MASTER THESIS

AUTOMATIC ESSAY SCORING:
MACHINE LEARNING MEETS APPLIED LINGUISTICS

Victor Dias de Oliveira Santos

July, 2011
" / UNIVERSITAT
rijksuniversiteit DES
SAARLANDES

groningen

European Masters in Language and Communication Technologies

Supervisors:
Prof. John Nerbonne
Prof.Marjolijn Verspoor

Rijksuniversiteit Groningen / University of Groningen

Co-supervisor:
Prof. Manfred Pinkal

Universitat des Saarlandes / University of Saarland

Declaration of the author

Eidesstattliche Erklirung

Hiermit erklare ich, dass ich die vorliegende Arbeit selbststiandig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Declaration

[hereby confirm that the thesis presented here is my own work, with all assistance
acknowledged.

Signature: Victor D.O. Santos Date

Abstract

Automated Essay Scoring (AES) has for quite a few years now attracted
substantial attention from government, language researchers and others
interested in automatically assessing language proficiency. Sometimes the task is
tackled by focusing on many variables (many of which are not relevant for the
construct at hand) and sometimes by focusing on few (there are even cases of
univariate analysis). However, typical real-word data includes various attributes,
only a few of which are actually relevant to the true target concept (Landwehr,
Hall, & Frank, 2005). In this Master thesis, we investigate several machine
learning algorithms which are part of the widely used WEKA package (University
of Waikato) for data mining and analyze them not only in terms of how well they
perform with regard to their accuracy in assessing essays in English manually
annotated for more than 81 features, but also with regard to how they can be
said to reflect research findings in Applied Linguistics. Some models, such as
Logistic Model Tree (LMT) achieve better accuracy than others and expose the
variables that correlate the most with proficiency level and which function most
importantly in classification. We also explore the importance of feature selection
for improving classifiers and to what extent automatic essay scoring systems and
human raters might be said to differ in their scoring procedures. Finally, we
explore how the variables that have been found to correlate the most with
proficiency level can be implemented in an automatic system. The dataset used
in our experiments comes from English essays written by Dutch students and
collected within the framework of the OTTO project, which is financed by the
OCW (Dutch Ministry or Education), European Platform and Network of
Bilingual schools.

Acknowledgment

First, I would like to express my gratitude and thanks to my thesis supervisors:
John Nerbonne (University of Groningen), Marjolijn Verspoor (University of
Groningen) and Manfred Pinkal (University of Saarland). Thanks for taking the
time to answer the sometimes overwhelming number of emails I would send on
a single day and for our laid-back and very fruitful discussions and meetings. I
have learned a lot with you. It has been a pleasure working under your

supervision and I truly hope we can collaborate further sometime soon.

Secondly, I would like to thank my mother for her perfect mixture of
unconditional love, support and wisdom to say the right thing at the right time

(even if it might be hard to hear and swallow sometimes).

Thirdly, I would like to thank all the great friends I have made during this
Master’s program in Language and Communication Technology for their support
and for all the good times we have enjoyed together, which I am sure have
contributed to my success in the program. In special, [would like to thank my
good friend and former LCT student Yevgeni Berzak for being such a wise
person, for his support throughout the program and for his friendship. A special
thanks goes to the local coordinator at the University of Groningen, Gosse
Bouma, for his patience and easy-going attitude to problem solving and to
Bobbye Pernice and Maria Jacob, at the University of Saarland, for always making

things less complicated than they needed to be.

To an amazing woman and (my) mother,

Maria Elisa de Oliveira Santos

TABLE OF CONTENTS

INTRODUCTION
1. MACHINE LEARNINGoiiririetneeeeesetssssesssssssssssssssssss s ssssssssssssssssssssssssssssssssssans 9
2. DECISION TREES ...ttt sssssessssss st ssssssssssssssssssanes 11
2.1 DO INItION coeeeceeeceseectetsee ettt 11
2.2 —The BasiC Id@a ..ot sesssssssss st ssssssssssanes 12
2.3 -“Divide and CONQUET”omrmenemrnemessensssesssanes 12
2.4 Building a DecCiSion TTee......ccvrereererenerresissssesessssesssessessssessessssessessssessssssnens 13
2.5 OptimiziNng DECISION TIEES.....overvreererrrrsessessesssssssssssssssesssssssssssssssssssssasesns 20
2.6 DT schemes used in oUr €XPEeriMentsconererereeresesesnesssssnesssssssessssens 22
3. NAIVE BAYES......oooicerrrremmesmessesssssssssssssssssessssssssessssssssssssssssssssssssssesssssessessssssese 30
4. PERFORMANCE OF DT AND NAIVE BAYESIAN CLASSIFIERS ON OUR. 33
LANGUAGE DATA........oo ettt sses st ssssssss s s sssssssssssssssssssnes 33
4.1 Data iNfOrMAtiON .c.ceceeeeeceeeceeeeee s s ss s 33
4.2 The three different runs of the experimentsccoeeerresresressessenens 36
4.3 = RESUILS et 37
4.4 The importance of Pre-Processing the data.......cccooeeenenrenrencessessenenns 41
4.5 Misclassification EITOTScoenenceneeseineissesessesss e ssssssssssssssssssssens 47
4.6 Mean SCOTES (LMT)..c.eeeereeeeeeeeessessessessessens 55
4.7 The best classifier and parameters for our task: LMTccccocneereeneen. 56
4.8 Pearson’s correlation coefficient........cenneennensenneeseeneesessessesseseens 59
5. DISCUSSIONoooiiriicenrieeesressessessesessssssssssesssssssssesessssssssssessssssessessssssssssssssssssssssssssssnes 61

5.1 LMT, our initial features and our feature subset in the context of
Automatic ESSQY SCOTING....cviriirreeirisessreseessessss s esessssesens 61

5.2 LMT, our initial features and our feature subset in the context of

Second Language DevelopmeNt.........rinenensinenensesessessssessessssessessssessssssnens 62
5.3 Automation of OUr 8 fEATUIES......c.cvueererreeeeererseesseeseesersesses s 71
6. CONCLUSION AND FUTURE WORKorreiessinseessinessesssesesssssesssessas 80
7. REFERENCES ...ttt sssss st s ssss s ssssssanes 82

B INDEX ... s 85

INTRODUCTION 7

INTRODUCTION

Automated Essay Scoring (AES) has for quite a few years attracted substantial
attention from government, language researchers and other parties interested in
automatically assessing language proficiency. One of the best known examples of
Automated Essay Scoring is the system used in the TOEFL exam (Test of English
as a Foreign Language), called E-rater. When it comes to AES, the task is
sometimes tackled by focusing on many variables (many of which may not be
relevant for the construct at hand) and sometimes by focusing on few (there
even being cases of univariate analysis, in which a single feature/variable is
used). However, typical real-word data includes various attributes, only a few of
which are actually relevant to the true target concept (Landwehr, Hall, & Frank,

2005).

In this thesis, we investigate to what extent machine learning tools and
techniques, such as those implemented in the widely used WEKA package
(University of Waikato) can help us with our task at hand: classifying/scoring
essays according to English proficiency level. We are also interested in how
machine learning can help us make the task of automatic essay scoring more
feasible, by investigating which features are more indicative of proficiency level
and how they lend themselves to automatic, with a view to a truly automatic
essay scoring system. Given that machine learning is quite fitting for dealing
with a large number of features and optimal at finding hidden patterns in data,
we want to explore how suitable these algorithms are for dealing with the
delicate and multivariate reality of second language proficiency. We also
investigate if and how the outputs of some classifiers might reflect findings and
common practice in Applied Linguistics when it comes to proficiency level
assessment. Finally, we explore whether there might be fundamental differences
in how Automatic Scoring Systems and human raters differ in their scoring

procedures.

INTRODUCTION 8

Chapter 1 introduces Machine Learning to the reader. Chapter 2 is anoverview of
what Decision Trees are, how they are built and optimized and includes a short
description of each of the DT classifiers we have explored. In Chapter 3, we
introduce Bayesian Classifiers and show how their probabilistic approach to
classification differs from that used in Decision Trees. Chapter 4 introduces the
reader to our language data (set of holistically scored essays, annotated for more
than 80 features) and deals with the results of the classifiers in our essay-scoring
task in terms of accuracy, adjacent classifications, errors, mean scores, and
correlation coefficient with human raters. The best classifier for our task,
namely, Logistic Model Tree, is also discussed in this chapter. In Chapter 5 we
discuss how our approach and results relate to work and findings in both the
Automatic Essay Scoring and the Second Language Development literatures.

Finally, Chapter 6 summarizes our work and presents possible future endeavors.

1. MACHINE LEARNING 9

1. MACHINE LEARNING

The Department of Engineering at Cambridge University defines machine

learning as follows:

Machine learning is a multidisciplinary field of research focusing on the
mathematical foundations and practical applications of systems that learn, reason

and act. Machine learning underpins many modern technologies, such as speech
recognition, robotics, Internet search, bioinformatics, and more generally the
analysis and modeling of large complex data. Machine learning makes extensive
use of computational and statistical methods, and takes inspiration from biological

learning systems. 1

It is important to add here that one of the tasks of machine learning is to find

patterns in and make inferences based on unstructured data.

One of the traditional areas of application for machine learning is classification,
which is precisely what we intend to do with our collection of essays. Based on
our corpus of essays, we would like to have a system that is able to classify each
essay into one of 6 possible levels (0-5) with regard to English proficiency. Two
of the methods used in Machine Learning for classification are: supervised
methods and unsupervised methods. In supervised methods, the system
(classifier) has access to the class label of each data sample and takes the class
into account when building a classifier, by looking at the specific characteristics
(features and their corresponding values) of each class. In unsupervised
methods, the system has no access to class labels and has somehow to infer what
(and often how many) the real classes present in the data are. This can be done,
for example, through clustering, that is, grouping together data samples which
show similar patterns. Given that all the essays we use in our work have already

been holistically scored by human raters (we know the proficiency level of each

thttp://cbl.eng.cam.ac.uk/Public/MLG/

1. MACHINE LEARNING 10

essay), we will make use only of supervised methods. The algorithms/classifiers
used in machine learning belong to several distinct families, each one tackling
problems in specific ways. The two families of classifiers that we will explore in
this thesis are: Decision Trees and Bayesian classifiers. These will be explained in
more detail in future sections. Given the large number of features annotated in
each essay and the large number of essays themselves, machine learning
(performed here by means of the WEKA software) seems perfect for our task at
hand. In addition, we will seek classifiers which not only show good classification
accuracy but which are also transparent, that is, easy to interpret in the sense of

(applied) linguistics.

We now turn to Decision Tree schemes and explore what they are and how
decision trees can be built and optimized. It is important that the reader

understand this in order to see why DTs are suitable for our essay-scoring task.

2. DECISION TREES 11

2. DECISION TREES

In this section, we look closely at what decision trees are and how they can be
used in order to assign proficiency level to each one of the essays in our corpus
based on the value of each feature. Moreover, we explore how decision trees are
built and how they can be optimized by presenting the decision tree schemes we

have experimented with in the scope of our work.

2.1. Definition

Decision Trees (DTs) are a specific machine learning scheme which is guided by
what is usually termed as a “divide and conquer” approach. The basic idea of this
approach is the following: if we must deal with a problem which may be too hard
to tackle in its entirety all at once, let us then break it down into various sub-
problems/tasks (thus “dividing”) and find a solution to each of these sub-
problems, one at a time. In the end, we will end up with a solution to our original

problem (thus “conquering”).

In a classification problem, one is interested in assigning a class to a given input,
based on the characteristics (attributes/features and their corresponding
values) of that input. Classes (we will not deal with numeric classes in the
examples below, but only with nominal/categorical ones) can come in basically

an infinite number of shapes and colors, so to speak, as exemplified below:

a) Yes or No (in the case of deciding whether someone should be hired
or not)

b) German, Hungarian, Portuguese, Dutch, Spanish (when trying to
decide the language a document is written in, for example)

c) Zero, One, Two, Three, Four or Five (if trying to decide which level of

English a certain student is at based on an essay they have written)

2. DECISION TREES 12

d) Spam/Non-Spam (when deciding whether a certain email is a spam
or not).

e) and so forth.

In all these problems, the scenario is the same. We have a group of features and
corresponding values that we must analyze in order to decide which class a
given sample (be it an essay, some weather data or an email) belongs to, in

opposition to all the other classes it does NOT belong to.

Within the family of classifiers we call Decision Trees; there are several possible
implementations, each one with their own specificities and methods.
Nevertheless, the “divide and conquer” approach defined above applies to all of

them. We will briefly look at different implementations of DTs in section 2.6.

2.2 - The Basic Idea

Decision Trees are fairly simple to understand. They are basically a way of
sorting data into different paths, each of which will eventually lead to a
classification. The tree will look similar to a genealogical tree from a distance.
Each node inherits all the attribute values of their ancestors. At each point/node
in a decision tree (with the exception of leaves), a question (or a combination of
questions) is asked and according to the answer, data samples are allocated to
one path/branch or another of the tree. This way, we start with our complete
collection of samples at the top node of the tree and from then on at each node in
the tree only a subset of the samples will be allocated to a specific branch. This
process continues until no more questions are asked (no more
attributes/features are checked) and a final classification is made. In the next

section we exemplify this process, called “divide and conquer”, in more detail.

2.3 - “Divide and Conquer”

Every DT looks exactly the same at its root, that is, at its top-most node. A node

in a DT, as mentioned above, is basically a point in the tree at which a decision

2. DECISION TREES 13

has to be made. The root node (from where the tree starts growing) contains all
the samples that we need to classify. Consequently, this is the least informative
point in the tree. From the root node, we must choose one attribute/variable to
analyze in the samples in order to decide how to treat those samples from that
point on (see the invented language identification example in Figure 1 below).
We must therefore further grow the tree, creating branches that will leave the
root node, each one associated with one specific value of the attribute/feature
upon which they were created and containing a subset of the samples present at

the root node.

root
(200 docs)

ercentage of lerter e’ ercentage of lecer "
p 2 £

< 0.08 == (.08
MNode | MNode 2
(79 docs) (121 docs)

Figure 1 - A possible language identification/classification task
In our example above, after checking how often the letter “e” appears in each
document, we are able to make an initial decision as to how to deal with a
specific document from that point onwards. DTs have two types of nodes:
internal nodes and leaf nodes. Internal nodes are nodes in the tree that have
child nodes themselves, whereas leaf nodes are nodes that do not branch any

further.

2.4 Building a Decision Tree

Before building a decision tree, all we have is a collection of items (samples) we
want to infer patterns from and which will hopefully help us classify unseen data
in the future. All these items are at a place in the tree that we call “the root node”

(see previous section), since it is from this node that we will start growing our

2. DECISION TREES 14

tree. The standard procedure of building DTs is by checking among all possible
attributes in our training set for the one that helps the most in reducing our
uncertainty (also referred to as “entropy”) as to which class a training sample
belongs to and therefore helps to separate samples which are likely to belong

together from those that are likely to be different.

We have chosen to use a traditional example in machine learning, namely “the
weather problem”, due to both its small number of attributes and to its intuitive
understanding. It will help us with understanding the terminology needed. In
this section and sections to follow, all tables and figures pertaining to the
weather problem have been taken either from the book Data Mining: Practical
Machine Learning Tools and Techniques, by Ian H. Witten & Eibe Frank (2005) or
from running an analysis of the weather data in WEKA itself. The table below

contains the data with respect to the weather problem:

Relation: weather
Nao. | outlook | temperature | humidity | windy | play

| Mominal Numeric Mumeric | Mominal | Mominal
1 SUnNMy 85.0 85.0 FALSE no
2 sunny 80.0 90.0 TRUE no
3 overcast 83.0 86.0 FALSE vyes
4 rainy 70.0 96.0 FALSE wes
5 rainy 68.0 80.0 FALSE wes
B rainy 65.0 JO.0TRUE no
T overcast 64.0 B65.0 TRUE ves
8 SUNMy 72.0 95.0 FALSE no
9 SUNNY 69.0 70.0 FALSE wes
10 rainy 75.0 80.0 FALSE vyes
11 sunny 75.0 FO.0TRUE yes
12 overcast 72.0 90.0 TRUE wes
13 owvercast 81.0 75.0 FALSE wes
14 rainy 71.0 91.0 TRUE no

Figure 2 -Weather data (taken from WEKA)

We have five variables and 14 instances (training samples) from which we have
to build our DT (notice that this is fully supervised, since we know whether there
will be a game or not). There are 4 predictor variables/attributes
(outlook,temperature, humidity and windy), which are used to help predict

another variable, called the class variable(in our case, the variable play). Some of

2. DECISION TREES 15

the attributes are numeric (temperature and humidity), whereas others are
nominal (outlook, windy and play). Numeric attributes (sometimes also loosely
referred to as “continuous”) have as values either integers or real numbers,
whereas nominal attributes (also called categorical) have a small set of possible

values.

For each node, we have to decide which attribute should be used to split it and
also whether we should indeed split that specific node or simply turn it into a
leaf node, at which a final classification will be made as to which class a sample
that arrived at that node belongs to. The common ways of doing this are outlined
in section 2.5. We can see below (Figure 3) a fully-grown tree for the weather

problem:

= sunmy = Overcast = rainy

<= 75 > 75 = TRUE = FALSE

e

Figure 3 - A possible DT for the weather data (visualization in WEKA)

We now proceed to showing the two most commonly used measures in deciding
which attribute to use for splitting a node, namely, Information Gain and the Gini
Index. Due to a lack of space, we will not discuss other methods, such as Gain

Ratio or Purity (how pure in terms of containing only one class a node is).

2. DECISION TREES 16

2.4.1 Information Gain

The notion of Information Gain (IG) is dependent on the more basic notion of
information (or entropy). The information in a system can be said to be higher
the more uncertainty there is in the system, that is, the more difficult it is to
predict an outcome generated by the system. In a simple case, if we have 3
colored balls, for example, and each one is of a different color, our chances of
guessing the color of a randomly drawn ball is about 33%. However, if we had 10
differently colored balls, our chances would be 10%. In this way, the second
scenario/system is said to contain more information than the first. Information
is usually calculated through a mathematical measure called entropy (the higher
the entropy the higher the information and therefore the higher the uncertainty),
represented by a capital (H). The formula for calculating entropy (whose result is

usually given in bits due to the base of the log often being 2) is the following:

H(X) = ~ Y p(z;) logp(x:)

i=1

It is important to note here that P is a probability distribution, in which the
probabilities of each possible and discrete value P; can take must add up to 1.
Calculating the entropy at the root node of our weather problem, we get the

following:
Entropy atroot=-5/14 *logz 5/14 - 9/14 *1log29/14 = 0.940 bits

We are now ready to calculate Information Gain for each attribute on which we
might consider splitting a certain node. The basic idea behind it is to compare
how much reduction in entropy/information each attribute is able to provide for
our data and pick the one that provides the most reduction. We calculate IG for
each possible attribute with relation to a specific node in the following manner,

with the index i iterating over the child nodes of the current node:

2. DECISION TREES 17

n
IG (attributey) = entropy (current_node) - Z P (child_node) ; * entropy (child_node)

i=1

Splitting on the attribute “outlook”, for example, at our root node, gives us the

outcome shown in Figure 4:

sunny rainy

overcast

yes yes yes
yes yes yes
no yes yes
no yes no
no no

Figure 4: First split on weather data

(taken from ‘Data Mining Practical Machine Learning Tools and Techniques’)

The IG for attribute “outlook” in our weather problem is therefore:

IG (outlook) = info [5,9] - info [2,3], [4,0], [3,2] =
IG (outlook) = 0.940 - [5/14 * 0.971 + 4/14 * 0 + 5/14 * 0.971] =
0.940 - 0.693 = 0.247 bits

If we calculate the IG for the other 3 attributes as well, we get:
IG (temperature) = 0.029 bits
IG (windy) = 0.048 bits

IG (humidity) = 0.152 bits

Given that we are interested in choosing the attribute that leads to a maximum

increase in Information Gain, we decide therefore to split on the attribute

2. DECISION TREES 18

outlook at the root node. We do this recursively for nodes created subsequently,
and no descendent nodes of a node should be split on a nominal attribute already
used further above in its path. With numerical attributes, this is fine. As we will
shortly explore (section 2.5), DTs usually stop growing either when we run out
of attributes to split on or when we decide that a certain node should not be split
any further (this might be done during the training phase or based on a
development set, after the tree has first been fully grown). In section 2.5 we also
discuss two possible ways of pruning decision trees, that is, making them smaller

and less overfit for training data, namely tree raisingandtree substitution.
2.4.2 Gini Index

Another common method for deciding on which attiébio split a node is calle@ini
Index(referred to as onlgini from now on), whose formula for a given node Nhis

following:

Gini(N) = 1 — (P2 + P2 + P +...+ P9

where P ...P, are the relative frequencies of classe®M®, present at the node
Calculating the Gini at our root node, we have:

Gini (root) = 1 — (5/14+9/14%) =
1-(0.413 + 0.127) 8.459

We then calculate the Gini for each possible attribute with relation to a specific
node in the following manner:

n
Gini (attributey) = Z P (child_node) ; * Gini (child_node)

i=1

Splitting on the attribute outlook, for example, at our root node, gives us then the

following Gini value for this split:

2. DECISION TREES 19

Gini (outlook) = 5/14 * Gini (sunny) + 4/14 * Gini (overcast) + 5/14 * Gini
(rainy) = 5/14 * [1-(2/5)%+ (3/5)?] + 4/14 * [1-(4/4)%] + 5/14 * [1-(2/5)%+
(3/5)7

=5/14*[1-0.376]+4/14*0+5/14*[1-0.376]

= 2*(5/14*0.624)

= 0.446

Calculating the Gini for attributes such as humidity and temperature is a little
trickier in our case, given that these are not nominal attributes (in contrast to
outlook or windy), but numerical ones. Numerical attributes need first to be
discretized (grouped into a limited number of intervals) before being used in a
task such as calculating the Gini. The typical way to discretize numeric attributes
is by grouping the neighboring values together into interval groups in a way that
we maximize the presence of a majority class in each of the groups. Due to the
scope of this thesis, however, we will not get into the details of discretization and
refer the reader to the book Data Mining - Practical Machine Learning Tools and
Techniques (Witten & Frank, 2005) instead. We will use here a nominal version
of the data (Figure 5) in order to calculate the Gini for the attributes windy,

temperature and humidity:

Relation: weather.symbolic
Mo. | outlook | temperature | humidity | windy | play

o Mominal Mominal Mominal | Mominal | Nominal
1 sunny hot high FALSE no
2 sunny hot high TRUE no
3 overcast hot high FALSE yes
4 rainy mild high FALSE ves
5 rainy cool normal FALSE yes
6 rainy cool normal TRUE no
7 overcast cool normal TRUE yes
8 sunny mild high FALSE no
9 sunny cool normal FALSE yes
10 rainy mild normal FALSE yes
11 sunny mild normal TRUE yes
12 overcast mild high TRUE yes
13 overcast hot normal FALSE yes
14 rainy mild high TRUE no

Figure 5— Weather data (nominal version, taken from WEKA)

2. DECISION TREES 20

Gini (humidity) =7/14 * Gini (high) + 7/14 * Gini (normal)
=7/14*[1-(3/7)%+ (4/7)?] + 7/14 * [1-(6/7)%+ (1/7)?]
=0.24489796 + 0.12244898

=0.367

Gini (windy) = 8/14 * Gini (false) + 6/14 * Gini (true)
=8/14* [1-(6/8)%+ (2/8)2] + 6/14 * [1-(3/6)%+ (3/6)%]
=0.214285... + 0.214285

=0.428

Gini (temperature) = 4/14 * Gini (cool) + 4/14 * Gini (hot) + 6/14 * Gini (mild)
= 4/14 * [1-(3/4)%+ (1/4)%] + 4/14 * [1-(2/4)*+ (2/4)?] + 6/14 * [1-(4/6)%+
(2/6)7]

=0.1071... + 0.1428... + 0.1904...

= 0.4403

Since we are interested in minimizing the Gini, we will choose the attribute
humidity to split the root node. As we can see, Informat@ain and Gini lead to
different choices of attributes. This is due to thet that both measurements have
their specificities: IG is biased towards attritsuteith a large number of values and
Gini prefers splits that lead to maximizing theganece of a single class after the split.

Which one will turn out to be best will depend on the results on a test set.

2.5 Optimizing Decision Trees

A common practice in building Decision Trees is to first fully grow the tree (so
that each leaf only contains samples belonging to one class) and then modify it.
The inherent problem in using a fully-grown tree in a test set is that the model
that has been built during the training phrase might, despite having very good
classification performance on the training data, show poor classification results

on the test set. This is due to the fact that the decision tree built might overfit the

2. DECISION TREES 21

training data and be therefore too specific, that is, customized to the training set.
Decision Trees that accept some degree of impurity in their leaves usually do
better when applied to new data. Modifying the fully grown tree so that it
becomes more suitable for classifying new data is called post-pruning and
usually consists of one (or both) of the following operations: subtree

replacement and subtree raising.

2.5.1 Subtree replacement

Subtree replacement involves eliminating internal nodes of part of a tree
(subtree) and replacing them by a leaf node found at the bottom of the subtree
being eliminated. Figure 6 below, which represents labor negotiations in Canada,
clarifies the idea. The label “good” indicates that both labor and management

agreed on a specific contract. The label "bad” indicates that no agreement was

reached.
e increase ge merease lirst year
first year R
f_ 2 =25 2.5
— ke V. £ . -
VW SIatUIoeyY I ¥ h] bag SLaTUTOry Noas:
= 20 \.’ J < TJ * 10 =
s I S . — !
| bad health plan contributl good | ‘ good | w !
L T —— T~ . =
o |: 1 fu f
’ ' % - A .
1 had
{a) bad I good bad ‘ biad I good (b}
| ! 4

Figure 6 (subtree replacement): Taken from the book ‘Data Mining:

Practical Machine Learning Tools and Techniques’ (modified)

As we can see, the whole subtree starting at the node working hours per week in

Figure 6a has been replaced by the its leaf node bad in Figure 6b.

2. DECISION TREES 22

2.5.2 Subtree raising

The idea of subtree raising is quite self-explanatory. A subtree that used to be
lower down in a tree moves up to occupy a higher position, substituted for what

was previously found in that position (Figure 7).

|
L
B E

{a)

Figure 7 (subtree raising): Taken from the book ‘Data Mining: Practical Machine

Learning Tools and Techniques’

As we see, node C has been raised and substituted for node B.

We have seen in this chapter that there are various ways to build and optimize
decision trees. The choice of method is usually driven by the accuracy of
classification and a balance must be reached between having a decision tree built
based on and optimized for the training data (which therefore classifies those
training samples very well) and a tree that is able to perform well on unseen
(new) test data. In the next section (section 2.6) we deal with each of the DT
classifiers used in our experiments, each one with their own built-in ways of

deciding on the optimal final decision tree.

2 .6 DT schemes used in our experiments

For the purposes of classifying our data (OTTO essay collection in English), we

have experimented with 10 different decision tree schemes found in the WEKA

2. DECISION TREES 23

package (version 3.6.4): J48, BFTree, Decision Stump, FT, LADTree, LMT, NBTree,
Random Forest, REPTree and Simple Cart. It would be beyond the scope of this
thesis to describe each one in detail. Instead, we will briefly comment on 8 of
them and discuss 2 of them (J48 and LMT) in more detail. The J48 scheme (an
implementation in WEKA of the commonly used C4.5 algorithm) is an algorithm
that has a long history in classification and which usually shows very good
results. LMT, on the other hand, is a more recently-developed classifier and the
one which proved to be the best for our task, not only in terms of classification
accuracy but also in terms of better representing the construct we deal with in

this thesis, namely, (written) language proficiency.

2.6.1 BFTree

This is a Best First Decision Tree classifier. Instead of deciding beforehand on a
fixed way of expanding the nodes (breadth-first or depth-first), BFTree expands
whichever node is most promising. In addition, it is able to keep track of the
subsets of attributes applied so far and can thus go back and change some
previous configuration if necessary. The Gini is the default measurement used for

deciding which attribute to split on.

2.6.2 Decision Stump

A Decision Stump is a very simple DT, which is made up of the root node and 3
child nodes (tertiary split). Therefore, a single attribute is selected to split the
root node and the 3 created nodes are leaf nodes (at which a classification is
made). One of the 3 branches coming out of the root node is reserved for missing

values (if any) of the chosen attribute.

2.6.3 FT (Functional Tree)

Instead of checking at a certain point in the tree for one single attribute for all

the classes, Functional Trees learn which attributes are more salient for each

class at each point (node) in the tree and have the capacity to check for several

2. DECISION TREES 24

attributes at a node, by using a constructor function. This is somehow similar to
LMT (however, LMTs tend to be much more compact), which we will shortly

discuss.

2.6.4 LADTree

The LADTree scheme (Logitboost Alternating Decisidree) builds alternating
decision trees that are optimized for a two-clasdblem (the classification problem
we deal with in this thesis is a 6-class problemj ¢hat make use of boosting. At

each boosting iteration, both split nodes and ptednodes are added to the tree.

2.6.5 NBTree (Naive Bayesian Tree)

NBTree is a hybrid classifier: its structure istthfa decision tree as we have seen so
far but its leaves are Naive Bayesian classifidngchvtake into consideration how
probable each feature value (in the training sajmplegiven a certain class. In each
leaf, the class assigned to a sample is the onarthgimizes the probability of the
feature values found in this sample. In order toidkewhether a certain node should

be split or turned into a NB classifier, cross-gation is used.

2.6.6 Random Forest

This algorithm constructs a forest of random treRandom trees are built by
considering at each node a K number of random rfeatfout of F features available)
for splitting that node on. This is done for eacdd& and no pruning is performed.
The random forest algorithm is a collection of ramdtrees and the class it assigns to
a sample item is the mode of the classes assignétht item by the random trees in

the collection.

2. DECISION TREES 25

2.6.7 REPTree

As described in Data Mining: Practical Machine Learning Tools and Techniques
(2r Edition), “REPTree builds a decision or regression tree using information
gain/variance reduction and prunes it using reduced-error pruning. Optimized
for speed, it only sorts values for numeric attributes once and deals with missing

values by splitting instances into pieces, as C4.5 does.”.

2.6.8 Simple Cart

Simple Cart is a top-down, depth-first divide-and-conquer algorithm which uses
the Gini for deciding which attribute to split on. It uses minimal cost-complexity

for pruning and contains classifiers at the leaves.

2.6.9 (4.5 (a.k.a “J48” in Weka)

The C4.5 algorithm was developed by Ross Quinlan (Quinlan, 1993) and builds
upon Quinlan’s previous ID3 algorithm (Quinlan, 1986). C4.5 is probably the
most widely used DT algorithm in machine learning and a benchmark algorithm
against whose performance any other algorithm should desirably be compared.
It is a top-down, depth-first algorithm and uses a divide-and-conquer strategy.
For numerical attributes, C4.5 makes use of binary splits (see figure 8 below) and
for nominal attributes (predictor classes) it might use other n-ary splits (binary,
tertiary, etc.). The default is to perform post-pruning and in the pre-pruning
training process, nodes are split until they are pure (that is, contain only samples
belonging to a single class). Information Gain (IG) is used to decide which
attribute is used for splitting a certain node and in the post-pruning process
estimation of error is calculated by supposing that every sample that reaches a
leaf will be classified as belonging to the majority class in that leaf. We can see
below in Figure 8 what a typical C4.5 Decision Tree looks like, in this case

applied to the weather data set that comes with WEKA:

2. DECISION TREES 26

Tree View

-

= sunny = gvercast = rainy

<= 75 > 75 = TRUE = FALSE

H
b
i
H

Figure 8: The C4.5 algorithm applied to the weatherdata (visualization taken from
WEKA)

2.6.10 LMT (Logistic Model Tree)

A quite recent development in decision tree algorithms is the Logistic Model
Tree, or LMT (Landwehr, Hall & Frank, 2005), which has shown quite good
results and insights for our particular data and construct and hand (language
proficiency level). The algorithm makes use of logistic regression analysis in
order to build the tree and, similarly to some of the algorithms seen above,
learns not only which independent variables (predictor classes) are most
relevant for predicting the dependent variable (target class), but also which
attributes (predictor classes) are most relevant to each possible value the target
class might take (in our case, levels 0 to 5).The main difference in the approach
employed by LMT, however, is that it arrives at a single optimal value of a given
attribute for a certain class, thus making the model much more compact than the
majority of models above. Therefore, not only is LMT an algorithm that produces

more compact trees, but also an algorithm whose results are more intuitive and

2. DECISION TREES 27

easier to interpret. As Landwehr, Hall & Frank put it (2005), “a more natural
way to deal with classification tasks is to use a combination of a tree structure
and logistic regression models resulting in a single tree” (Landwehr, Hall &
Frank, 2005a: 161-205). The authors also note that “typical real world data
includes various attributes, only a few of which are actually relevant to the true
target concept”. We can conclude that LMT seems to be a natural candidate to

explain our complex concept/construct: language proficiency.

The basic idea of LMT is to choose from among all the variables in the data, those
that are most relevant to each possible value of the target class (these are called
indicator variables). By using logistic regression, LMT checks for each possible
variable (while holding the others constant) how relevant it is to predicting each
of the values of the target variable. The final result of LMT is a single tree,
containing multiway splits for nominal attributes (these have to be converted to
numeric ones?, using the usual logit transformation used in logistic regression,
in order to be fit for regression analysis), binary splits for numeric attributes and
logistic regression models at the leaves, where actual classification is done. At
terminal nodes (leaves), logistic regression functions are applied for each
possible value (the different levels in our case) of the target class and the
relevant indicator variables for that value are checked. Instead of a single
predicted class like in the case with standard decision tree schemes, such as C4.5,
LMT has at each leaf a logistic regression function for each possible value of the

target class, constituting therefore a probabilistic model.

As we can see in Figure 9 below, each indicator value (feature) contains a co-
efficient that will be multiplied by the actual value of that feature found in the
data sample. Since LMT is an additive model, all the values are added together
and whichever class shows the maximum value will be assigned to the data
sample. In Figure 9, positive coefficients imply a directly proportional
correlation between the indicator variable and the class value at hand and

negative ones imply an inversely proportional correlation. During the pruning

2For example, instead of using the nominal attributes hot, cold or freezing, we would use
temperature ranges instead, such as °C0O - 12 to represent cold.

2. DECISION TREES 28

process, it might even be the case that the tree built will contain only one leaf,

making it maximally compact (as is the case with Figure 9 below).

Classifier output

Logistic model tree

+ LM 1:35/35 (683)

Humber of Leaves : 1
Size of the Tree : 1
LM 1:

Class 0 :

=31.13 +

[date=october] * 1.44 +

[plant-stand] * -1.34 +
[area-damaged=scattered] * 1.67 +
[leafspot-size=dna] * 1.75 +
[stem=cankers=above-sec=nde] * 3 +
[canker=lesion=dna)] * 1.45 +
[fruiting=bodies] * 7.45 +
[external=decay=firm-and=-dry] * 3.12 +
[fruit=pods=norm] * 4.41 +
[fruit=spots=dna] * 26.73

Class 1 :
=33.24 +
[int=discolor=black] * 69.21

Class 2 :

=22.61 +

[temp=lt=norm] * 16.96 +
[crop=hist=diff=lst=year] * 2.76 +
[germination=90=100] * =1.58 +
[leaves] * =T7.24 +
[stem-cankers=below-s0ll] * 12.95 +
[canker-lesion=brown] * 9.97 +
[external-decay=firm-and-dry] * 7.87

Figure 9: LMT applied to Weka’s soybean data

Out of the 35 predictor classes present in the soybean data, only a small subset
are relevant for the target class in Figure 9: the type of disease that specific
soybeans carry (19 possibilities/values for this target class). For one of the
possible values of the target class (Class 0 in Figure 9), 10 variables seem to be
relevant and for another value (another disease), only 1 variable seems relevant,
namely int-discolor (Class 1, Figure 9). As we can see, not necessarily the same

variables are equally important for all values of the target class.

As Landwehr, Hall & Frank point out (2005), LMT can select relevant attributes

in the data in a natural way and the logistic regression models at the leaves of the

2. DECISION TREES 29

tree (one per each value the target class can take) are built by incrementing
those present in higher points in the tree. By means of Logitboost (a boosting
algorithm), LMT reduces at each iteration step the squared error of the model,
but either introducing a new variable/coefficient pair or by changing on of the
coefficients in a variable already present in the regression function present at the
parent node. What is important to note is that at each iteration step, the training
sample available to the model is only those training instances present at that
specific node. From the point of view of computational efficiency, it makes more
sense to base the logistic regression function at each node on the previous

parent node than to start building the model always from scratch.

LMT, just like other DT schemes, must have its own ways of knowing when to
stop splitting a node any further and how to prune the tree, once it has stopped
growing. In LMT, a node stops being split any further if it meets one of the

following conditions:

a) it contains less than 15 examples

b) it does not have at least 2 subsets containing 2 examples each and the split
does not meet a certain information gain requirement

c) it does not contain at least 5 examples (this is due to the fact that 5-fold-
cross-validation is used by Logitboost in order to decide on the optimal

number of iterations it will use).

Once the tree has completely stopped growing, pruning is done by means of the
CART pruning algorithm, which uses “a combination of training error and

penalty term for model complexity” (Landwehr, Hall & Frank, 2005a:161-205).

As we have seen, each Decision Tree scheme has its own characteristics and
ways of deciding on how to classify the samples. We have applied each scheme to
our data in order to find out which one seems the most promising for our task of
essay scoring. We move on now to describe another approach to classification,

namely, a Bayesian one.

3. NAIVE BAYES 30

3. NAIVE BAYES

Naive Bayesian classifiers are simple probabilistic algorithms which apply a
slightly modified version of Bayes’ Theorem for classification and which make
the strong (hence the name naive) assumption that the variables in the data
(apart from the target class/variable) are independent from one another. In
other words, it assumes that all features F; to F, in our data are independent of
one another and only the class variable C (in our case, the proficiency level) is
dependent on each of the features Fi to Fn. As Manning and Schiitze (1999) put it,
citing Mitchell (1997), “Naive Bayes is widely used in machine learning due to its
efficiency and its ability to combine evidence from a large number of features”
(p-237). However, as we will shortly see in our language data results, many of the
variables are not independent from one another and treating them as if they
were might lead to a decrease in the classification accuracy of classifiers such as

Naive Bayes.

A Naive Bayesian model must first approximate the parameters that will be used
by the model in order for it to arrive at a classification. These parameters are the
class priors (or class probability) and the feature probability distributions, both
of which are calculated based on the training set. A class’s prior can be calculated
by diving the number of samples in the training set that belong to that class by
the total number of samples in the training data (summed over all classes). Thus,
the class prior of level 1 in our essay set, for example, would be 131/481, which
equals 0.27. The feature probability distributions can be calculated by first
separating the data set into the different classes and then calculating, for each
attribute in each class, the mean and variance of that attribute in that class. If we
take U2 to be the mean of the values of X regarding class ¢, and 0% to be the
variance of the values of X regarding class ¢, then the probability of a certain
value of X given a class, P (x=v | ¢) can be found by inserting it in the equation of
a normal distribution containing as parameters the mean and covariance of the

values of X for a specific class:

3. NAIVE BAYES 31

In order to make a decision as to which class a certain data sample belongs to,
the model calculates the conditional probability of each possible class (in our
case, the various English proficiency levels) given the observed values of each of
the features present in the data. The Naive Bayesian probabilistic model is

described below:

Probability (C | F1, F2, F3, ..., Fa) = P (C) *P (F1/C) * P (F2|C) *... *P (Fa [C) /
P (F1.. Fy)

Since the denominator of the formula does not depend on the class and since the
feature values are given, we are in practice only interested in the numerator of
the right hand side of the equation. Therefore, the probability of a sample

belonging to a certain class is given by this updated formula:

p(C) [T p(FC)

i=1

We calculate this for each of the possible values of the target class (C) in the data
and choose the class whose probability is the highest:

classify(f1, ..., f.) = argmax p(C' = ¢) [[p(F. = £i1C = ¢)

¢ i=1

We have seen that DTs and Naive Bayesian Classifiers go about the classification
task in different ways. In addition, each DT scheme has its own specificities.
However, both the DT and Naive Bayesian approaches try to decide on an
optimal classifier configuration based on the features present and their values,

so as to increase the accuracy of classification. Depending on the data at hand,

3. NAIVE BAYES 32

one classifier might have a clear advantage over another and show much better
results. It is therefore difficult to tell beforehand which classifier will be better.
With this in mind, we have run each of the previously described classifiers on
our essay set in order to determine which one is the best for our specific task. We

turn to these experiments in chapter 4 below.

4. PERFORMANCE OF DTs AND NAIVE BAYESIAN CLASSIFIERS ON OUR LANGUAGE DATA 33

4 - PERFORMANCE OF DTs AND NAIVE BAYESIAN CLASSIFIERS ON
OUR LANGUAGE DATA

In order to know which of the classifiers is the best for our task, we must run
each of them on our language data and look closely at the results, not only in
terms of classification accuracy, but also in terms of the types of misclassification
errors, simplicity of classification, adjacent classifications and other factors. In
this section, we describe in detail the data we have used in our experiments, the
three testing conditions that we have employed and the results of each of the
classifiers on our dataset. We also experiment with ways of increasing our
accuracy by pre-processing the data and show what the best classifier is for out
essay scoring task. Finally, we discuss both the types of misclassifications made

by the classifiers as well as possible reasons for those misclassifications.

4.1 Data information

In order to assess the performance of each of the 11 classifiers used in our work
(10 DT classifiers and 1 Naive Bayesian classifier), we have used the 481 essays

in the OTTO corpus (see Description of the Data below). We can see in figure 10

below how each of the proficiency levels in represented in the data:

131

111

100

b5

55

19

0 2.5 5

Figure 10 - Distribution of the levels (0 to 5) in our data, as shown in WEKA

4. PERFORMANCE OF DTs AND NAIVE BAYESIAN CLASSIFIERS ON OUR LANGUAGE DATA 34

All the data used is in an .xIs file (Excel table), which is converted to a .csv
(comma separated values) file in Excel itself. The .csv file is then converted to an

.arff file format, which is the native format preferred by the WEKA software.

4.1.1 Description of the data

The corpus was obtained from the OTTO project, which was meant to measure

the effect of bilingual education in the Netherlands (www.tweetaligonderwijs).

To control for scholastic aptitude and L1 background, only Dutch students from
VWO schools (a high academic Middle School program in the Netherlands) were
chosen as subjects. In total, there were 481 students from 6 different WVO
schools in their 1st (12 to 13 years old) or 3rd year (14 to 15 years old) of
secondary education. To allow for a range of proficiency levels, the students
were enrolled in either a regular program with 2 or 3 hours of English
instructions per week or in a semi-immersion program with 15 hours of

instruction in English per week.

The 1st year students were asked to write about their new school and the 3rd year
students were asked to write about their previous vacation. The word limit was

approximately 200 words.

The writing samples were assessed on general language proficiency. Human
raters gave each essay a holistic proficiency score between 0 and 5. As Burstein
& Chodorow (2010) put it, “for holistic scoring, a reader (human or computer)
assigns a single numerical score to the quality of writing in an essay” (p.529). In
order to ensure a high level of inter-rater reliability, the entire scoring procedure
was carefully controlled. There were 8 scorers, all of whom were experienced
ESL teachers (with 3 of them being native speakers of English). After long and
detailed discussions, followed by tentative scoring of a subset containing 100
essays, assessment criteria were established for the subsequent scoring of

essays. Two groups of 4 ESL raters were formed and each essay was scored by

4. PERFORMANCE OF DTs AND NAIVE BAYESIAN CLASSIFIERS ON OUR LANGUAGE DATA 35

one of the groups. The score of the majority (3 out of 4) was taken to be the final
score of the essay. If a majority vote could not be reached and subsequent
discussion between the members of that group did not solve the issue, then the
members of the other group were consulted in order to settle on the final holistic
score for each essay. In all, 481 essays were scored. As we will see further ahead,
the size of this set is good enough for training a scoring system and some of the
more established Essay Scoring Systems available actually use a smaller set than

we do in our work.

The proficiency levels assigned to the essays were calibrated with the writing
levels assigned to essays within the Common European Framework (CEF) levels,
as can be seen in Figure 11. Level 0, however, does not have a reference in the

CEF framework.

Our levels | CEF level |
l Low Al

| 2 High Al

3 | A2

| 4 Low Bl
5 High Bl

Figure 11: Our levels and the CEF framework

Given that the main interest of Verspoor and Xu was not to assign proficiency
levels to the essays but to see how language-learning-related variables might
interact and develop within a Dynamic Systems Theory (DST) approach between
(and through) the different levels, the authors decided to code as many features
(variables) as possible for the annotation of each writing sample, drawn both
from the Applied Linguistics literature and from their own observations during
the scoring of the essays (Verspoor and Xu, submitted). The features cover
several levels of linguistic analysis, such as lexical, structural, mechanical and
others. Some of the features used, such as range of vocabulary, sentence length,
accuracy (no errors), type-token ratio (TTR), chunks, and amount of dependent

clauses, for example, are established features in the literature and used in

4. PERFORMANCE OF DTs AND NAIVE BAYESIAN CLASSIFIERS ON OUR LANGUAGE DATA 36

several studies to measure the complexity of a written sample. Other features,
such as specific types of errors and frequency bands for the word types used in
the essay corpus were chosen in order to do a much more fine-grained analysis
of language development (for a detailed list of all variables coded for, see the
Appendix.) Many of these features are established features in many of the

automatic essay scoring systems available.

As mentioned above, in the work by Verspoor and Xu (submitted), which uses
the same data as our work here, the annotated features are used with the goal of
investigating how these language-related measures develop over time and
across levels. In our case, we are interested in using these measurements in
order to investigate how they correlate with proficiency level and how they can
aid us in our task of automatic essay scoring. Therefore, even though both
endeavors use the same data as a starting point, they have quite different

objectives.

Description of the features by general areas

The organization of the features used follows (albeit with a few differences) the
one used in Verspoor and Xu (submitted) and most definitions and examples are
taken from the same article, unless otherwise marked with NVX. The description
of the features can be found in the Index.

We now proceed to describe the experiments we have conducted. In our first
analysis of the classifiers, we decide to keep all 81 features, since all of them

might potentially have a strong correlation with proficiency level.

4.2 The three different runs of the experiments

In order to increase the confidence of our estimation as to what the best
classifiers are for our task at hand (assessing English proficiency level), we have

run 3 different experimental conditions for each of the 11 classifiers:

1) Super_Test: we run each classifier through 10 iterations of a stratified

4. PERFORMANCE OF DTs AND NAIVE BAYESIAN CLASSIFIERS ON OUR LANGUAGE DATA 37

(where class distributions are maintained within each fold) ten-fold
cross-validation. This basically means that we run 100 tests on each of the

classifiers.

2) 8/9 training, 1/9 test: For training, we have used stratified 10-fold cross
validation on 8/9 of the dataset (non-stratified, random, using
weak.core.unsupervised.instances.RemoveFolds). For testing, we have
used the 1/9 that was not used in the training phase. Since we have
already used stratification for the whole training in the Super_Test above,
we have decided to assess as well how each classifier would perform

when faced with an even more unpredictable test set.

3) 1 run of 10-cross-fold validation: In this condition, we do a simple 10-

cross fold validation on the data.

We have opted to use 3 different conditions not only to assess the stability of
each classifier but also to vary the experimental ways of obtaining our results.
What is important is that whenever results are given, they come from the same

experimental condition when comparing the performance of different classifiers.

4.3 - Results

In this section, we describe the results of our 11 classifiers on our data.

4.3.1 - Classifier accuracies

The accuracies of the 11 classifiers are shown in Table 1 below. We include here
the mean accuracies of each classifier on the Super_Test, the accuracy on the first
5 fold validations in the Super_Test (all in the first iteration still, going from 1,1
to 1,5) and also the accuracy on 8/9 training, 1/9 test. We would also like to

draw attention to the fact that the baseline classification accuracy for our data

4. PERFORMANCE OF DTs AND NAIVE BAYESIAN CLASSIFIERS ON OUR LANGUAGE DATA 38

would be 27%, which is the result of dividing the number of essays belonging to
the most common level (level 1 = 131 essays) by the total amount of essays in
our corpus (481 essays). We do not include the results of the single 10-cross-fold

validation here, but will refer to these later on.

8/9
Super (L,1) |(1,2) (1,3) (1,4) (1,5) train,

Classifier | Test 1/9

test
C4.5 (J48) | 50.53 38.77 60.41 50.00 |39.58 |54.16 |57.4
BFTree 49.9 53.06 54.16 50.00 |50.00 |56.25 |50.00
Dec.Stump | 40.73 32.65 35.41 43.75 |41.66 |43.75 |33.33
FT 56.07 53.06 56.25 56.25 | 62,5 62.5 55.5
LADTree | 53.49 40.81 52.08 56.25 |54.16 |56.25 |55.5
LMT 58.09 55.10 50.00 66.66 | 64.58 |56.25 | 64.8
NBTree 45.7 51.02 47.91 4583 | 375 4791 |51.8
Ran.Forest | 53.97 53.06 64.58 66.66 | 41.66 |50.00 |46.29
RepTree 51.36 46.93 56.25 64.58 |56.25 |54.16 |53.7
Simple 521 55.10 45.83 56.25 |50.00 |56.25 |57.4
Cart
Naive 52.5 59.18 47.91 58.33 |52.08 |39.58 |55.55
Bayes

Table 1: Accuracies (percentage of correct classification) of the 11

different classifiers

In the table above, the color blue indicates the best accuracy, the color green the
second best and red indicates the worst. As we can easily see, there does not
seem to be one single classifier which performs the best in every run/test.
However, there are two facts we can already notice. Decision Stump is almost
always (with one exception) the classifier that performs the worst on the data. It

seems however quite impressive that such a simple algorithm (one that uses

4. PERFORMANCE OF DTs AND NAIVE BAYESIAN CLASSIFIERS ON OUR LANGUAGE DATA 39

only a single attribute for classification) manages to achieve an accuracy as high
as 43.75 percent. This is however misleading: the only reason Decision Stump
achieves this accuracy is because it classifies every one of the 481 essays into
either level 3 or level 1). As we saw in Figure 11 above, these are the two most
represented classes in our data. Therefore, this seems like a smart “decision” on
the part of Decision Stump and one which will lead to quite a few samples being
correctly classified. However, this is not a well informed decision and is not
desirable. The Logistic Model Tree (LMT) on the other hand, does seem to qualify
as our best classifier so far (we will discuss more details soon), given that in all

but one case, it is either the one with the best accuracy or the second best.

4.3.2 The incorrectly classified samples

Looking at classification accuracy is usually enough for deciding on the best
classifier to use for a given task. If our task were to classify between different
species of animals, for example, then each misclassification is simply wrong: a
bear is different from a fish, which is different from a horse, and period. These
classes are quite separate and the task at hand is a categorical one. We believe
that for a task such as ours, the classification mistakes also matter. Given that our
language proficiency classes are ordered, classifying an essay which is in fact
level 2 as level 3 is more desirable than the same level 2 essay being classified as
a level 5 essay. This holds true for many purposes, be it a placement test at a
Language Center or an actual written examination of higher stakes. In addition,
scoring agreement between human raters is often not unanimous, which means
that a few adjacent classifications might actually be similar to what happens

when humans score the essays.

We have therefore developed a system in which we assign a weighted score to
each one of our 11 classifiers: 3 points for each correctly classified essay (out of
the 481 essays in our data), 1 point for an adjacent classification (level 2 being
classified as either 1 or 3, for example) and 0 points for a non-adjacent
misclassification. We have decided here to treat an adjacent classification below

or above as carrying the same cost for practical purposes. We are nonetheless

4. PERFORMANCE OF DTs AND NAIVE BAYESIAN CLASSIFIERS ON OUR LANGUAGE DATA 40

aware of the fact that a change in the weights might result in a different classifier
ranking. We show in Table 2 below the number of adjacent misclassifications for
each of the 11 classifiers in the 8/9 training, 1/9 test condition (54 sample

essays are present in the test set) and also the weighted score based on the

Super_Test.
8/9 train, 1/9 | Weighted score on Super_Set Weighted- score
Classifier test:adjacent (Cor=3, Adj=1, Inc=0) ranking
vs.incorrect
classifications
LMT 19/19 1013 1
Ran.Forest | 24/29 1001 2
FT 23/24 980 3
LADTree | 20/24 973 4
Naive 19/24 962 5
Bayes
Simple 19/24 949 6
Cart
RepTree 24/25 948 7
BFTree 22/27 908 8
NBTree 21/26 892 9
C4.5(J48) | 17/23 843 10
Dec.Stump | 21/36 762 11

Table 2: Adjacent misclassification and weighted score of all 11 classifiers

As we can see in Table 2 above, not only are all the misclassifications by LMT
adjacent ones, but it is also the classifier that shows the fewest classification
errors on the 8/9 training 1/9 test condition. Moreover, LMT also has the highest

weighted score out of all 11 classifiers.

4. PERFORMANCE OF DTs AND NAIVE BAYESIAN CLASSIFIERS ON OUR LANGUAGE DATA 41

4.4 - The importance of Pre-Processing the data

So far in our experiments, we have used all 81 features and have not subjected
our data to any sort of pre-processing. The reasons for not having reduced at
first the number of features used for training the classifiers above (which is

indeed quite large) were the following:

a) we wanted to assess how each classifier could perform on raw,

unprocessed data

b) we want to compare the performance of classifiers when using all
features against their performance when using only a few significant
features (these features can be found either by doing feature selection
at the beginning in WEKA or by running the classifiers and then taking
those features shown to be more relevant for classification). We explore

the first approach in our work.

c) we wanted to check whether certain classifiers would in some way
already do feature selection, that is, use only a subset of the features in
their training process (as we have seen, LMT does this in a concise and

transparent way).

It is a known fact that obtaining comparable results by using fewer features is a
gain in knowledge, given that it makes the model simpler, more elegant and
easier to be implemented. Using every feature in order to build a classifier might
also be seen as overkill. The question is simple: if we can achieve the same (or
possibly even higher) accuracy in a system by using fewer features, why should
we use all of them? It takes processing power and engineering/programming
work in order for an automatic system to extract the values for each feature and
if many of the features do not lead to an improvement in classification accuracy,
it does not make much sense to insist on using them if our sole task is

classification. In addition, by using too many features we might be missing some

4. PERFORMANCE OF DTs AND NAIVE BAYESIAN CLASSIFIERS ON OUR LANGUAGE DATA 42

interesting patterns in our data.

By discretizing numerical data (using numerical intervals/ranges instead of a
series of continuous values), we are able to build models faster, since numerical
values do not have to be sorted over and over again, thus improving
performance time of the system. On the other hand, discretizing values leads to a
less fine-grained and transparent analysis, since we group together a continuum

of values that might have individual significance for classification.

We have experimented with 3 different ways of selecting attributes in WEKA (all

of them being classifier independent):

a) Infogain + Ranker: The evaluation is performed by calculating the IG of
each attribute and the result is a ranking of all features in the dataset, in

increasing order of importance.

b) CfsSubsetEval + Best First: An optimal subset of features is chosen which
correlate the most with the target class (“level”, in our case) and the

search method is best first (no predefined order)

c) CfsSubsetEval + Linear Forward Selection: An optimal subset of features is
chosen that correlate the most with the target class and the search
method is linear forward selection, a technique used for reducing the

number of features and for reducing computational complexity.

All three methods give us quite similar results, in terms of which features seem
to be the most relevant. We can see below which features (in increasing order of
importance) are selected as being the most indicative of proficiency level in our

corpus. We note again that this selection of attributes is classifier independent:

4. PERFORMANCE OF DTs AND NAIVE BAYESIAN CLASSIFIERS ON OUR LANGUAGE DATA

INFOGAIN + RANKER
Name |
“‘|
2' lauttot
'Tvpes
4' ~ |PRES
50 lerrlex
6 lerrtot
7| claempty
8 Imorph

Figure 12 - Attribute selection by INFOGAIN + RANKER

CFS SUBSET EVAL + BEST FIRST

No. Name !
_Ij

2 Jaut+

3Eautmt

4_|claempty

5' |PRES

6 |FORM

70 Jerrlex

8' _lerrtot

Figure 13 - Attribute selection by CFS_SUBSET_EVAL + BEST FIRST

CFS SUBSET EVAL + LINEAR FORWARD SELECTION

No. Name
_’_1

2 Jaut+

3 O | lauttot

| lclaempty

5 O | _PRES

6' 'FORM

71 lerrlex

8| lerrtot

Figure 14 - Attribute selection by CFS_SUBSET_EVAL +LIN.FORW.SELEC.

4. PERFORMANCE OF DTs AND NAIVE BAYESIAN CLASSIFIERS ON OUR LANGUAGE DATA 44

These 8 features (out of the 81 features present) are the ones that correlate the
most (are more indicative of) with proficiency level. Moreover, they suggest that
variety, native-sounding structures and errors seem to be the three
characteristics of an essay that human beings take the most into account when
holistically scoring the essays. As we will see in the next section, using only these
8 features results in an increase in accuracy for our main schemes, given that

many noisy or non-relevant features are discarded. A simpler and therefore

easier model to be implemented seems to be a better approach to our task.
4.4.1 - New tests with C4.5, LMT and Naive Bayes

Using only the features available to the classifiers selected by CfsSubsetEval +
Best First above (8 features, instead of the 81 or so features previously used), we
now present the results of C4.5, LMT and Naive Bayes on our essay set. We are
interested in seeing whether doing feature selection in our task will actually
improve the accuracy of our classifiers (besides the obvious advantage of making
the search for effective prediction of level easier). As we can see in Table 4
below, we actually manage to improve our classification accuracy by using only
these 8 features, which have been found to correlate best with proficiency level.
We can therefore conclude that by using all 81 features (many of which do not
correlate substantially with proficiency level and can be said to be noisy), the
classifiers actually get somewhat confused, so to say, and accuracy is lower. We

have used the super-set scheme (10 runs of 10-fold cross validation) in these

new tests.
Previous Accuracy Accuracy Accuracy Accuracy
accuracy | (discretization | (attribute (attribute (discr. +
Classifier (no pre- only) selection selection + attr.sel)
processing) only) discretization)
C4.5 50.53% 55.23% 52.93% 58.70% 59.53%
LMT 58.09% 62.29% 60.67% 62.58% 62.27%
Naive B. | 52.50% 60.73% 55.16% 59.09% 60.82%

Table 4: C4.5, LMT and NB accuracies after pre-processing of data

4. PERFORMANCE OF DTs AND NAIVE BAYESIAN CLASSIFIERS ON OUR LANGUAGE DATA 45

As we can see in the table above, either discretizing the numerical values or
performing attribute selection has a positive impact on accuracy, when
compared to simply using the raw, unprocessed data. The best result, however,
seems to come when we perform both attribute selection and discretization in
the pre-processing stage. Interestingly, the order in which these two operations
are performed affects the performance of the classifiers. By looking at table 4, we
can conclude that the best result for both the C4.5 and the Naive Bayes
algorithms comes when discretization is performed before attribute selection. For
LMT, however, the accuracy reaches its maximumiscrtization is done after
attribute selection. Quite surprisingly, in the easf Naive Bayes, doing only
discretization on the data gives us better reshidts first doing attribute selection and
then performing discretization. For all 3 classgi@bove, discretization on its own

shows more improvement on accuracy than perfor@itigpute selection alone.

We can conclude from the experiments in this secti@t there is no a-priori best
way to pre-process the data. We need to take differlassifiers and their respective
accuracies into consideration, along with what @sk at hand is. If our task is a
simple classification one, in which all that madtes classification accuracy, this is
what should guide us. However, we should be awarhe fact that discretization

leads somehow to loss of more fine-grained inforomat

We now turn from focusing on accuracy to focusingtloe individual contribution of
each of the features in our subset to the prediatibproficiency level and to the

system as a whole.

4.4.2 Individual contribution of each feature in the subset

We are interested in knowing what the individuahtcdution of each of our 8
features is to the whole system. Therefore, we lexperimented with running LMT
in a 10-cross-fold experiment using different coiodis. We remind the reader that

4. PERFORMANCE OF DTs AND NAIVE BAYESIAN CLASSIFIERS ON OUR LANGUAGE DATA 46

our best result so far with LMT was based on thpesuset experiment (mean
accuracy of 10 runs). Here we use only 1 run otrt®s-fold iteration, in which
accuracy is 64.65% when all 8 features are usedeMer, the result can be said to be
less reliable than in the super_set design. Theidwhl contribution of each feature
can be seen below in Talde

Feature Accuracy only | Accuracy using all
using this feature | other features (7)
but this one
TYPES 39.29% 56.34%
AUT+ 41.37% 64.44%
AUTTOT 44.69% 62.37%
CLAEMPTY 37.21% 62.78%
PRES 42.61% 56.75%
FORM 28.48% 62.37%
ERRLEX 34.51% 61.12%
ERRTOT 36.38% 62.16%

Table5: Individual contribution of each feature in the sab

As we can see in the table above, the feature AUIT{®sum of both correct and

incorrect “native-sounding” structures/constructiprseems to be the feature that
correlates the highest with proficiency level whesed alone. However, when

removed from the subset of 8 features, it doeshawte as significant an impact on

accuracy as the feature TYPES does. We can seefdtes that our 8 features work

as a system and that no feature can be said toebmdst important of all. Removing

any of our 8 features leads to a decrease in aogufdius, our best option is to use
all of them.

In the next section we discuss the misclassificaéioors that C4.5, LMT and Naive
Bayes have made on our data. We show which errersnare typical (involving

which levels) and explore possible reasons for. that

4. PERFORMANCE OF DTs AND NAIVE BAYESIAN CLASSIFIERS ON OUR LANGUAGE DATA 47

4.5 Misclassification Errors

In this section, we look at what the most typicasctassification error types are for
each of the 3 classifiers above (C4.5, LMT and Hd&ayes). We use the best version
of each of these 3 classifiers, namely, the onaiobdt after performing attribute
selection and discretizing the numeric values. Thea submit our corpus to 1
iteration of ten-fold cross validation in order émalyze the results. Many of the
individual essays are misclassified by all thre@wrf classifiersWe discuss these in

the next section.

For the moment, we can visualize in Table 6 belo&v most frequent classification
errors by each classifier, along with how many gsseere misclassified in that way
and how many essays were misclassified in totaé fbtation 2 = > 3 should be
understood as “level 2 gets classified as leveNstice that the number of different
number of

misclassifications in the table does not add up the total

misclassifications, since we only include here Themost common misclassification

types.
Classifie | Missclas| Missclas| Missclas| Missclas| Missclas| Missclas| Missclas
r .1 .2 .3 .4 .9 .6 4
2=>3 | 2=>1| 4=>3 | 3=>4 | 3=>2 | 1=>2 | 4=>5
C4.5 | (30/207)| (29/207)| (24/207)| (23/207)| (21/207)| (17/207)| (17/207)
3=>2 | 3=>4 | 2=>3 | 2=>1| 1=>2 | 4=>3 | 4=>5
LMT | (24/176)| (20/176)| (20/176)| (20/176)| (19/176)| (18/176)| (14/176)
Naive | 3=>4 | 1=>2 | 2=>1| 3=>2 | 4=>5| 2=>3 | 4=>3
Bayes | (23/189)| (23/189)| (22/189)| (22/189)| (18/189)| (16/189)| (15/189)

Table 6 -Most common misclassification types per classifier

From the table above we can clearly notice thahéencase of all 3 classifiers, the 7
most common classification errors have to do wifaeent classifications, which is

exactly what we want for a task such as ours, ngnaskigning different proficiency

4. PERFORMANCE OF DTs AND NAIVE BAYESIAN CLASSIFIERS ON OUR LANGUAGE DATA 48

levels to different students based on their esslhygich a classification system is
used in a high-stake scenario, that is, one inwttie consequences of the scoring are
quite substantial (such as the assessment perfoomné&drater in the TOEFL exam,
which can define whether a person will be accepted university of not), an
adjacent classification might not be enoudfor such situations, nothing short of an
extremely accurate classification might be accdptaHowever, in other possible
scenarios, such as an English placement test wathi@mguage center or school, the
consequences of an adjacent classification woulbdaily not have such a big impact
either on the general system or, psychologicallythe students. Since the classifiers
we look at are either accurate or assign adjaeseld in the great majority of cases,
it would be simple to move a student a level uglown in the event that some in-
classroom discrepancy is noticed. A system sucthias despite not being perfect,
would have quite a few advantages, such as malgtigrbuse of important resources
such as teachers’ time, not being biased in itssdiaation (increased reliability) and
allowing a much bigger number of essays to be aedlynd placements to be done.
Other possible uses would be for self-assessmeranironline platform and for
providing feedback to the student in relation tosh features the system takes into
account. All this would only be possible, howevence a computational way of
extracting these 8 or so features from any essayabtually been implemented and
the values can be automatically fed to the clagsie will discuss this later.

The most common type of misclassification when a@klat all 3 classifiers above
are:2 => 1 (71 essays)3 => 2 (67 essays)3 => 4 (66 essays) and => 3 (66
essays). These numbers seem to indicate that |8velsd 3 are the ones that are
“tricking” the system the most, so to speak. Eveough this might be the case, we
cannot affirm this just yet, the reason for thaingequite simple. Our levels are not

uniformly distributed in the data, as figure 11pfeduced here as Figure 15) shows.

3We note however that in the TOEFL examination, E-rater is used in conjunction with a human
rater, which might make an adjacent classification still acceptable for a system. As we will see
below, adjacent classifications are also common when only humans are rating the essays.

4. PERFORMANCE OF DTs AND NAIVE BAYESIAN CLASSIFIERS ON OUR LANGUAGE DATA 49

131

111

100

b5

55

19

] 2.5 5

Figure 15— Class distribution in the corpus

Therefore, we must not use absolute numbers, lstiead relative numbers, which
take class distribution into account. For this, dwide the number of misclassified
essays for each level (sum of all 3 classifiers) diwide by the number of essays for
that level (multiplied by 3, since we are usingassifiers). We can see in Table 7 our

updated figures:

Level Relative Misclassification

29/ (19 x 3) = 0.508

777 (131 x 3) = 0.195

151/ (100 x 3) = 0.503

159/ (111 x 3) = 0.4774

110 /(65 x 3) = 0.564

gl b~ W N| | O

46/ (55 x 3) = 0.278

Table 7:Relative misclassification for C4.5, LMT and NaBag/es together

Our classification errors cannot be said to be ahlg to the fact that we have a
somewhat skewed distribution in our data (somesekasre more represented than
others). This might apply to levels 0 and 4 somehawt we see that levels 2 and 3,
which have the highest representativeness in th& aldo get misclassified quite
often. Therefore, we cannot say with confidence the root of the misclassification

is lack of enough training data (we will also séead that eliminating level O from

4. PERFORMANCE OF DTs AND NAIVE BAYESIAN CLASSIFIERS ON OUR LANGUAGE DATA 50

the corpus does not improve the accuracy signifiganin other words, the reason for
misclassification must lie somewhere else and wWetwito come up with reasonable

hypotheses shortly.

It would be very fortunate if the probability (ctaication confidence) assigned by
the classifiers to all misclassified essays wersmibto be below a certain threshold
and all correctly classified essays above it. i there the case, we could simply
decide not to classify any essays whose probabiias below the threshold,

preferring instead to trust a human rater with gbering of those essays. However,
this is not the case. Quite often, the classifessign misclassified essays a higher

classification confidence probability than theytdaorrectly classified essays.

4.5.1 -Reducing Errors

Given that some of the essays in our corpus haverfthan 25 tokens (which might
be too few in order for an automatic system thatislevith raw and relative numbers
to infer good patterns from data), we decided tpeexnent with removing these
essays from our corpus. The 33 essays that wecarded belong either to level 0
(N=10), level 1 (N=14) or level 2 (N=9). We havenrthe updated essay collection
(448 essays now, instead of 481) again throughbest classifier, namely LTM.
When no attribute selection or discretization idfqgrened, we manage to increase our
accuracy from 58.09% to 59.47% (the super-set seheas used), which shows that
removing those essays might have a positive effie¢he system. One of the possible
reasons for thigmore will be explored later on in the broader dgston of automated
essay scoring systemis)that when the system is dealing with raw nuraletich is
the case with the TYPES feature), having essays satfew words belonging to a
range of 3 different levels (0-2) might confuse #ystem, since it makes it difficult
for the system to find a numerical pattern in tlaadwith regard to this attribute.
Surprisingly, if discretization and attribute selec are performed, the effect of
removing the essays with fewer than 25 words isiadigt negative, with precision
going down from 62.58% to 61.44%.

We would expect that removing from the corpus kbt essays that contain fewer
than 25 tokens and also those essays belongiregdéb0 (10 out of the 33 essays with

4. PERFORMANCE OF DTs AND NAIVE BAYESIAN CLASSIFIERS ON OUR LANGUAGE DATA 51

fewer than 25 tokens belong to level 0, a strongetation) would have a negative
effect for the accuracy of LMT, since most of the levetskays have fewer than 25
words and the system might use this informatioroetingly (after all, the TYPES
feature is in our selected feature subset). Whenishdone, the accuracy actually
increases from 58.09% to 60.00%. When discretimaind attribute selection are
applied to the data without the essays with fewsan25 words and with no level 0
essays (TYPES remains in the group of most releymatlictor variables), the
accuracy of LMT also decreases on the updated sprgaing from 62.58% to
61.44%. It seems that the advantages of removiesetlessays from the corpus are
lost when discretization and attribute selection performed. We can conclude that
when the attribute TYPES (which tends not to bey\different from TOKENS in
quite short essays, such as ours) is part of a muodller set of attributes used in
classification, any kind of information availablerfLMT with regard to feature

values is important (specially in the absence stmitization and attribute selection).

Logistic Model Trees are so complex and advancedheir calculation of best
predictors for each class and their correspondogfficients that we might better be
guided by a pure accuracy approach when usingctassifier. If a certain decision
would otherwise make sense (from a testing pers@edor example, it would make
sense to exclude essays with fewer than 25 wordsjidees not increase the system’s
accuracy (naturally the number of adjacent classitbns must be taken into account
as well), we should simply not take this specifecidion. In the next sections, we
discuss the optimal parameters for the classifiestnsuitable for our essay scoring
task: LMT.

4.5.2 Specific Misclassification Errors (by all 3 classifiers, namely, LMT, C4.5
and Naive Bayes)

In this section, we look more closely at a sub$é¢h® essays that got misclassified by

all 3 classifiers in the test set-up describecertion 4.5 above.

As we will shortly discuss, if we look at LMT’s adjent agreement with human
raters, we manage to reach 96% accuracy, whichiis gigh. On the other hand, an

adjacent classification is still a classificatiamoe, if we take the human rater’s score

4. PERFORMANCE OF DTs AND NAIVE BAYESIAN CLASSIFIERS ON OUR LANGUAGE DATA 52

to be the definite and correct one. There are cuitew factors that might prevent
LMT, C4.5 and Naive Bayes from correctly classifyi subset of the essays. These

are discussed below.

a) Some essays are simply too short

As we have seen in section 4.5.1 above, removiom fthe corpus those essays
containing fewer than 25 words leads to an increeseaccuracy (when no
discretization or attribute selection is performél)e human raters have scored some
of those essays as either 0,1 or 2 and for a humam a little amount of input is
enough to judge’s someone’s language proficienapnKtof how easy it is to spot a
non-native speaker or how some specific errors lsitgnnot have been produced by
a proficient speaker). For our classifiers, howewehnich are dealing with either
absolute or relative numbers, having too few cofmtsome features might actually
bias the classifiers towards levels in which thésature values are more typical.
Human beings are much more difficult to trick imstaspect.

b) The features used are not exhaustive

Even though our 3 classifiers make use of 81 featymany more than the great
majority of AES systems do) in the first runs ofrdasts and 8 features in their
updated (optimized) version, there are still somguistic phenomena which are
easily perceived and taken into account by humgersabut which are not recorded
in any of the features we use. Let us take onbeg&ssays in our corpus:

During our summer holyday we went to Austria. In the beginning it was very nice
because we had good weather and there were a lot of nice people to do nice things
with. But later on the weather wasn't nice anymore and many people went away.
There was also a girl from my age and she also went away. That wasn't nice. But
there came some small children and I played with them in the hay. We have seen and

done a lot and next year we'll go again to this camping.

This essay was holistically (taking overall qualityo account) scored a level 4 by the

human raters and a level 3 by all three classifi€hgs essay makes use of some

4. PERFORMANCE OF DTs AND NAIVE BAYESIAN CLASSIFIERS ON OUR LANGUAGE DATA 53

constructions/structures that show a more refirednoand of the grammar of the
language, such as stranding of prepositions (dsitot of nice people to do nice
thingswith”) and the use ofthere camesome small children[...]”. Even though these
are constructions that certainly draw the attentbra human rater (since they are
more advanced chunks), they only count as anottierrik” in our features and are
added to our “AUT+” feature value. There is no idision between the types of
chunks in the AUT+ feature, despite the fact tlmae chunks are much more typical
of advanced students and show a much more fineggatontrol of the structure of
the language (such as the ones just mentioned)efne, including some other
features that capture this kind of language usehimhglp towards improving
classification accuracy, since these uses are machk typical of proficient than non-
proficient language learners.

c) A fundamental difference in the human ratersd ame classifiers’ scoring

procedure

This might be the factor that has the greatest ainpa accuracy. The humans raters
who scored all 481 essays in our corpus have giveat prominence to what can be
called “native-sounding” elements in the essaysleange consequently scored higher
those essays that contained more of these eleniEmts.means, however, that for
many raters, punctuation and mechanical errors,ek@ample, did not have much
effect on their judgment of the essay’s final s¢arece they do not influence how the
essay “sounds”. Some of these “native-soundinglicstires are captured by our
AUT+ feature, which deals with chunks and collogasi. Others, such as the ones
mentioned inb above and the ones in bold below (taken from aratissay) are not

captured in any special way by any of our features:

Hi, my name is Lucca. I'mfaeshman at Trevianum. It's way cool here. [...] |
like doing extreme sports such as: Snowboardingfing, Le parkour and

riding my dirtbike.Yes, you heard it my dirtbike!

The essay above was scored a level 5 by the hunaaerg but a level 2 (C4.5) or
level 3 (LMT and Naive Bayes) by the classifierbieTtwo structures above show

knowledge of more refined-vocabulary and of morsued#iday-to-day language.

4. PERFORMANCE OF DTs AND NAIVE BAYESIAN CLASSIFIERS ON OUR LANGUAGE DATA 54

While human raters pick up on these quite effostieghis is not fully represented in
any of our features (one might say that R5pc, fwangle, would capture less
common words, but it does not make a distinctiomvben them, capturing that some
are more “technical” or “casual-sounding” than of)leAlong the same lines, “you
heart it” is simply counted as one more collocdtbaonk, despite its quite natural-
sounding characteristic. These specific charatiesi®f words are, however, taken

into account by human-raters.

d) Language itself is a quite complex phenomenon

Language is a very intricate system, in which &é tcomponents (grammar,
vocabulary, pronunciation, type of constructioresnantics, etc) interact and develop
in often unpredictable ways, as Dynamic Systemsihshows (Verspoor, de Bot &
Lowie, 2004)). Not all students in the same hdligiroficiency level show similar
feature values for all features. Some use corrpetlisg, but very simple words.
Others, at the same level, may use more complexisvtbrat are often misspelled.
Some may use correct sentence structure; others erpgriment with a more
complex sentence pattern and make an error. Asp@ersaand Xu show (submitted),
there is enormous variation among the learnersectsfy at the lower levels.
However, some of the features, especially aggrdgates, tend to grow (or decrease)
linearly across the proficiency levels. Anothermids that all subsystems (lexicon,
constructions) develop somewhat exponentially (eaobsystem becomes more
complex) and as the learner becomes more advatiesd, are more subsystems that
need to develop, making the increments of changeaah of these subsystems
smaller. The feature subset used in our classi{@réeatures) are all of the more
linear type, which explains why using only thosefeatures actually improves
accuracy, in contrast to using all 81 features. e\mwv, there might be other
aggregated features that could improve the systethelr, but are not part of our
original feature set, such as bigram or trigranbphilities based on a native corpus,
which might capture many of the “native-soundingfustures and uses. Regardless
of how advanced a computational system might gyuage is still the quintessential
area of inquiry where human observers have a delantage over automatic

systems.

4. PERFORMANCE OF DTs AND NAIVE BAYESIAN CLASSIFIERS ON OUR LANGUAGE DATA 55

e) A somewhat skewed sample

Many essays in level 0 get misclassified by all&ssifiers, which might imply that
the “calibration” of typical feature values for sHevel is far from optimal. Given that
only 19 out of the 481 essays used for trainingtglto level 0, we strongly believe
that including more essays that belong to levehQraining would improve the

accuracy of the classifiers.

In the automated essay scoring literature, meares@e often used in order to assess
whether the system is on average more strict (fy&s3 essays as a lower level than
they actually are) or more lenient, that is, clkyssy essays as a higher level than
actual (Wang & Brown, 2007)deally, a system should be neither, but should match
the actual classification. However, the implicatasf either scenario might be worth
taking into consideration depending on the use ttietsystem will be put to. It is to
the mean scores assigned by LMT that we now turratention.

4.6 Mean Scores - LMT (1 iteration of 10 cross-fold validation)

In this section, we explore the mean score assidgnedMT both for the whole

scoring task (all levels included) and also onvell®asis.

The actual mean score of the whole system is diwyeahe following formula:

Actual mean(0*19) + (1*131) + (2*100) + (3*111) + (4*65) 45¢55) / 481 =2.49
(please refer to Table 8)

The actual mean for each of the levels is simpdy dlotual score at each level. In
Table 8 below we can find the actual mean scoresth@ mean scores calculated

from LMT’s classification:

4. PERFORMANCE OF DTs AND NAIVE BAYESIAN CLASSIFIERS ON OUR LANGUAGE DATA 56

Level Actual Mean Score LMT’s mean score
General (all levels) 2.492 2.494

0 0 0.26

1 1.0 1.15

2 2.0 2.02

3 3.0 3.0

4 4.0 3.87

5 5.0 4.67

Table 8 -Actual mean scores and LMT’s mean scores

The general mean score assigned by LMT is almesttichl to that assigned by the
human raters, which means that when taking alllseirgo consideration, LMT is

neither lenient nor strict, performing instead ltke human raters. If we look at levels
4 and 5 however, there is a slightly higher disarely in the mean scores. As
Verspoor and Xu (submitted) found, the more advdrstadents become, the smaller
the differences between adjacent levels. Many ef l#vel 4 essays are actually
classified as 3 and many of the level 5 essays ¥¢edcan also conclude by looking
at LMT’s mean scores that there is a slight prefeeefor a lower adjacent level than
a higher one when it comes to adjacent classifinati(which take up the great

majority of classification errors). This can bers@eTable 5 above.

4.7 The best classifier and parameters for our task: LMT

After all the different experiments we have conédadn our work, we can clearly say
that LMT is the most fitting classifier (out of theleven classifiers we have
experimented with) for our automated essay scalsg. In every single run of the
super-set scheme (the most reliable one, givenittipetrforms many more runs and
data shuffling than the other schemes used), LMAieaed the best results (see
Tables 1, 2 and 4). We can also conclude that ptienal way in which LMT can be

used is when we first perform attribute selectioltofved by discretization during the

training phase, leading to an accuracy of 62.58%4K6T. In addition, we should not

4. PERFORMANCE OF DTs AND NAIVE BAYESIAN CLASSIFIERS ON OUR LANGUAGE DATA 57

remove either level 0 essays or essays with felagar 25 words from the corpus. If
we take adjacent agreement into account, as sosuts®n AE$ systems do, we
manage to achieve an adjacent agreement with huatars of 96%, taking all 5
levels into consideration. The adjacent agreementgvel can be found in Table 9
below. Due to a technical issue in WEKA (namelyddies not output a confusion
matrix in its Experimenter interface, which is wéeve run our super-test), our results

here are based on a normal 10-cross-fold validation

Level O Level 1 Level 2 Level 3 Level 4 Level|5

Adjacent 100% 98% 96% 94% 98% 94%

agreement

Table 9:Adjacent agreement for each level (LMT)

Naturally, the baseline for adjacent agreementassequence of 3 consecutive levels
that contains the highest number of essay samgieur case, that would be the
sequence of levels 1-3, with respective sampleegaliB1, 100 and 111. By adding all
these numbers together and dividing by the totatlmer of essay in the corpus (481),

we get the baseline of 71% adjacent agreement.

In Figure 16 below, we include more detailed resyler class, as well as the
confusion matrix. We note again that this resulmes from a 10-cross-fold

validation, whereas for Tables 4, 5 and 6 we haesl uhe super-test.

4Automatic Essay Scoring

4. PERFORMANCE OF DTs AND NAIVE BAYESIAN CLASSIFIERS ON OUR LANGUAGE DATA 58

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.586 0.119 0.596 0.586 0.591 0.851 three

0.55 0.11 0.567 0.55 0.558 0.837 two

0.737 0.009 0.778 0.737 0.757 0.965 Zero

0.817 0.083 0.787 0.817 0.801 0.94 one

0.462 0.077 0.484 0.462 0.472 0.862 four

0.727 0.045 0.678 0.727 0.702 0.951 five
Weighted Avg. 0.647 0.089 0.643 0.647 0.645 0.89

=== Confusion Matrix ===

a b c d e f <-= classified as
65 22 0 2 18 4 a = three
19 55 1 22 2 1 b = two

0 0 14 S 0 0 C = Zero

2 19 3 107 0 0 d = one
20 1 0 0 30 14 e = four

3 0 0 0 12 40 f = five

Figure 16More detailed statistics per class (LMT)

Even though LMT manages to achieve excellent adjaagreement, there might be
several reasons why our accuracy only goes up ®882 These were discussed in

section 4.5.2 above.

In sum, the reasons why LMT is the best classieour task are several. First, it is a
model that manages to drastically reduce the nurabéeatures used, making the
model not only simpler and computationally effididout also leading to a model that
has more explanatory power and provides more itsigio the problem being dealt
with. As Landwehr, Hall & Frank note, “includingtabutes that are not relevant will

make it harder to understand the structure of treain by looking at the final model,

because it is ‘distorted’ by the influence of thesibutes” (2005a:167). In addition,
LMT is a discriminative classifier, not a generatione. LMT builds through logistic

regressions functions a direct mapping betweenfélgures input to the logistic

regression functions and the class labels. Gemeratassifiers, on the other hand,
must calculate the posterior P (y | x) and theroshdhe class whose probability is
maximal. As we will see in our discussion of hove tresults of LMT relate to

findings in Second Language Development, many & thatures available to

language learners start showing at different levéles is in accordance with the
feature selection used by LMT, with each class aairtg in its regression function

only those variables which are relevant to thatjoeclass.

4. PERFORMANCE OF DTs AND NAIVE BAYESIAN CLASSIFIERS ON OUR LANGUAGE DATA 59

4.8 - Pearson’s Correlation Coefficient (inter-rater and rater-classifier)

When building an automatic essay scoring system faany other types of systems),
the gold standard, that is, the highest measursilgesof performance, is how

humans themselves perform the task. With this imdnive conducted two analyses:

a) Using a set of 25 essays from our corpus that wensistently misclassified by all
classifiers, we had a new group of trained ratats them, in order to check for the

correlation coefficient between two groups of humaters.

b) checking the correlation coefficient between #wtual scored assigned by the
human graders and that assigned by the optimaloveo our LMT classifier for all

481 essays in our corpus (1 run of 10-cross-folalaaon experiments).

For our analysis, we have used the followed fornioitecalculation of the correlation
coefficient:

Correlation Co-efficient :
Correlation(r) =[NZXY - EX)XY) / Sqrt((NEX? - EX)?IINZY? - (2Y)2))]
where

N = Number of values or elements

X = First Score

Y = Second Score

2XY = Sum of the product of first and Second Scores

2X = Sum of First Scores

2Y = Sum of Second Scores

X2 = Sum of square First Scores

2Y? = Sum of square Second Scores

Figure 17 Formula for calculating the correlation coefficieht

In Table 10 below, we can see the results of tla¢yaas:

Shttp://easycalculation.com/statistics/learn-correlation.php

4. PERFORMANCE OF DTs AND NAIVE BAYESIAN CLASSIFIERS ON OUR LANGUAGE DATA 60

Human Raters group 2

Human Raters group 1 0.84

Logistic Model Tree (LMT) 0.87

Table 10Correlation coefficients in 2 conditions

In both cases, we see that the correlation effiagemore than satisfactory. Our LMT
classifier performs just as well as a group of hasnaould. Thus, we can affirm that
our classifier is as good as the gold standard.

5. DISCUSSION 61

5. DISCUSSION

In this section, we discuss the relevance and aimmeof our work in view of the

literature on Second Language Development and goliégpLinguistics.

5.1 LMT, our initial features and our feature subset in the context of

Automatic Essay Scoring

Automated Essay Scoring has been making substgmbgless since its incipience,
usually dated to the 1960s and the work of Pagehim@EG system (Page, 1966).
Many other systems have been developed and otlpelatad since then, such as
Intelligent Essay Assessor, ETS1, E-rater, CriteritntelliMetric and Betsy, to
mention a few. These systems vary considerabliieir approaches and methods for
essay scoring. In 1996, Page makes a distinctitwelem automated essay scoring
systems that focus primarily on content (relatedviat is actually said) and those
focusing primarily on style (surface features, tediato how things are said) (as cited
in Valenti, Neri & Cucchiarelli, 2003). Intelligerissay Assessor, ETS1 and E-rater
are examples of the former type, while PEG and \Befa Bayesian system) are

examples of the latter.

The LMT classifier and our approach is more simitathe PEG system developed by
Page. Page (1966) defines what he dals andproxes Trins are intrinsic variables
such as punctuation, fluency, grammar, vocabukange, etc. As Page explains, these
intrinsic variables cannot, however, be directlyasweed in an essay and must
therefore be approximated by means of other messwvhich he callsproxes
Fluency, for example, is measured through the pmoxnber of words” (Page, 1994).
In the features used by Dr. Verspoor and Dr. Schthiel feature TOKENS might be
said to be a prox for “fluency” and the feature PTR prox for vocabulary-
richness/range. Both the PEG system and the LM3siflar make use of multiple
regression (the former using standard regressiahtla@ latter logistic regression).

Both types of regression involve calculating theftioient weights for each feature

6ProjectEssay Grade
7Bayesian Essay Test Scoring System
8Type-Token Ration (Guiraud’s index)

5. DISCUSSION 62

and are able to select those features that are malestant for the classification at
hand.

Our feature subset, containing those 8 features#grahat correlate the most with
proficiency level encompass features that are niblymased in AES systems.
Criterion (an essay scoring and feedback-providipstem), for example, analyzes
five main types of errors, namely agreement erreesb formation errors, wrong
word use, missing punctuation and typographicairerrAll these types of errors are
present in our subset of features, in the formhefERRTOT, ERRLEX and FORM
proxes. Many systems use between 30 and even a@Qfids, whereas ours uses only
8 features and manages to achieve an accuracy®8%2and considerably higher in
some runs)in the super-set test and an adjacentamgcof 98%. The e-rater, for
example, extracts more than a hundred featuresi¢guB000). We must note here
that the feature ERRTOT is in fact a bundle of otkatures that are part of the initial
feature set (just as ERRTOT itself is part of tief@tures we start out with). The
fact that basically 3 of our 8 final features astated to errors shows just how
important error analysis seems to be for an autethassay scoring system and for
differentiating between proficiency levels (moretbrs later).

Two important aspects of our approach to essayreg(o far) are the following: we

only make use of a learner corpus (we have not asgdort of native corpora) and
we only analyze the essays for surface featuraso&iopurposes here, which is the
automated scoring of essays produced by L2 Dutcimger learners in terms of the
level of English proficiency present in the essays,feel no need to do any sort of
content analysis. We are interested in how muchrabthe students have over the
grammatical, written and lexical resources of Estgknd thus content (the ways their
ideas are expressed in terms of cohesion, coher@mgdeother measures) are not

relevant.

5.2 LMT, our initial features and our feature subset in the context of Second

Language Development

We analyze here how the features we have usedrirstady and especially those

found to correlate the highest with proficiency dkvit with research findings in

5. DISCUSSION 63

Second Language Acquisition (SLA) / Second LanguBgegelopment (SLD) and

also why LMT is the classifier the most fitting four task.

In the introduction to their 2009 article entitléBowards an Organic Approach to
Investigating CAF in Instructed SLA: The case ofn@exity”, Norris and Ortega

write: “Fundamental to research in several domaihsecond language acquisition
(SLA) are measures that gauge the three traitowiptexity, accuracy and fluency
(CAF) in the language production of learners” (b5

Our initial set of features includes features exato all three of these measures.
Examples of complexity measures we have employed veords per utterance
(WORDS/UTT), amount of subordination (SYNCPX), ambwf present and past
tense (PRES and PAST respectively) and otherlation to accuracy, we have used
lexical errors (ERRLEX), amount of incorrect churfReJT-), errors in the form of a
verb (FORM), errors in the use of a verb (USE),eaes of grammatical errors
(ERRGRAMS) and several others. Lastly, with regardiuency, we have looked at
the number of tokens in the essay (TOKENS) and tlecwumber of distinct tokens
(TYPES), for example.

The subset of 8 features that have shown the gteaterelation with proficiency

level in our study have all been reported in therditure on Second Language
Acquisition. We move on now to describe how eachhef 8 features selected have
been shown to correlate highly with proficiencydewVe focus especially on the
results of the analysis published in Verspoor andstbmitted), since they deal with
precisely the same dataset and features as weadeeuer, our analysis is not limited
to their study only. Verspoor and Xu (submittedydndecided to exclude level O from

their analysis, whereas we have decided to keep.the

FEATURE 1: TYPES

As Lu, Thorne & Gamson (submitted) write, “a sthafgrward measure that has been
shown to be potentially useful for measuring cHashguage development is the
number of different words (NDW) in a text. Our TY®Heature does precisely that.
Even though our feature TYPES has been found teelede highly with proficiency

5. DISCUSSION 64

level, it does not account for differences in tiextgth. Naturally, a longer text tends
to have more types than a shorter one. Some résearprefer to use Type-Token-
Ratio (TTR) or root TTR (Guiraud, 1959), in whiatstead of dividing the number of
types by the number of tokens (normal TTR), theasguoot of the number of tokens
is used in order to account for differences in tergth. In our data, TTR has proved
not to correlate highly with proficiency level, wieas root TTR is the'5feature that
correlates the highest. When doing feature seleabio the whole set of features,
Guiraud’s TTR becomes part of the subset. Howedespite increasing the accuracy
of the system by about 0.8%, it also causes a dsera the overall precision and
recall. For this reason, we have decided to sticK YPES for our task. In other

scenarios, it might be a good idea to use GuiralidR instead of TYPES.

FEATURE 2: AUT+ (chunks/formulaic sequences usadamily)

Doughty and Long (2003) describe ten methodologpraiciples based on SI°A
research that should be incorporated into any lagguteaching approach.
Encouraging chunk learning is one of these primsiplwhich shows just how

important chunks are for language proficiency.

In the study by Verspoor and Xu (submitted), thenhar of chunks present in an
essay has been shown to increase as proficieney ilsreases, between all levels.
This is only natural, given that the more exposeaeners have to the target language,
the more likely they are to internalize “naturalisding” structures as a single-unit
and the more proficient they are likely to becolfve can see in Figure 18 below how

AUT+ has been shown to develop (in their study,sgeor and Xu do not make use

of a level 0, however):

9Second Language Acquisition

5. DISCUSSION 65

Chunks

.

Figure 18 Development of the AUT+ feature from level 1 td&ken from
Verspoor and Xu (submitted)

FEATURE 3: AUTTOT

Our feature AUTTOT is a combination of AUT+ (cortechunks) and AUT-
(incorrect chunks). There are many different kinfishunks that make up AUTTOT,
including collocations, compound words, particlelested by specific
verbs/nouns/adjectives along with those verbs/nadiectives. As we have seen, the
more a learners uses chunks, the more proficierdeleens to be. As Sinclair and
Mauranen put it in their work “Linear Unit Grammaintegrating Speech and
Writing” (2006), "The prefabricated chunks are imgl in fluent output, which, as
many researchers from different traditions haveedolargely depends on automatic
processing of stored units”. According to Erman &drren's (2000) count, about

half of running text is covered by such recurramtss”

On the other hand, using wrong chunks does notssadéy mean that the student is
not proficient. There is high variability in thefficulty and transparency of different
chunks and the use of wrong ones involves, in ifs¢ place, an awareness of the

existence of that chunk. Secondly, it shows a mgitiess to experiment and use newly

5. DISCUSSION 66

learned language. Many of the chunks examined argapchunks, that is, chunks
that have an empty slot and are not fully fixede Tirong filling of that spot might be
responsible for a good percentage of AUT-.

FEATURE 4: CLAEMPTY (clauses without dependent skgiattached)

The more proficient learners become, the fewer lEmepntences they will use, giving
instead preference to longer and more complex sease in which they can tie their
ideas in a more coherent way. The amount of subatidin has for a long time been
used in the SLA literature to represent the syitammplexity of texts (Ishikawa,
2007, Kawauchi, 2005, Kuiken and Vedder, 2007, Miakt al., 2007). Our feature
CLAEMPTY represents exactly the amount of non-sdb@tion/dependent clauses
in a text. If the amount of dependent/subordintéaeses has been shown to be quite
different between the levels (Figure 19 below), veould the lack of dependent

clauses/subordination.

Dependent clauses
16]
14
12
10
8
6
4
24
0
1 2 3 4 5
|Ei Finite nominal B Finite adverbial O Finite relative O Non-finite (all) i

Figure 19:Development of dependent clauses from level 1 Taken from

Verspoor and Xu (submitted)

FEATURE 5: PRES (percentage of either Simple PteseRresent Perfect)

5. DISCUSSION 67

Our PRES feature revolves around two kinds of Medoastructions: those in the
Simple Present and those in the Present PerfestieAsan see in Figure 20below, the
more proficient a learner becomes the fewer coastms in the Simple Present they
are likely to use, from level 1 to 4. The differenwetween 4 and 5 is not significant.
Conversely, the Present Perfect shows a clearasergom level 1 to level 3 and then
decreases from level 3 to 4, showing no real diffee between levels 4 and 5 (Figure
21). As we can see, this feature seems to corrbigte with the initial proficiency
levels and less with the highest levels. In addijtian overuse of Simple Present is
probably specific to Dutch as L1, since many sezgsmwhich are rendered in English
through the Present Perfect, suchl dmve lived here for 3 yearare rendered in

Dutch in the Simple Present, adknvoon al drie jaar hier

Simple present versus simple past tenses

3 &8 8 8

=]
L

|m Simple present m Simple past ‘

Figure 20Development of Simple Present from level 1 to &efidrom

Verspoor and Xu (submitted)

5. DISCUSSION 68

Mood, aspect and voice

0 T I O SEEEN

O = M W s O~ O0OW0mo

1 2 3 4 5

|EI Conditional m Progressive O Present perfect O Passive m Past perfect |

Figure 21Development of Present Perfect from level 1.tddken from

Verspoor and Xu (submitted)

It seems a bit unusual that two features that shovinverse development tendency
would be a strong indicator of proficiency levelemhcombined, since we are dealing
with a single numerical value here. However, conmgnrdifferent features is quite

common in machine learning and if this feature I@sn selected for our subset, then

it is because it is a good idea to combine theseféatures.

FEATURE 6: FORM(errors in the form of the verb)

The more advanced learners are, the less likely dhe to make mistakes related to
the form of a verb. It is a known fact that mistakd the type “Hego home” or “He
haveseen the movie” are much more likely to be foundhm essays of lower level

students that in those of higher level ones.

In the paper by Verspoor and Xu (submitted), wesmma clear and linear difference
in the number of verb form errors between the ckifié levels (Figure 22). This type
of linear difference is exactly the type of featuteat has a higher chance of

correlating high with the target variable (in oase, proficiency level).

5. DISCUSSION 69

Verb errors

@ Verd form m Verb use |

Figure 22: Development in verb form errors frawd| 1 to 5Taken from
Verspoor and Xu (submitted)

FEATURE 7: ERRLEX(lexical errors, summed over all possible subtypes

With an increase in proficiency in the L2 comeseardase of the influence of one’s
L1 on their L2. Therefore, the more advanced sttsdshow less L1 (Dutch, in our
case) interference on their English. Our ERRLEXUeais in fact the sum of various
types of lexical errors, many of which are in faansfer errors (due to L1 influence).
As we can see in the graph below (Figure 23), ERRBEO0 shows a clear decrease
from level 1 to level 5. The difference betweenelevl and 2, and levels 4 and 5 is

ever clearer.

5. DISCUSSION 70

Types of errors made

N W oeae ;o o~
o SV O

1 2 3 4 5

.E Spelling m Lexical O Mechanical O Grammar ® Punctuation @ WO!‘ﬁDI‘dEII':

Figure 23: Development in lexical errors from level 1 tolaken from

Verspoor and Xu (submitted)

FEATURE 8: ERRTOT(total amount of errors)

ERRTOT is a bundle of error types, including lekicggammatical, punctuation and
mechanical. As mentioned in Feature 8 above, the mdvanced a student is, the less
likely they are to make mistakes, especially moasid ones. Therefore, it is only
natural that a feature such as ERRTOT correlatésgsy with proficiency level. As
speakers of our languages, we can very quickly famninformed idea of someone’s
proficiency level just based on a kind of mistakeyt make (and how often). We can
see in Figure 24 below how the development of EQRTrom levels 1 to 5 confirms

our statement:

5. DISCUSSION 71

Total errors
40
35
30
25
20
15
10
1 2 3 4 5

Figure 24:Development in total amount of errors from levéd b. Taken from

Verspoor and Xu (submitted)

We proceed now to exploring how the values for ezfdine 8 features in our feature
subset might be automatically extracted from aayess

5.3 - Automation of our 8 features

In this section, we discuss possible ways of autmaldy extracting the values for our
8 features. As we have seen, LMT performs quite wekterms of classification.
However, to have a truly automated essay scorirsgesy, we need to be able to
automatically extract the values for each of oded&ures, given a raw essay. These
values will subsequently be fed to LMT, which wililen output the proficiency level
of a specific student. We discuss the automatich@® features in the same order in

which they are presented in the previous section.

FEATURE 1: TYPES

Out of our 8 features, this is the easiest oneutoraate. A few lines of code are
enough to get the value of TYPES for a given es®¥é&y.simply have to count the

amount of unique tokens. Some pre-processing isine; however, such as

5. DISCUSSION 72

changing proper names and numerals into a singheMB or NUMERAL” token. In
the former case, we would need to use a subsys$iginistable to detect named- entity
expressions. In both cases, the use of regulaessgions to define the patterns we are
after might suffice, since these are essays writtestudents in either the'br 3¢
grade and no unusual named-entities or decimal etsnifior example, are likely to

be encountered.

FEATURE 2: AUT+ (chunks/formulaic sequences usademly)

This is arguably one of the most difficult featutesautomate, not only in our subset,
but out of the 81 features we started with. Knowingat constitutes a native-like

construction requires an immense amount of trairdiaga and exposure to the
language, something we humans have probably hadgunantity much higher than

any given corpus we might decide to use in an aatedhsystem. Our feature AUT+
is actually made up of several types of “nativergbng” structures. Following the

examples in Verspoor and Xu (submitted), we showesexample of chunks:

a) structuresbetterand_ better, it is easyto do, find it_niceetc.

b) complementsdecided to, be able to, | don’'t know what/who/whete.
c) compoundssunbathing, deep blue, two-week holiday, etc.

d) particlesdepend on, go on holiday, make up a story, a gajuptc.

e) collocationsthe sun goes down, take a dive, hurt badly, etc.

f) fixed phrasedots of fun, have a wonderful time, what a pitg, et

g) discoursewhy don’t we, in other words, guess what, etc

We shortly discuss here two main methods that wghmemploy in order to
automatically detect chunks in an essg¥ (chi-squared)and point-wise mutual
information. There are other methods that might be used as swalh adikelihood
interval, likelihood ratio testCohran’s methodnd others. We have decided however
to restrict our exploratory discussion to the twor@mentioned methods. For both
methods we need to have a very large corpus ofen&inglish use at our disposal, so
as to get our frequency counts (and thus the pililyabf the constructions). Using
only a learner-corpus will not suffice in the cadedetecting collocations. In fact, a
learner corpus is actually undesirable. We notedbtomatically detecting chunks is

5. DISCUSSION 73

a quite difficult and complex endeavor and the méthbelow are more suitable to
detect some kinds of chunks than others. Some catitms, particles and fixed
phrases for example, can be more easily identliiedhe methods we will discuss,
whereas those chunks that contain partially fidetsge.g,take the_buscan trick a

statistical system much more easily.

a)x? (chi-squared)

A chi-squared test works in the following way: iésames that & number of
variables (words in our case) are independent faoh other (this is called the null-
hypothesis) and by comparing the observed frequericgo-occurrence with the
expected frequency of co-occurrence of these MVasabt allows us to conclude
whether their observed frequency of co-occurrescstatistically significant. If the
answer is positive, we are then forced to rejeetrttll-hypothesis and say that there
is a correlation between those variables. The nbexperimental design of ehi-
squared test uses two variables, but it is possible (desptibstantially more
complicated) to increase the number of variablesnwat to our chi-squared table. In
a 2x2 table, it is important that the number ofeotpd co-occurrences for each cell
be at least 5 in order for the chi-squared testdk. We can see in Table 11 below a

chi-squared table for calculating whetlake actiormight be a chunk:

ACTION - ACTION
TAKE A B
- TAKE C D

Table 11:Chi-squared table for calculating whether “take iact’ is a chunk

For each cell, we must calculate both the expeatetithe observed number of co-
occurrences. Cell A, for example, represents theession “take action”, whereas
cell B represents any expression that begins wighwordtake and is then followed

by a word different fromnaction Since many of the words and phrases we might want

to check for may not be very common, we need a kage corpus (the web itself is

5. DISCUSSION 74

the most desirable corpus) in order to get reliatdents. We will not go into the
details of the calculation chi-squared in here, et note that in the end, after
calculating the necessary numbers, we end up wdingle numerical value for that
expression we are checking. This final number rbesthecked against a predefined
number in a chi-squared table for the null-hypothds$ the number output from our
table is higher than the number referring to th# hypothesis (different so-called
degrees of freedom are possible), then we can salkave a collocation, since our
variables co-occur more often than change wouldtgta

This method might work quite well for idioms, sintteere is very little variation in
idioms, given that they are a fixed and orderedalblaf words. Example of idioms are
“like a bull in a china shop”, “better later thaevwer”, etc. However, for other kinds
of chunks, like “take action”, chi-squared does wotk very well, since in the B cell
above, we would have quite high numbers as welkergithat other chunks starting
with takesuch as “take the bus”, “take precautions”, “takece” and “take part” are
also common. Another issue is that some chunks tnaillpw a flexible word order,
such as “pick the boy up” and “pick up the boy"n& chi-squared in our case works

with a rigid word order, we might miss many couiaiscertain chunks.

As we can see, even though chi-squared can be ugefal in some cases, it is by no
means an exhaustive method for automatically datpachunks. Point-wise mutual

information (discussed below) tends to encounter shme sorts of issues, which
might lead us to have to experiment with both stiatl and rule-based methods for

extracting chunks.

b) point-wise mutual information

Point-wise mutual information quantifies the di#face between the probability of the
co-occurrence of Z variables given a joint disttibo and the probability of their co-
occurrence given their individual distributions.eTfformula for the point-wise mutual

information between 2 variables can be found below:

5. DISCUSSION 75

pmi(z, y) = log —P(I'y)
p(z)p(y)

The expression “take action” constitutes two vddapthe first being the woridke

and the second the woadtion If we are analyzing, however, if a 4-word exgies

might be a chunk, however, the formula can be yaslapted (much more simply

than chi-squared) to include more variables. Indage of “take action”, we would

calculate the PMI between these two words in theviing way:

PMI (take, action) = log C (take, action) / N

C (take) / N * C (action) / N

In the formula abov€ stands for the number of times we have seen afgpecrd
(count) andN stands for the number of tokens (or words) presetiite corpus.

The problem with PMI is similar to the one faceddby-squared, namely the fact that
many chunks are either partial or accept a flexitier. In the former case, we would
get a high number in the denominator, since “taketlld appear many times in the
corpus followed by something else other than “actid his will lead to a decrease in
the probability that “take action” is a chunk. Nally, we can experiment with
different probability thresholds for affirming thatcertain expressions is a chunk, but

this is not likely to make the system much better.

Given that neither chi-squared nor PMI is enoughutomatically detect all types of
chunks, a mixture of rule-based and statisticalhoas might be desirable, with the
former taking preference when available. For chusésh as *“it is_easyo” and
“better and better”, a template for these consiwast combined with part-of-speech
tagging of both the native corpus and of the essayggiestion will probably lead to
the identification of many chunks which would net identified by the two statistical
methods discussed above. Examples of templatesdwmeiAdjectiveg + AND +
Adjective, IT IS + ADJECTIVE + TGand others.

In sum, the task of automatically detecting chuimkan essay is extremely complex

and only a process of trial and error, in which ex@eriment with many different

5. DISCUSSION 76

techniques such as the one cited above, mightusawards a system capable of

accurately extracting the types of chunks used éspoor and Xu (submitted).

FEATURE 3: AUTTOT

As previously mentioned, AUTTOT is a combinationbafth correctly used chunks
(AUT+) and incorrectly used ones (AUT-). AUT- i@ complex to be automated.
However, the same calculations we have to do femntilying AUT+ might also lead
us to extracting AUT-. One possible way to go akibettask would be to check for
each structure (2 words or more) whether it quedifas a chunks or not (using chi-
squared or PMI, for example). In the case that ot a chunk, we would check for
all the words in our structure, one at a timeh#re are other words that could fit in
their slot and thus turn the whole structure intthank (calculated through the means
above). An example would be the structure “likeog th a china shop”. As we know,
this is not a correct chunk, given that the cor@uink would be “like a bull in a
china shop”. We would start by calculating the @bty that any other X word seen
in our corpus in the position dke (and therefore before “a dog in a china shop”)
might gives us a chunk. The sentence “as a dogchirea shop”, for example, would
not qualify as a chunk. However, when we got to wuwed dog and replaced it by
“bull”, we would get from of our statistics thatettsentence “like a bull in a china
shop” does indeed qualify for a chunk. In this was, can assert that “as a dog in a
china shop” is an incorrectly used chunk (AUT-nc& there is a slightly different
version of it that does qualify as a chunk. Thisuldoapply in the same way for
incorrect chunks such as “it depends in you” ortlfink it nice”, for example.
However, it might judge some perfectly fine constions such as “better and
stronger” to be an incorrectly used chunk, sincettdr and better” might classify as
being a chunk. Just as with AUT+, using templateghinbe a good idea, since
something that “almost” fits the template mightjbdged to be an incorrect chunk.
Other incorrect chunks, such as “pick up him” amrendifficult to detect. Allowing a
flexible word order seems to cause problems fantiieng both correct and incorrect

chunks.

5. DISCUSSION 77

FEATURE 4: CLAEMPTY (clauses without dependent skiattached)

Automating our CLAEMPTY? feature is somewhat simpler. Dependent clausea are
group of words that do not express a complete thipudgespite containing a subject
and a verb. Quite often, dependent clauses areegedcby what might be called
“dependent marker words”. These are words sucthake, whether unless when
wheneveras as if, becausebefore even thoughin order tq since though etc. If we
find one of these words in an essay, there is @ gbance that the clause that follows
is a dependent clause. The main issue here isifiegtthe boundaries of the
dependent and independent clauses (where eactegmsand ends). Such a task can
be achieved by means of applying a parser to thiesees. Once the parser identifies
a noun phrase (NP) followed by a verb phrase (V@know we have a clause. If it

follows one of our marker words, then this clauseiM likely be a dependent clause.

In fact, there are already systems available thatable to identify the number of
clauses and dependent clauses in a sentence. €meystiem is the one developed by
Xiaofei Lu (2010), named L2 syntactic Complexity alyger. The number of
sentences (S), the number of clauses per sent€i8e dnd the number of dependent
clauses per clause (DC/C) in an English essayhage df the nine complexity indices
that the system is able to identify, by its useh&f Stanford parser and a parse-tree

guerier. With these three numbers, we are ablaltulate our CLAEMPTY feature.

FEATURE 5: PRES (percentage of either Simple PteseRresent Perfect)

A parser is able to identify syntactic phrases sashoun phrases (NPs), verb phrases
(VPs) and others. Many grammar formalisms, suchiRSG and CFG, are able to
identify the head of the phrase as well. Once wee hdentified the head of the VP,
we can then analyze it for tense. The present tengaglish (both in the Simple and
Perfect aspects) is quite easy to analyze, sireetiy variation is found in the'®3
person singular (such asTime boy leaves home at 7amherefore, with the help of a

parser and a morphemizer (which is capable of iyamy specific morphemes in

10Percentage of no dependent clauses

5. DISCUSSION 78

words), we are able to get the counts for the feaIRES tense in our essays. Finite-

state techniques can also be employed but mightenaecessary.

FEATURE 6: FORM(errors in the form of the verb)

Our feature FORM stands for errors in the form @keb, such as in the senterde

go to schoolThe correct form igjoes since the verb must agree with tH& Berson
singular subject. Another example of a FORM errould beHe was shoot in the
arm. Grammar formalisms such as HPS@re able to parse complete sentences and,
given that it is a unification-based formalism (graatical features have to match
each other incrementally), it identifies problemghwagreement, participle forms
such as in the passive example above and othes.typérmalism such as HPSG

would allow us to get our counts for the FORM featu

FEATURE 7: ERRLEX(lexical errors, summed over all possible subtypes

The feature ERRLEX is in fact a sum of 7 kinds ekital errors (cf. Index),
including errors caused by L1-Dutch transfer, sash“a long boy’ Tetreault and
Charodow (2009), in an article entitl&ckamining the Use of Region Web Counts for
ESL Error Detectiordiscuss a new approach to identifying errors iglish and an
L2/foreign language. By making use of web countglisas the number of hits a
search engine like Google provides), the basic isiéa compare the difference in the
frequency of specific constructions (and their &afs) in the web counts of a specific
non-English speaking region (where English is nétst language) against a region
where English is a first language (such as the W&E#e UK, for example). In the
case of our ERRLEX feature, it might be a good ittease the Netherlands itself as
the only region or one of the non-English speakegons, since many of the lexical
errors in our case are due to transfer from Dukcreat discrepancy in the number
of counts (naturally, different thresholds haveb&oexperimented with) for the non-
English speaking regions and the English speakégipns indicates an error. This
method circumvents the very common issue of thevaitability of a very large
learner corpus (with tagged errors for example) agb avoids the problems

11Head-Driven Phrase Structure Grammar

5. DISCUSSION 79

associated with training a model solely on welkied texts (native essays, for
example). However, a combination of this approad & model trained on tagged

learner corpora might prove to be quite useful @dplementary.

FEATURE 8: ERRTOT(total amount of errors)

Our last feature in the subset, ERRTOT, is a bigdbeiof other features, all related to
errors. They represent lexical, mechanical, grammspelling, mechanics,
punctuation, word order and others. The majorityhelse errors can be identified by
the same methods mentioned above, namely, TetraadltChodorow’s system of
using web counts, complemented with a model traioeda learner corpus from
Dutch students writing in English. Many of the esr@an already be identified by
spelling and grammar checkers such as those prieskitrosoft Word, for example.
Punctuation errors, on the other hand, are likelybe more difficult to be
automatically detected, since many parsing modelsnot take punctuation into
account. Another problem with detecting punctuapooblems based on web counts
is that many of the “hits” provided by Google, fexample, come from pages in
which people do not pay much attention to punatmativhen writing. Therefore,
punctuation error detection might be the one typermr that needs to be trained on
well-formed corpora. Another possibility for punation error detection would be to
make use of a Hidden Markov Model of a higher ardeich as one implemented
through the Viterbi algorithm, trained on a largepus such as newspaper articles,
books, etc. Even here, however, we run into thélpro that many of the structures
and n-grams used by the Dutch students might net baen seen in the training data,

in which case some sort of back-off model wouldéhtrbe used.

As we have seen in this section, some of the &ifeatin the subset lend themselves
much more easily to automation than others. AUTHJTAOT, ERRLEX and
ERRTOT in particular, are much harder to automBteproviding LMT with access
to only the 4 features that are the easiest toempht (TYPES, CLAEMPY, PRES
and FORM), we manage to keep an accuracy of 55I5#%.is lower than the 62.58%
we manage to achieve when all 8 features are bsedhows that once these 4 easier
features are implemented in a system, LMT stilictions well for our purposes, since

the great majority of the misclassifications aik atljacent ones.

6. CONCLUSION AND FUTURE WORK 80

6. CONCLUSION AND FUTURE WORK

We have shown in the scope of this thesis that madkarning techniques are quite
fitting for the identification of those featuresathcorrelate the most with proficiency
level. Once we manage to automate the 8 featurats dbrrelate the most with
proficiency level and extract their values, Logislodel Tree will prove to be a quite
fitting classifier for the task of automatic essagoring (AES). The LMT
scheme/classifier, in particular, not only shows best results in terms of accuracy
and adjacent classifications but also approaches cthssification task from a
perspective that is more in tune with findingshie Applied Linguistics literature. As
Verspoor and Xu (submitted) show, different feasudevelop at a different pace
through the levels and not always present a litedravior. By selecting for each
class (proficiency level) only those features thwa important for that specific class
and calculating the optimal classification coe#iti for those features, LMT achieves
the best accuracy possible. Moreover, by compaitiegcorrelation coefficients of
two groups of humans and that of a group of humensus our LMT system, we
conclude that LMT'’s classification meets the sdezhfjold standard. In other words,

LMT performs just as well for our task and a gradiprained human raters would.

We are aware of the fact that we deal here witly palt of the proficiency spectrum,
since our highest level (level 5) is a high B1 leue the Common European
Framework. In addition, we have only used essay#tenrby Dutch students and
some of our features might be tuned to phenomgmaatyof Dutch L1 interference
on English, which might lead LMT to perform not sell on essays written by
students whose L1 is not Dutch. With regard to $pectrum of our proficiency
levels, we have every reason to believe that ostesy would work just as well if
higher proficiency levels were to be included. Rdgey the students’ L1, only a
collection of holistically scored new essays by akmes of different L1s would
provide us with the answer as to whether our cturckssifier would perform well on
those essays. In case the accuracy is much loweweawould need to do is to
annotate our 8 features in these new essays amdhratdifferent classifier. Another
possibility would be to merge both classifiers, tre for Dutch and the one for the

new L1, so as to create a classifier that wouldlleamore than just one L1.

6. CONCLUSION AND FUTURE WORK 81

A logical future step in our work is to developystem that automatically extracts the
values for our subset of 8 features and autométiteds those to our LMT classifier
in order to have a truly automated essay scorirsjesy. Some of the features are
certainly easier to be implemented than othersyeabave described. In future work,

we intend to develop such a system.

7. REFERENCES 82

7. REFERENCES

Guiraud, P. (1959).es characteres statistiques du vocabuldiaris: Presse

Universitaires de France.

lan H. Witten, Eibe Frank, and Mark A. Hall (201Data Mining: Practical Machine
Learning Tools and Techniquéd® edition). Morgan Kaufmann, Burlington, MA.

Ishikawa, T. (2007). The effect of manipulatingkt@emplexity along the [+/- Here-
and-Now] dimension on L2 written narrative disceurm M. P. Mayo Garcia (Ed.).

Investigating Tasks in Formal Language Learnilfyltilingual Matters.

J. Burstein & M. Chodorow. (2010). Progress and Nesections in Technology for
Automated Essay Evaluation. In Kaplan, Robert.B.)Edxford Handbook of
Applied Linguisticgpp. 529-538). Oxford University Press, 2010.

J. R. Quinlan (1986). Induction of Decision Tredsichine Learnindl:1 , 81-106.

J. R. Quinlan (1993)Y4.5: Programs for Machine Learninylorgan Kaufmann, San
Mateo, CA.

J. M. Sinclair and A. Mauranen (200&)inear Unit Grammar: Integrating Speech

and Writing.John Benjamins Publishing Company, Amsterdam.

J.Tetreault and M. Chodorow (2009). Examining tke af region web counts for
ESL error detectionVeb as Corpus Workshd@W/AC-5), San Sebastian, Spain.

Kawauchi, C. (2005). The Effects of strategic plagron the oral narratives of
learners with low and high intermediate L2 profimg. In R. Ellis (Ed.)Planning

and Task Performance in a Second Langudgkn Benjamins.

7. REFERENCES 83

Kuiken, F. and I. Vedder (2007). Cognitive task @bewity and linguistics
performance in French L2 writing. In M. P. Garciayd (Ed.) Investigating Tasks in

Formal Language Learnindvultilingual Matters.

Kukich, K. (2000)). Beyond Automated Essay ScoringV. A. Hearst (Ed.)The

debate on automated essay gradilieEE Intelligent systems, 27-31.

Lu, X., Thorne, S. L., & Gamson, D. (submitted) wasd a Framework for
Computational Assessment of Linguistic Complexitysoade-level Reading

Materials. Journal of Applied Linguistics.

Lu, Xiaofei (2010). Automatic analysis of syntaatimmplexity in second language

writing. International Journal of Corpus Linguistic$5(4): 474-496

Manning. C and Schutze, H. (199%)undations of Statistical Natural Language
ProcessingMIT Press, Cambridge, MA.

Michel, M. C., F.Kuiken, & I.Vedder (2007). The inénce of complexity in
monologic versus dialogic tasks in Dutch LZernational Review of Applied
Linguistics in Language Teachidd: 241-59.

Norris, J. M., & Ortega, L.
(2009).Towards an organic approach to investigating CARnstructed SLA: The
case of complexity. Applied Linguisti®§), 555-578.

N. Landwehr, M. Hall, and E. Frank. Logistic motleles.Machine Learning59(1-

2):161-205, 2005.

Page, E. B. (1994). Computer Grading of Studens€rdsing Modern Concepts and
Software Journal of Experimental Education, 6227-142.

7. REFERENCES 84

S. Valenti, F. Neri, A. Cucchiarelli (2003) An Ovesw of Current Research on
Automated Essay Scorindournal of Information Technology Educatjd) 319-330.

Verspoor, M.H., K. de Bot & W.M. Lowie (2004). Dymac systems theory and
variation: a case study in L2 writing.” In H. Aegts M. Hannay & R. LyallWords in
their places: a Festschrift for J. Lachlan MackenZmsterdam: VU, 2004. pp. 407-
421

Verspoor, M. and Xu, X. (forthcoming). A dynamicage based perspective on L2

writing development.

Wang, J. & Brown, M.S. (2007). Automated Essay Bep¥ersus Human Scoring:
A Comparative Studylournal of Technology, Learning, and AssessméBj, 6

Retrieved June 2011 frohttp://www.jtla.org

8. INDEX 85

8. INDEX

DESCRIPTION OF FEATURES USED IN THE STUDY

SENTENCE-LEVEL MEASURES:

Utt: number of utterances in the essay, whereby “utterance” is the same as a T-
UNIT, defined by a main clause along with all subordinate clauses attached to it.
The sentence “The man called when he got home” is a single utterance, for

example.

Words/Utt: average number of words per utterance. This is calculated by
dividing the number of words by the number of utterances in the essay. In the

single sentence “My teachers are friendly”, it is 4.

Synsimp: percentage of simple sentences (containing one finite main clause and
maybe including non-finite complex constructions). Ex: “My teachers are

friendly”.

Syncpx: percentage of complex sentences, that is, sentences containing a main
clause and at least one finite dependent clause. Ex:”It was very nice and funny

because we buyed all things the same”.

Syncpd: percentage of compound sentences (containing two or more complete
main clauses), with “complete” meaning that it is comprised of a subject and a

finite predicate. Ex: “I have very much homework and I have enough to do.”

Syncpdcpx: percentage of compound/complex sentences (with two or more
complete main clauses and one or more finite dependent clauses). Ex: “Now [

don’t know what to talk about anymore so I just say a lot of things that don’t make

sense .

8. INDEX 86

Claadv: percentage of finite adverbial clauses. Ex: “It was very nice and funny

because we buyed all things the same"”

Claempty: percentage of utterances with no dependent clauses. The utterance “I

went to Bolivia with my family”, for example, has no dependent clauses.

Clanom: percentage of finite nominal clauses (functioning as subject or object).

Ex: “I said I haven’t saw them before”.
Clanonfin: percentage of non-finite constructions, functioning as an adverb,
nominal or a post-modifier. Ex: “In de back of the boat were dolphins jumping in

our waves”.

Clarel: percentage of finite clauses functioning as a post-modifier of a noun. Ex:

“The most nice thing I've did was mountain biking”.

Synfrag: percentage of incomplete sentences (fragments). ?

Synphras: percentage of incomplete sentences (phrases).Ex: “A heavy rain”.

VERB-PHRASE MEASURES:

Pres: percentage of verbs that are in the Present (perfect or simple). Ex: “walks,

has gone”

Pass: percentage or verbs which are in the Passive voice . Ex: “is written, was

written”.

Perf: percentage of verbs in the Perfect aspect (present or past). Ex: “has gone,

had gone”.

8. INDEX 87

Cond: umbrella term for modals, semi-modals, marginal modal verbs and
participle verbs used in “if” like constructions. Ex: “will go, could have gone, went
(in: if he went”).

Prog: percentage of verbs in progressive aspect. Ex: “is walking, was walking.”

CHUNKS:

Aut-: a formulaic sequence not used correctly. Ex: It goes not with saying that

she’ll manage.

Aut+: a formulaic sequence used correctly. Ex: She remembered it from the top of

her head.

Auttot: sum of Aut- and Aut+ values.

LEXICAL:

Morph: number of morphemes in the essay. The sentence “They left early with

the cook-er” has 7 morphemes. NVX

FORM: error in form of a verb. Ex: “He go to school”.

USE: error in verb use. Ex: “He has gone to school yesterday”.

Morph/Utt: the ratio between the numbers of morphemes and the number or

utterances. Number of morphemes divided by number of utterances.

Tokens: the number of tokens in the essay. The sentence “We arrived there on a

Monday” has 6 tokens. NVX

8. INDEX 88

Types: the number of unique tokens in the essay. The sentence “We left because

we did not want to stay” has 8 types. NVX

TTR: it is the type/token ratio. In this case, Guiraud’s index is used, which is
calculated by dividing the number of types by the square root of the number of

tokens, so as to avoid a negative correlation with increasing essay length.

R1pc: the percentage of tokens found in a specific essay which are part of the
100-80% bandwidth of frequent tokens used in the whole corpus of essays (that

is, the 20% most used tokens within the whole corpus).

R2pc: the percentage of tokens found in a specific essay which are part of the 80-

60% bandwidth of frequent tokens used in the whole corpus of essays.

R3pc: the percentage of tokens found in a specific essay which are part of the 60-

40% bandwidth of frequent tokens used in the whole corpus of essays.

R4pc: the percentage of tokens found in a specific essay which are part of the 40-

20% bandwidth of frequent tokens used in the whole corpus of essays.

R5pc: the percentage of tokens found in a specific essay which are part of the 20-
0% bandwidth of frequent tokens used in the whole corpus of essays (that is, the

20% least used tokens).

TypR1pc: the percentage of types found in a specific essay which are part of the
100-80% bandwidth of frequent types used in the whole corpus of essays (that
is, the 20% most used types).

TypR2pc: the percentage of types found in a specific essay which are part of the

80-60% bandwidth of frequent types used in the whole corpus of essays.

TypR3pc: the percentage of types found in a specific essay which are part of the
60-40% bandwidth of frequent types used in the whole corpus of essays.

8. INDEX 89

TypR4pc: the percentage of types found in a specific essay which are part of the

40-20% bandwidth of frequent types used in the whole corpus of essays.

TypR5pc: the percentage of types found in a specific essay which are part of the

20-0% bandwidth of frequent types used in the whole corpus of essays (that is,

the 20% least used types).

ERRORS:

Errempty: percentage or no error.

Errgram: percentage of grammatical errors (summed over all possible

subtypes).

Errlex: percentage of lexical errors (summed over all possible subtypes).

Errmech: percentage of mechanical errors (summed over all possible subtypes).

Errpunct: percentage of punctuation errors (summed over all possible

subtypes).

Errspel: percentage of spelling errors (summed over all possible subtypes).

Errwo: percentage of error in word order. Ex: “I will you pick up”. NVX

Errtot: percentage of errors (summed over all possible subtypes). .

Errgram 1: wrong use of apostrophe for plurals or third person singular. Ex:

“weve, do’nt”.

Errgram 2: incorrect use of singular or plural. Ex: “a very cool teachers”.

8. INDEX 90

Errgram 3: Dutch-like word order involving a verb or a confusion regarding

have-be. Ex: “I have not a friend” or “I like it not”.

Errgram 4: incorrect word form or left-out pronoun. Ex: “helping very good”.

n o«

Errgram 5: a Dutch construction. Ex: “I have a lot of the lottery”, “a shark was

escaped”.

Errgram 6: another type of grammatical error.Ex: “how what it was like”. NVX.

Errlex 1: use of a Dutch word. Ex: “wegenwacht, ik, etc”.

Errlex 2: literal translation of a Dutch word into English. Ex: “A long boy”.

Errlex 3: use of a wrong preposition in a lexical or grammatical chunk due to L1

influence. Ex: “I'm on this school now”.

Errlex 4: use of a wrong pronoun. Ex: “It are my best friends”.

Errlex 5: literal translation of a Dutch idiom. Ex: “I slept with my cousin”.

Errlex 10: adverb/adjective confusion. Ex: good/well.

Errlexoth: all other kinds of lexical errors. Ex: “A (1) like”, “the school light (lies)”.

Errmech 1: capitalization error. Ex: “i”. NVX

Errmech 2: space error. Ex: schoolstreet.

Errmech 3: apostrophe error. Ex: dont.

Errmech 5: a typo. Ex: whit.

8. INDEX 91

Errmech 21: space error not due to transfer from L1 (Dutch). Ex: ilooked.

Errmech 22: space error due to transfer from L1 (Dutch). Ex: olivetree.

Errmechoth: other mechanical errors.

Errmisvb: percentage of verbs which were missing (but should not be).Ex: “I

want to the school”. NVX

Errpunct: the percentage of errors in punctuation.

Errpuncl: comma splice. Ex: “I went on holiday with my whole family,we went to

a camping and slept in a tent”.

Errpunc 2: fused sentences. Ex: “The school is big I like free hours of food”. NVX

Errpunc 3: fragmented sentences. Ex: “But in the end, when we went back”.

Errpuncoth: other punctuation errors. Ex: “I have two sisters; Thamires and

Thatyana”. NVX

Errspel: total number of spelling errors.

Errsp 1: half-Dutch, half-English words. Ex: zwimming.

Errsp 2: phonetically spelled words. Ex: Franse, to hef.

Errsp 3: confusing homonyms. Ex: to/too, see/sea

Errpel 4: misspelling in difficult words. Ex: dependent/dependant.

Errpel 5: other errors. Ex: heelo/hello.

8. INDEX 92

Errspel 10: a morphological error. Ex: easyer.

Errpel 31: confusing words like awfull/awful.

Erroth: errors which are neither lexical, in spelling, in mechanics, in grammar, in

word order or in punctuation. Ex: “I was very happy with my to see my class”.

Errtot: total amount of errors.

NON-LINGUISTIC FEATURES:

TTO: Indicates whether the student attends a bilingual school (around 15 hours

a week of English exposure) or a normal school (around 3 hours a week of

English exposure).

Grade: student’s grade at school (either 1st grade or 3rd grade)

Level: the student’s proficiency level as determined by holistic scoring of his/her

essay.

END OF INDEX

