

Master’s Degree in Cognitive Science

Convolutional Neural Network
Language Models

Marco Baroni
Gemma Boleda

Ngoc-Quan Pham

Academic Year 2014-2016

CONVOLUTIONAL NEURAL NETWORK LANGUAGE MODELS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF UNIVERSITY OF TRENTO

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

Ngoc-Quan Pham

September 2016

c© Copyright by Ngoc-Quan Pham 2016

All Rights Reserved

ii

Acknowledgements

My first gratitude is to Gemma Boleda, German Kruszewski and Marco Baroni, my thesis

supervisors, who gave me full support for my master thesis, especially at the first stage

when everything was a mess. With their constant guidance and encouragement, my per-

sonal competencies, from foreign languages to research skills have improved considerably.

I would like to thank the members of the jury in University of Malta and University of

Trento, for spending a lot of time and effort to review this thesis.

I also love the days working with the reading groups in CIMeC, where I had the for-

tune of benefiting from all of them. Marco Baroni paid my first lunch in Rovereto. Ducky

(my Vietnamese fellow) and I tried to setup the computer for the whole day just to realise

that the driver was impaired. Angeliki Lazaridou helped me to realise the beauty of learn-

ing models, especially how simple they are. In contrast, Aurelie Herbelot and Raffaella

Bernardi showed me that the world is so naturally complex. There are also many other

people in CIMeC that shared with me their stories and experience. Thanks to them, the

horizon that I can see has been enlarged. The Erasmus Mundus scholarship and people

who are involved to this program also helped me greatly in the master course and the thesis

in particular.

I would like to thank Luong Chi Mai for introducing me to NLP and Speech Process-

ing. Thanks to Le Hai Son for mentoring me about neural network language models and

translation models. Thanks to Enrica and Martina for being my first Italian friends. Thanks

to Volodimir Horowitz and Sergei Rachmaninoff, who are my endless source of inspiration

with their planet-moving and heartfelt concerti.

Finally, my biggest gratitude is obviously to my parents and my brother who are my

ultimate motivation to train myself harder and harder everyday in order to be a better human

iii

being.

iv

Contents

Acknowledgements iii

1 Introduction 1

2 Background 6
2.1 Statistical Language Modeling . 6

2.1.1 Problem overview . 6

2.1.2 Evaluation Metrics . 7

2.1.3 N -gram models . 8

2.2 Neural network language models . 10

2.2.1 Feed-forward neural language models 11

2.2.2 Training method . 15

2.2.3 Training/Optimisation Process . 15

2.2.4 Recurrent neural language models 18

2.2.5 Softmax approximation in neural language models 28

2.3 Convolutional Neural Networks . 32

2.3.1 The convolutional layer . 32

2.3.2 Hyper parameters for convolutional neural networks 35

3 Convolutional Neural Language Models 36
3.1 Baseline FFLM . 37

3.2 CNN model and variants . 39

3.2.1 Basic CNN network . 39

3.2.2 Extensions . 40

v

4 Experiments 43
4.1 Experiment details . 43

4.1.1 Datasets for evaluation . 43

4.1.2 Implementation Details . 44

4.2 Results . 47

4.3 Model Analysis . 49

5 Related Work 53

6 Conclusion 55

A Publications by Author 57

vi

List of Tables

2.1 An example of perplexity computation for the sentence “The relationship

between Obama and Netanyahu is not exactly friendly”. 7

2.2 Notations for neural network layers. 13

2.3 Notations for recurrent neural network layers. 21

4.1 Hyper-parameters to be chosen when training neural network language

models. 45

4.2 Results on Penn Treebank and Europarl-NC. Figure of merit is perplexity

(lower is better). Legend: k: embedding size (also number of kernels for

the convolutional models and hidden layer size for the recurrent models);

w: kernel size; val: results on validation data; test: results on test data; #p:

number of parameters; L: number of layers. 48

vii

List of Figures

1.1 Language Model development timeline.. 2

2.1 Neural language model architecture by Bengio et al [4]. 12

2.2 A simple RNNLM [45] predicting the sequence “The cat is eating fish bone”. 20

2.3 LSTM cell architecture with 4 gates [29]. The operations used in the figures

are matrix element-wise multiplication (x) and matrix addition (+). 27

2.4 Hierarchical Softmax: Factorisation of the output layer. 29

2.5 Noise Contrastive Estimation illustration. 31

2.6 Simple illustration for convolution. The input is a 2D image, the output is

obtained by sliding the kernel through the image. 33

3.1 Overview of baseline FFLM. 38

3.2 MLPConv architecture. The features are learned by a multi-layer per-

ceptron after scanning through the network with convolution. The MLP

weights are shared between kernels. 41

3.3 Convolutional layer on top of the context matrix. 42

3.4 Combining kernels with different sizes. We concatenate the outputs of 2

convolutional blocks with kernel size of 5 and 3 respectively. 42

4.1 Some example phrases that have highest activations for 8 example kernels

(each box), extracted from the validation set of the Penn Treebank. Model

trained with 256 kernels for 256-dimension word vectors. 49

4.2 The distribution of positive weights over context positions, where 1 is the

position closest to the predicted word. 50

viii

4.3 Perplexity change over position, by incrementally revealing the Mapping’s

weights corresponding to each position. 52

ix

Chapter 1

Introduction

Exploiting the information from textual data (corpora) for artificial intelligent systems is

one of the most important targets of Natural Language Processing (NLP). Applications that

can benefit from this textual knowledge include Machine Translation, Information Extrac-

tion, Information Retrieval, Automatic Speech Recognition or Speech Synthesis The

main applications of language models is to lead artificial intelligence systems to generate

texts that can be comprehensible by human. For example, in speech recognition, a good

language model should be distinguish two spoken utterances with similar signals: “Let mu-

sic be the food of love” and “Let music be the foot of dove” because the former utterance

is more intuitive and likely to occur in the current English.

The main purpose of a language model is to model the linguistic regularities of language

by capturing the morphological, syntactical and semantic properties of a given language.

Such a model should ideally be able to assess the likelihood of an arbitrary sentence in a

particular context. In the last decades, the language modeling problem has been approached

with statistical methods as a standard. Statistical language models are trained so as to

predict the upcoming word given its previous context, which are the words appearing before

the target word to be predicted. The word and its context is usually referred as an n-
gram, which is a contiguous sequence of n tokens (words in textual data), consisting of

one word to be predicted and n − 1 words in the given context. For example, the word

combination “The dog runs” is an n-gram with order of 3, and the language models aim

at predicting the word “runs” given the context “the dog”. The conventional approach

1

CHAPTER 1. INTRODUCTION 2

1995

2003

2009

2014

Count-based
n-gram models

(Knesey and Ney
et al.)

Neural network
n-gram models

(Bengio, Schwenk
et al.)

Recurrent neural
models

(Mikolov et al.)

Long-short term memory
State-of-the-art
(Zaremba et al.)

R
ep

resen
tatio

n
Weak smoothing

techniques

Word embedding
+

Smoothing Function

Recurrent architecture:
Unrestricted history

Memory models

Figure 1.1: Language modeling development timeline.

to this problem relies on the statistical point of view, which is assigning probabilities for

sentences by counting the number of occurrences of n-grams in the corpora to estimate

the probabilities. Problems arise when the model has to estimate the probabilities of word

sequences that are rare in the corpus, or do not appear at all, but still make sense in human

languages. There are techniques that estimate the distribution of rare n-grams based on

the seen ones (also referred to as smoothing techniques) or using the statistics of lower

order n-grams (back-off techniques) [11, 18, 27, 37, 51, 72]. The main disadvantage of

these models is that each individual word is treated independently of the others, that is,

count-based n-gram models fail to capture semantic relations between words. As a result,

those models suffer from two weaknesses. First, they are limited by a small context size,

since the number of possible n-grams grows exponentially with the n-gram order. For

example, if the language vocabulary contains 10000 words then there are 1024 possible 6-

grams to be estimated, which cannot be covered by any corpora as a consequence of Zipf’s

law [36]. Second, it is not able to infer the estimation of an unknown word string based on

similar sequences. For example, if a good language model has seen the sentence “The cat

CHAPTER 1. INTRODUCTION 3

runs”, then it should be able to tell that the unseen sentence “A dog runs” is valid, given

the semantic similarity between the articles “a” and “the”, and the pets “cat” and “dog”.

Consequently neural network language models [5] became a solution for the problems of

n-gram models. The success of neural network language models is based on two key

ideas. First, the models learn the distributed representation of words, which express the

word meaning with low dimensional vectors which can represent the similarity structure

between words. Second, the statistical language model is viewed as a machine learning

classification problem, in which the model tries to discriminate the predicted word from

other words in the vocabulary. The models, initially proposed by Bengio et al. [5] and then

enhanced by Hai Son et al. [24], Mikolov et al. [45], Schwenk [59], Vaswani et al. [70]

have been shown to outperform count-based n-gram models.

Neural networks (or Artificial neural networks) are a class of machine learning models

that is inspired by biological neural networks. They are well-known to be flexible and pow-

erful in terms of learning representations in various problems, including Natural Language

Processing. Among the commonly used architectures of neural networks, there are two

different structures applied successfully in language modeling: feed-forward networks and

recurrent networks, making different architectural decisions. Recurrent networks [45, 46]

treat language modeling as a sequence prediction problem by taking one word token at a

time together with a hidden “memory” mechanism to produce a predicted word and update

the memory for next time step. Importantly, they are strong enough to represent any n-

gram at arbitrary size. Contrarily, feed-forward models take as input the last n − 1 words

in the n-gram, where n has to be a fixed window size, and use them jointly to predict the

upcoming word.

The little summary above, as can be seen in Figure 1.1 has shown that the 20-year

development of language modeling has experienced an evolution in terms of representation

learning. On the one hand, the feed-forward neural language models [4] improve the basic

n-gram models by introducing word-based distributed representation. On the other hand,

the level of representation was significantly improved with the recurrent neural network

architecture, which allows to model longer sequences without limiting the context to n

words. However, it is believable that there are still rooms for improvement in language

modeling, and language representation in particular.

CHAPTER 1. INTRODUCTION 4

Despite the fact that the state-of-the-art language models consist of a shared vector

space between words, they still treat the context as a sequence of discrete symbols. The

feed-forward network simply concatenate the word vectors and encodes the context into

the hidden layer, while the recurrent models take one word as a time step, whose weak-

ness is that a particular time step does not have any information about future steps. In

fact, it is useful to take into account the collocations and multi-word expressions in the

context. For example, the English word “get” can acquire different meanings when paired

with different prepositions, which the word embeddings hardly can represent. Such word

combinations are often identified by statistical methods [58], which requires an intensive

scanning through the data to find frequent combinations. In the context of the neural net-

works, it is intuitive to use a special neural network architecture that can search the context

for patterns and combinations.

In the literature of machine learning and computer vision, convolutional neural net-

works (CNNs) are the family of neural network models that feature a type of layer known

as the convolutional layer. The main idea of this layer is to look at each position of the input

(at any dimension) with a fixed size window and find local features - distinctive attribute

that are useful for the learning task. The network has been applied successfully in image

processing and speech processing [22] but they have received less attention in Natural Lan-

guage Processing. Mainly, they have been somewhat explored in static classification tasks

where the model is provided with a full linguistic unit as input (e.g. a sentence) and classes

are treated as independent of each other Examples of this are sentence or document clas-

sification for tasks such as Sentiment Analysis or Topic Categorization [32, 34], sentence

matching [30], and relation extraction [52]. However, their application to sequential pre-

diction tasks, where the input is construed to be part of a sequence (for example, language

modeling or POS tagging), has been rather limited (with exceptions, such as Collobert et al.

[14]).

The language modeling in the work of Collobert et al. [14] utilised the convolutional

layers1 to extract features for multiple Natural Language Processing tasks including lan-

guage modeling. However, due to the computational limit, the model was altered to focus
1In the original work, the author uses the term Time-delayed networks (TDNN) to describe his model.

In fact, TDNN and CNN share the same properties and were designed roughly at the same time. These two
terms can be used interchangeably in this manuscript.

CHAPTER 1. INTRODUCTION 5

on learning vectorised word representation, leaving the language modeling quality a ques-

tion mark. In this thesis, we investigate the feed-forward neural language models with the

temporal convolutional layer inspired by the work of [14]. Starting by analysing the exist-

ing neural language models including feed-forward and recurrent ones, we investigate the

convolutional models with some reasonable changes in terms of architecture to verify if the

convolutional neural network deliver any improvement over the feed-forward counterpart.

For that purpose, we initially train a carefully tuned feed-forward neural language model

, which yields competitive performance in various corpora. Subsequently, we enhance the

baseline with an additional convolutional layer that convolves over the word embeddings,

and we can effortlessly limit the customization space for network architecture during train-

ing. The experimental results indicate that using convolutional layers can improve 11-26%

perplexity compared to the solid baseline, and the CNN model can perform comparably

with the similarly-sized recurrent models and has lower performance with respect to larger

state-of-the-art models. Our analysis also shows that the convolutional layer independently

learned to focus on different linguistic patterns, and the model can take into account context

words at very far from the target.

Chapter 2

Background

2.1 Statistical Language Modeling

2.1.1 Problem overview

As we introduced before, the statistical approach in Language Modeling aims at measur-

ing the fluency of all possible word strings, which are considered as a stochastic process,

with probabilities. The sequence length can be arbitrary, while the words are taken from

a limited vocabulary. A trained language model should be able to show that the likeli-

hood of ”the end of our world” is much higher than ”tea end of our word”, because the

latter string is much less likely to be found in available English text. Concretely, let us

denote WL
1 to be a word sequence with length L which is composed by the constituent

words w1, w2, . . . , wL, then a statistical language model aims at predicting the probability

distribution of all possible sequences WL
1 in a particular language:

P (WL
1) = P (w1w2 . . . wL) (2.1)

Since the direct estimation for that probability distribution is intractable, the probability

of a sentence P (wL
1) is factorised using the chain rule:

P (WL
1) = P (w1|<s>)

L∏
i=2

P (wi|<s>WL−1
2) =

L∏
i=l

P (wl|Hl) (2.2)

6

CHAPTER 2. BACKGROUND 7

Word to be predict Context Probability (example)
The <s> 0.1

relationship <s>The 0.002
between <s>The relationship 0.05
Obama <s>. . . relationship between 0.00001

and <s>. . . between Obama 0.2
Netanyahu <s>. . . Obama and 0.00001

is <s>. . . and Netanyahu 0.05
not <s>. . . Netanyahu is 0.02

exactly <s>. . . is not 0.001
friendly <s>. . . not exactly 0.0007

. <s>. . . exactly friendly 0.2
Perplexity 210

Table 2.1: An example of perplexity computation for the sentence “The relationship be-
tween Obama and Netanyahu is not exactly friendly”.

in which, <s> is used to denote beginning token of the sentence/string. The history Hi

represents the string before the current word wi. Instead of directly modeling the original

distribution, the target probability is factorised into constituent conditional probabilities,

which are more practical to estimate.

2.1.2 Evaluation Metrics

The quality of statistical language models can be evaluated by the capability to predict a

new corpus, which is defined by using Perplexity. Let us assume that we have a trained

language model M and a corpus D containing L words, which the language model has not

observed during the training process. The quality of model M is evaluated by using it to

predict the distribution of the corpus D. The resulted perplexity (PPL) is then obtained by

estimating the probability of all words given their context in the corpus D, we use PM to

denote the probability distribution produced by modelM . An example of PPL computation

is illustrated on Table 2.1.

PPL(D) = exp(

∑L
l=1− lnPM(wi|Hi)

L
) (2.3)

The idea of perplexity is that, minimising perplexity is corresponding to maximising

CHAPTER 2. BACKGROUND 8

the ability to predict every word in the data. A low perplexity value corresponds to the fact

that the language model is able to fits better the data, since the distribution of the model

is closer to the unknown distribution of the test data. One property of perplexity is that,

it is correlated to the average number of guessing needed to predict all words in the data.

Therefore, a random distribution or the “worst” model (usually the model with parameters

initialised) often gives the perplexity very close to the vocabulary size V . This property is

often used to check the implementation of the model and perplexity.

In practice, the quality of language models can also be evaluated through their impacts

on other applications such as Automatic Speech Recognition (ASR) or Statistical Machine

Translation (SMT), by reducing the errors in the output of such systems. For example, two

strings “Tea end of our word” and “The end of our world” may have similar speech signals

and the recognizer has to rely on a good language model to distinguish them.

The main advantage of perplexity is that it is fast to perform and independent to other

complex systems. Therefore, in this thesis, PPL would be the only measurement used in the

experiments. However, it is important to note that an improvement in terms of perplexity

does not always result in the application improvement. For example, the improvement is

required to be at least 10% to be noteworthy for an ASR system [56]. Also, there are some

language models that aim at ranking the words in the vocabulary by using unnormalised

distributions (the sum of the probabilities does not equal to 1). In that case, PPL is also

unusable.

2.1.3 N -gram models

Going back to equation 2.2, the target of statistical language models is to estimate the

conditional probabilities P (wi|Hi) with Hi being the history context of wi (i is an arbitrary

index in the corpus). A common approach is to limit the length of the history Hi by the

Markov assumption: the meaning of the word wi only depends on n− 1 words before, thus

limiting the history for all words in the data into n-grams:

P (wi|Hi) ≈ P (wi|W i−1
i−n+1) (2.4)

WithW k
j denotes the word sequence from index j to index k. It is natural to use n−1 to

CHAPTER 2. BACKGROUND 9

denote the order of language models because it is the order of the Markov model reflected

in Equation 2.4, however in the literature, authors always use n to denote the order of n-

grams. Therefore, in order to be clear, an n-gram contains one word to be predicted, and

n− 1 words in the context.

Count-based models estimate the probability of each n-gram based on simple counting

with maximum likelihood estimation. Let c(W i
j) denote the number of times that this word

sequence occurs, the estimated distribution can be derived as follows:

P (wi|W i−1
i−n+1) =

c(W i
i−n+1)

c(W i−1
i−n+1)

(2.5)

The method is unreliable since it struggles at estimating the distribution for rare and un-

seen n-grams (the nominator is 0), many of which actually make sense in natural language.

Many techniques have been proposed to overcome this weakness, from re-distributing the

probabilities of the frequent n-grams to the less frequent ones (smoothing techniques) or

deriving the distributions of the rare n-grams from the lower order n-grams (interpola-

tion and back-off techniques) [11, 18, 27, 37, 51, 72]. However, even with complicated

smoothing techniques, the main weaknesses of n-gram language models are still exposed

as follows:

First, each word in the vocabulary is treated as a totally discrete random variable with-

out any linguistic feature associated. The model relies on statistical occurrences and ignores

morphological, syntactic and semantic relationship, by which the lexicon is formulated.

There are several attempts to incorporate the word similarity in n-gram based language

models. Notably, the class-based language models [9, 53] introduced word clustering and

assumed that the distribution of unseen or rate words can be achieved by using the richer

statistics from the corresponding class, which is less sparse than the word itself. Also,

structured language models [10, 19] try to filter out irrelevant context words and focus on

important counterparts by using parse trees, which compensates for the lack of syntactic

information in n-gram models. Despite such efforts, the language modeling results were

still unreliable compared to the Knesey-Ney smoothing technique. However, those works

in the literature also suggests that the syntactic and semantic properties of words need to be

automatically learned from the data. Second, n-gram language models struggle to model

CHAPTER 2. BACKGROUND 10

a long range dependency between the predicted word and the context. Due to the fact that

each word in the vocabulary is a separated random variable, the number of parameters to

be estimated (statistics of n-grams) grow exponentially with the size of context. The the

curse of dimensionality refers to the fact that one needs more amount of training data in

order to reliably estimate the model when the number of learned parameters increases. For

example, if the vocabulary size is 10000, the total number of n-grams for n = 6 is 1016

theoretically, which is also the number of parameters to be estimated accordingly. Also,

Zipf’s law [36] indicates that only a small subset of the vocabulary accounts for most oc-

currences in the training data, thus it is almost impossible to have a training data that covers

all possible n-grams.

The neural network language model, as a consequence, is investigated in order to tackle

both problems that traditional count-based models cannot solve.

2.2 Neural network language models

In this section, we describe the neural language models (also known as continuous space

language models), which are designed to fight the curse of dimensionality in the conven-

tional approaches, by utilising two properties as follows.

• Words are no longer discrete variables without any relationship to each other. They

are represented as real-valued vectors in a continuous space, where similar words are

neighbors in the space, such approach is referred as Distributed word representation

or Word embedding [4, 45]. With such representation, each n-gram is a combination

of the word vectors and n-grams with similar words share the same word vectors. In

contrary to the count-based approach, if we increase the n-gram order then thanks to

the sharing property, we just need to adjust the size of the context vector, which can

grow linearly with the n-gram order (in the case of feed-forward neural networks) or

remains the same (in the case of recurrent neural networks).

• When the n-gram context Hi is the combination of the word vectors, the conditional

probability distribution P (wi|Hi) of each n-gram is then expressed as a parame-

terised smooth function of the context vector. In machine learning, neural networks

CHAPTER 2. BACKGROUND 11

are a class of models that can be used to approximate functions. As a result, Bengio

et al. [4] proposed to incorporate the continuous word space with a neural network

architecture in order to learn the smooth function. The training methods of neural

network allow us to jointly learn the word space and the parameters of that proba-

bility function.

In the following, we provide a detailed description of the two most successful architec-

tures used for neural language models: the feed-forward models and the recurrent models.

Note that, in the following sections, the term “Neural language models” or “Neural net-

work language models” are used to refer to both architectures. They only differ in the

architectural choice of design, but still possess the two described properties.

2.2.1 Feed-forward neural language models

The standard architecture of a neural language model [4] is illustrated in Figure 2.1. The

model takes the context words Hi as inputs and outputs the conditional probability dis-

tribution over all words in the vocabulary which expresses P (wi|Hi). It consists of three

basic components: the input layer, the hidden layer and the output layer. The notations are

covered in Table 2.2. In a standard feed-forward neural network, each layer is a real-valued

vector, while the (learnable) weights (or parameters) are real-valued matrices connecting

the layers together. Also, in the standard architecture we also consider networks with only

one hidden layer for ease of understanding. In practice, it is possible (and beneficial) to

extend the network with multiple hidden layers.

Input layer The input layer constructs the embeddings of the words in the context, by

using a shared word space and mapping each word in the context to a real-valued vector.

Concretely, each wordwi is represented as an 1-of-V coding, which is a long vector with the

size of vocabulary V with all zeros except for the element corresponding to the word’s index

in the dictionary. Using this form of sparse coding, the word space (also called projection

matrix R) is a matrix that contains V rows and each word embedding vi corresponds to

one row of the matrix. The number of columns of the matrix is the size of the embedding,

which is a tunable hyper-parameter. Notably, the values of the word vectors do not depend

CHAPTER 2. BACKGROUND 12

….

Index wt-n+1 Index wt-n+2 Index wt-n+3
Index wt-1

…

…

i-th index = P(wt = i | context)

Activation

Softmax

Concatenation

Linear +

Figure 2.1: Neural language model architecture by Bengio et al [4].

on the position of the word in the context. The context vector i is the concatenation of the

word vectors.

i = {RTv1;R
Tv2;;R

Tvn−1} (2.6)

Hidden layer In the hidden layer, the input (context vector) is transformed nonlinearly,

where each layer activation values are defined by

h = f(W hi+ bh) (2.7)

In equation 2.7, the hidden layer h has the corresponding weightsW h and bh. The input

of the hidden layer is the context vector produced from the input (projection) layer. The

size of the hidden layers are tunable hyper parameters. f denotes a nonlinear activation

function. Popular choices for the activation function are Tangent Hyperbolic, Sigmoid or

CHAPTER 2. BACKGROUND 13

notation meaning
V Vocabulary size
m word vector dimension
n order of language model
w a word; its index in the vocabulary
vw one-hot vector for word w. A vector with size V with all

null except the wth index (=1)
i ∈ R(n−1)M input vector of the network.

o output layer of the network which expresses the
unnormalised probability distribution

h hidden layer of the network
p the output vector of the network which is normalised for the

conditional probability distribution
ij the jth-index of vector i, which is also used for o, h or p
f nonlinear function
H hidden layer size

W h ∈ RH×(n−1)M the weight matrix connecting
the input layer with the hidden layer

bh ∈ RH the bias vector for the hidden layer
W o ∈ RH×V the weight matrix connecting

the hidden layer with the output layer
bo ∈ RV the bias vector for the output layer
L The objective (loss) function for learning the network
dX The Jacobian matrix - the matrix of all of the first order

partial derivatives of the loss function with respect to the
vector/matrix X .

Table 2.2: Notations for neural network layers.

CHAPTER 2. BACKGROUND 14

ReLU, expressed in equation 2.8.

f(x) =


exp(x)−exp(−x)
exp(x)+exp(−x) if f = Tanh

1
1+exp(−x) if f = Sigmoid

max(0, x) if f = ReLU

(2.8)

Output layer The final layer of the network produces the probability distribution for all

words in the vocabulary, thus having totally V nodes. Each neuron in the layer is associated

to the probability of one word, as shown in Figure 2.1. First, a linear transformation is used

to obtain the unnormalised distribution:

o = W oh+ bo (2.9)

Notably, the values of o are unnormalised because each element in o is associated to

the score of each output word given the context vector. W o and bo are the corresponding

weights and biases of the layer. Importantly,W o has the same form as the projection matrix

at the input layer, since it also learns embedding for each word in the output vocabulary.

Subsequently, the true probability distribution is estimated thanks to the softmax function:

p(wi|h) =
exp(oi)∑
j exp(oj)

(2.10)

In equation 2.10, the probability of each word wi given the encoded context h is esti-

mated by normalizing all values in o. Overall, the main tunable hyper-parameters of the

network are the order of n-grams (the number of words in the context, which can range

anywhere beyond 4, which is the typical range of a count-based model), the sizes of hidden

layers, and the word embedding size. The set of free parameters Θ that are iteratively up-

dated by learning from the data includes the projection matrix R, the weight matrices W h

at the hidden layers, W o at the output layer and the biases bh, bo.

CHAPTER 2. BACKGROUND 15

2.2.2 Training method

From the machine learning perspective, the neural network language model has trans-

formed the statistical language modeling problem from a generative learning process to

a discriminative classification problem. The free parameters of the network are trained by

minimising the objective function, which is the log-likelihood L of the parameters Θ given

the training samples. The parameters are updated after each iteration based on some op-

timization techniques, among which stochastic gradient descent (SGD) is most commonly

used in neural language models [24, 45, 74]. SGD and other variants such as Adadelta [75]

or RMSProp [69] require the computation of the first order derivatives of the loss func-

tion with respected to the parameters, which can be performed efficiently with the back-

propagation algorithm [41].

2.2.3 Training/Optimisation Process

In this section, we describe the back-propagation flow in the standard feed forward neural

language model - the core of the optimisation process. Back-propagation [57] involves

using a dynamic programming strategy to compute the derivatives of the loss function with

respect to the parameters layer by layer, based on the chain rules. In the standard network,

the error derivatives are back-propagated from the output layer to the input (projection)

layer.

Objective Function The smoothing function that we approximate with the neural net-

work has parameters that can be iteratively tuned in order to maximise the log-likelihood
of the training data [4]. The objective function is therefore chosen as the Negative Log-

Likelihood function, since SGD requires the training objective to be minimised. Assuming

we have N samples in the training data, each of which is an n-gram, we can compute the

loss function over the training data as follows:

L = −
N∑
i

logP (wi|wi−1
i−n+1) (2.11)

CHAPTER 2. BACKGROUND 16

The loss function is also in line with the Perplexity in Equation 2.3. For ease of under-

standing, we denote the derivative of the loss function L at each sample or mini-batch of

samples with respect to a variable x ∈ Θ by dx.

For each sample wi and its context Hi, we have:

− logP (wi|wi−1
i−n+1) = − logP (wi|Hi)

= −log(
exp(ow)∑
i exp(oi)

)

= log(
∑
i

exp(oi))− ow

(2.12)

Subsequently, we compute the error derivatives dx given the parameters in each layer

using back-propagation:

Output layer The derivatives at the output layer:

doi =

1− pi if i == w

−pi otherwise
(2.13)

Notably, oi denotes the ith element of the vector o, which is the unnormalised condi-

tional distribution of the vocabulary given the encoded context h.

Hidden layers As a result, we can compute the derivatives with respect to the parameters

and the previous hidden layer h, based on the original inference from Equation 2.9.

dW o = dohT

dbo = do

dh = W oTdo

(2.14)

Input Layer The inference equation for the hidden layer from the input layer:

h = f(W hi+ bh)
(2.15)

CHAPTER 2. BACKGROUND 17

which implies that:

d[W hi+ bh] = f ′(h) ∗ dh

dbh = d[W hi+ bh]

dW h = d[W hi+ bh]iT

di = W hTd[W hi+ bh]

(2.16)

In order to have the derivatives for the activation function f , we have:

f ′(x) =


1− Tanh(x)2 if f = Tanh

Sigmoid(x)− Sigmoid(x)2 if f = Sigmoid

1 when x > 0 and 0 otherwise if f = ReLU

(2.17)

Parameter Update After obtaining the derivatives of the loss function with respect to

all parameters in the network, we can update the parameters following stochastic gradient

descent. The method is based on the phenomenon that the gradient of a function always

points towards the direction of maximal increase at any point. The update rule is as follows

with the learning rate parameter α > 0 and an arbitrary parameter x:

x = x− αdx (2.18)

The learning rate is also considered as a function of the number of samples trained in

the data. From experiments, the learning rate is updated after the model observes a number

of training examples with two typical ways. The first way is to exponentially decrease the

learning rate after some training samples with a learning rate decay, normally an epoch

(training all samples in the training data). The second way is to reduce the learning rate

based on a validation data. After each epoch, if the perplexity on the validation data is

decreased, the learning rate is kept the same, otherwise it is multiplied by the learning rate

decay.

CHAPTER 2. BACKGROUND 18

Methods to prevent overfitting Overfitting is a phenomenon that the model has poor

predictive performance, even if the model is well trained on the training data. The possibil-

ity of overfitting exists because the criterion used for training the model is different than the

criterion used to measure the efficacy of the model. It is very likely that the training data

yields a different distribution than the test data, therefore fitting the model on the training

data does not guarantee a good prediction performance.

For neural network language models, the main methods used to prevent this phenomenon

to happen is to apply regularisation methods and early-stopping strategy.

• Regularisation: The most efficient method is to apply Dropout technique, which

refers to dropping out units (in most case, hidden units) in neural networks [28, 64].

Concretely, we temporarily set the unit values to 0 based on a random distribution

(Bernoulli distribution, for example) during the training phase. In the testing phase,

the unit is always present. Dropout is usually applied in the hidden layers of feed-

forward neural networks. The choice of which unit to drop in the layer is random

which is normally associated with a fixed probability p independent for each unit.

Depending on the network size and the amount of training data, the value of p is

chosen empirically.

• Early-stopping: In order to prevent overfitting, we use a validation set during training.

The validation data is a separate set with the size similar to the test data. After each

epoch (normally a whole scan over the training data), we measure the perplexity of

the model on the validation data. If the perplexity does not decrease, the learning rate

is reduced in the next epoch. The training process is halted when the learning rate

reaches a threshold.

2.2.4 Recurrent neural language models

Compared to statistical n-gram models, feed-forward neural language models created a

considerable leap in representation by combining distributed representation of words with

a robust classifier to generalise from observed sequences. As can be seen from various

works [24, 59], the feed-forward language model significantly outperformed the traditional

CHAPTER 2. BACKGROUND 19

count-based models. However, feed-forward models require a fixed input size, thus still rely

on the Markov Assumption which limits the context to a particular number of words, even

when we manually set the context size can be large. In order to model long sentences, or

even paragraphs with long-term dependencies, it is beneficial to investigate in models that

can be flexible in terms of input size. For example, if the distance between the open bracket

and the closed counterpart is further than the n-gram input size, the feed forward model

may forget to close the brackets after seeing the initial one. Ideally, learning processes in

human are associated with a memory that keeps the current information (such as topics), a

similar structure should be simulated and integrated in the network.

Recurrent neural networks RNN [17] are a class of neural networks that can efficiently

model sequences by using a dynamic memory structure. While the feed-forward network

can only receive one input and compute the corresponding output without any relation with

other inputs, the recurrent counterpart takes the input as a series of time step x1, x2, . . . , xn
and processes them one by one, taking into account the information stored in the previous

steps. Concretely, for each input xi, the network updates the hidden memory hi based on

the previous one hi−1.

hi = F(xi, h
i−1) (2.19)

We will cover some popular RNN variations in the upcoming sections. In general, the

strength of these models lies in the ability to dynamically model sequences with arbitrary

length, which the feed-forward neural networks cannot achieve. The advantage comes with

the cost that the recurrent models are generally hard to train, due to the properties of back-

propagation. A change in an arbitrary position of the sequence can lead to a change in

the objective function, therefore training methods for RNNs typically have to trace back

the previous time steps. In other words, the RNNs are equivalent to feed-forward neural

networks with many hidden layers that share parameters across each other. Importantly, the

model capacity of RNNs do not depend on the length of the sequences, but in the recurrence

mechanism - the way the hidden layers are updated.

CHAPTER 2. BACKGROUND 20

h1 h2 h3 h4 h5

x1 x2 x3 x4 x5

p1 p2 p3 p4 p5

The cat is eating fish

cat is eating fish bone

Figure 2.2: A simple RNNLM [45] predicting the sequence “The cat is eating fish bone”.

Recurrent language models Language modeling can be viewed as a sequence modeling

problem, in which each time step corresponds to one word. We reuse the notations from

Table 2.2 with another notation for recurrent layers added by Table 2.3.

The first recurrent language model (RNNLM) [45] employed the “Vanilla” model of

Elman et al [17] as can be seen in Figure 2.2, in which the hidden steps are updated as

follows:

ht = f(W iit +W hht−1 + bh) (2.20)

CHAPTER 2. BACKGROUND 21

notation meaning
V Vocabulary size
M word vector dimension
n order of language model
w a word; its index in the vocabulary
H hidden layer size
vw one-hot vector for word w. A vector with size V with all

null except the wth index (=1)
XT the matrix / vector X transposed
X ∗ Y The element-wise matrix multiplication between matrices

X and Y
it ∈ RM input vector of the network at time t.
ht ∈ RV hidden layer of the network at time t
ot ∈ RV output layer of the network which expresses the

unnormalised probability distribution at time t
pt ∈ RV the output vector of the network which is normalised for the

conditional probability distribution
f nonlinear function

W i ∈ RH×M the weight matrix connecting
the input layer with the hidden layer

W h ∈ RH×H the weight matrix connecting the hidden layer of the previ-
ous step
with the current hidden layer

bh ∈ RH the bias vector for the hidden layer
W o ∈ RH×V the weight matrix connecting

the hidden layer with the output layer
bo ∈ RV the bias vector for the output layer
L The objective (loss) function for learning the network

dX / dx The Jacobian matrix - the matrix/vector of all of the first
order partial derivatives of the loss function L with respect
to the matrix X or vector x.

Table 2.3: Notations for recurrent neural network layers.

CHAPTER 2. BACKGROUND 22

The activation function f can be either Tangent Hyperbolic, Sigmoid or ReLU as men-

tioned before. The starting state h0 is set to 0 to denote the initial state of the memory. In

each time step, the RNNLM can optionally produce the probability distribution for a pre-

dicted word, given the sequence that the network has scanned previously. The probability

distribution over the vocabulary is derived similarly to the feed-forward networks:

ot = W oht + bo

pt = softmax(ot)
(2.21)

with the Softmax function explained in Equation 2.10. To be clear, ot and pt denote

the unnormalised and normalised distribution generated at time step t. For the language

modeling scenario, the input and output samples of the network in each training iteration

are two sequences i and y in which the output sequence is the shift-by-1 version of the input

sequence. The parameter set of the network including W i,W h, bh,W o and bo are shared

across time steps.

2.2.4.1 Training Recurrent Networks

Similarly to the feed-forward models, recurrent models can be efficiently trained with

stochastic gradient descent (SGD). However, since the networks contain shared parame-

ters at arbitrary numbers of time steps, the gradients are computed differently using back-

propagation through time (BPTT). It can be observed that, a change in the parameters in

an arbitrary time step t can lead to the change of the objective function in all subsequent

steps.

The details of this algorithm are divided into two parts: the local gradients computed at

each time step, and the global gradients accumulated by un-folding the networks.

At each time step The input and output sequences are denoted as i and y. At each

time step t, the network receives one input it and predicts one output word yt. Similar to

the back-propagation process for feed-forward neural language models, we need to derive

the derivatives of the per-time-step loss function Lt with respect to the RNN parameters

{W i,W h, bh,W o and bo} and the inputs {it, ht−1}. Notably, the network at each time step

receives two inputs: the input word vector it and the previous hidden layer ht−1.

CHAPTER 2. BACKGROUND 23

The Loss (Objective) function is identical to the feed-forward network:

Lt = − ln pt (2.22)

with pt being the conditional probability of the output word at time t given the history

from time 1 to t − 1, derived with Equation 2.21. The corresponding gradients are as

follows:

dotj =

1− ptj if j == yt

−ptj otherwise
(2.23)

The derivatives at the hidden layer can be derived:

dht = W oTdot

dW o = dotht
T

dbo = dot

(2.24)

After that, the errors are propagated to the input and the previous hidden layer. First of

all, we use the simplified version of the RNN formulation in Equation 2.20, by denoting

S = [W iW h] and zt = [it;ht−1]. The RNN formulation is neatly simplified as:

ht = f(Szt + bh) (2.25)

We can derive the derivatives for the necessary weights (S) and layers (zt) as follows:

dzt = ST (f ′(Szt + bh) ∗ dht)

dS = (f ′(Szt + bh) ∗ dht)ztT

dbh = d(Szt + bh)

(2.26)

From there, we can compute the gradients of the original variables (W i,W h) and layers

(it, ht−1).

CHAPTER 2. BACKGROUND 24

dit = W iT (f ′(Szt + bh) ∗ dht)

dht−1 = W hT (f ′(Szt + bh) ∗ dht)

dW i = (f ′(Szt + bh) ∗ dht)itT

dW h = (f ′(Szt + bh) ∗ dht)ht−1T

dbi = (f ′(Szt + bh) ∗ dht)

(2.27)

The derivatives of the activation function has already been provided for the feed-forward

neural network language model, in Equation 2.17.

Back-propagation through time The idea of BPTT is that the network is assumed to

have different weights at each time-step. During training, the gradients are back-propagated

to the previous layers through the recurrent connections. We compute the gradients for the

weights at each time step with the formulation that we have just derived for a single time-

step. Eventually, we force the shared weights at each time step to have the same value

by accumulating the gradients together.

Algorithm 1: BPTT algorithm for “vanilla” RNNs
1 Inputs: input sequence i and output sequence y with length T.
2 Initialize the gradients dot, dW o, dW i, dW h, dit, dht−1 as zero vectors and matrices.
3 for t = T → 1 do

// At the output layer
4 dot ← vyt − pt
5 dW o ← dW o + dot · htT

6 dht ← dht +W oTdot

// RNN Backprop

7 dW i ← dW i + (f ′(Szt + bh) ∗ dht)itT

8 dW h ← dW h + (f ′(Szt + bh) ∗ dht)ht−1T

// To the input layer and previous hidden layer

9 dit ← dit +W iT (f ′(Szt + bh) ∗ dht)
10 dht−1 ← dht−1 +W hT (f ′(Szt + bh) ∗ dht)
11 end

The whole BPTT process is illustrated in algorithm 1. The main difference between

CHAPTER 2. BACKGROUND 25

BPTT and BP for feed-forward network is that the gradients at the hidden state can be

propagated by two paths: a “vertical” line from the hidden layer to the input layer, and

the “horizontal” line to go back to the previous step. The network becomes harder to train

when the sequence length T is too large, and the Vanilla RNN is not efficient to learn to

remember long sequences.

Problems with BPTT Although truncated back-propagation through time provides a

practical training method for RNNs, the nonlinear iterative nature of the simple RNN archi-

tecture still makes capturing long-term dependencies difficult. The two common problems

encountered while training RNNs are the exploding and the vanishing gradients [3, 54]. On

the one hand, the gradients can be exponentially large as in the back-propagation through

time process which is detrimental for learning. One the other hand, we can also experience

the phenomenon that gradients go quickly towards zero after being propagated through

time steps. Consequently, the model is not able to track the signal and complete loses the

memory trace in the past. For example, the original RNNLM normally has to truncate the

BPTT at about 5− 10 steps, which has the same modeling capacity and performance with

10-gram feed-forward models [25, 46]. The gradient exploding problem can be tackled

adequately using gradient clipping. Pascanu et al [54] suggested to clip the norm of the

gradients (for all parameters): given a gradient vector dx that is computed with BPTT, if

the norm ||dx|| is greater than a threshold value δ, then dx would be softly scaled:

dx← dx
||dx||
δ

(2.28)

Dealing with gradient vanishing A number of solutions were proposed to solve the gra-

dient vanishing problem. We will make a brief review of the most prominent approaches.

First, Mikolov et al [48] proposed to integrate another memory layer which is formed by

the bag-of-word addition of the input words over time, decays slower than the main hidden

memory and is initialised as an identity matrix. The same initialisation trick is applied to-

gether with using Rectified Linear Units (ReLU) as the activation function in [40]. While

both works mentioned are fairly simple, the RNNs can also be trained efficiently with sec-

ond order derivatives using Hessian-Free optimization [44]. Even though the method was

CHAPTER 2. BACKGROUND 26

proved to allow the network to acquire a reliable memory which can remain stable after

hundreds of time steps, it is not easy to implement efficiently compared to traditional back-

propagation. The most successful method that is applied to sequential modeling in general

and language modeling in particular is the Long-Short Term Memory LSTM networks [29]

that use an explicit memory cell combined with a gating mechanism to intensively deal

with the gradient vanishing problem.

LSTM Structure The intuition of an LSTM starts from the integration of a linear mem-

ory unit, so that the gradient can flow smoothly during the back-propagation through time

steps using a memory cell ct.

ct = ct−1 + f(Wxt + Uht−1 + b)

ht = ct
(2.29)

This approach is referred as “Leaky integration units” [6]. In the BPTT process, the

gradient can flow over exactly one path through the memory units ct, and since dct =

dct−1, the gradients are guaranteed to not vanish. The recurrent architecture should also be

able to be adequately robust to train long sequences, where there are certain inputs which

are irrelevant to the modeling task. Sometimes, the memory of the network should be

refreshed, for example at the beginning of a new utterance in Speech Recognition [21] or a

new sentence in Machine Translation [67]. Hochreiter and Schmidhuber [29] enhanced the

architecture by adding flexible and trainable gates that allows the RNN to reset the memory,

control the amount of input and output respectively. The adaptive gates are built from the

current input xt and the previous hidden memory ht.

The gates of the network include: the forget gate f t is used to directly control the

memory flow ct to cut the connection with the previous steps, the input gate it decides the

amount of input to be incorporated, the output gate ot controls the amount of memory flow

to be produced for the task and finally the candidate memory unit C̃ that contributes to

the current memory flow. All gates are defined similarly, with the first three gates use the

Sigmoid activation to force the values to be in {0, 1}, while the candidate memory uses

the Tanh activation function. The overall interactions of the LSTM cell is illustrated in

Figure 2.3.

CHAPTER 2. BACKGROUND 27

xt

ct-1

ht-1

Forg
et

x

Input
Cand
C

Out
put

x

+

x ht

ct

Figure 2.3: LSTM cell architecture with 4 gates [29]. The operations used in the figures
are matrix element-wise multiplication (x) and matrix addition (+).

f t = Sigmoid(W fxt + U fht−1 + bf)

it = Sigmoid(W ixt + U iht−1 + bi)

ot = Sigmoid(W oxt + U oht−1 + bo)

C̃t = Sigmoid(W cxt + U cht−1 + bc)

(2.30)

In the next step, we decide the new information to be stored in the new memory cell.

The cell is updated by combine the input gate and the candidate memory unit. Also, the

forget gate is employed to drop certain information from the previous memory cell. Con-

sequently, we come up with a new memory cell as follows:

Ct = f t ∗ Ct−1 + it ∗ C̃t (2.31)

Finally, we update the hidden state with the new cell state and the output gate:

ht = ot ∗ Tanh(Ct) (2.32)

The implementation of LSTM can be efficient by computing all gates in one single

matrix multiplication, then applying the activation functions on different parts of the output.

In practice, one can experience different implementation variations of LSTMs and RNNs

CHAPTER 2. BACKGROUND 28

in terms of initialisation, bias usage or different gate implementations such as the Gated

Recurrent Unit [13]. The empirical research of [73] shows that there is not any substantial

difference in terms of performance between different LSTM variations.

Multi-layer recurrent neural network We can extend a recurrent neural network by

stacking the recurrent layers on top of each other in one single time-step. Concretely, the

hidden layer at level i is the input of the hidden layer at level i + 1. For the recurrent

connection of the network, the hidden layer at level i only depends on the previous hidden

layer of the same level i.

Regularisation in RNN Similar to feed-forward networks, the recurrent networks are

prone to overfitting. In order to tackle the problem, it is efficient to apply dropout before

the input of each recurrent unit [55, 74].

2.2.5 Softmax approximation in neural language models

The neural language models are computationally expensive, which makes training them on

large corpora impractical. The bottleneck lies in the output layer where the term H × V
accounts for most of the computational cost, especially when V is large (from 60000).

Looking back at the output layer, let us assume h being the last hidden layer in the feed-

forward network, or the last hidden layer at time step i in the recurrent network, then we

can compute the probability of the word wi given the context:

o = W oh+ bo

p(wi|Hi) =
exp(oi)∑
j exp(oj)

(2.33)

In Equation 2.33, it is important to note that W o is another word embedding space, in

which each row W o
i is the embedding corresponding to the word wi. It is expensive to

compute the denomination term of softmax, which requires computing the term W o
j h + bj

repeatedly for each word wj . It was common to train neural network language models in

the order of months on large corpora with a large vocabulary [4, 14, 45].

CHAPTER 2. BACKGROUND 29

h

c

y

Wc,bc

Wy,by

P(ci | h)

P(yi | ci, h)

Figure 2.4: Hierarchical Softmax: Factorisation of the output layer.

In order to make training neural network language models practical, there are a lot of

techniques proposed in order to avoid the computational bottleneck above. Approximating
the softmax computation is the aim of those techniques, two most successful methods are

provided in this thesis: Hierarchical Softmax (HSM) and Noise Constrastive Estimation

(NCE).

Hierarchical Softmax The key idea of hierarchical softmax is to factorise the output

layer based on word clustering [50]. Fundamentally, the vocabulary V is factorised into classes
containing C classes. Every word wi is assigned to a class ci before training and the assign-

ment does not change during the process. The clustering assumption can be done based on

WordNet [50], using unsupervised methods on top of pretrained word embeddings [24] or

simple frequency binning [46].

The softmax approximation is done as follows. First, we compute the probability of the

output class ci given the context Hi:

p(ci|Hi) = Softmax(W ch+ bc) (2.34)

After that, we compute the probability of the word wi belonging to class ci given the

CHAPTER 2. BACKGROUND 30

context Hi:

p(wi|ci, Hi) = Softmax(W yh+ by) (2.35)

Note that, W y and hy are subset of the weights W o and ho in the original softmax layer.

Finally, we have the probability of the word wi given the context Hi:

p(wi|Hi) = p(ci|Hi)p(wi|ci, Hi) (2.36)

Instead of computing the large softmax layer, the conditional probability of each word

is factorised into two smaller softmax layers. On the CPU-based implementations, the

speed-up can be easily achieved at 15 - 30 times compared to the original softmax [24, 45].

However, the method is not very friendly for GPU-based implementations.

Noise Constrastive Estimation NCE [23] was proposed for neural language models

by Mnih and Teh [49]. The key idea of NCE is that: we avoid the expensive softmax

function which requires the involvement of all words in the vocabulary in one calculation

by training a model which discriminates the target word with a noise distribution Q.

For every word wi given the context Hi, we generate k noise samples words nik from a

noise set whose distribution has already been known. Instead of minimising the negative-

loglikelihood (or perplexity) in the normal loss function L, the NCE method involves using

a logistic regression classifier in order to separate the target words wi from the noise sam-

ples nik. As labels are necessary to perform the classification task, we designate the target

words wi as true labels (y = 1) and noise samples nik as false labels (y = 0).

Given N samples in the training data (in most case, N is the total number of words in

the training data), the logistic regression loss function is as follows:

LR = −
N∑
i

[logP (y = 1|wi, Hi) + k

k∑
j=1

logP (y = 0|nij, Hi)] (2.37)

The intuition is to maximise the probability of the target word given the context, and

minimise the probability of the noises. We can represent both distributions based on the

mixtures: the noise distribution Q which is known, and the distribution that we obtain

CHAPTER 2. BACKGROUND 31

H

Wi

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

.

.

Target

Word

P(wi|H)

Noises

Q(n)

Logistic

Regression

Figure 2.5: Noise Contrastive Estimation illustration.

during training which is the unnormalised distribution (o in Equation 2.33 that we call P .

We can compute P individually for each word (note that we do not use softmax, so this is

an unnormalised distribution).

P (wi|Hi) =
W h

i h

Z
(2.38)

Z is a normalisation term which is chosen experimentally and totally independent to the

history context. Given P and Q, we can calculate the left and right term of Equation 2.37

as follows:

P (y = 1|wi, Hi) =
P (wi|Hi)

P (wi|Hi) + kQ(w)
(2.39)

P (y = 0|wi, Hi) =
kQ(wi)

P (wi|Hi) + kQ(wi)
(2.40)

During training, the network tries to minimise the loss function LR. The gradients

are computed in a similar manner to the negative log-likelihood function. In the testing

phase, it is required to compute the normalised probability distribution, therefore normal

softmax function is used again (we do not sample noise during the testing phase). NCE

can theoretically guarantee that, if the number of noise samples k is increased, the NCE

CHAPTER 2. BACKGROUND 32

derivative tends toward the gradient of the softmax function.

For using the NCE training method, we have to choose two hyper parameters: the

number of noise samples k and the normalisation term Z. NCE can effectively speed-up

training neural language models because the computation at the output layer is reduced

dramatically from the whole vocabulary to only the target word and k noise samples. More

importantly, the NCE technique is insensitive to the output layer size (vocabulary size)

unlike the HSM technique which allows NCE to be effective at any large vocabulary size.

In the literature, there are several techniques used to train language models that resem-

ble NCE, including Importance Sampling [2], Sampled Softmax [60] or Negative Sam-

pling [47].

2.3 Convolutional Neural Networks

In this section, we provide the background information about the general Convolutional

Neural Networks (CNN) which are mostly applied in the field of Computer Vision. We

briefly cover the basic computation flow for the Convolutional layer - the fundamental com-

ponent of the networks, whose intuitions are somewhat easier to understand for Computer

Vision use case. The application of CNN for Natural Language Processing and Language

Modeling in particular will be described in the next chapter.

2.3.1 The convolutional layer

Fundamentally, the convolutional layer is a biologically inspired variant of the fully con-

nected layer (typical layers used in the feed-forward neural network language models).

While the fully-connected layer expects a vector (1-dimension) as input and outputs a

new vector using matrix multiplication, the convolutional layer receives inputs up to 3-

dimension (such as images with channels, width and height) and, in most cases, produces

an output that keeps the same dimensionality. Originally, the network was designed under

the form of Time-delayed neural networks (TDNN) [71] in order to deal with 2D inputs

such as speech signals. To clarify, the term TDNN and CNN are different names of a single

concept that appeared in the literature at the same time, which refers to the use of Local

CHAPTER 2. BACKGROUND 33

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 1 1 0

0 1 1 0 0

4 3 4

2 4 3

2 3 4

Input (2D image)
Convolutional

output

1 0 1
0 1 0
0 0 1

Kernel

Figure 2.6: Simple illustration for convolution. The input is a 2D image, the output is
obtained by sliding the kernel through the image.

receptive field in the input [20, 61].

The core idea of the layer is that the neurons in the CNN output are only connected

to a small region (local receptive field) of the layer before it, instead of all neurons in a

fully-connected manner. The purpose of local receptive fields is to find features within the

input that are invariant to position. For example, if we rotate an image then the textures are

not changed, or if we look for the adjectives in the a sentence then the position of them is

not important. The basic computation is to convolve (sliding) a window function applied

to the input. The operation is illustrated on Figure 2.6. Each index in the output is obtained

by performing the values of the kernel element-wise with the corresponding values in the

input where the kernel is sliding on, then summing them up. The full convolution is done

by repeating the operation by sliding the kernel over the input.

Forward propagation For the purpose of simplicity, in the following operations, we de-

rive the forward and backward formulas for 2D inputs and the delay between convolutional

kernels is just one unit.

In order to mathematically formulate the convolutional layer, let us assume that the

input is a N ×N square neuron layer X which is followed by the convolutional layer. Let

CHAPTER 2. BACKGROUND 34

the filter (K) size bem×m, the convolutional output Y will be of size (N−m+1)×(N−
m + 1). Each unit Yij in the output layer is computed by summing up the contributions

from the input layer which are weighted by the kernel:

Yij =
m∑
a=1

m∑
b=1

Kab ·X(i+a)(j+b) (2.41)

The convolutional outputs are usually fed into non-linear functions in a similar manner

to the fully-connected layers. In the convolutional layer, we specify the kernels as learn-
able parameters which are automatically adjusted during training based on the task of the

network. For example, in the image classification tasks, CNNs have been found to be able

to extract from low level features such as edges, colors, shapes to higher-level features such

as facial shapes [39].

Backward propagation Let us assume that we have the loss function L and we know

the error values at the convolutional output, dYij (we keep the same notation as previous

network types). Based on the output gradients, we want to compute the derivatives of the

loss function with respect to the weights dKij (i and j are arbitrary indices).

First, using the chain rule, we sum all of the contributions of all expressions in which

the variable occurs:

dKab =
m∑
i=1

m∑
j=1

dYij ·X(i+a)(j+b) (2.42)

So that we can update the kernel parameters when we receive the back-propagation

signal from the convolutional output. Furthermore, we also need to back-propagate the

errors back to the convolutional input, in other words computing dXij

dXij =
m∑
a=1

m∑
b=1

Kab · dY(i−a+1)(i−b+1) (2.43)

From Equations 2.42, 2.43, the backward operations can be efficiently implemented

as convolutions similar to the forward operations. Also, the formulas also suggest that,

we can expand the convolution with padding the inputs (so that the backward operations

CHAPTER 2. BACKGROUND 35

make sense for input units which are close to the border) and increasing the steps between

convolutional steps (stride).

2.3.2 Hyper parameters for convolutional neural networks

Given the explanation of convolution - which is the connectivity between the neurons in

the input layer and output layer, we can decide the number of neurons in the output layer

(which has not been explicitly mentioned in the previous sections). The output layer size

depends on the following hyper parameters (which are typically tried experimentally, or

with a grid-search strategy).

• Kernel size The size of the window that we use to convolve the input.

• Convolution depth it corresponds to the number of kernels (sliding windows that

we use to scan the input each of which learns a different feature of the input. For

example, if we use convolutional neural networks to extract features for sentence

classification, then multiple kernels can be distributed to learn features related to

nouns, verbs or adjectives.

• As mentioned above, we can alter the step which we slide the filter over the input

with the parameter stride. The larger the stride is, the smaller output is produced by

convolution.

• We can also control the output size by adding zero values to the the borders of the

input. For example in Figure 2.6, the convolution operator was not able to be per-

formed at the index (1, 1) unless we pad 2 zero neurons to each dimension (and each

side) of the input. In that case, we will obtain an output with the same size as the

input.

Two hyper-parameters that affect the number of free parameters are kernel size and

depth, while the other two control the output size of the layer.

Chapter 3

Convolutional Neural Language Models

The convolutional neural networks have been successfully applied in Computer Vision [26,

39, 68] and Speech Recognition [1, 21]. The main idea of applying CNNs into those

problems is to extract features related to short-time lags [29] - the arrangement of input

units in a local area. For example, the CNNs are effective at extracting edges and tiny

patterns in vision, or sequences of phonemes in speech signals.

A prominent work of applying CNNs in NLP is from Collobert et al. [14] who pro-

pose a neural network model with a convolutional layer in order to extract n-gram features

for multiple NLP tasks including language modeling and part-of-speech tagging, chunk-

ing, named entity recognition. The network resembles the feed-forward neural language

model [4], which includes the first layer that learns the continuous word representation

and subsequent hidden layers. The main difference is that Collobert et al. [14] employ a

convolutional layer (referred in the original work as Time-delayed neural network). Unfor-

tunately, due to the computational limitations, the authors could not train the network by

minimising the perplexity of the training data, but instead using a ranking-based loss func-

tion and focused on training the word embeddings. As mentioned before, the main purpose

of the thesis is to investigate in the comparison between the standard feed-forward neural

network and the convolutional neural network language model. Our CNN is constructed

by extending a feed-forward language model (FFLM) with convolutional layers. In what

follows, we first explain the implementation of the base FFLM and next, we describe the

CNN that we study.

36

CHAPTER 3. CONVOLUTIONAL NEURAL LANGUAGE MODELS 37

3.1 Baseline FFLM

Our baseline feed-forward language model (FFLM) is almost identical to the original model

proposed by Bengio et al. [5], with only slight changes to push its performance as high as

we can, producing a very strong baseline. In particular, we extend it with highway layers

and use Dropout as regularization. The model is illustrated in Figure 3.1 and works as

follows. First, each word in the input n-gram is mapped to a low-dimensional vector (viz.

embedding) though a shared lookup table. Next, these word vectors are concatenated and

fed to a highway layer [65].

Highway layer Highway layer is a variation of the conventional fully-connected layer.

The mechanism of highway layers can combine the non-linear affine transformation of an

input layer with itself to create the output hidden layer. Assuming the input and output of

the highway layer is HI and HO. The materials for a highway layer is a typical non-linear

transformation H and a transform gate T

H = f(HI .Wh + bh)

T = (HI .Wt + bt)
(3.1)

Wh, bh and Wt, bt are linear connected weights for the model, f is a nonlinear function

(ReLU in our work). Notably, the highway layer requires double the weights than a typ-

ical linear connected layer. The output of the highway layer is the combination of the

transformed input and a part of the input carried away to the output.

HO = H ∗ T +HI ∗ (1− T) (3.2)

Succinctly, highway layers improve the gradient flow of the network by computing as out-

put a convex combination between its input (called the carry) and a traditional non-linear

transformation of it (called the transform). As a result, if there is a neuron whose gradi-

ent cannot flow through the transform component (e.g., because the activation is zero), it

can still receive the back-propagation update signal through the carry gate. We empirically

observed the usage of a single highway layer to improve importantly the performance of

CHAPTER 3. CONVOLUTIONAL NEURAL LANGUAGE MODELS 38

 1

.

.

.

.

.

.

.

.

.

shared
word
space Softmax

P(w
j
 = i|h

j
)

w
j-1

w
j-n+1

w
j-2

w
j-3

Highway
layer

dropout dropout

H
I

H
O

tr
an

sf
or

m

carry

tr
an

sf
or

m

Figure 3.1: Overview of baseline FFLM.

the model. Even though a systematic evaluation for this model is beyond the scope of

the current paper, our empirical results demonstrate that it is a very competitive one (see

Chapter 4).

Dropout Another important technique that we applied in our model is Dropout [28]

which is a technique used to prevent overfitting in training neural networks. The technique

is to drop out neurons at hidden layers during the training process (set their values to 0)

with a random distribution (Bernoulli distribution is commonly used in dropout implemen-

tation.) The main purpose of dropout is to prevent the co-adaptation of feature detectors

(neurons) on the training data. When a neuron is dropped out, the neighbor neurons can-

not rely on it to produce the prediction anymore, thus the network are “penalised” more

severely on the training data but is more robust on unseen data.

Finally, a softmax layer (which is equivalent to the final hidden layer of the standard

neural language model plus a softmax function) computes the model prediction for the

upcoming word. We use ReLU for all non-linear activations and Dropout [28] is applied

between each hidden layer.

CHAPTER 3. CONVOLUTIONAL NEURAL LANGUAGE MODELS 39

3.2 CNN model and variants

3.2.1 Basic CNN network

The proposed CNN network is produced by injecting a convolutional layer right after the

words in the input are projected to their embeddings (Figure 3.3). Rather than being con-

catenated into a long vector, the embeddings xi ∈ Rk are concatenated transversally pro-

ducing a matrix x1:n ∈ Rn×k, where n is the size of the input and k is the embedding size.

This matrix is fed to a time-delayed layer, which convolves a sliding window of w input

vectors centered on each word vector using a parameter matrix W ∈ Rw×k. Convolution

is performed by taking the dot-product between the kernel matrix W and each sub-matrix

xi−w/2:i+w/2 resulting in a scalar value for each position i in input context. This value rep-

resents how much the words encompassed by the window match the feature represented by

the filter W . A ReLU activation function is applied subsequently so negative activations

are discarded. This operation is repeated multiple times using various kernel matrices W ,

learning different features independently. Here we tie the number of learned kernels to be

the same as the embedding dimensionality k and set the zero-padding so that the output of

this stage will be another matrix of dimensions n × k containing the activations for each

kernel at each time step. For example, for window size w = 5, we pad the inputs with 2

zero units at each direction. The padding value is 3 for w = 7 and so forth. We always

move the window by 1 unit per time lag (stride s = 1). The main reason for such setup is

to keep the network structure identical to the baseline, and also to reduce the total number

of parameters to be tuned during training.

Next, we add a batch normalization stage immediately after the convolutional output,

which facilitates learning by addressing the internal covariate shift problem and regulariz-

ing the learned representations [31].

Finally, this feature matrix is directly fed into a fully connected layer that can project the

extracted features into a lower-dimensional representation. This is different from previous

work [14, 34], where a max-over-time pooling operation was used to find the most activated

feature in the time series. Our choice is motivated by the fact that the max pooling operator

loses the specific position where the feature was detected, which is important for word

prediction.

CHAPTER 3. CONVOLUTIONAL NEURAL LANGUAGE MODELS 40

After this initial convolutional layer, the network proceeds identically to the FFNN by

feeding the produced features into a highway layer, and then, to a softmax output.

Training the network tochastic gradient descent (SGD) can be used to train our proposed

language model. The objective of the network is to jointly learn the word embeddings,

the convolutional kernels and maximising the likelihood of the training data. The loss

function is similar to feed-forward and recurrent neural networks, which is the negative-

loglikelihood function. The derivatives of the loss function with respect to the weights

at each layer are computed with the back-propagation algorithm, which is described for

feed-forward and convolutional neural networks in Chapter 2.

3.2.2 Extensions

This is the basic CNN architecture. We also conducted experiments with possible expan-

sions to the basic model as follows.

First, motivated by the successes of image recognition networks that gain performance

by stacking convolutional layers [26, 63], we aim at connecting learning features at local

level by using stacked convolutional layers on top of each other (Multi-layer CNN or ML-
CNN). It is possible since after the first convolutional layer, the output has the same size

and the input.

Second, we generalize the CNN by extending the shallow linear kernels with deeper

multi-layer perceptrons, in what is called a MLP Convolution (MLPConv) structure [43].

Fundamentally, the convolutional kernels are universal function approximators that maps

the embedding vectors into a value (feature). The shallow linear kernels can be upgraded

into non-linear function approximators by using a fully connected neural network scanning

through the input, which is illustrated in Figure 3.2. For comparison, the features extracted

by a shallow linear convolution layer (the simple convolution described above) are exactly

the hidden layer of the MLPConv layer. By adding another non-linear layer with the ReLU

function, we can expect to have a better feature extractor (since the network is deeper).

Concretely, we implement MLPConv networks by using another convolutional layer

with a 1× 1 kernel on top of the convolutional layer output. This results in an architecture

CHAPTER 3. CONVOLUTIONAL NEURAL LANGUAGE MODELS 41

that is exactly equivalent to sliding a one-hidden-layer MLP over the input. Notably, we

do not include the global pooling layer in the original network structure [43] which is

specifically designed for computer vision applications.

Finally, we consider combining features learned through different kernel sizes (COM),

as depicted in Figure 3.4. For example, we can have a combination of kernels that learn

filters over 3-grams with others that learn over 5-grams. This is achieved simply by apply-

ing in parallel two or more sets of kernels to the input and concatenating their respective

outputs [34]. It is notable that combining different kernels increase the size of hidden layers

while keeping the same word vector size.

MLPConv
Features

MLPConv
Hidden layer

Figure 3.2: MLPConv architecture. The features are learned by a multi-layer perceptron
after scanning through the network with convolution. The MLP weights are shared between
kernels.

CHAPTER 3. CONVOLUTIONAL NEURAL LANGUAGE MODELS 42

 1

Hidden layers
+

Softmax

context
matrix

Convolution
+ ReLU

Mapping

Figure 3.3: Convolutional layer on top of the context matrix.

Context
matrix

convolution +
ReLU

Conv
block-5

Conv
block-3

Mapping-5

Mapping-3

Hidden layers
+

Softmax

Figure 3.4: Combining kernels with different sizes. We concatenate the outputs of 2 con-
volutional blocks with kernel size of 5 and 3 respectively.

Chapter 4

Experiments

4.1 Experiment details

4.1.1 Datasets for evaluation

We evaluate our model on three English corpora of different sizes and genres that have been

used for language modeling evaluation before. The Penn Treebank contains one million

words of newspaper text with 10K words in the vocabulary. We reuse the preprocessing

and train/test/valid division from [48]. Europarl-NC is a a 64-million word corpus that

was developed for a Machine Translation shared task [8], combining Europarl data (from

parliamentary debates in the European Union) and News Commentary data. We prepro-

cessed the corpus with tokenization and true-casing tools from the Moses toolkit [38]. The

vocabulary is composed of words that occur at least 3 times in the training set and contains

approximately 60K words.

Finally, we took a fragment of the ukWaC corpus which is constructed by crawling UK

websites. The fragment contains 200 million words and we extracted a 200k-words vocab-

ulary with the words that appear more than 5 times in the subset. The preprocessing step

is similar to Europarl-NC. The validation and test set are different subsets of the ukWaC

corpus, both containing 120k words.

43

CHAPTER 4. EXPERIMENTS 44

4.1.2 Implementation Details

In order to observe the benefit of the convolutional layers, we implemented feed-forward

neural language models as baselines, recurrent and long-short term memory models and

finally, our convolutional networks. The implementation steps are as follows.

Vocabulary indexing First, the words are converted from string to integers with a map-

ping table. A sentence {W1,W2 . . .Wn} is then converted into an array of integers: {w1, w2 . . . wn},
with wi being the index of word Wi in the vocabulary. Basically, the corpus (a very long

sequence of words including new line tokens separated by space) is transformed into a

very long tensor of integer, which is then used for extracting the samples to train our net-

works. At the end of the each sentence (each line), we put a token “eos” to inform the

networks about the sentence boundary, which is a common practice in the literature. Also,

it is important that all words that do not exist in the vocabulary are mapped into one token

“unk”.

Sample extraction In this step, we need to decide the input and output of the networks.

For the feed-forward architectures (baseline FFLM and CNN), each input example is a

fixed length context and each output is one word only. The extraction process is performed

by looping over the corpus, taking each word and its context. In each training iteration

(feeding one example or one mini-batch described below to the network), we take one

random sample from the training data. During testing, it is not necessary to randomise the

order of the samples.

For recurrent architecture, we follow the method of Karpathy et al. [33] to extract the

samples for the network. Concretely, we iteratively take a subset of the corpus (the long

tensor) and ensure that the next subset is the successor of the current subset. For example,

if the sequence length is 5 then the first sample is {w1, w2, w3, w4, w5} and the next one is

{w6, w7, w8, w9, w10}. Note that, the RNNs receive one word at one step (w3 at time 3 for

example) and produce the next word (w4).

CHAPTER 4. EXPERIMENTS 45

Hyper-parameter Description
k Embedding size (FFNN, CNN) and kernel size (CNN) or

hidden layer size for RNN and LSTM models
dropout the probability to drop neurons at hidden layers
w The number of words scanned in each kernel (CNN)
lr learning rate for SGD
L number of hidden (recurrent) layers in RNN and LSTM

models

Table 4.1: Hyper-parameters to be chosen when training neural network language models.

Batching One important feature in neural network implementation is mini-batching. In

the training algorithms described in Chapter 2, we showed the basic computation for propa-

gating one sample forward and backward through the network. Additional performance can

be achieved by propagating several examples (a mini-batch) at one through the network,

because of two reasons [7]: First, the basic vector-matrix multiplication is transformed into

matrix-matrix multiplication, which can be accelerated with Basic Linear Algebra Subpro-

grams (BLAS) libraries or with GPU computing. Second, the distribution of a randomised

mini-batch is closer to the distribution of the whole data, which benefits SGD optimisation.

For the feed-forward architecture, a mini-batch is formed by randomly picking several

examples together. In that case, the input of the network is a matrix of size B ×m. B is

the mini-batch size and m is the order of n-grams. The network output is a vector of size

B. For recurrent networks, the input and output at each time step is a matrix of size B.

Training details We train our models using Stochastic Gradient Descent (SGD) and we

reduce the learning rate by a fixed proportion every time the validation perplexity increases

after one epoch. The values for learning rate, learning rate shrinking and mini-batch sizes

as well as context size are fixed once and for all based on insights drawn from previous

work [16, 24, 66] and through experimentation with the Penn Treebank validation set. Ex-

perimentally we found SGD to be efficient and adequately fast, while other learning algo-

rithms involve additional hyper parameters (such as alpha in RMSprop [69]). The set of

hyper parameters to be trained for models are showed in Table

Specifically, the learning rate is set to 0.05, with mini-batch size of 128 (we do not take

the average of loss over the batch, and the training set is shuffled). We multiply the learning

CHAPTER 4. EXPERIMENTS 46

rate by 0.5 every time we shrink it and clip the gradients if their norm is larger than 12. The

network parameters are initialized randomly on a range from−0.01 to 0.01 and the context

size is set to 16. In Section 4.3 we show that this large context window is fully exploited.

For the base FFNN and CNN we study embedding sizes (and thus, number of kernels)

k = 128, 256. For k = 128 we explore the simple CNN, incrementally adding NIN and

COM variations (in that order) and, alternatively, using a ML-CNN. For k = 256, we only

explore the former three alternatives. Because of the computational restriction, we chose

the kernel size w, stride s and zero-padding z based on experiments in Penntreebank. For

the kernel size, we set it to w = 3 words for the simple CNN (out of options 3, 5, 7, 9),

whereas for the COM variant we use w = 3 and 5. However, we observed the models to

be generally robust to this parameter. Dropout rates are tuned specifically for each combi-

nation of model and dataset based on the validation perplexity. We also add small dropout

(0.05− 0.15) when we train the networks on the small corpus (Penn Treebank).

The experimental results for recurrent neural network language models, such as Recur-

rent Neural Networks (RNN) and Long-Short Term Memory (LSTM), on the Penn Tree-

bank are quoted from previous work; for Europarl-NC, we train our own models (we also

report the performance of these in-house trained RNN and LSTM models on the Penn

Treebank for reference). Specifically, we train LSTMs with embedding size k = 256 and

number of layers L = 2 as well as k = 512 with L = 1, 2. We train one RNN with k = 512

and L = 2. To train these models, we use the published source code from [74]. Our own

models are also implemented in Torch71 for easier comparison.

For all models trained on Europarl-NC and ukWaC, we speed up training by approx-

imating the softmax with Noise Contrastive Estimation (NCE) [23], with the parameters

being set following the previous work from [12]. Concretely, for each predicted word, we

sample 10 words from the unigram distribution, and the normalization factor is such that

lnZ = 9 2.

For comparison, we also implemented the origial version of the FFNN [4] with two

hidden layers with the size of 2 times the embedding size (k). These networks do not have

dropout as well as the highway layers in our baseline, yet still share the same number of
1The software is available at https://github.com/quanpn90/NCE CNNLM
2We also experimentally tried with Hierarchical Softmax [46] and found out that the NCE gave better

performance in terms of speed and perplexity.

CHAPTER 4. EXPERIMENTS 47

parameters.

4.2 Results

Our experimental results are summarized in Table 4.2.

First of all, we can see that even though the FFNN gives a very competitive perfor-

mance, the addition of convolutional layers is clearly effective to increase it even further3.

Concretely, we observe a solid 13% reduction of perplexity compared to the feed-forward

network after using Network-in-Network in all setups for both corpora. CNN alone yields

a 6% improvement, while MLPConv, in line with our expectations, adds another 5% reduc-

tion in perplexity. A final (smaller) improvement comes from combining kernels of size 3

and 5, which can be attributed to a more expressive model that can learn patterns of n-grams

of different sizes.In contrast to the successful two variants above, the multi-layer CNN did

not help in better capturing the regularities of text, but rather the opposite: the more con-

volutional layers were stacked, the worse the performance. This also stands in contrast to

the tradition of convolutional networks in Computer Vision, where using very deep convo-

lutional neural networks is key to having better models. In text, deep convolution for text

representation is rather rare, and has only been applied in sentence representation [32]. We

conjecture that the reason why deep CNNs may not be so effective for text could be the

non-recursive nature of the textual data after convolution. In other words, the convolution

output for an image can be construed to be a new image, which yet again can be subject to

new convolution operations, whereas the textual counterpart may no longer have the same

property.

Regarding the comparison with a stronger LSTM, our models can perform competi-

tively under the same embedding dimension (e.g. see k = 256 of k = 512) on the first

two datasets. However, the LSTM can be easily scaled using larger models, as shown

in Zaremba et al. [74], which gives the best known results to date. This is not an option

for our model which heavily overfits with large hidden layers (around 1000) even with very

large dropout values. Furthermore, the experiments on the larger ukWaC corpus show an

3In our experiments, increasing the number of fully connected layers is harmful. Two hidden layers with
highway connections is the best setting we could find.

CHAPTER 4. EXPERIMENTS 48

Model k w Penn Treebank Europarl-NC ukWaC
val test #p val test #p val test #p

Vanilla FFNN 128 - 156 147 4.5M - - - - - -
Baseline FFNN 128 - 114 109 4.5M - - - - - -

+CNN 128 3 108 102 4.5M - - - - - -
+MLPConv 128 3 102 97 4.5M - - - - - -

+MLPConv+COM 128 3+5 96 92 8M - - - - - -
+ML-CNN (2 layers) 128 3 113 108 8M - - - - - -
+ML-CNN (4 layers) 128 3 130 124 8M - - - - - -

Vanilla FFNN 256 - 161 152 8.2M - - - - - -
Baseline FFNN 256 - 110 105 8.2M 133 174 48M 136 147 156M

+CNN 256 3 104 98 8.3M 112 133 48M - - -
+MLPConv 256 3 97 93 8.3M 107 128 48M 108 116 156M

+MLPConv+COM 256 3+5 95 91 18M 108 128 83M - - -
+MLPConv+COM 512 3+5 96 92 52M - - - - - -

Model k L Penn Treebank Europarl-NC ukWaC
val test #p val test #p val test #p

RNN [48] 300 1 133 129 6M - - - - - -
LSTM [48] 300 1 120 115 6.3M - - - - - -
LSTM [74] 1500 2 82 78 48M - - - - - -

LSTM (trained in-house) 256 2 108 103 5.1M 137 155 31M - - -
LSTM (trained in-house) 512 1 123 118 12M 133 149 62M - - -
LSTM (trained in-house) 512 2 94 90 11M 114 124 63M 79 83 205M
RNN (trained in-house) 512 2 129 121 10M 152 173 61M - - -

Table 4.2: Results on Penn Treebank and Europarl-NC. Figure of merit is perplexity (lower
is better). Legend: k: embedding size (also number of kernels for the convolutional models
and hidden layer size for the recurrent models); w: kernel size; val: results on validation
data; test: results on test data; #p: number of parameters; L: number of layers.

CHAPTER 4. EXPERIMENTS 49

no matter how
are afraid how

question is how
remaining are how

to say how

as little as
of more than
as high as

as much as
as low as

a merc spokesman
a company spokesman
a boeing spokesman
a fidelity spokesman

a quotron spokeswoman

amr chairman robert
chief economist john

chicago investor william
 exchange chairman john

texas billionaire robert

would allow the
does allow the
still expect ford

warrant allows the
funds allow investors

more evident among
a dispute among

bargain-hunting among
growing fear among

paintings listed among

facilities will substantially
which would substantially

dean witter actually
we 'll probably

you should really

have until nov.
operation since aug.
quarter ended sept.
terrible tuesday oct.
even before june

Figure 4.1: Some example phrases that have highest activations for 8 example kernels
(each box), extracted from the validation set of the Penn Treebank. Model trained with 256
kernels for 256-dimension word vectors.

advantage for the LSTM, which seems to be more efficient at harnessing this volume of

data. On the other hand, the improvement of the convolutional model with respect to the

FFNN becomes even more dramatic (more than 20%) using similarly sized models.

To sum up, we have established that the results of our CNN model are well above those

of simple feed forward networks and recurrent neural networks. While they are below state

of the art LSTMs, they are able to perform competitively with them for small and moderate-

size models. Scaling to larger sizes may be today the main roadblock for CNNs to reach

the same performances as large LSTMs in language modeling.

4.3 Model Analysis

In what follows, we obtain insights into the inner workings of the CNN by looking into the

linguistic patterns that the kernels learn to extract and also studying the temporal informa-

tion extracted by the network in relation to its prediction capacity.

Learned patterns To get some insight into the kind of patterns that each kernel is learn-

ing to detect, we fed trigrams from the validation set of the Penn Treebank to each of the

kernels, and extracted the ones that most highly activated the kernel. Some examples are

CHAPTER 4. EXPERIMENTS 50

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

 210

 0 2 4 6 8 10 12 14 16

S
um

 o
f p

os
iti

ve
 w

ei
gh

ts

Positions

Figure 4.2: The distribution of positive weights over context positions, where 1 is the
position closest to the predicted word.

shown in Figure 4.1. Since the word windows are made of embeddings, we can expect

patterns with similar embeddings to have close activation outputs. This is borne out in the

analysis: The kernels specialize in distinct features of the data, including more syntactic-

semantic constructions (cf. the “comparative kernel” including as . . . as patterns, but also

of more than) and more lexical or topical features (cf. the “ending-in-month-name” kernel).

Even in the more lexicalized features, however, we see linguistic regularities at different

levels being condensed in a single kernel: For instance, the “spokesman” kernel detects

phrases consisting of an indefinite determiner, a company name (or the word company it-

self) and the word “spokesman”. We hypothesize that the convolutional layer adds an “I

identify one specific feature, but at a high level of abstraction” dimension to a feed-forward

neural network, similarly to what has been observed in image classification [39].

Temporal information To the best of our knowledge, the longest context used in feed-

forward language models is 10 [25], where no significant change in terms of perplexity was

observed for bigger context sizes, even though in that work only same-sentence contexts

CHAPTER 4. EXPERIMENTS 51

were considered. In our experiments, we use a larger context size of 16 while removing

the sentence boundary limit (as commonly done in n-gram language models) such that the

network can take into account the words in the previous sentences.

To analyze whether all this information was effectively used, we took our best model,

the CNN-NIN-COM model with embedding size of 256 (fourth line, second block in Ta-

ble 4.2), and we identified the weights in the model that map the convolutional output (of

size n × k) to a lower dimensional vector (the “mapping” layer in Figure 3.3). Recall that

the output of the convolutional layer is a matrix indexed by time step and kernel index

representing the activation of the kernel when convolved with a window of text centered

around the given time step. Thus, output units of the above mentioned mapping predicate

over an ensemble of kernel activations for each time-step . We can identify the patterns that

they learn to detect by extracting the time-kernel combinations for which they have posi-

tive weights (since we have ReLU activations, negative weights are equivalent to ignoring

a feature). First, we asked ourselves whether these units tend to be more focused on the

time-steps closer to the target or not. To test this, we calculated the sum of the positive

weights for each position in time using an average of the mappings that correspond to each

output unit. The results are shown in Figure 4.2. As could be expected, positions that are

close to the token to be predicted have many active units (local context is very informative;

see positions 2-4). However, surprisingly, positions that are actually far from the target are

also quite active (see positions 10-14, with a spike at 11). It seems like the CNN is putting

quite a lot of effort on characterizing long-range dependencies.

Next, we checked that the information extracted from the positions that are far in the

past are actually used for prediction. To measure this, we artificially lesioned the network

so it would only read the features from a given range of timesteps (words in the context).

To lesion the network we manually masked the weights of the mapping that focus on times

outside of the target range by setting them to zero. We started using only the word closest to

the final position and sequentially unmasked earlier positions until the full context was used

again. The result of this experiment is presented in Figure 4.3, and it confirms our previous

observation that positions that are the farthest away contribute to the predictions of the

model. The perplexity drops dramatically as the first positions are unmasked, and then

decreases more slowly, approximately in the form of a power law (f(x) ∝ x−0.9). Even

CHAPTER 4. EXPERIMENTS 52

 4.5

 5

 5.5

 6

 6.5

 7

 0 2 4 6 8 10 12 14 16

C
ro

ss
 E

nt
ro

py

Number of positions revealed

Figure 4.3: Perplexity change over position, by incrementally revealing the Mapping’s
weights corresponding to each position.

though the effect is smaller, the last few positions still contribute to the final perplexity.

Chapter 5

Related Work

Provided our proposed models for language modeling using convolutional neural networks,

we cover the related works that apply convolutional neural networks in NLP problems.

Time-delay neural networks or convolutional neural networks (CNNs) were originally

designed to deal with hierarchical representation in signal processing [71] and computer

vision [42]. Deep networks with many stacked convolutional layers have been successfully

applied in image classification and understanding [26, 63]. In such systems the convo-

lutional kernels manage to learn to detect visual features at both local and more abstract

levels.

In NLP, CNNs have been mainly applied to static classification task for discovering

latent structures in text. Kim [34] use a CNN to tackle sentence classification, with com-

petitive results. This work also introduces kernels with varying window sizes to learn

complementary features at different aggregation levels. Kalchbrenner et al. [32] propose a

convolutional architecture for sentence representation that vertically stacks multiple convo-

lution layers, each of which can learn independent convolution kernels. CNNs with similar

structures have also been applied to other classification tasks, such as semantic match-

ing [30], relation extraction [52] and information retrieval [62].

In contrast, Collobert et al. [14] explore a CNN architecture to solve various sequential

and non-sequential NLP tasks such as part-of-speech tagging, named entity recognition

and also language modeling. This is perhaps the work that is closest to ours in the existing

literature. However, their model differs from ours in that it uses a max-pooling layer that

53

CHAPTER 5. RELATED WORK 54

picks the most activated feature across time, thus ignoring temporal dependencies, whereas

we explicitly avoid doing so. More importantly, the language models trained in this work

are only evaluated through downstream tasks and through the quality of the learned word

embeddings, but not on the sequence prediction task itself.

Besides being applied on word-based sequences, the convolutional layers have also

been used to model sequences at the character level. Kim et al. [35] propose a recurrent

language model that replaces the word-indexed projection matrix with a convolution layer

fed with the character sequence that constitutes each word to find morphological patterns.

The main difference between their and our work is that we consider words as the smallest

linguistic unit, and thus apply the convolutional layer at the word level. Also, convolutional

layers can be applied to a full sentence whose fundamental units are characters [76]. State-

of-the-art results in text classification has been observed by using very deep convolutional

neural networks [15].

In this work we focus on statistical language modeling, which differs from most of the

tasks where CNNs have been applied before in multiple ways. First, the input normally

consists of incomplete sequences of words rather than complete sentences. Second, as a

classification problem, it features an extremely large number of classes (the words in a

large vocabulary). Finally, temporal information, which can be safely discarded in many

settings with little impact in performance, is critical here: An n-gram appearing close to

the predicted word may be more informative, or yield different information, than the same

n-gram appearing several tokens earlier.

Chapter 6

Conclusion

In this work, we have investigated the use of Convolutional Neural Networks for language

modeling, a sequential prediction task. We incorporate a CNN layer on top of a strong feed-

forward model enhanced with modern techniques like Highway Layers and Dropout. Our

results show a solid 11-26% improvement in perplexity with respect to the feed-forward

model across two corpora of different sizes and genres when the model uses Network-in-

Network and combine kernels of different window sizes. However, even without these

additions we show CNNs to effectively learn language patterns to significantly decrease

the model perplexity.

In our view, this improvement responds to two key properties of CNNs, highlighted in

the analysis. First, as we have shown, they are able to integrate information from larger

context windows, using information from words that are as far as 16 positions away from

the predicted word. Second, as we have qualitatively shown, the kernels learn to detect

specific patterns at a high level of abstraction. This is analogous to the role of convolutions

in Computer Vision. The analogy, however, has limits; for instance, a deeper model stack-

ing convolution layers harms performance in language modeling, while it greatly helps in

Computer Vision. We conjecture that this is due to the differences in the nature of visual vs.

linguistic data. The convolution creates sort of abstract images that still retain significant

properties of images. When applied to language, it detects important textual features but

distorts the input, such that it is not text anymore.

55

CHAPTER 6. CONCLUSION 56

As for recurrent models, even if our model outperforms RNNs, it is well below state-of-

the-art LSTMs. Since CNNs are quite different in nature, we believe that a fruitful line of

future research could focus on integrating the convolutional layer into a recurrent structure

for language modeling, as well as other sequential problems, perhaps capturing the best of

both worlds.

Appendix A

Publications by Author

• 2016

Ngoc-Quan Pham, Gemma Boleda and Germán Kruszewski. “Convolutional Neu-

ral Network Language Models.” In Proceedings of the 2016 Conference on Empiri-

cal Methods in Natural Language Processing, Texas Austin PA: ACL, 2016.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc-Quan Pham, Raf-

faella Bernardi, Sandro Pezzelle, Marco Baroni, Gemma Boleda and Raquel Fernández,

“The LAMBADA dataset: Word prediction requiring a broad discourse context.”, In

Proceedings of ACL 2016 (54th Annual Meeting of the Association for Computa-

tional Linguistics), East Stroudsburg PA: ACL, 2016.

• 2015

Ngoc-Quan Pham and Lonneke van der Plas, “Predicting pronouns across languages

with continuous word spaces.”, in Proceedings of the Second Workshop on Discourse

in Machine Translation, pages 101 - 107, Lisbon, Portugal, 2015.

57

Bibliography

[1] Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, and Gerald Penn. Ap-

plying convolutional neural networks concepts to hybrid nn-hmm model for speech

recognition. In 2012 IEEE international conference on Acoustics, speech and signal

processing (ICASSP), pages 4277–4280. IEEE, 2012.

[2] Yoshua Bengio and Jean-Sébastien Senécal. Adaptive importance sampling to accel-

erate training of a neural probabilistic language model. IEEE Transactions on Neural

Networks, 19(4):713–722, 2008.

[3] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependen-

cies with gradient descent is difficult. IEEE transactions on neural networks, 5(2):

157–166, 1994.

[4] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural

probabilistic language model. journal of machine learning research, 3(Feb):1137–

1155, 2003.

[5] Yoshua Bengio, Holger Schwenk, Jean-Sébastien Senécal, Fréderic Morin, and Jean-

Luc Gauvain. Neural probabilistic language models. In Innovations in Machine

Learning, pages 137–186. Springer, 2006.

[6] Yoshua Bengio, Nicolas Boulanger-Lewandowski, and Razvan Pascanu. Advances in

optimizing recurrent networks. In 2013 IEEE International Conference on Acoustics,

Speech and Signal Processing, pages 8624–8628. IEEE, 2013.

[7] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel. Using phipac to

speed error back-propagation learning. In Acoustics, Speech, and Signal Processing,

58

BIBLIOGRAPHY 59

1997. ICASSP-97., 1997 IEEE International Conference on, volume 5, pages 4153–

4156. IEEE, 1997.

[8] Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Barry Haddow, Matthias Huck,

Chris Hokamp, Philipp Koehn, Varvara Logacheva, Christof Monz, Matteo Negri,

Matt Post, Carolina Scarton, Lucia Specia, and Marco Turchi. Findings of the 2015

workshop on statistical machine translation. In Proceedings of the Tenth Work-

shop on Statistical Machine Translation, pages 1–46, Lisbon, Portugal, September

2015. Association for Computational Linguistics. URL http://aclweb.org/

anthology/W15-3001.

[9] Peter F Brown, Peter V Desouza, Robert L Mercer, Vincent J Della Pietra, and

Jenifer C Lai. Class-based n-gram models of natural language. Computational lin-

guistics, 18(4):467–479, 1992.

[10] Ciprian Chelba and Frederick Jelinek. Structured language modeling. Computer

Speech & Language, 14(4):283–332, 2000.

[11] Stanley F Chen and Joshua Goodman. An empirical study of smoothing techniques

for language modeling. Computer Speech & Language, 13(4):359–394, 1999.

[12] Xie Chen, Xunying Liu, Mark JF Gales, and Philip C Woodland. Recurrent neural

network language model training with noise contrastive estimation for speech recog-

nition. In 2015 IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), pages 5411–5415. IEEE, 2015.

[13] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representa-

tions using rnn encoder-decoder for statistical machine translation. arXiv preprint

arXiv:1406.1078, 2014.

[14] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu,

and Pavel Kuksa. Natural language processing (almost) from scratch. The Journal of

Machine Learning Research, 12:2493–2537, 2011.

BIBLIOGRAPHY 60

[15] Alexis Conneau, Holger Schwenk, Loı̈c Barrault, and Yann Lecun. Very deep convo-

lutional networks for natural language processing. arXiv preprint arXiv:1606.01781,

2016.

[16] Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas Lamar, Richard M Schwartz,

and John Makhoul. Fast and robust neural network joint models for statistical machine

translation. In ACL (1), pages 1370–1380. Citeseer, 2014.

[17] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

[18] Marcello Federico, Nicola Bertoldi, and Mauro Cettolo. Irstlm: an open source toolkit

for handling large scale language models. In Interspeech, pages 1618–1621, 2008.

[19] Denis Filimonov and Mary Harper. A joint language model with fine-grain syntac-

tic tags. In Proceedings of the 2009 Conference on Empirical Methods in Natural

Language Processing: Volume 3-Volume 3, pages 1114–1123. Association for Com-

putational Linguistics, 2009.

[20] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a

mechanism of pattern recognition unaffected by shift in position. Biological cyber-

netics, 36(4):193–202, 1980.

[21] Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with bidi-

rectional lstm and other neural network architectures. Neural Networks, 18(5):602–

610, 2005.

[22] Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing

Shuai, Ting Liu, Xingxing Wang, and Gang Wang. Recent advances in convolutional

neural networks. CoRR, abs/1512.07108, 2015.

[23] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new esti-

mation principle for unnormalized statistical models. In AISTATS, volume 1, page 6,

2010.

[24] Le Hai Son, Ilya Oparin, Alexandre Allauzen, Jean-Luc Gauvain, and François Yvon.

Structured output layer neural network language model. In Acoustics, Speech and

BIBLIOGRAPHY 61

Signal Processing (ICASSP), 2011 IEEE International Conference on, pages 5524–

5527. IEEE, 2011.

[25] Le Hai Son, Alexandre Allauzen, and François Yvon. Measuring the influence of

long range dependencies with neural network language models. In Proceedings of

the NAACL-HLT 2012 Workshop: Will We Ever Really Replace the N-gram Model?

On the Future of Language Modeling for HLT, pages 1–10. Association for Compu-

tational Linguistics, 2012.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. arXiv preprint arXiv:1512.03385, 2015.

[27] Kenneth Heafield. Kenlm: Faster and smaller language model queries. In Proceedings

of the Sixth Workshop on Statistical Machine Translation, pages 187–197. Association

for Computational Linguistics, 2011.

[28] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Improving neural networks by preventing co-adaptation of feature

detectors. CoRR, abs/1207.0580, 2012. URL http://arxiv.org/abs/1207.

0580.

[29] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-

tation, 9(8):1735–1780, 1997.

[30] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. Convolutional neural net-

work architectures for matching natural language sentences. In Advances in Neural

Information Processing Systems, pages 2042–2050, 2014.

[31] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[32] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural

network for modelling sentences. In Proceedings of the 52nd Annual Meeting of the

Association for Computational Linguistics, ACL 2014, June 22-27, 2014, Baltimore,

BIBLIOGRAPHY 62

MD, USA, Volume 1: Long Papers, pages 655–665, 2014. URL http://aclweb.

org/anthology/P/P14/P14-1062.pdf.

[33] Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualizing and understanding re-

current networks. arXiv preprint arXiv:1506.02078, 2015.

[34] Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint

arXiv:1408.5882, 2014.

[35] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush. Character-aware

neural language models. CoRR, 2015. URL http://arxiv.org/abs/1508.

06615.

[36] Zipf George Kingsley. Selective studies and the principle of relative frequency in

language, 1932.

[37] Reinhard Kneser and Hermann Ney. Improved backing-off for m-gram language

modeling. In Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995

International Conference on, volume 1, pages 181–184. IEEE, 1995.

[38] Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Fed-

erico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens,

et al. Moses: Open source toolkit for statistical machine translation. In Proceedings of

the 45th annual meeting of the ACL on interactive poster and demonstration sessions,

pages 177–180. Association for Computational Linguistics, 2007.

[39] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In Advances in neural information processing

systems, pages 1097–1105, 2012.

[40] Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A simple way to initialize recur-

rent networks of rectified linear units. arXiv preprint arXiv:1504.00941, 2015.

[41] B Boser Le Cun, John S Denker, D Henderson, Richard E Howard, W Hubbard, and

Lawrence D Jackel. Handwritten digit recognition with a back-propagation network.

In Advances in neural information processing systems. Citeseer, 1990.

BIBLIOGRAPHY 63

[42] Yann LeCun and Yoshua Bengio. Convolutional networks for images, speech, and

time series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[43] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint

arXiv:1312.4400, 2013.

[44] James Martens and Ilya Sutskever. Learning recurrent neural networks with hessian-

free optimization. In Proceedings of the 28th International Conference on Machine

Learning (ICML-11), pages 1033–1040, 2011.

[45] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudan-

pur. Recurrent neural network based language model. In INTERSPEECH, volume 2,

page 3, 2010.

[46] Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan Honza Černockỳ, and Sanjeev

Khudanpur. Extensions of recurrent neural network language model. In Acoustics,

Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on,

pages 5528–5531. IEEE, 2011.

[47] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of

word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[48] Tomas Mikolov, Armand Joulin, Sumit Chopra, Michael Mathieu, and Marc’Aurelio

Ranzato. Learning longer memory in recurrent neural networks. arXiv preprint

arXiv:1412.7753, 2014.

[49] Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for training neural

probabilistic language models. arXiv preprint arXiv:1206.6426, 2012.

[50] Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network lan-

guage model. In Aistats, volume 5, pages 246–252. Citeseer, 2005.

[51] Hermann Ney, Ute Essen, and Reinhard Kneser. On structuring probabilistic depen-

dences in stochastic language modelling. Computer Speech & Language, 8(1):1–38,

1994.

BIBLIOGRAPHY 64

[52] Thien Huu Nguyen and Ralph Grishman. Relation extraction: Perspective from con-

volutional neural networks. In Proceedings of NAACL-HLT, pages 39–48, 2015.

[53] Thomas R Niesler and Philip C Woodland. A variable-length category-based n-gram

language model. In Acoustics, Speech, and Signal Processing, 1996. ICASSP-96.

Conference Proceedings., 1996 IEEE International Conference on, volume 1, pages

164–167. IEEE, 1996.

[54] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training

recurrent neural networks. ICML (3), 28:1310–1318, 2013.

[55] Vu Pham, Théodore Bluche, Christopher Kermorvant, and Jérôme Louradour.

Dropout improves recurrent neural networks for handwriting recognition. In Fron-

tiers in Handwriting Recognition (ICFHR), 2014 14th International Conference on,

pages 285–290. IEEE, 2014.

[56] Ronald Rosenfeld. Two decades of statistical language modeling: Where do we go

from here. In Proceedings of the IEEE, page 2000, 2000.

[57] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal

representations by error propagation. Technical report, DTIC Document, 1985.

[58] Ivan A Sag, Timothy Baldwin, Francis Bond, Ann Copestake, and Dan Flickinger.

Multiword expressions: A pain in the neck for nlp. In International Conference on In-

telligent Text Processing and Computational Linguistics, pages 1–15. Springer, 2002.

[59] Holger Schwenk. Continuous space language models. Computer Speech & Language,

21(3):492–518, 2007.

[60] Jean Sébastien, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. On using

very large target vocabulary for neural machine translation. 2015.

[61] Thomas Serre, Lior Wolf, Stanley Bileschi, Maximilian Riesenhuber, and Tomaso

Poggio. Robust object recognition with cortex-like mechanisms. IEEE transactions

on pattern analysis and machine intelligence, 29(3):411–426, 2007.

BIBLIOGRAPHY 65

[62] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. A la-

tent semantic model with convolutional-pooling structure for information retrieval. In

Proceedings of the 23rd ACM International Conference on Conference on Informa-

tion and Knowledge Management, pages 101–110. ACM, 2014.

[63] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[64] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[65] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks.

CoRR, abs/1505.00387, 2015. URL http://arxiv.org/abs/1505.00387.

[66] Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory net-

works. In Advances in Neural Information Processing Systems, pages 2431–2439,

2015.

[67] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with

neural networks. In Advances in neural information processing systems, pages 3104–

3112, 2014.

[68] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going

deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vi-

sion and Pattern Recognition, pages 1–9, 2015.

[69] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a

running average of its recent magnitude. COURSERA: Neural Networks for Machine

Learning, 4(2), 2012.

[70] Ashish Vaswani, Yinggong Zhao, Victoria Fossum, and David Chiang. Decoding with

large-scale neural language models improves translation. In EMNLP, pages 1387–

1392. Citeseer, 2013.

BIBLIOGRAPHY 66

[71] Alexander Waibel, Toshiyuki Hanazawa, Geoffrey Hinton, Kiyohiro Shikano, and

Kevin J Lang. Phoneme recognition using time-delay neural networks. Acoustics,

Speech and Signal Processing, IEEE Transactions on, 37(3):328–339, 1989.

[72] Ian H Witten and Timothy C Bell. The zero-frequency problem: Estimating the proba-

bilities of novel events in adaptive text compression. Ieee transactions on information

theory, 37(4):1085–1094, 1991.

[73] Wojciech Zaremba. An empirical exploration of recurrent network architectures.

2015.

[74] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network reg-

ularization. arXiv preprint arXiv:1409.2329, 2014.

[75] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701, 2012.

[76] Xiang Zhang and Yann LeCun. Text understanding from scratch. CoRR,

abs/1502.01710, 2015. URL http://arxiv.org/abs/1502.01710.

