the probability of the 

feature values found in this sample. In order to decide whether a certain node should 

be split or turned into a NB classifier, cross-validation is used.  

 

2.6.6 Random Forest   

 

This algorithm constructs a forest of random trees. Random trees are built by 

considering at each node a K number of random features (out of F features available) 

for splitting that node on. This is done for each node and no pruning is performed. 

The random forest algorithm is a collection of random trees and the class it assigns to 

a sample item is the mode of the classes assigned to that item by the random trees in 

the collection.  
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2.6.7 REPTree 

 

As described in Data Mining: Practical Machine Learning Tools and Techniques 

(2nd Edition), “REPTree builds a decision or regression tree using information 

gain/variance reduction and prunes it using reduced-error pruning. Optimized 

for speed, it only sorts values for numeric attributes once and deals with missing 

values by splitting instances into pieces, as C4.5 does.”.  

 

2.6.8 Simple Cart 

 

Simple Cart is a top-down, depth-first divide-and-conquer algorithm which uses 

the Gini for deciding which attribute to split on. It uses minimal cost-complexity 

for pruning and contains classifiers at the leaves.  

 

2.6.9 C4.5 (a.k.a “J48” in Weka) 

 

The C4.5 algorithm was developed by Ross Quinlan (Quinlan, 1993) and builds 

upon Quinlan’s previous ID3 algorithm (Quinlan, 1986). C4.5 is probably the 

most widely used DT algorithm in machine learning and a benchmark algorithm 

against whose performance any other algorithm should desirably be compared. 

It is a top-down, depth-first algorithm and uses a divide-and-conquer strategy.  

For numerical attributes, C4.5 makes use of binary splits (see figure 8 below) and 

for nominal attributes (predictor classes) it might use other n-ary splits (binary, 

tertiary, etc.). The default is to perform post-pruning and in the pre-pruning 

training process, nodes are split until they are pure (that is, contain only samples 

belonging to a single class).  Information Gain (IG) is used to decide which 

attribute is used for splitting a certain node and in the post-pruning process 

estimation of error is calculated by supposing that every sample that reaches a 

leaf will be classified as belonging to the majority class in that leaf.    We can see 

below in Figure 8 what a typical C4.5 Decision Tree looks like, in this case 

applied to the weather data set that comes with WEKA: 
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Figure 8:  The C4.5 algorithm applied to the weather data (visualization taken from  

       WEKA) 

 

2.6.10 LMT (Logistic Model Tree) 

 

A quite recent development in decision tree algorithms is the Logistic Model 

Tree, or LMT (Landwehr, Hall & Frank, 2005), which has shown quite good 

results and insights for our particular data and construct and hand (language 

proficiency level). The algorithm makes use of logistic regression analysis in 

order to build the tree and, similarly to some of the algorithms seen above, 

learns not only which independent variables (predictor classes) are most 

relevant for predicting the dependent variable (target class), but also which 

attributes (predictor classes) are most relevant to each possible value the target 

class might take (in our case, levels 0 to 5).The main difference in the approach 

employed by LMT, however, is that it arrives at a single optimal value of a given 

attribute for a certain class, thus making the model much more compact than the 

majority of models above. Therefore, not only is LMT an algorithm that produces 

more compact trees, but also an algorithm whose results are more intuitive and 
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easier to interpret.  As Landwehr, Hall & Frank put it (2005), “a more natural 

way to deal with classification tasks is to use a combination of a tree structure 

and logistic regression models resulting in a single tree” (Landwehr, Hall & 

Frank, 2005a: 161-205). The authors also note that “typical real world data 

includes various attributes, only a few of which are actually relevant to the true 

target concept”. We can conclude that LMT seems to be a natural candidate to 

explain our complex concept/construct: language proficiency.  

 

The basic idea of LMT is to choose from among all the variables in the data, those 

that are most relevant to each possible value of the target class (these are called 

indicator variables). By using logistic regression, LMT checks for each possible 

variable (while holding the others constant) how relevant it is to predicting each 

of the values of the target variable. The final result of LMT is a single tree, 

containing multiway splits for nominal attributes (these have to be converted to 

numeric ones2, using the usual logit  transformation used in logistic regression, 

in order to be fit for regression analysis), binary splits for numeric attributes and 

logistic regression models at the leaves, where actual classification is done. At 

terminal nodes (leaves), logistic regression functions are applied for each 

possible value (the different levels in our case) of the target class and the 

relevant indicator variables for that value are checked. Instead of a single 

predicted class like in the case with standard decision tree schemes, such as C4.5, 

LMT has at each leaf a logistic regression function for each possible value of the 

target class, constituting therefore a probabilistic model.  

 

As we can see in Figure 9 below, each indicator value (feature) contains a co-

efficient that will be multiplied by the actual value of that feature found in the 

data sample. Since LMT is an additive model, all the values are added together 

and whichever class shows the maximum value will be assigned to the data 

sample. In Figure 9, positive coefficients imply a directly proportional 

correlation between the indicator variable and the class value at hand and 

negative ones imply an inversely  proportional correlation. During the pruning 

                                                        
2For example, instead of using the nominal attributes hot, cold or freezing, we would use 

temperature ranges instead, such as oC0 – 12 to represent cold. 
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process, it might even be the case that the tree built will contain only one leaf, 

making it maximally compact (as is the case with Figure 9 below). 

 

        

 

   Figure 9:  LMT applied to Weka’s soybean data 

 

Out of the 35 predictor classes present in the soybean data, only a small subset 

are relevant for the target class in Figure 9: the type of disease that specific 

soybeans carry (19 possibilities/values for this target class). For one of the 

possible values of the target class (Class 0 in Figure 9), 10 variables seem to be 

relevant and for another value (another disease), only 1 variable seems relevant, 

namely int-discolor (Class 1, Figure 9). As we can see, not necessarily the same 

variables are equally important for all values of the target class.  

 

As Landwehr, Hall & Frank point out (2005), LMT can select relevant attributes 

in the data in a natural way and the logistic regression models at the leaves of the 
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tree (one per each value the target class can take) are built by incrementing 

those present in higher points in the tree.  By means of Logitboost (a boosting 

algorithm), LMT reduces at each iteration step the squared error of the model, 

but either introducing a new variable/coefficient pair or by changing on of the 

coefficients in a variable already present in the regression function present at the 

parent node.  What is important to note is that at each iteration step, the training 

sample available to the model is only those training instances present at that 

specific node. From the point of view of computational efficiency, it makes more 

sense to base the logistic regression function at each node on the previous 

parent node than to start building the model always from scratch.  

 

LMT, just like other DT schemes, must have its own ways of knowing when to 

stop splitting a node any further and how to prune the tree, once it has stopped 

growing.  In LMT, a node stops being split any further if it meets one of the 

following conditions:  

 

a) it contains less than 15 examples 

b) it does not have at least 2 subsets containing 2 examples each and the split 

does not meet a certain information gain requirement 

c) it does not contain at least 5 examples (this is due to the fact that 5-fold-

cross-validation is used by Logitboost in order to decide on the optimal 

number of iterations it will use). 

 

Once the tree has completely stopped growing, pruning is done by means of the 

CART pruning algorithm, which uses “a combination of training error and 

penalty term for model complexity” (Landwehr, Hall & Frank, 2005a:161-205).   

 

As we have seen, each Decision Tree scheme has its own characteristics and 

ways of deciding on how to classify the samples. We have applied each scheme to 

our data in order to find out which one seems the most promising for our task of 

essay scoring.  We move on now to describe another approach to classification, 

namely, a Bayesian one.  
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3. NAÏVE BAYES 

 

Naïve Bayesian classifiers are simple probabilistic algorithms which apply a 

slightly modified version of Bayes’ Theorem for classification and which make 

the strong (hence the name naïve) assumption that the variables in the data 

(apart from the target class/variable) are independent from one another. In 

other words, it assumes that all features F1 to Fn in our data are independent of 

one another and only the class variable C (in our case, the proficiency level) is 

dependent on each of the features F1 to Fn. As Manning and Schütze (1999) put it, 

citing Mitchell (1997), “Naïve Bayes is widely used in machine learning due to its 

efficiency and its ability to combine evidence from a large number of features” 

(p.237). However, as we will shortly see in our language data results, many of the 

variables are not independent from one another and treating them as if they 

were might lead to a decrease in the classification accuracy of classifiers such as 

Naïve Bayes. 

 

A Naïve Bayesian model must first approximate the parameters that will be used 

by the model in order for it to arrive at a classification. These parameters are the 

class priors (or class probability) and the feature probability distributions, both 

of which are calculated based on the training set. A class’s prior can be calculated 

by diving the number of samples in the training set that belong to that class by 

the total number of samples in the training data (summed over all classes). Thus, 

the class prior of level 1 in our essay set, for example, would be 131/481, which 

equals 0.27. The feature probability distributions can be calculated by first 

separating the data set into the different classes and then calculating, for each 

attribute in each class, the mean and variance of that attribute in that class. If we 

take µ2 to be the mean of the values of X regarding class c, and σ2
c to be the 

variance of the values of X regarding class c, then the probability of a certain 

value of X given a class,  P (x=v | c) can be found by inserting it in the equation of 

a normal distribution containing as parameters the mean and covariance of the 

values of X for a specific class: 
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In order to make a decision as to which class a certain data sample belongs to, 

the model calculates the conditional probability of each possible class (in our 

case, the various English proficiency levels) given the observed values of each of 

the features present in the data. The Naïve Bayesian probabilistic model is 

described below: 

 

Probability (C | F1, F2, F3, …, Fn ) = P (C) * P (F1|C ) * P (F2 |C ) * … * P (Fn |C ) /  

      P (F1… Fn) 

 

Since the denominator of the formula does not depend on the class and since the 

feature values are given, we are in practice only interested in the numerator of 

the right hand side of the equation. Therefore, the probability of a sample 

belonging to a certain class is given by this updated formula: 

 

 

 

We calculate this for each of the possible values of the target class (C) in the data 

and choose the class whose probability is the highest: 

 

 

We have seen that DTs and Naïve Bayesian Classifiers go about the classification 

task in different ways. In addition, each DT scheme has its own specificities. 

However, both the DT and Naïve Bayesian approaches try to decide on an 

optimal classifier configuration based on the features present and their values, 

so as to increase the accuracy of classification. Depending on the data at hand, 
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one classifier might have a clear advantage over another and show much better 

results. It is therefore difficult to tell beforehand which classifier will be better. 

With this in mind, we have run each of the previously described classifiers on 

our essay set in order to determine which one is the best for our specific task. We 

turn to these experiments in chapter 4 below.  
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 4 – PERFORMANCE OF DTs AND NAÏVE BAYESIAN CLASSIFIERS ON  

OUR LANGUAGE DATA 

 

In order to know which of the classifiers is the best for our task, we must run 

each of them on our language data and look closely at the results, not only in 

terms of classification accuracy, but also in terms of the types of misclassification 

errors, simplicity of classification, adjacent classifications and other factors. In 

this section, we describe in detail the data we have used in our experiments, the 

three testing conditions that we have employed and the results of each of the 

classifiers on our dataset.  We also experiment with ways of increasing our 

accuracy by pre-processing the data and show what the best classifier is for out 

essay scoring task. Finally, we discuss both the types of misclassifications made 

by the classifiers as well as possible reasons for those misclassifications. 

 

4.1 Data information  

 

In order to assess the performance of each of the 11 classifiers used in our work 

(10 DT classifiers and 1 Naïve Bayesian classifier), we have used the 481 essays 

in the OTTO corpus (see Description of the Data below). We can see in figure 10 

below how each of the proficiency levels in represented in the data: 

 

 

 

 Figure 10 – Distribution of the levels (0 to 5) in our data, as shown in WEKA 
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All the data used is in an .xls file (Excel table), which is converted to a .csv 

(comma separated values) file in Excel itself. The .csv file is then converted to an 

.arff file format, which is the native format preferred by the WEKA software.  

 

 

4.1.1 Description of the data 

 

The corpus was obtained from the OTTO project, which was meant to measure 

the effect of bilingual education in the Netherlands (www.tweetaligonderwijs).  

 To control for scholastic aptitude and L1 background, only Dutch students from 

VWO schools (a high academic Middle School program in the Netherlands) were 

chosen as subjects. In total, there were 481 students from 6 different WVO 

schools in their 1st (12 to 13 years old) or 3rd year (14 to 15 years old) of 

secondary education. To allow for a range of proficiency levels, the students 

were enrolled in either a regular program with 2 or 3 hours of English 

instructions per week or in a semi-immersion program with 15 hours of 

instruction in English per week.  

 

The 1st year students were asked to write about their new school and the 3rd year 

students were asked to write about their previous vacation. The word limit was 

approximately 200 words.   

 

The writing samples were assessed on general language proficiency. Human 

raters gave each essay a holistic proficiency score between 0 and 5. As Burstein 

& Chodorow (2010) put it, “for holistic scoring, a reader (human or computer) 

assigns a single numerical score to the quality of writing in an essay” (p.529). In 

order to ensure a high level of inter-rater reliability, the entire scoring procedure 

was carefully controlled. There were 8 scorers, all of whom were experienced 

ESL teachers (with 3 of them being native speakers of English). After long and 

detailed discussions, followed by tentative scoring of a subset containing 100 

essays, assessment criteria were established for the subsequent scoring of 

essays. Two groups of 4 ESL raters were formed and each essay was scored by 
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one of the groups. The score of the majority (3 out of 4) was taken to be the final 

score of the essay. If a majority vote could not be reached and subsequent 

discussion between the members of that group did not solve the issue, then the 

members of the other group were consulted in order to settle on the final holistic 

score for each essay.  In all, 481 essays were scored. As we will see further ahead, 

the size of this set is good enough for training a scoring system and some of the 

more established Essay Scoring Systems available actually use a smaller set than 

we do in our work.  

 

The proficiency levels assigned to the essays were calibrated with the writing 

levels assigned to essays within the Common European Framework (CEF) levels, 

as can be seen in Figure 11. Level 0, however, does not have a reference in the 

CEF framework. 

 

 

 

Figure 11: Our levels and the CEF framework 

 

Given that the main interest of Verspoor and Xu was not to assign proficiency 

levels to the essays but to see how language-learning-related variables might 

interact and develop within a Dynamic Systems Theory (DST) approach between 

(and through) the different levels, the authors decided to code as many features 

(variables) as possible for the annotation of each writing sample, drawn both 

from the Applied Linguistics literature and from their own observations during 

the scoring of the essays (Verspoor and Xu, submitted). The features cover 

several levels of linguistic analysis, such as lexical, structural, mechanical and 

others. Some of the features used, such as range of vocabulary, sentence length, 

accuracy (no errors), type-token ratio (TTR), chunks, and amount of dependent 

clauses, for example, are established features in the literature and used in 
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several studies to measure the complexity of a written sample. Other features, 

such as specific types of errors and frequency bands for the word types used in 

the essay corpus were chosen in order to do a much more fine-grained analysis 

of language development (for a detailed list of all variables coded for, see the 

Appendix.) Many of these features are established features in many of the 

automatic essay scoring systems available.  

 

As mentioned above, in the work by Verspoor and Xu (submitted), which uses 

the same data as our work here, the annotated features are used with the goal of 

investigating how these language-related measures develop over time and 

across levels. In our case, we are interested in using these measurements in 

order to investigate how they correlate with proficiency level and how they can 

aid us in our task of automatic essay scoring. Therefore, even though both 

endeavors use the same data as a starting point, they have quite different 

objectives.  

 

Description of the features by general areas 

 

The organization of the features used follows (albeit with a few differences) the 

one used in Verspoor and Xu (submitted) and most definitions and examples are 

taken from the same article, unless otherwise marked with NVX. The description 

of the features can be found in the Index.   

We now proceed to describe the experiments we have conducted. In our first 

analysis of the classifiers, we decide to keep all 81 features, since all of them 

might potentially have a strong correlation with proficiency level.  

 

4.2 The three different runs of the experiments 

 

In order to increase the confidence of our estimation as to what the best 

classifiers are for our task at hand (assessing English proficiency level), we have 

run 3 different experimental conditions for each of the 11 classifiers: 

 

1) Super_Test: we run each classifier through 10 iterations of a stratified 
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(where class distributions are maintained within each fold) ten-fold 

cross-validation. This basically means that we run 100 tests on each of the 

classifiers.  

 

2) 8/9 training, 1/9 test: For training, we have used stratified 10-fold cross 

validation on 8/9 of the dataset (non-stratified, random, using 

weak.core.unsupervised.instances.RemoveFolds). For testing, we have 

used the 1/9 that was not used in the training phase. Since we have 

already used stratification for the whole training in the Super_Test above, 

we have decided to assess as well how each classifier would perform 

when faced with an even more unpredictable test set.  

 

3) 1 run of 10-cross-fold validation: In this condition, we do a simple 10-

cross fold validation on the data.  

 

We have opted to use 3 different conditions not only to assess the stability of 

each classifier but also to vary the experimental ways of obtaining our results. 

What is important is that whenever results are given, they come from the same 

experimental condition when comparing the performance of different classifiers.  

 

 

 

4.3 – Results 

 

In this section, we describe the results of our 11 classifiers on our data.  

 

4.3.1 – Classifier accuracies 

 

The accuracies of the 11 classifiers are shown in Table 1 below. We include here 

the mean accuracies of each classifier on the Super_Test, the accuracy on the first 

5 fold validations in the Super_Test (all in the first iteration still, going from 1,1 

to 1,5) and also the accuracy on 8/9 training, 1/9 test.  We would also like to 

draw attention to the fact that the baseline classification accuracy for our data 
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would be 27%, which is the result of dividing the number of essays belonging to 

the most common level (level 1 = 131 essays) by the total amount of essays in 

our corpus (481 essays). We do not include the results of the single 10-cross-fold 

validation here, but will refer to these later on. 

 

 

 

 

Classifier 

 

Super 

Test 

 

    (1,1) 

 

(1,2) 

 

(1,3) 

 

(1,4) 

 

(1,5) 

8/9 

train, 

1/9 

test 

C4.5 (J48) 50.53 38.77 60.41 50.00 39.58 54.16 57.4 

BFTree 49.9 53.06 54.16 50.00 50.00 56.25 50.00 

Dec.Stump 40.73 32.65 35.41 43.75 41.66 43.75 33.33 

FT 56.07 53.06 56.25 56.25 62,5 62.5 55.5 

LADTree 53.49 40.81 52.08 56.25 54.16 56.25 55.5 

LMT 58.09 55.10 50.00 66.66 64.58 56.25 64.8 

NBTree 45.7 51.02 47.91 45.83 37.5 47.91 51.8 

Ran.Forest 53.97 53.06 64.58 66.66 41.66 50.00 46.29 

RepTree 51.36 46.93 56.25 64.58 56.25 54.16 53.7 

Simple 

Cart 

52.1 55.10 45.83 56.25 50.00 56.25 57.4 

Naïve 

Bayes 

52.5 59.18 47.91 58.33 52.08 39.58 55.55 

 

  Table 1: Accuracies (percentage of correct classification) of the 11  

      different classifiers  

 

In the table above, the color blue indicates the best accuracy, the color green the 

second best and red indicates the worst. As we can easily see, there does not 

seem to be one single classifier which performs the best in every run/test. 

However, there are two facts we can already notice. Decision Stump is almost 

always (with one exception) the classifier that performs the worst on the data. It 

seems however quite impressive that such a simple algorithm (one that uses 
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only a single attribute for classification) manages to achieve an accuracy as high 

as 43.75 percent. This is however misleading: the only reason Decision Stump 

achieves this accuracy is because it classifies every one of the 481 essays into 

either level 3 or level 1). As we saw in Figure 11 above, these are the two most 

represented classes in our data. Therefore, this seems like a smart “decision” on 

the part of Decision Stump and one which will lead to quite a few samples being 

correctly classified. However, this is not a well informed decision and is not 

desirable. The Logistic Model Tree (LMT) on the other hand, does seem to qualify 

as our best classifier so far (we will discuss more details soon), given that in all 

but one case, it is either the one with the best accuracy or the second best.  

 

4.3.2 The incorrectly classified samples 

 

Looking at classification accuracy is usually enough for deciding on the best 

classifier to use for a given task. If our task were to classify between different 

species of animals, for example, then each misclassification is simply wrong: a 

bear is different from a fish, which is different from a horse, and period. These 

classes are quite separate and the task at hand is a categorical one. We believe 

that for a task such as ours, the classification mistakes also matter. Given that our 

language proficiency classes are ordered, classifying an essay which is in fact 

level 2 as level 3 is more desirable than the same level 2 essay being classified as 

a level 5 essay. This holds true for many purposes, be it a placement test at a 

Language Center or an actual written examination of higher stakes.  In addition, 

scoring agreement between human raters is often not unanimous, which means 

that a few adjacent classifications might actually be similar to what happens 

when humans score the essays.  

 

We have therefore developed a system in which we assign a weighted score to 

each one of our 11 classifiers: 3 points for each correctly classified essay (out of 

the 481 essays in our data), 1 point for an adjacent classification (level 2 being 

classified as either 1 or 3, for example) and 0 points for a non-adjacent 

misclassification. We have decided here to treat an adjacent classification below 

or above as carrying the same cost for practical purposes. We are nonetheless 
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aware of the fact that a change in the weights might result in a different classifier 

ranking. We show in Table 2 below the number of adjacent misclassifications for 

each of the 11 classifiers in the 8/9 training, 1/9 test condition (54 sample 

essays are present in the test set) and also the weighted score based on the 

Super_Test.  

 

 

 

Classifier 

 

8/9 train, 1/9 

test:adjacent 

vs.incorrect 

classifications 

 

Weighted score on Super_Set 

(Cor=3, Adj=1, Inc=0) 

 

Weighted- score 

ranking 

LMT 19/19 1013 1  

Ran.Forest 24/29 1001 2 

FT 23/24 980 3 

LADTree 20/24 973 4 

Naïve 

Bayes 

19/24 962 5 

Simple 

Cart 

19/24 949 6 

RepTree 24/25 948 7 

BFTree 22/27 908 8 

NBTree 21/26 892 9 

C4.5 (J48) 17/23 843 10 

Dec.Stump 21/36 762 11 

 

 Table 2: Adjacent misclassification and weighted score of all 11 classifiers 

 

As we can see in Table 2 above, not only are all the misclassifications by LMT 

adjacent ones, but it is also the classifier that shows the fewest classification 

errors on the 8/9 training 1/9 test condition. Moreover, LMT also has the highest 

weighted score out of all 11 classifiers.  
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4.4 – The importance of Pre-Processing the data 

 

So far in our experiments, we have used all 81 features and have not subjected 

our data to any sort of pre-processing. The reasons for not having reduced at 

first the number of features used for training the classifiers above (which is 

indeed quite large) were the following: 

 

a) we wanted to assess how each classifier could perform on raw, 

unprocessed data 

 

b) we want to compare the performance of classifiers when using all 

features against their performance when using only a few significant 

features (these features can be found either by doing feature selection 

at the beginning in WEKA or by running the classifiers and then taking 

those features shown to be more relevant for classification). We explore 

the first approach in our work.  

 

c)  we wanted to check whether certain classifiers would in some way 

already do feature selection, that is, use only a subset of the features in 

their training process (as we have seen, LMT does this in a concise and 

transparent way).  

 

It is a known fact that obtaining comparable results by using fewer features is a 

gain in knowledge, given that it makes the model simpler, more elegant and 

easier to be implemented. Using every feature in order to build a classifier might 

also be seen as overkill. The question is simple: if we can achieve the same (or 

possibly even higher) accuracy in a system by using fewer features, why should 

we use all of them? It takes processing power and engineering/programming 

work in order for an automatic system to extract the values for each feature and 

if many of the features do not lead to an improvement in classification accuracy, 

it does not make much sense to insist on using them if our sole task is 

classification. In addition, by using too many features we might be missing some 
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interesting patterns in our data.   

 

By discretizing numerical data (using numerical intervals/ranges instead of a 

series of continuous values), we are able to build models faster, since numerical 

values do not have to be sorted over and over again, thus improving 

performance time of the system. On the other hand, discretizing values leads to a 

less fine-grained and transparent analysis, since we group together a continuum 

of values that might have individual significance for classification.  

 

We have experimented with 3 different ways of selecting attributes in WEKA (all 

of them being classifier independent):   

 

a) Infogain + Ranker: The evaluation is performed by calculating the IG of 

each attribute and the result is a ranking of all features in the dataset, in 

increasing order of importance.  

 

b) CfsSubsetEval + Best First:  An optimal subset of features is chosen which 

correlate the most with the target class (“level”, in our case) and the 

search method is best first (no predefined order) 

 

c) CfsSubsetEval + Linear Forward Selection: An optimal subset of features is 

chosen that correlate the most with the target class and the search 

method is linear forward selection, a technique used for reducing the 

number of features and for reducing computational complexity.  

 

All three methods give us quite similar results, in terms of which features seem 

to be the most relevant. We can see below which features (in increasing order of 

importance) are selected as being the most indicative of proficiency level in our 

corpus.  We note again that this selection of attributes is classifier independent: 
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     INFOGAIN + RANKER 

 

 

 

   Figure 12 – Attribute selection by INFOGAIN + RANKER 

 

     CFS_SUBSET_EVAL + BEST FIRST 

 

 

  Figure 13 – Attribute selection by CFS_SUBSET_EVAL + BEST FIRST 

 

   CFS_SUBSET_EVAL + LINEAR FORWARD SELECTION 

          

 

 Figure 14 – Attribute selection by CFS_SUBSET_EVAL +LIN.FORW.SELEC. 
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These 8 features (out of the 81 features present) are the ones that correlate the 

most (are more indicative of) with proficiency level. Moreover, they suggest that 

variety, native-sounding structures and errors seem to be the three 

characteristics of an essay that human beings take the most into account when 

holistically scoring the essays. As we will see in the next section, using only these 

8 features results in an increase in accuracy for our main schemes, given that 

many noisy or non-relevant features are discarded. A simpler and therefore 

easier model to be implemented seems to be a better approach to our task. 

4.4.1 – New tests with C4.5, LMT and Naïve Bayes 

Using only the features available to the classifiers selected by CfsSubsetEval + 

Best First above (8 features, instead of the 81 or so features previously used), we 

now present the results of C4.5, LMT and Naïve Bayes on our essay set. We are 

interested in seeing whether doing feature selection in our task will actually 

improve the accuracy of our classifiers (besides the obvious advantage of making 

the search for effective prediction of level easier). As we can see in Table 4 

below, we actually manage to improve our classification accuracy by using only 

these 8 features, which have been found to correlate best with proficiency level. 

We can therefore conclude that by using all 81 features (many of which do not 

correlate substantially with proficiency level and can be said to be noisy), the 

classifiers actually get somewhat confused, so to say, and accuracy is lower. We 

have used the super-set scheme (10 runs of 10-fold cross validation) in these 

new tests. 

 

 

Classifier 

Previous 

accuracy 

(no pre-

processing) 

Accuracy 

(discretization 

only) 

Accuracy 

(attribute 

selection 

only) 

Accuracy 

(attribute 

selection + 

discretization) 

Accuracy 

(discr. + 

attr.sel) 

C4.5 50.53% 55.23% 52.93% 58.70% 59.53% 

LMT 58.09% 62.29% 60.67% 62.58% 62.27% 

Naïve B. 52.50% 60.73% 55.16% 59.09% 60.82% 

 

  Table 4: C4.5, LMT and NB accuracies after pre-processing of data 
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As we can see in the table above, either discretizing the numerical values or 

performing attribute selection has a positive impact on accuracy, when 

compared to simply using the raw, unprocessed data. The best result, however, 

seems to come when we perform both attribute selection and discretization in 

the pre-processing stage.  Interestingly, the order in which these two operations 

are performed affects the performance of the classifiers. By looking at table 4, we 

can conclude that the best result for both the C4.5 and the Naïve Bayes 

algorithms comes when discretization is performed before attribute selection. For 

LMT, however, the accuracy reaches its maximum if discretization is done after 

attribute selection. Quite surprisingly, in the case of Naïve Bayes, doing only 

discretization on the data gives us better results than first doing attribute selection and 

then performing discretization. For all 3 classifiers above, discretization on its own 

shows more improvement on accuracy than performing attribute selection alone.  

 

We can conclude from the experiments in this section that there is no a-priori best 

way to pre-process the data. We need to take different classifiers and their respective 

accuracies into consideration, along with what our task at hand is. If our task is a 

simple classification one, in which all that matters is classification accuracy, this is 

what should guide us. However, we should be aware of the fact that discretization 

leads somehow to loss of more fine-grained information.  

 

We now turn from focusing on accuracy to focusing on the individual contribution of 

each of the features in our subset to the prediction of proficiency level and to the 

system as a whole. 

 

 

 

4.4.2 Individual contribution of each feature in the subset 

 

We are interested in knowing what the individual contribution of each of our 8 

features is to the whole system. Therefore, we have experimented with running LMT 

in a 10-cross-fold experiment using different conditions. We remind the reader that 
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our best result so far with LMT was based on the super_set experiment (mean 

accuracy of 10 runs). Here we use only 1 run of 10-cross-fold iteration, in which 

accuracy is 64.65% when all 8 features are used. However, the result can be said to be 

less reliable than in the super_set design. The individual contribution of each feature 

can be seen below in Table 5: 

 

Feature Accuracy only 

using this feature 

Accuracy using all 

other features (7) 

but this  one 

TYPES 39.29% 56.34% 

AUT+ 41.37% 64.44% 

AUTTOT 44.69% 62.37% 

CLAEMPTY 37.21% 62.78% 

PRES 42.61% 56.75% 

FORM 28.48% 62.37% 

ERRLEX 34.51% 61.12% 

ERRTOT 36.38% 62.16% 

 

Table 5: Individual contribution of each feature in the subset 

 

As we can see in the table above, the feature AUTTOT (a sum of both correct and 

incorrect “native-sounding” structures/constructions) seems to be the feature that 

correlates the highest with proficiency level when used alone. However, when 

removed from the subset of 8 features, it does not have as significant an impact on 

accuracy as the feature TYPES does. We can see, therefore, that our 8 features work 

as a system and that no feature can be said to be the most important of all. Removing 

any of our 8 features leads to a decrease in accuracy. Thus, our best option is to use 

all of them. 

 

In the next section we discuss the misclassification errors that C4.5, LMT and Naïve 

Bayes have made on our data. We show which errors are more typical (involving 

which levels) and explore possible reasons for that.  
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4.5 Misclassification Errors 

 

In this section, we look at what the most typical misclassification error types are for 

each of the 3 classifiers above (C4.5, LMT and Naïve Bayes). We use the best version 

of each of these 3 classifiers, namely, the one obtained after performing attribute 

selection and discretizing the numeric values. Then, we submit our corpus to 1 

iteration of ten-fold cross validation in order to analyze the results. Many of the 

individual essays are misclassified by all three of our classifiers. We discuss these in 

the next section.  

 

For the moment, we can visualize in Table 6 below the 7 most frequent classification 

errors by each classifier, along with how many essays were misclassified in that way 

and how many essays were misclassified in total. The notation 2 = > 3 should be 

understood as “level 2 gets classified as level 3”. Notice that the number of different 

misclassifications in the table does not add up to the total number of 

misclassifications, since we only include here the 7 most common misclassification 

types. 

 

Classifie

r 

Missclas

. 1 

Missclas

. 2 

Missclas

. 3 

Missclas

. 4 

Missclas

. 5 

Missclas

. 6 

Missclas

. 7 

 

C4.5 

2 => 3 

(30/207) 

2 => 1 

(29/207) 

4 => 3 

(24/207) 

3 => 4 

(23/207) 

3 => 2 

(21/207) 

1 => 2 

(17/207) 

4 => 5 

(17/207) 

 

LMT 

3 => 2 

(24/176) 

3 => 4 

(20/176) 

2 => 3 

(20/176) 

2 => 1 

(20/176) 

1 => 2 

(19/176) 

4 => 3 

(18/176) 

4 => 5 

(14/176) 

Naïve 

Bayes 

3 => 4 

(23/189) 

1 => 2 

(23/189) 

2 => 1 

(22/189) 

3 => 2 

(22/189) 

4 => 5 

(18/189) 

2 => 3 

(16/189) 

4 => 3 

(15/189) 

 

  Table 6 – Most common misclassification types per classifier 

 

From the table above we can clearly notice that in the case of all 3 classifiers, the 7 

most common classification errors have to do with adjacent classifications, which is 

exactly what we want for a task such as ours, namely, assigning different proficiency 
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levels to different students based on their essays. If such a classification system is 

used in a high-stake scenario, that is, one in which the consequences of the scoring are 

quite substantial (such as the assessment performed by E-rater in the TOEFL exam, 

which can define whether a person will be accepted into university of not), an 

adjacent classification might not be enough3. For such situations, nothing short of an 

extremely accurate classification might be acceptable. However, in other possible 

scenarios, such as an English placement test within a language center or school, the 

consequences of an adjacent classification would probably not have such a big impact 

either on the general system or, psychologically, on the students. Since the classifiers 

we look at are either accurate or assign adjacent levels in the great majority of cases, 

it would be simple to move a student a level up or down in the event that some in-

classroom discrepancy is noticed. A system such as this, despite not being perfect, 

would have quite a few advantages, such as making better use of important resources 

such as teachers’ time, not being biased in its classification (increased reliability) and 

allowing a much bigger number of essays to be analyzed and placements to be done. 

Other possible uses would be for self-assessment in an online platform and for 

providing feedback to the student in relation to those features the system takes into 

account. All this would only be possible, however, once a computational way of 

extracting these 8 or so features from any essay has actually been implemented and 

the values can be automatically fed to the classifier. We will discuss this later. 

 

The most common type of misclassification when we look at all 3 classifiers above 

are: 2 => 1 (71 essays), 3 => 2 (67 essays), 3 => 4 (66 essays) and 2 => 3 (66 

essays). These numbers seem to indicate that levels 2 and 3 are the ones that are 

“tricking” the system the most, so to speak. Even though this might be the case, we 

cannot affirm this just yet, the reason for that being quite simple. Our levels are not 

uniformly distributed in the data, as figure 11 (reproduced here as Figure 15) shows.  

 

                                                        
3We note however that in the TOEFL examination, E-rater is used in conjunction with a human 

rater, which might make an adjacent classification still acceptable for a system. As we will see 

below, adjacent classifications are also common when only humans are rating the essays.  
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    Figure 15 – Class distribution in the corpus 

 

Therefore, we must not use absolute numbers, but instead relative numbers, which 

take class distribution into account. For this, we divide the number of misclassified 

essays for each level (sum of all 3 classifiers) and divide by the number of essays for 

that level (multiplied by 3, since we are using 3 classifiers). We can see in Table 7 our 

updated figures: 

 

       

Level  Relative Misclassification 

0 29 / (19 x 3)  = 0.508 

1 77 / (131 x 3) = 0.195 

2 151 / (100 x 3) = 0.503 

3 159 / (111 x 3) = 0.4774 

4 110 /(65 x 3) = 0.564 

5 46 / (55 x 3) = 0.278 

 

 Table 7: Relative misclassification for C4.5, LMT and Naïve Bayes together 

 

Our classification errors cannot be said to be only due to the fact that we have a 

somewhat skewed distribution in our data (some classes are more represented than 

others). This might apply to levels 0 and 4 somehow, but we see that levels 2 and 3, 

which have the highest representativeness in the data also get misclassified quite 

often. Therefore, we cannot say with confidence that the root of the misclassification 

is lack of enough training data (we will also see ahead that eliminating level 0 from 
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the corpus does not improve the accuracy significantly). In other words, the reason for 

misclassification must lie somewhere else and we will try to come up with reasonable 

hypotheses shortly. 

 

It would be very fortunate if the probability (classification confidence) assigned by 

the classifiers to all misclassified essays were found to be below a certain threshold 

and all correctly classified essays above it. If this were the case, we could simply 

decide not to classify any essays whose probability was below the threshold, 

preferring instead to trust a human rater with the scoring of those essays. However, 

this is not the case. Quite often, the classifiers assign misclassified essays a higher 

classification confidence probability than they do to correctly classified essays.   

 

4.5.1 –Reducing Errors 

 

Given that some of the essays in our corpus have fewer than 25 tokens (which might 

be too few in order for an automatic system that deals with raw and relative numbers 

to infer good patterns from data), we decided to experiment with removing these 

essays from our corpus. The 33 essays that were discarded belong either to level 0 

(N=10), level 1 (N=14) or level 2 (N=9). We have run the updated essay collection 

(448 essays now, instead of 481) again through our best classifier, namely LTM. 

When no attribute selection or discretization is performed, we manage to increase our 

accuracy from 58.09% to 59.47% (the super-set scheme was used), which shows that 

removing those essays might have a positive effect on the system. One of the possible 

reasons for this (more will be explored later on in the broader discussion of automated 

essay scoring systems) is that when the system is dealing with raw numbers (which is 

the case with the TYPES feature), having essays with so few words belonging to a 

range of 3 different levels (0-2) might confuse the system, since it makes it difficult 

for the system to find a numerical pattern in the data with regard to this attribute. 

Surprisingly, if discretization and attribute selection are performed, the effect of 

removing the essays with fewer than 25 words is actually negative, with precision 

going down from 62.58% to 61.44%.  

 

We would expect that removing from the corpus both the essays that contain fewer 

than 25 tokens and also those essays belonging to level 0 (10 out of the 33 essays with 
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fewer than 25 tokens belong to level 0, a strong correlation) would have a negative 

effect for the accuracy of LMT, since most of the level 0 essays have fewer than 25 

words and the system might use this information accordingly (after all, the TYPES 

feature is in our selected feature subset). When this is done, the accuracy actually 

increases from 58.09% to 60.00%. When discretization and attribute selection are 

applied to the data without the essays with fewer than25 words and with no level 0 

essays (TYPES remains in the group of most relevant predictor variables), the 

accuracy of LMT also decreases on the updated corpus, going from 62.58% to 

61.44%. It seems that the advantages of removing these essays from the corpus are 

lost when discretization and attribute selection are performed. We can conclude that 

when the attribute TYPES (which tends not to be very different from TOKENS in 

quite short essays, such as ours) is part of a much smaller set of attributes used in 

classification, any kind of information available for LMT with regard to feature 

values is important (specially in the absence of discretization and attribute selection).  

 

Logistic Model Trees are so complex and advanced in their calculation of best 

predictors for each class and their corresponding coefficients that we might better be 

guided by a pure accuracy approach when using this classifier. If a certain decision 

would otherwise make sense (from a testing perspective, for example, it would make 

sense to exclude essays with fewer than 25 words) but does not increase the system’s 

accuracy (naturally the number of adjacent classifications must be taken into account 

as well), we should simply not take this specific decision. In the next sections, we 

discuss the optimal parameters for the classifier most suitable for our essay scoring 

task: LMT.  

 

4.5.2 Specific Misclassification Errors (by all 3 classifiers, namely, LMT, C4.5 

and Naïve Bayes) 

 

In this section, we look more closely at a subset of the essays that got misclassified by 

all 3 classifiers in the test set-up described in section 4.5 above.  

 

As we will shortly discuss, if we look at LMT’s adjacent agreement with human 

raters, we manage to reach 96% accuracy, which is quite high. On the other hand, an 

adjacent classification is still a classification error, if we take the human rater’s score 
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to be the definite and correct one. There are quite a few factors that might prevent 

LMT, C4.5 and Naïve Bayes from correctly classifying a subset of the essays.  These 

are discussed below.  

 

a) Some essays are simply too short 

 

As we have seen in section 4.5.1 above, removing from the corpus those essays 

containing fewer than 25 words leads to an increase in accuracy (when no 

discretization or attribute selection is performed). The human raters have scored some 

of those essays as either 0,1 or 2 and for a human, even a little amount of input is 

enough to judge’s someone’s language proficiency (think of how easy it is to spot a 

non-native speaker or how some specific errors simply cannot have been produced by 

a proficient speaker). For our classifiers, however, which are dealing with either 

absolute or relative numbers, having too few counts for some features might actually 

bias the classifiers towards levels in which those feature values are more typical. 

Human beings are much more difficult to trick in this aspect.  

 

b) The features used are not exhaustive 

 

Even though our 3 classifiers make use of 81 features (many more than the great 

majority of AES systems do) in the first runs of our tests and 8 features in their 

updated (optimized) version, there are still some linguistic phenomena which are 

easily perceived and taken into account by human raters, but which are not recorded 

in any of the features we use. Let us take one of the essays in our corpus:  

 

 During our summer holyday we went to Austria. In the beginning it was very nice 

 because we had good weather and there were a lot of nice people to do nice things 

 with. But later on the weather wasn't nice anymore and many people went away. 

 There was also a girl from my age and she also went away. That wasn't nice. But 

 there came some small children and I played with them in the hay. We have seen and 

 done a lot and next year we'll go again to this camping. 

 

This essay was holistically (taking overall quality into account) scored a level 4 by the 

human raters and a level 3 by all three classifiers. This essay makes use of some 
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constructions/structures that show a more refined command of the grammar of the 

language, such as stranding of prepositions (as in “a lot of nice people to do nice 

things with”) and the use of “there came some small children[…]”. Even though these 

are constructions that certainly draw the attention of a human rater (since they are 

more advanced chunks), they only count as another “chunk” in our features and are 

added to our “AUT+” feature value. There is no distinction between the types of 

chunks in the AUT+ feature, despite the fact that some chunks are much more typical 

of advanced students and show a much more fine-grained control of the structure of 

the language (such as the ones just mentioned). Therefore, including some other 

features that capture this kind of language use might help towards improving 

classification accuracy, since these uses are much more typical of proficient than non-

proficient language learners.  

 

c) A fundamental difference in the human raters’ and the classifiers’ scoring 

procedure 

 

This might be the factor that has the greatest impact on accuracy. The humans raters 

who scored all 481 essays in our corpus have given great prominence to what can be 

called “native-sounding” elements in the essays and have consequently scored higher 

those essays that contained more of these elements. This means, however, that for 

many raters, punctuation and mechanical errors, for example, did not have much 

effect on their judgment of the essay’s final score, since they do not influence how the 

essay “sounds”. Some of these “native-sounding” structures are captured by our 

AUT+ feature, which deals with chunks and collocations. Others, such as the ones 

mentioned in b above and the ones in bold below (taken from another essay) are not 

captured in any special way by any of our features: 

 

 Hi, my name is Lucca. I'm a freshman at Trevianum. It's way cool here. […] I 

 like doing extreme sports such as: Snowboarding, surfing, Le parkour and 

 riding my dirtbike. Yes, you heard it my dirtbike! 

 

The essay above was scored a level 5 by the human graders but a level 2 (C4.5) or 

level 3 (LMT and Naïve Bayes) by the classifiers. The two structures above show 

knowledge of more refined-vocabulary and of more casual/day-to-day language. 
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While human raters pick up on these quite effortlessly, this is not fully represented in 

any of our features (one might say that R5pc, for example, would capture less 

common words, but it does not make a distinction between them, capturing that some 

are more “technical” or “casual-sounding” than others). Along the same lines, “you 

heart it” is simply counted as one more collocation/chunk, despite its quite natural-

sounding characteristic. These specific characteristics of words are, however, taken 

into account by human-raters. 

 

d) Language itself is a quite complex phenomenon 

 

Language is a very intricate system, in which all the components (grammar, 

vocabulary, pronunciation, type of constructions, semantics, etc) interact and develop 

in often unpredictable ways, as Dynamic Systems Theory shows (Verspoor, de Bot & 

Lowie, 2004)). Not all students in the same holistic proficiency level show similar 

feature values for all features. Some use correct spelling, but very simple words. 

Others, at the same level, may use more complex words that are often misspelled. 

Some may use correct sentence structure; others may experiment with a more 

complex sentence pattern and make an error. As Verspoor and Xu show (submitted), 

there is enormous variation among the learners, especially at the lower levels. 

However, some of the features, especially aggregated ones, tend to grow (or decrease) 

linearly across the proficiency levels. Another point is that all subsystems (lexicon, 

constructions) develop somewhat exponentially (each subsystem becomes more 

complex) and as the learner becomes more advanced, there are more subsystems that 

need to develop, making the increments of change at each of these subsystems 

smaller. The feature subset used in our classifiers (8 features) are all of the more 

linear type, which explains why using only those 8 features actually improves 

accuracy, in contrast to using all 81 features. However, there might be other 

aggregated features that could improve the system further, but are not part of our 

original feature set, such as bigram or trigram probabilities based on a native corpus, 

which might capture many of the “native-sounding” structures and uses. Regardless 

of how advanced a computational system might be, language is still the quintessential 

area of inquiry where human observers have a clear advantage over automatic 

systems.  
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e) A somewhat skewed sample  

   

Many essays in level 0 get misclassified by all 3 classifiers, which might imply that 

the “calibration” of typical feature values for this level is far from optimal. Given that 

only 19 out of the 481 essays used for training belong to level 0, we strongly believe 

that including more essays that belong to level 0 in training would improve the 

accuracy of the classifiers. 

 

In the automated essay scoring literature, mean scores are often used in order to assess 

whether the system is on average more strict (classifying essays as a lower level than 

they actually are) or more lenient, that is, classifying essays as a higher level than 

actual (Wang & Brown, 2007). Ideally, a system should be neither, but should match 

the actual classification. However, the implications of either scenario might be worth 

taking into consideration depending on the use that the system will be put to.  It is to 

the mean scores assigned by LMT that we now turn our attention. 

 

4.6 Mean Scores – LMT (1 iteration of 10 cross-fold validation) 

 

In this section, we explore the mean score assigned by LMT both for the whole 

scoring task (all levels included) and also on a level basis.  

 

The actual mean score of the whole system is given by the following formula:  

 

Actual mean: (0*19) + (1*131) + (2*100) + (3*111) + (4*65) + (5*55) / 481 = 2.49 

     (please refer to Table 8) 

 

The actual mean for each of the levels is simply the actual score at each level. In 

Table 8 below we can find the actual mean scores and the mean scores calculated 

from LMT’s classification: 
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Level Actual Mean Score LMT’s mean score 

General (all levels) 2.492 2.494 

0 0 0.26 

1 1.0 1.15 

2 2.0 2.02 

3 3.0 3.0 

4 4.0 3.87 

5 5.0 4.67 

 

   Table 8 – Actual mean scores and LMT’s mean scores 

 

The general mean score assigned by LMT is almost identical to that assigned by the 

human raters, which means that when taking all levels into consideration, LMT is 

neither lenient nor strict, performing instead like the human raters. If we look at levels 

4 and 5 however, there is a slightly higher discrepancy in the mean scores. As 

Verspoor and Xu (submitted) found, the more advanced students become, the smaller 

the differences between adjacent levels. Many of the level 4 essays are actually 

classified as 3 and many of the level 5 essays as 4. We can also conclude by looking 

at LMT’s mean scores that there is a slight preference for a lower adjacent level than 

a higher one when it comes to adjacent classifications (which take up the great 

majority of classification errors). This can be seen in Table 5 above.  

 

4.7 The best classifier and parameters for our task: LMT 

 

After all the different experiments we have conducted in our work, we can clearly say 

that LMT is the most fitting classifier (out of the eleven classifiers we have 

experimented with) for our automated essay scoring task. In every single run of the 

super-set scheme (the most reliable one, given that it performs many more runs and 

data shuffling than the other schemes used), LMT achieved the best results (see 

Tables 1, 2 and 4). We can also conclude that the optimal way in which LMT can be 

used is when we first perform attribute selection followed by discretization during the 

training phase, leading to an accuracy of 62.58% for LMT. In addition, we should not  
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remove either level 0 essays or essays with fewer than 25 words from the corpus. If 

we take adjacent agreement into account, as some results on AES4 systems do, we 

manage to achieve an adjacent agreement with human raters of 96%, taking all 5 

levels into consideration. The adjacent agreement per level can be found in Table 9 

below. Due to a technical issue in WEKA (namely, it does not output a confusion 

matrix in its Experimenter interface, which is where we run our super-test), our results 

here are based on a normal 10-cross-fold validation.  

 

 Level 0 Level 1 Level 2 Level 3 Level 4 Level 5 

Adjacent 

agreement 

100% 98% 96% 94% 98% 94% 

 

Table 9: Adjacent agreement for each level (LMT) 

 

Naturally, the baseline for adjacent agreement is the sequence of 3 consecutive levels 

that contains the highest number of essay samples.  In our case, that would be the 

sequence of levels 1-3, with respective sample values 131, 100 and 111. By adding all 

these numbers together and dividing by the total number of essay in the corpus (481), 

we get the baseline of 71% adjacent agreement.  

 

In Figure 16 below, we include more detailed results per class, as well as the 

confusion matrix. We note again that this result comes from a 10-cross-fold 

validation, whereas for Tables 4, 5 and 6 we have used the super-test. 

 

 

 

 

 

 

 

 

                                                        
4Automatic Essay Scoring 
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    Figure 16: More detailed statistics per class (LMT) 

 

Even though LMT manages to achieve excellent adjacent agreement, there might be 

several reasons why our accuracy only goes up to 62.58%. These were discussed in 

section 4.5.2 above. 

 

In sum, the reasons why LMT is the best classifier for our task are several. First, it is a 

model that manages to drastically reduce the number of features used, making the 

model not only simpler and computationally efficient, but also leading to a model that 

has more explanatory power and provides more insights into the problem being dealt 

with. As Landwehr, Hall & Frank note, “including attributes that are not relevant will 

make it harder to understand the structure of the domain by looking at the final model, 

because it is ‘distorted’ by the influence of these attributes” (2005a:167). In addition, 

LMT is a discriminative classifier, not a generative one. LMT builds through logistic 

regressions functions a direct mapping between the features input to the logistic 

regression functions and the class labels. Generative classifiers, on the other hand, 

must calculate the posterior P (y | x) and then choose the class whose probability is 

maximal. As we will see in our discussion of how the results of LMT relate to 

findings in Second Language Development, many of the features available to 

language learners start showing at different levels. This is in accordance with the 

feature selection used by LMT, with each class containing in its regression function 

only those variables which are relevant to that specific class.  
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4.8 – Pearson’s Correlation Coefficient (inter-rater and rater-classifier) 

 

When building an automatic essay scoring system (and many other types of systems), 

the gold standard, that is, the highest measure possible of performance, is how 

humans themselves perform the task. With this in mind, we conducted two analyses: 

 

a) Using a set of 25 essays from our corpus that were consistently misclassified by all 

classifiers, we had a new group of trained raters rate them, in order to check for the 

correlation coefficient between two groups of human raters.  

 

b) checking the correlation coefficient between the actual scored assigned by the 

human graders and that assigned by the optimal version of our LMT classifier for all 

481 essays in our corpus (1 run of 10-cross-fold validation experiments). 

 

For our analysis, we have used the followed formula for calculation of the correlation 

coefficient: 

 

 

  Figure 17 : Formula for calculating the correlation coefficient.5 

 

In Table 10 below, we can see the results of the analyses:  

                                                        
5http://easycalculation.com/statistics/learn-correlation.php 
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Human Raters group 2 

 
Human Raters group 1 

 

0.84 

 

 

Logistic Model Tree (LMT) 

 

 

0.87 

 

   Table 10: Correlation coefficients in 2 conditions 

 

In both cases, we see that the correlation efficient is more than satisfactory. Our LMT 

classifier performs just as well as a group of humans would. Thus, we can affirm that 

our classifier is as good as the gold standard.  
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5. DISCUSSION 

 

In this section, we discuss the relevance and connection of our work in view of the 

literature on Second Language Development and on Applied Linguistics.  

 

5.1 LMT, our initial features and our feature subset in the context of 

Automatic Essay Scoring 

 

Automated Essay Scoring has been making substantial progress since its incipience, 

usually dated to the 1960s and the work of Page and his PEG6 system (Page, 1966). 

Many other systems have been developed and others updated since then, such as 

Intelligent Essay Assessor, ETS1, E-rater, Criterion, IntelliMetric and Betsy, to 

mention a few. These systems vary considerably in their approaches and methods for 

essay scoring. In 1996, Page makes a distinction between automated essay scoring 

systems that focus primarily on content (related to what is actually said) and those 

focusing primarily on style (surface features, related to how things are said) (as cited 

in Valenti, Neri & Cucchiarelli, 2003). Intelligent Essay Assessor, ETS1 and E-rater 

are examples of the former type, while PEG and Betsy7 (a Bayesian system) are 

examples of the latter.  

The LMT classifier and our approach is more similar to the PEG system developed by 

Page. Page (1966) defines what he calls trins and proxes. Trins are intrinsic variables 

such as punctuation, fluency, grammar, vocabulary range, etc. As Page explains, these 

intrinsic variables cannot, however, be directly measured in an essay and must 

therefore be approximated by means of other measures, which he calls proxes. 

Fluency, for example, is measured through the prox “number of words” (Page, 1994). 

In the features used by Dr. Verspoor and Dr. Schmid, the feature TOKENS might be 

said to be a prox for “fluency” and the feature TTR8 a prox for vocabulary-

richness/range. Both the PEG system and the LMT classifier make use of multiple 

regression (the former using standard regression and the latter logistic regression). 

Both types of regression involve calculating the coefficient weights for each feature 

                                                        
6ProjectEssay Grade 
7Bayesian Essay Test Scoring System 
8Type-Token Ration (Guiraud’s index) 
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and are able to select those features that are most relevant for the classification at 

hand.  

Our feature subset, containing those 8 features/proxes that correlate the most with 

proficiency level encompass features that are normally used in AES systems. 

Criterion (an essay scoring and feedback-providing system), for example, analyzes 

five main types of errors, namely agreement errors, verb formation errors, wrong 

word use, missing punctuation and typographical errors. All these types of errors are 

present in our subset of features, in the form of the ERRTOT, ERRLEX and FORM 

proxes. Many systems use between 30 and even 100 features, whereas ours uses only 

8 features and manages to achieve an accuracy of 62.58% (and considerably higher in 

some runs)in the super-set test and an adjacent accuracy of 98%. The e-rater, for 

example, extracts more than a hundred features (Kubich, 2000). We must note here 

that the feature ERRTOT is in fact a bundle of other features that are part of the initial 

feature set (just as ERRTOT itself is part of the 81 features we start out with). The 

fact that basically 3 of our 8 final features are related to errors shows just how 

important error analysis seems to be for an automated essay scoring system and for 

differentiating between proficiency levels (more on this later).  

 

Two important aspects of our approach to essay scoring (so far) are the following: we 

only make use of a learner corpus (we have not used any sort of native corpora) and 

we only analyze the essays for surface features. For our purposes here, which is the 

automated scoring of essays produced by L2 Dutch younger learners in terms of the 

level of English proficiency present in the essays, we feel no need to do any sort of 

content analysis. We are interested in how much control the students have over the 

grammatical, written and lexical resources of English and thus content (the ways their 

ideas are expressed in terms of cohesion, coherence and other measures) are not 

relevant.  

 

5.2 LMT, our initial features and our feature subset in the context of Second 

Language Development 

 

We analyze here how the features we have used in our study and especially those 

found to correlate the highest with proficiency level fit with research findings in 
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Second Language Acquisition (SLA) / Second Language Development (SLD) and 

also why LMT is the classifier the most fitting for our task. 

 

In the introduction to their 2009 article entitled “Towards an Organic Approach to 

Investigating CAF in Instructed SLA: The case of Complexity”, Norris and Ortega 

write: “Fundamental to research in several domains of second language acquisition 

(SLA) are measures that gauge the three traits of complexity, accuracy and fluency 

(CAF) in the language production of learners” (p.555).  

 

Our initial set of features includes features related to all three of these measures. 

Examples of complexity measures we have employed are words per utterance 

(WORDS/UTT), amount of subordination (SYNCPX), amount of present and past 

tense (PRES and PAST respectively) and others. In relation to accuracy, we have used 

lexical errors (ERRLEX), amount of incorrect chunks (AUT-), errors in the form of a 

verb (FORM), errors in the use of a verb (USE), a series of grammatical errors 

(ERRGRAMs) and several others. Lastly, with regard to fluency, we have looked at 

the number of tokens in the essay (TOKENS) and also the number of distinct tokens 

(TYPES), for example.  

 

The subset of 8 features that have shown the greatest correlation with proficiency 

level in our study have all been reported in the literature on Second Language 

Acquisition. We move on now to describe how each of the 8 features selected have 

been shown to correlate highly with proficiency level. We focus especially on the 

results of the analysis published in Verspoor and Xu (submitted), since they deal with 

precisely the same dataset and features as we do. However, our analysis is not limited 

to their study only. Verspoor and Xu (submitted) have decided to exclude level 0 from 

their analysis, whereas we have decided to keep them. 

 

FEATURE 1: TYPES 

 

As Lu, Thorne & Gamson (submitted) write, “a straightforward measure that has been 

shown to be potentially useful for measuring child language development is the 

number of different words (NDW) in a text. Our TYPES feature does precisely that. 

Even though our feature TYPES has been found to correlate highly with proficiency 
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level, it does not account for differences in text length. Naturally, a longer text tends 

to have more types than a shorter one. Some researchers prefer to use Type-Token-

Ratio (TTR) or root TTR (Guiraud, 1959), in which instead of dividing the number of 

types by the number of tokens (normal TTR), the square root of the number of tokens 

is used in order to account for differences in text length. In our data, TTR has proved 

not to correlate highly with proficiency level, whereas root TTR is the 3rd feature that 

correlates the highest. When doing feature selection on the whole set of features, 

Guiraud’s TTR becomes part of the subset. However, despite increasing the accuracy 

of the system by about 0.8%, it also causes a decrease in the overall precision and 

recall. For this reason, we have decided to stick to TYPES for our task. In other 

scenarios, it might be a good idea to use Guiraud’s TTR instead of TYPES.  

 

 

 

 

 

FEATURE 2: AUT+ (chunks/formulaic sequences used correctly)  

 

Doughty and Long (2003) describe ten methodological principles based on SLA9 

research that should be incorporated into any language teaching approach. 

Encouraging chunk learning is one of these principles, which shows just how 

important chunks are for language proficiency. 

 

In the study by Verspoor and Xu (submitted), the number of chunks present in an 

essay has been shown to increase as proficiency level increases, between all levels. 

This is only natural, given that the more exposure learners have to the target language, 

the more likely they are to internalize “natural sounding” structures as a single-unit 

and the more proficient they are likely to become. We can see in Figure 18 below how 

AUT+ has been shown to develop (in their study, Verspoor and Xu do not make use  

 

of a level 0, however): 

 

                                                        
9Second Language Acquisition 
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 Figure 18: Development of the AUT+ feature from level 1 to 5. Taken from  

     Verspoor and Xu (submitted) 

 

FEATURE 3: AUTTOT 

 

Our feature AUTTOT is a combination of AUT+ (correct chunks) and AUT- 

(incorrect chunks). There are many different kinds of chunks that make up AUTTOT, 

including collocations, compound words, particles selected by specific 

verbs/nouns/adjectives along with those verbs/nouns/adjectives. As we have seen, the 

more a learners uses chunks, the more proficient he seems to be. As Sinclair and 

Mauranen put it in their work “Linear Unit Grammar: Integrating Speech and 

Writing” (2006), "The prefabricated chunks are utilized in fluent output, which, as 

many researchers from different traditions have noted, largely depends on automatic 

processing of stored units”. According to Erman and Warren's (2000) count, about 

half of running text is covered by such recurrent units." 

 

On the other hand, using wrong chunks does not necessarily mean that the student is 

not proficient. There is high variability in the difficulty and transparency of different 

chunks and the use of wrong ones involves, in the first place, an awareness of the 

existence of that chunk. Secondly, it shows a willingness to experiment and use newly 

5. DISCUSSION 



 66

learned language. Many of the chunks examined are partial chunks, that is, chunks 

that have an empty slot and are not fully fixed. The wrong filling of that spot might be 

responsible for a good percentage of AUT-.  

 

FEATURE 4: CLAEMPTY (clauses without dependent clauses attached) 

 

The more proficient learners become, the fewer simple sentences they will use, giving 

instead preference to longer and more complex sentences, in which they can tie their 

ideas in a more coherent way. The amount of subordination has for a long time been 

used in the SLA literature to represent the syntactic complexity of texts (Ishikawa, 

2007, Kawauchi, 2005, Kuiken and Vedder, 2007, Michel et al., 2007). Our feature 

CLAEMPTY represents exactly the amount of non-subordination/dependent clauses 

in a text. If the amount of dependent/subordinate clauses has been shown to be quite 

different between the levels (Figure 19 below), so would the lack of dependent 

clauses/subordination.   

 

 

 

 Figure 19: Development of dependent clauses from level 1 to 5. Taken from  

     Verspoor and Xu (submitted) 

 

FEATURE 5: PRES (percentage of either Simple Present or Present Perfect) 
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Our PRES feature revolves around two kinds of verbal constructions: those in the 

Simple Present and those in the Present Perfect. As we can see in Figure 20below, the 

more proficient a learner becomes the fewer constructions in the Simple Present they 

are likely to use, from level 1 to 4. The difference between 4 and 5 is not significant. 

Conversely, the Present Perfect shows a clear increase from level 1 to level 3 and then 

decreases from level 3 to 4, showing no real difference between levels 4 and 5 (Figure 

21). As we can see, this feature seems to correlate high with the initial proficiency 

levels and less with the highest levels. In addition, an overuse of Simple Present is 

probably specific to Dutch as L1, since many sentences which are rendered in English 

through the Present Perfect, such as I have lived here for 3 years are rendered in 

Dutch in the Simple Present, as in Ik woon al drie jaar hier.  

 

 

  Figure 20: Development of Simple Present from level 1 to 5. Taken from  

      Verspoor and Xu (submitted) 
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  Figure 21: Development of Present Perfect from level 1 to 5. Taken from  

      Verspoor and Xu (submitted) 

 

It seems a bit unusual that two features that show an inverse development tendency 

would be a strong indicator of proficiency level when combined, since we are dealing 

with a single numerical value here. However, combining different features is quite 

common in machine learning and if this feature has been selected for our subset, then 

it is because it is a good idea to combine these two features.  

 

 

FEATURE 6: FORM (errors in the form of the verb)  

 

The more advanced learners are, the less likely they are to make mistakes related to 

the form of a verb. It is a known fact that mistakes of the type “He go home” or “He 

have seen the movie” are much more likely to be found in the essays of lower level 

students that in those of higher level ones.  

 

In the paper by Verspoor and Xu (submitted), we can see a clear and linear difference 

in the number of verb form errors between the different levels (Figure 22). This type 

of linear difference is exactly the type of feature that has a higher chance of 

correlating high with the target variable (in our case, proficiency level).  
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 Figure 22:  Development in verb form errors from level 1 to 5. Taken from  

      Verspoor and Xu (submitted) 

 

FEATURE 7: ERRLEX (lexical errors, summed over all possible subtypes)  

 

With an increase in proficiency in the L2 comes a decrease of the influence of one’s 

L1 on their L2. Therefore, the more advanced students show less L1 (Dutch, in our 

case) interference on their English. Our ERRLEX feature is in fact the sum of various 

types of lexical errors, many of which are in fact transfer errors (due to L1 influence).  

As we can see in the graph below (Figure 23), ERRLEX also shows a clear decrease 

from level 1 to level 5. The difference between levels 1 and 2, and levels 4 and 5 is 

ever clearer.  
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 Figure 23:  Development in lexical errors from level 1 to 5. Taken from  

      Verspoor and Xu (submitted) 

 

FEATURE 8: ERRTOT (total amount of errors) 

 

ERRTOT is a bundle of error types, including lexical, grammatical, punctuation and 

mechanical. As mentioned in Feature 8 above, the more advanced a student is, the less 

likely they are to make mistakes, especially more basic ones. Therefore, it is only 

natural that a feature such as ERRTOT correlates so highly with proficiency level. As 

speakers of our languages, we can very quickly form an informed idea of someone’s 

proficiency level just based on a kind of mistake they make (and how often). We can 

see in Figure 24  below how the development of ERRTOT from levels 1 to 5 confirms 

our statement: 
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Figure 24: Development in total amount of errors from level 1 to 5. Taken from  

Verspoor and Xu (submitted) 

 

We proceed now to exploring how the values for each of the 8 features in our feature 

subset might be automatically extracted from an essay.  

 

5.3 – Automation of our 8 features 

 

In this section, we discuss possible ways of automatically extracting the values for our 

8 features. As we have seen, LMT performs quite well in terms of classification. 

However, to have a truly automated essay scoring system, we need to be able to 

automatically extract the values for each of our 8 features, given a raw essay. These 

values will subsequently be fed to LMT, which will then output the proficiency level 

of a specific student. We discuss the automation of the 8 features in the same order in 

which they are presented in the previous section.  

 

FEATURE 1: TYPES 

 

Out of our 8 features, this is the easiest one to automate. A few lines of code are 

enough to get the value of TYPES for a given essay. We simply have to count the 

amount of unique tokens. Some pre-processing is required, however, such as 
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changing proper names and numerals into a single “NAME or NUMERAL” token. In 

the former case, we would need to use a subsystem that is able to detect named- entity 

expressions. In both cases, the use of regular expressions to define the patterns we are 

after might suffice, since these are essays written by students in either the 1st or 3rd 

grade and no unusual named-entities or decimal numbers, for example, are likely to 

be encountered.  

 

FEATURE 2: AUT+ (chunks/formulaic sequences used correctly) 

 

This is arguably one of the most difficult features to automate, not only in our subset, 

but out of the 81 features we started with. Knowing what constitutes a native-like 

construction requires an immense amount of training data and exposure to the 

language, something we humans have probably had in a quantity much higher than 

any given corpus we might decide to use in an automated system. Our feature AUT+ 

is actually made up of several types of “native-sounding” structures. Following the 

examples in Verspoor and Xu (submitted), we show some example of chunks: 

 

a)  structures: better and better , it is easy to do, find it nice, etc. 

b) complements: decided to, be able to, I don’t know what/who/where, etc. 

c)  compounds: sunbathing, deep blue, two-week holiday, etc. 

d) particles: depend on, go on holiday, make up a story, a group of, etc. 

e)  collocations: the sun goes down, take a dive, hurt badly, etc. 

f) fixed phrases: lots of fun, have a wonderful time, what a pity, etc. 

g) discourse: why don’t we, in other words, guess what, etc 

 

We shortly discuss here two main methods that we might employ in order to 

automatically detect chunks in an essay: χ² (chi-squared) and point-wise mutual 

information. There are other methods that might be used as well, such as likelihood 

interval, likelihood ratio test, Cohran’s method and others. We have decided however 

to restrict our exploratory discussion to the two aforementioned methods. For both 

methods we need to have a very large corpus of native English use at our disposal, so 

as to get our frequency counts (and thus the probability of the constructions). Using 

only a learner-corpus will not suffice in the case of detecting collocations. In fact, a 

learner corpus is actually undesirable. We note that automatically detecting chunks is 
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a quite difficult and complex endeavor and the methods below are more suitable to 

detect some kinds of chunks than others. Some collocations, particles and fixed 

phrases for example, can be more easily identified by the methods we will discuss, 

whereas those chunks that contain partially fixed slots (e.g, take the bus) can trick a 

statistical system much more easily.  

 

a) χ²  (chi-squared) 

 

A chi-squared test works in the following way: it assumes that a Z number of 

variables (words in our case) are independent from each other (this is called the null- 

hypothesis) and by comparing the observed frequency of co-occurrence with the 

expected frequency of co-occurrence of these variables, it allows us to conclude 

whether their observed frequency of co-occurrence is statistically significant. If the 

answer is positive, we are then forced to reject the null-hypothesis and say that there 

is a correlation between those variables. The normal experimental design of a chi-

squared test uses two variables, but it is possible (despite substantially more 

complicated) to increase the number of variables we input to our chi-squared table. In 

a 2x2 table, it is important that the number of expected co-occurrences for each cell 

be at least 5 in order for the chi-squared test to work. We can see in Table 11 below a 

chi-squared table for calculating whether take action might be a chunk: 

 

 ACTION ¬ ACTION 

TAKE A B 

¬ TAKE 
 

C D 

 

Table 11: Chi-squared table for calculating whether “take action” is a chunk 

 

 

For each cell, we must calculate both the expected and the observed number of co-

occurrences. Cell A, for example, represents the expression “take action”, whereas 

cell B represents any expression that begins with the word take and is then followed 

by a word different from action. Since many of the words and phrases we might want 

to check for may not be very common, we need a very large corpus (the web itself is 
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the most desirable corpus) in order to get reliable counts. We will not go into the 

details of the calculation chi-squared in here, but we note that in the end, after 

calculating the necessary numbers, we end up with a single numerical value for that 

expression we are checking. This final number must be checked against a predefined 

number in a chi-squared table for the null-hypothesis. If the number output from our 

table is higher than the number referring to the null hypothesis (different so-called 

degrees of freedom are possible), then we can say we have a collocation, since our 

variables co-occur more often than change would grant it.  

 

This method might work quite well for idioms, since there is very little variation in 

idioms, given that they are a fixed and ordered block of words. Example of idioms are 

“like a bull in a china shop”, “better later than never”, etc. However, for other kinds 

of chunks, like “take action”, chi-squared does not work very well, since in the B cell 

above, we would have quite high numbers as well, given that other chunks starting 

with take such as “take the bus”, “take precautions”, “take office” and  “take part” are 

also common. Another issue is that some chunks might allow a flexible word order, 

such as “pick the boy up” and “pick up the boy”. Since chi-squared in our case works 

with a rigid word order, we might miss many counts for certain chunks.  

 

As we can see, even though chi-squared can be quite useful in some cases, it is by no 

means an exhaustive method for automatically detecting chunks. Point-wise mutual 

information (discussed below) tends to encounter the same sorts of issues, which 

might lead us to have to experiment with both statistical and rule-based methods for 

extracting chunks.  

 

b) point-wise mutual information 

 

Point-wise mutual information quantifies the difference between the probability of the 

co-occurrence of Z variables given a joint distribution and the probability of their co-

occurrence given their individual distributions. The formula for the point-wise mutual 

information between 2 variables can be found below: 
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The expression “take action” constitutes two variables, the first being the word take 

and the second the word action.  If we are analyzing, however, if a 4-word expression 

might be a chunk, however, the formula can be easily adapted (much more simply 

than chi-squared) to include more variables. In the case of “take action”, we would 

calculate the PMI between these two words in the following way: 

 

PMI (take, action) =     log C (take, action) / N 

-------------------------------- 

C (take) / N * C (action) / N 

 

In the formula above C stands for the number of times we have seen a specific word 

(count) and N stands for the number of tokens (or words) present in the corpus.  

The problem with PMI is similar to the one faced by chi-squared, namely the fact that 

many chunks are either partial or accept a flexible order. In the former case, we would 

get a high number in the denominator, since “take” would appear many times in the 

corpus followed by something else other than “action”. This will lead to a decrease in 

the probability that “take action” is a chunk. Naturally, we can experiment with 

different probability thresholds for affirming that a certain expressions is a chunk, but 

this is not likely to make the system much better.  

 

Given that neither chi-squared nor PMI is enough to automatically detect all types of 

chunks, a mixture of rule-based and statistical methods might be desirable, with the 

former taking preference when available. For chunks such as “it is easy to” and 

“better and better”, a template for these constructions, combined with part-of-speech 

tagging of both the native corpus and of the essays in question will probably lead to 

the identification of many chunks which would not be identified by the two statistical 

methods discussed above. Examples of templates would be Adjective1 + AND + 

Adjective1, IT IS + ADJECTIVE + TO and others.  

 

In sum, the task of automatically detecting chunks in an essay is extremely complex 

and only a process of trial and error, in which we experiment with many different 
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techniques such as the one cited above, might lead us towards a system capable of 

accurately extracting the types of chunks used by Verspoor and Xu (submitted).    

 

FEATURE 3: AUTTOT 

 

As previously mentioned, AUTTOT is a combination of both correctly used chunks 

(AUT+) and incorrectly used ones (AUT-).  AUT- is also complex to be automated. 

However, the same calculations we have to do for identifying AUT+ might also lead 

us to extracting AUT-. One possible way to go about the task would be to check for 

each structure (2 words or more) whether it qualifies as a chunks or not (using chi-

squared or PMI, for example). In the case that it is not a chunk, we would check for 

all the words in our structure, one at a time, if there are other words that could fit in 

their slot and thus turn the whole structure into a chunk (calculated through the means 

above). An example would be the structure “like a dog in a china shop”. As we know, 

this is not a correct chunk, given that the correct chunk would be “like a bull in a 

china shop”. We would start by calculating the probability that any other X word seen 

in our corpus in the position of like (and therefore before “a dog in a china shop”) 

might gives us a chunk. The sentence “as a dog in a china shop”, for example, would 

not qualify as a chunk. However, when we got to the word dog and replaced it by 

“bull”, we would get from of our statistics that the sentence “like a bull in a china 

shop” does indeed qualify for a chunk. In this way, we can assert that “as a dog in a 

china shop” is an incorrectly used chunk (AUT-), since there is a slightly different 

version of it that does qualify as a chunk. This would apply in the same way for 

incorrect chunks such as “it depends in you” or “I think it nice”, for example. 

However, it might judge some perfectly fine constructions such as “better and 

stronger” to be an incorrectly used chunk, since “better and better” might classify as 

being a chunk. Just as with AUT+, using templates might be a good idea, since 

something that “almost” fits the template might be judged to be an incorrect chunk. 

Other incorrect chunks, such as “pick up him” are more difficult to detect. Allowing a 

flexible word order seems to cause problems for identifying both correct and incorrect 

chunks.  
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FEATURE 4: CLAEMPTY (clauses without dependent clauses attached) 

 

Automating our CLAEMPTY10 feature is somewhat simpler. Dependent clauses are a 

group of words that do not express a complete thought, despite containing a subject 

and a verb. Quite often, dependent clauses are preceded by what might be called 

“dependent marker words”. These are words such as while, whether, unless, when, 

whenever, as, as if, because, before, even though, in order to, since, though, etc. If we 

find one of these words in an essay, there is a good chance that the clause that follows 

is a dependent clause. The main issue here is identifying the boundaries of the 

dependent and independent clauses (where each one begins and ends). Such a task can 

be achieved by means of applying a parser to the sentences. Once the parser identifies 

a noun phrase (NP) followed by a verb phrase (VP) we know we have a clause. If it 

follows one of our marker words, then this clause would likely be a dependent clause.  

 

In fact, there are already systems available that are able to identify the number of 

clauses and dependent clauses in a sentence. One such system is the one developed by 

Xiaofei Lu (2010), named L2 syntactic Complexity Analyzer. The number of 

sentences (S), the number of clauses per sentence (C/S) and the number of dependent 

clauses per clause (DC/C) in an English essay are three of the nine complexity indices 

that the system is able to identify, by its use of the Stanford parser and a parse-tree 

querier. With these three numbers, we are able to calculate our CLAEMPTY feature.  

 

FEATURE 5: PRES (percentage of either Simple Present or Present Perfect) 

 

A parser is able to identify syntactic phrases such as noun phrases (NPs), verb phrases 

(VPs) and others. Many grammar formalisms, such as HPSG and CFG, are able to 

identify the head of the phrase as well. Once we have identified the head of the VP, 

we can then analyze it for tense. The present tense in English (both in the Simple and 

Perfect aspects) is quite easy to analyze, since the only variation is found in the 3rd 

person singular (such as in The boy leaves home at 7am). Therefore, with the help of a 

parser and a morphemizer (which is capable of identifying specific morphemes in 
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words), we are able to get the counts for the feature PRES tense in our essays. Finite-

state techniques can also be employed but might not be necessary.  

 

FEATURE 6: FORM (errors in the form of the verb)  

 

Our feature FORM stands for errors in the form of a verb, such as in the sentence He 

go to school. The correct form is goes, since the verb must agree with the 3rd person 

singular subject. Another example of a FORM error would be He was shoot in the 

arm. Grammar formalisms such as HPSG11 are able to parse complete sentences and, 

given that it is a unification-based formalism (grammatical features have to match 

each other incrementally), it identifies problems with agreement, participle forms 

such as in the passive example above and other types. A formalism such as HPSG 

would allow us to get our counts for the FORM feature.  

 

FEATURE 7: ERRLEX (lexical errors, summed over all possible subtypes)  

 

The feature ERRLEX is in fact a sum of 7 kinds of lexical errors (cf. Index), 

including errors caused by L1-Dutch transfer, such as “a long boy”. Tetreault and 

Charodow (2009), in an article entitled Examining the Use of Region Web Counts for 

ESL Error Detection discuss a new approach to identifying errors in English and an 

L2/foreign language. By making use of web counts (such as the number of hits a 

search engine like Google provides), the basic idea is to compare the difference in the 

frequency of specific constructions (and their variants) in the web counts of a specific 

non-English speaking region (where English is not a first language) against a region 

where English is a first language (such as the USA or the UK, for example). In the 

case of our ERRLEX feature, it might be a good idea to use the Netherlands itself as 

the only region or one of the non-English speaking regions, since many of the lexical 

errors in our case are due to transfer from Dutch. A great discrepancy in the number 

of counts (naturally, different thresholds have to be experimented with) for the non-

English speaking regions and the English speaking regions indicates an error.  This 

method circumvents the very common issue of the unavailability of a very large 

learner corpus (with tagged errors for example) and also avoids the problems 
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associated with training a model solely on well-formed texts (native essays, for 

example). However, a combination of this approach with a model trained on tagged 

learner corpora might prove to be quite useful and complementary. 

 

FEATURE 8: ERRTOT (total amount of errors) 

 

Our last feature in the subset, ERRTOT, is a big bundle of other features, all related to 

errors. They represent lexical, mechanical, grammar, spelling, mechanics, 

punctuation, word order and others. The majority of these errors can be identified by 

the same methods mentioned above, namely, Tetreault and Chodorow’s system of 

using web counts, complemented with a model trained on a learner corpus from 

Dutch students writing in English. Many of the errors can already be identified by 

spelling and grammar checkers such as those present in Microsoft Word, for example.  

Punctuation errors, on the other hand, are likely to be more difficult to be 

automatically detected, since many parsing models do not take punctuation into 

account. Another problem with detecting punctuation problems based on web counts 

is that many of the “hits” provided by Google, for example, come from pages in 

which people do not pay much attention to punctuation when writing. Therefore, 

punctuation error detection might be the one type of error that needs to be trained on 

well-formed corpora. Another possibility for punctuation error detection would be to 

make use of a Hidden Markov Model of a higher order, such as one implemented 

through the Viterbi algorithm, trained on a large corpus such as newspaper articles, 

books, etc. Even here, however, we run into the problem that many of the structures 

and n-grams used by the Dutch students might not have been seen in the training data, 

in which case some sort of back-off model would have to be used.  

 

As we have seen in this section, some of the 8 features in the subset lend themselves 

much more easily to automation than others. AUT+, AUTTOT, ERRLEX and 

ERRTOT in particular, are much harder to automate. By providing LMT with access 

to only the 4 features that are the easiest to implement (TYPES, CLAEMPY, PRES 

and FORM), we manage to keep an accuracy of 55.5%. This is lower than the 62.58% 

we manage to achieve when all 8 features are used, but shows that once these 4 easier 

features are implemented in a system, LMT still functions well for our purposes, since 

the great majority of the misclassifications are still adjacent ones.  
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6. CONCLUSION AND FUTURE WORK 

 

We have shown in the scope of this thesis that machine learning techniques are quite 

fitting for the identification of those features that correlate the most with proficiency 

level. Once we manage to automate the 8 features that correlate the most with 

proficiency level and extract their values, Logistic Model Tree will prove to be a quite 

fitting classifier for the task of automatic essay scoring (AES). The LMT 

scheme/classifier, in particular, not only shows the best results in terms of accuracy 

and adjacent classifications but also approaches the classification task from a 

perspective that is more in tune with findings in the Applied Linguistics literature. As 

Verspoor and Xu (submitted) show, different features develop at a different pace 

through the levels and not always present a linear behavior. By selecting for each 

class (proficiency level) only those features that are important for that specific class 

and calculating the optimal classification coefficient for those features, LMT achieves 

the best accuracy possible. Moreover, by comparing the correlation coefficients of 

two groups of humans and that of a group of human versus our LMT system, we 

conclude that LMT’s classification meets the so-called gold standard. In other words, 

LMT performs just as well for our task and a group of trained human raters would.  

 

We are aware of the fact that we deal here with only part of the proficiency spectrum, 

since our highest level (level 5) is a high B1 level in the Common European 

Framework. In addition, we have only used essays written by Dutch students and 

some of our features might be tuned to phenomena typical of Dutch L1 interference 

on English, which might lead LMT to perform not so well on essays written by 

students whose L1 is not Dutch. With regard to the spectrum of our proficiency 

levels, we have every reason to believe that our system would work just as well if 

higher proficiency levels were to be included. Regarding the students’ L1, only a 

collection of holistically scored new essays by speakers of different L1s would 

provide us with the answer as to whether our current classifier would perform well on 

those essays. In case the accuracy is much lower, all we would need to do is to 

annotate our 8 features in these new essays and retrain a different classifier. Another 

possibility would be to merge both classifiers, the one for Dutch and the one for the 

new L1, so as to create a classifier that would handle more than just one L1.  
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A logical future step in our work is to develop a system that automatically extracts the 

values for our subset of 8 features and automatically feeds those to our LMT classifier 

in order to have a truly automated essay scoring system. Some of the features are 

certainly easier to be implemented than others, as we have described. In future work, 

we intend to develop such a system.   
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8. INDEX 

 

  DESCRIPTION OF FEATURES USED IN THE STUDY 

 

SENTENCE-LEVEL MEASURES: 

 

Utt: number of utterances in the essay, whereby “utterance” is the same as a T-

UNIT, defined by a main clause along with all subordinate clauses attached to it. 

The sentence “The man called when he got home” is a single utterance, for 

example. 

 

Words/Utt: average number of words per utterance. This is calculated by 

dividing the number of words by the number of utterances in the essay. In the 

single sentence “My teachers are friendly”, it is 4.  

 

Synsimp: percentage of simple sentences (containing one finite main clause and 

maybe including non-finite complex constructions). Ex: “My teachers are 

friendly”.  

 

Syncpx: percentage of complex sentences, that is, sentences containing a main 

clause and at least one finite dependent clause. Ex:”It was very nice and funny 

because we buyed all things the same”. 

 

Syncpd: percentage of compound sentences (containing two or more complete 

main clauses), with “complete” meaning that it is comprised of a subject and a 

finite predicate. Ex: “I have very much homework and I have enough to do.”  

 

Syncpdcpx: percentage of compound/complex sentences (with two or more 

complete main clauses and one or more finite dependent clauses). Ex: “Now I 

don’t know what to talk about anymore so I just say a lot of things that don’t make 

sense”.  
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Claadv: percentage of finite adverbial clauses. Ex: “It was very nice and funny 

because we buyed all things the same“  

 

Claempty: percentage of utterances with no dependent clauses. The utterance “I 

went to Bolivia with my family”, for example, has no dependent clauses.  

 

Clanom: percentage of finite nominal clauses (functioning as subject or object).  

Ex: “I said I haven’t saw them before”. 

 

Clanonfin: percentage of non-finite constructions, functioning as an adverb, 

nominal or a post-modifier. Ex: “In de back of the boat were dolphins jumping in 

our waves”.  

 

Clarel: percentage of finite clauses functioning as a post-modifier of a noun. Ex: 

“The most nice thing I’ve did was mountain biking”.  

 

Synfrag: percentage of incomplete sentences (fragments). ? 

 

Synphras:  percentage of incomplete sentences (phrases).Ex: “A heavy rain”. 

 

VERB-PHRASE MEASURES: 

 

Pres: percentage of verbs that are in the Present (perfect or simple). Ex: “walks, 

has gone” 

 

Pass: percentage or verbs which are in the Passive voice . Ex: “is written, was 

written”.  

 

Perf: percentage of verbs in the Perfect aspect (present or past). Ex: “has gone, 

had gone”.  
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Cond: umbrella term for modals, semi-modals, marginal modal verbs and 

participle verbs used in “if” like constructions. Ex: “will go, could have gone, went 

(in: if he went”).  

 

Prog: percentage of verbs in progressive aspect. Ex: “is walking, was walking.” 

 

CHUNKS: 

 

Aut-: a formulaic sequence not used correctly. Ex: It goes not with saying that 

she’ll manage. 

 

Aut+:  a formulaic sequence used correctly. Ex: She remembered it from the top of 

her head.  

 

Auttot: sum of Aut- and Aut+ values.  

 

 

LEXICAL: 

 

Morph: number of morphemes in the essay. The sentence “They left early with 

the cook-er” has 7 morphemes. NVX 

 

FORM: error in form of a verb. Ex: “He go to school”. 

 

USE: error in verb use. Ex: “He has gone to school yesterday”. 

 

Morph/Utt: the ratio between the numbers of morphemes and the number or 

utterances. Number of morphemes divided by number of utterances.  

 

Tokens: the number of tokens in the essay. The sentence “We arrived there on a 

Monday” has 6 tokens. NVX 
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Types: the number of unique tokens in the essay. The sentence “We left because 

we did not want to stay” has 8 types. NVX 

 

TTR: it is the type/token ratio. In this case, Guiraud’s index is used, which is 

calculated by dividing the number of types by the square root of the number of 

tokens, so as to avoid a negative correlation with increasing essay length. 

 

R1pc: the percentage of tokens found in a specific essay which are part of the 

100-80% bandwidth of frequent tokens used in the whole corpus of essays (that 

is, the 20% most used tokens within the whole corpus). 

 

R2pc: the percentage of tokens found in a specific essay which are part of the 80-

60% bandwidth of frequent tokens used in the whole corpus of essays. 

 

R3pc: the percentage of tokens found in a specific essay which are part of the 60-

40% bandwidth of frequent tokens used in the whole corpus of essays. 

 

R4pc: the percentage of tokens found in a specific essay which are part of the 40-

20% bandwidth of frequent tokens used in the whole corpus of essays. 

 

R5pc: the percentage of tokens found in a specific essay which are part of the 20-

0% bandwidth of frequent tokens used in the whole corpus of essays (that is, the 

20% least used tokens). 

 

TypR1pc: the percentage of types found in a specific essay which are part of the 

100-80% bandwidth of frequent types used in the whole corpus of essays (that 

is, the 20% most used types). 

 

TypR2pc: the percentage of types found in a specific essay which are part of the 

80-60% bandwidth of frequent types used in the whole corpus of essays. 

 

TypR3pc: the percentage of types found in a specific essay which are part of the 

60-40% bandwidth of frequent types used in the whole corpus of essays. 
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TypR4pc: the percentage of types found in a specific essay which are part of the 

40-20% bandwidth of frequent types used in the whole corpus of essays. 

 

TypR5pc: the percentage of types found in a specific essay which are part of the 

20-0% bandwidth of frequent types used in the whole corpus of essays (that is, 

the 20% least used types). 

 

ERRORS: 

 

Errempty: percentage or no error. 

 

Errgram: percentage of grammatical errors (summed over all possible 

subtypes).  

 

Errlex: percentage of lexical errors (summed over all possible subtypes).  

 

Errmech: percentage of mechanical errors (summed over all possible subtypes).  

 

Errpunct: percentage of punctuation errors (summed over all possible 

subtypes).  

 

Errspel: percentage of spelling errors (summed over all possible subtypes).  

 

Errwo: percentage of error in word order. Ex: “I will you pick up”. NVX 

 

Errtot: percentage of errors (summed over all possible subtypes). ”. 

 

Errgram 1: wrong use of apostrophe for plurals or third person singular. Ex: 

“weve, do’nt”.  

 

Errgram 2: incorrect use of singular or plural. Ex: “a very cool teachers”. 
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Errgram 3: Dutch-like word order involving a verb or a confusion regarding 

have-be. Ex: “I have not a friend” or “ I like it not”.  

 

Errgram 4: incorrect word form or left-out pronoun. Ex: “helping very good”.  

 

Errgram 5: a Dutch construction. Ex: “I have a lot of the lottery”, “a shark was 

escaped”.  

 

Errgram 6: another type of grammatical error.Ex: “how what it was like”. NVX.  

 

Errlex 1: use of a Dutch word. Ex: “wegenwacht, ik, etc”. 

 

Errlex 2: literal translation of a Dutch word into English. Ex: “A long boy”.  

 

Errlex 3: use of a wrong preposition in a lexical or grammatical chunk due to L1 

influence. Ex: “I’m on this school now”.  

 

Errlex 4: use of a wrong pronoun. Ex: “It are my best friends”.  

 

Errlex 5: literal translation of a Dutch idiom. Ex: “I slept with my cousin”. 

 

Errlex 10: adverb/adjective confusion. Ex: good/well.  

 

Errlexoth: all other kinds of lexical errors. Ex: “A (I) like”, “the school light (lies)”. 

 

Errmech 1: capitalization error. Ex: “i”. NVX 

 

Errmech 2: space error. Ex: schoolstreet. 

 

Errmech 3: apostrophe error. Ex: dont.  

 

Errmech 5: a typo. Ex: whit. 
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Errmech 21: space error not due to transfer from L1 (Dutch). Ex: ilooked.  

 

Errmech 22: space error due to transfer from L1 (Dutch). Ex: olivetree.  

 

Errmechoth: other mechanical errors.  

 

Errmisvb: percentage of verbs which were missing (but should not be).Ex: “I 

want to the school”. NVX 

 

Errpunct: the percentage of errors in punctuation. 

 

Errpunc1: comma splice. Ex: “I went on holiday with my whole family,we went to 

a camping and slept in a tent”. 

 

Errpunc 2: fused sentences. Ex: ”The school is big I like free hours of food”. NVX 

 

Errpunc 3: fragmented sentences. Ex: “But in the end, when we went back”.  

 

Errpuncoth: other punctuation errors. Ex: “I have two sisters; Thamires and 

Thatyana”. NVX 

 

Errspel: total number of spelling errors.  

 

Errsp 1: half-Dutch, half-English words. Ex: zwimming.  

 

Errsp 2: phonetically spelled words. Ex: Franse, to hef. 

 

Errsp 3: confusing homonyms. Ex:  to/too, see/sea  

 

Errpel 4: misspelling in difficult words. Ex: dependent/dependant.  

 

Errpel 5: other errors. Ex: heelo/hello.  
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Errspel 10: a morphological error. Ex: easyer.  

  

Errpel 31: confusing words like awfull/awful. 

 

Erroth: errors which are neither lexical, in spelling, in mechanics, in grammar, in 

word order or in punctuation. Ex: “I was very happy with my to see my class”. 

 

Errtot: total amount of errors. 

 

NON-LINGUISTIC FEATURES:  

 

TTO: Indicates whether the student attends a bilingual school (around 15 hours 

a week of English exposure) or a normal school (around 3 hours a week of 

English exposure).  

 

Grade: student’s grade at school (either 1st grade or 3rd grade)  

 

Level: the student’s proficiency level as determined by holistic scoring of his/her 

essay.  

 

 

 

 

 

      END OF INDEX 
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