
Charles University in Prague
Faculty of Mathematics and Physics

University of Groningen
Faculty of Arts

MASTER THESIS

Bich Ngoc Do

Neural Networks for Automatic
Speaker, Language and Sex

Identification

Supervisors: Ing. Mgr. Filip Jurč́ıček, Ph.D.
Dr. Marco Wiering

Master of Computer Science
Mathematical Linguistics

Master of Arts
Linguistics

Prague 2015

Title: Neural networks for automatic speaker, language, and sex identification

Author: Bich-Ngoc Do

Department: Institute of Formal and Applied Linguistics, Faculty of Mathematics
Physics, Charles University in Prague; Department of Linguistics, Faculty of Arts,
University of Groningen

Supervisor: Ing. Mgr. Filip Jurč́ıček, Ph.D., Institute of Formal and Applied
Linguistics, Charles University in Prague and Dr. Marco Wiering, Institute of
Artificial Intelligence and Cognitive Engineering, Faculty of Mathematics and
Natural Sciences, University of Groningen

Abstract: Speaker recognition is a challenging task and has applications in many
areas, such as access control or forensic science. Moreover, in recent years, the
deep learning paradigm and its branch, deep neural networks have emerged as
powerful machine learning techniques and achieved state-of-the-art performance
in many fields of natural language processing and speech technology. Therefore,
the aim of this work is to explore the capability of a deep neural network model,
recurrent neural networks, in speaker recognition. Our proposed systems are
evaluated on the TIMIT corpus using speaker identification tasks. In comparison
with other systems in the same test conditions, our systems could not surpass
reference ones due to the sparsity of validation data. In general, our experiments
show that the best system configuration is a combination of MFCCs with their
dynamic features and a recurrent neural network model. We also experiment
recurrent neural networks and convolutional neural networks in a simpler task,
sex identification, on the same TIMIT data.

Keywords: speaker identification, sex identification, deep neural network, recur-
rent neural network, convolution neural network, MFCC, TIMIT

i

Contents

1 Introduction 3
1.1 Problem Definition . 4
1.2 Components of a Speaker Recognition

System . 5
1.3 Thesis Outline . 6

2 Speech Signal Processing 7
2.1 Speech Signals and Systems . 7

2.1.1 Analog and digital signals 7
2.1.2 Sampling and quantization 7
2.1.3 Digital systems . 8

2.2 Signal Representation: Time Domain and Frequency Domain . . . 9
2.3 Frequency Analysis . 12
2.4 Short-Term Processing of Speech 13

2.4.1 Short-time Fourier analysis 14
2.4.2 Spectrograms . 14

2.5 Cepstral Analysis . 16

3 Approaches in Speaker Identification 18
3.1 Speaker Feature Extraction . 18

3.1.1 Mel-frequency cepstral coefficients 18
3.1.2 Linear-frequency cepstral coefficients 20
3.1.3 Linear predictive coding and linear predictive cepstral co-

efficients . 21
3.2 Speaker Modeling Techniques . 22

3.2.1 k-nearest neighbors . 22
3.2.2 Vector quantization and clustering algorithms 22
3.2.3 Hidden Markov model . 24
3.2.4 Gaussian mixture model: The baseline 26

3.3 I-Vector: The State-of-the-Art . 28

4 Deep Neural Networks 30
4.1 Artifical Neural Networks at a Glance 30
4.2 Deep Learning and Deep Neural Networks 32
4.3 Recurrent Neural Networks . 33
4.4 Convolutional Neural Networks 34
4.5 Difficulties in Training Deep Neural

Networks . 35
4.6 Neural Network in Speaker Recognition 37

1

5 Experiments and Results 38
5.1 Corpora for Speaker Identification

Evaluation . 38
5.1.1 TIMIT and its derivatives 38
5.1.2 Switchboard . 39
5.1.3 KING corpus . 39

5.2 Database Overview . 40
5.3 Reference Systems . 41
5.4 Experimental Framework Description 42

5.4.1 Preprocessing . 42
5.4.2 Front-end . 43
5.4.3 Back-end . 45
5.4.4 Configuration file . 49

5.5 Experiments and Results . 50
5.5.1 Experiment 1: Performance on small size

populations . 50
5.5.2 Experiment 2: Performance with regard to training duration 52
5.5.3 Experiment 3: Performance on large populations 53
5.5.4 Experiment 4: Sex identification 55
5.5.5 Epilogue: Language identification 56

6 Conclusion and Future Work 57

Bibliography 64

List of Figures 66

List of Tables 67

List of Abbreviations 68

2

Chapter 1

Introduction

Communication is an essential need of humans, and speaking is one of the most
natural forms of communication besides facial expressions, eye contact and body
language. The study of speech dates back even before the digital era, with legends
about mechanical devices which were able to imitate human voices in the 13th
century [5]. However, the development of speech processing did not progress
rapidly until 1930s after two inventions about speech analysis and synthesis at
Bell Laboratories. Those events are often considered to be the beginning of the
modern speech technology era [14].

Figure 1.1: Some areas in speech processing (adapted from [9])

There is not a unique way to classify subfields in speech processing, but in gen-
eral, it can be divided into some main components: analysis, coding/synthesis
and recognition [14]. Among those, recognition area directly deals with basic
information that speech delivers, for instance, its message of words (speech recog-
nition), language (language identification) and information about the speaker
such as his or her gender, emotion (speaker recognition) (see figure 1.1).

3

In other words, beside transmitting a message as other means of communi-
cation do, speech also reveals the identity of its speaker. Together with other
biometrics such as face recognition, DNA, fingerprint, ..., speaker recognition
plays an important role in many fields, from forensics to security control. The
first attempts at this field were made in the 1960s [20]; since then its approaches
have ranged from simple template matching to advanced statistical modeling like
hidden Markov models or artificial neural networks.

In our work, we would like to use one of the most effective statistical mod-
els today to solve speaker recognition problems, which is deep neural networks.
Hence, the aim of this thesis is to apply deep neural network models to identi-
fy speakers, to show if this approach is promising and to prove its efficiency by
comparing its results to other techniques. Our evaluation is conducted on TIMIT
data released in the year 1990.

1.1 Problem Definition

Speaker recognition is the task of recognizing a speaker’s identity from his or her
voice, and is different from speech recognition of which purpose is to recognize
the content of the speech. It is also referred as voice recognition, but this term
is not encouraged since it has been used with the meaning of speech recognition
for a long time [4]. The area of speaker recognition involves two major tasks:
verification and identification (figure 1.1). Their basic structures are shown in
figure 1.2.

Figure 1.2: Structures of (a) speech identification and (b) speech verification
(adapted from [55])

Speaker verification is the task of authenticating a speaker’s identity, i.e., to
check whether the speaker is the one he or she claims to be (yes or no decision).
The speaker who claims the identity is known as the test speaker ; the signal is

4

then compared against the model of the claimant, i.e. the speaker whose identity
the system knows about. Other speakers except the claimant are called impostors.
A verification system is trained using not only the claimant’s signal but also data
from other speakers, called background speakers. In the evaluation phase, the
system compares the likelihood ratio ∆ (between the score corresponding to the
claimant’s model to that of the background speakers’ model) with a threshold
θ. If ∆ ≥ θ, the speaker is accepted, otherwise he or she is rejected. Since the
system usually does not know about the test speaker identity, this task is an
open-set problem.

Speaker identification, on the other hand, determines who the speaker is
among known voices registered in the system. Given an unknown speaker, the
system must compare his or her voice to a set of available models, thus makes
this task a one-vs-all classification problem. The type of identification can be
closed-set or open-set depending on its assumption. If the test speaker is guar-
anteed to come from the set of registered speakers, its type is closed-set, and the
system returns the most probable model ID. In case its type is open-set, there
is a chance that the test speaker’s identity is unknown, and the system should
make a rejection in this situation.

Speaker detection is another subtask of speaker recognition, which aims at
detecting one or more specific speakers in a stream of audio [4]. It can be viewed
as a combination of segmentation together with speaker verification and/or iden-
tification. Depending on a specific situation, this problem can be formulated as
a speech recognition problem, a verification problem or both of them. For in-
stance, one way to combine both tasks is to perform identification first, and then
use returned the ID for the verification session.

Based on the restriction of texts used in speech, speech recognition can be fur-
ther categorized as text-dependent and text-independent [54]. In text-dependent
speech recognition, all speakers say the same words or phrases during both training
and testing phases. This modality is more likely to be used in speaker verifica-
tion than other branches [4]. In text-independent speech recognition, there is no
constraint placed on training and testing texts; therefore, it is more flexible and
can be used in all branches of speech recognition.

1.2 Components of a Speaker Recognition

System

Figure 1.2 illustrates a basic structure of a speaker identification and a speaker
verification system. In both systems, first, the audio signal is directed to the
front-end processing, where features that represent the speaker information are
extracted. The heart of the front-end is undoubtedly a feature extraction module,
which transforms a signal into a vector of features. The short-time spectral is the
most frequently used type of features in speech processing, but types of feature
may range from short-time spectral (e.g. spectrum) to prosodic and auditory
features (e.g. pitch, loudness, rhythm, ...) and even high level features such as
phones or accent. The front-end may also include pre/post processing modules
as well, such as voice activity detection to remove silence from the input, or a
channel compensation module to normalize the effect of the recording channel

5

[55].
In a speaker recognition system, a vector of features acquired from the previous

step is compared against a set of speaker models. The identity of the test speaker
is associated with the ID of the highest scoring model. A speaker model is a
statistical model that represents speaker-dependent information, and can be used
to predict new data. Generally, any modeling techniques can be used, but the
most popular techniques are: clustering, hidden Markov model, artificial neural
network and Gaussian mixture model.

A speaker verification system has an extra impostor model which stands for
non-speaker probability. An impostor model can apply any technique in speaker
models, but there are two main approaches for impostor modeling [55]. The
first approach is to use a cohort, also known as a likelihood set, a background
set, which is a set of background speaker models. The impostor likelihood is
computed as a function of all match scores of background speakers. The second
approach uses a single model trained on a large amount of speakers to represent
general speech patterns. It is known as general, world or universal background
model.

1.3 Thesis Outline

This thesis is organized into 6 chapters, of which contents are described as follows:

Chapter 1 The current chapter provides general information about our research
interest, speaker identification, and its related problems.

Chapter 2 This chapter revises the theory of speech signal processing that be-
comes the foundation of extracting speech features. Important topics are
frequency analysis, short-term processing and cepstrum.

Chapter 3 This chapter presents common techniques in speaker identification,
including the baseline system Gaussian mixture models and the state-of-
the-art technique i-vector.

Chapter 4 In this chapter, the method that inspires this project, deep neural
networks, is inspected closely.

Chapter 5 This chapter presents the data that are used to evaluate our ap-
proach and details about our experimental systems. Experiment results are
compared with reference systems and analyzed.

Chapter 6 This chapter serves as a summary of our work and presents some
future directions.

6

Chapter 2

Speech Signal Processing

In this chapter, we characterize speech as a signal. All speech processing tech-
niques are based on signal processing; therefore, we revise the most fundamental
definition in signal processing such as signals and systems, signal representation
and frequency analysis. After that, short-term analysis is introduced as an ef-
fective set of techniques to analyze speech signals despite our limited knowledge
about them. Finally, the history and idea of cepstrum is discussed briefly.

2.1 Speech Signals and Systems

In signal processing, a signal is an observed measurement of some phenomenon
[4]. The velocity of a car or the price of a stock are both examples of signals in
different domains. Normally, a signal is modeled as a function of some indepen-
dent variable. Usually, this variable is time, and we can denote that signal as
f(t). However, a signal does not need to be a function of a single variable. For
instance, an image is a signal f(x, y) which denotes the color at point (x, y).

2.1.1 Analog and digital signals

If the range and the domain of a signal are continuous (i.e. the independent
variables and the value of the signal can take arbitrary values), it is an analog
signal. Although analog signals have the advantage of being analyzed by calculus
methods, they are hard to be stored on computers where most signal processing
takes place today. In fact, they need to be converted into digital signals, of which
domains and ranges are discrete.

2.1.2 Sampling and quantization

The machine which digitizes an analog signal is called an analog-to-digital (A/D)
or continuous-to-discrete (C/D) converter. First, we have to measure the signal’s
value at specific points of interest. This process is known as sampling. Let xa(t)
be an analog signal as a function of time t. If we sample xa with a sampling period
T , the output digital of this process is x[n] = xa(nT). The sampling frequency Fs
is defined as the inverse of the sampling period, Fs = 1/T , and its unit is hertz
(Hz). Figure 2.1 shows some sampling processes of a sinusoidal signal. From this

7

Figure 2.1: Sampling a sinusoidal signal at different sampling rates; f - signal
frequency, fs - sampling frequency (adapted from [4])

point, analog or continuous-time signals will use parentheses such as x(t), while
digital or discrete-time signals will be represented by square brackets such as x[n].

After sampling, acquired values of the signal must be converted into some
discrete set of values. This process is called quantization. In audio signals, the
quantization level is normally given as the number of bits needed to represent the
range of the signal. For example, values of a 16-bit signal may range from -32768
to 32767. Figure 2.2 illustrates an analog signal which is quantized at different
levels.

The processes of sampling and quantization cause losses in information of a
signal, thus they introduce noise and errors to the output. While the sampling
frequency needs to be fast enough in order to effectively reconstruct the original
signal, in case of quantization, the main problem is a trade-off between the output
signal quality and its size.

2.1.3 Digital systems

In general, a system is some structure that receives information from signals and
performs some tasks. A digital system is defined as a transformation of an input
signal into an output signal:

y[n] = T{x[n]} (2.1)

8

Figure 2.2: Quantized versions of an analog signal at different levels (adapted
from [10])

2.2 Signal Representation: Time Domain and

Frequency Domain

Speech sounds are produced by vibrations of vocal cords. The output of this
process is sound pressure, which is changes in air pressure caused by sound wave.
The measurement of sound pressure is called amplitude. A speech waveform is
a representation of sound in the time domain. It displays changes of amplitude
through time. Figure 2.3a is the plot of a speech waveform. The waveform shape
tells us in an intuitive way about the periodicity of the speech signal, i.e. its
repetition over a time period (figure 2.4). Formally, an analog signal xa(t) is
periodic with period T if and only if:

xa(t+ T) = xa(t) ∀t (2.2)

Similary, a digital signal x[n] is periodic with period N if and only if:

x[n+N] = x[n] ∀n (2.3)

In contrast, a signal that does not satisfy 2.2 (if it is analog) or 2.3 (if it is digital)
is nonperiodic or aperiodic.

The frequency domain is another point of view to look at a signal besides the
time domain. A very famous example of the frequency domain is the experiment
of directing white light through a prism. Newton showed in his experiment [68]
that a prism could break white light up into a band of colors, or spectrum, and

9

0 10 20 30 40 50 60 70 80
Time (ms)

−0.5

0.0

0.5

1.0

A
m

p
lit

u
d
e

0 200 400 600 800 1000 1200 1400
Frequency (Hz)

0
50

100
150
200
250
300
350
400
450

A
m

p
lit

u
d
e

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time (s)

0
1000
2000
3000
4000
5000
6000
7000
8000

Fr
e
q
u
e
n
cy

 (
H

z)

Figure 2.3: An adult male voice saying [a:] sampled at 44100 Hz: (a) waveform
(b) spectrum limited to 1400 Hz (c) spectrogram limited from 0 Hz to 8000 Hz

Figure 2.4: Periodic and aperiodic speech signals (adapted from [43]). The wave-
form of voiceless fricative [h] is aperiodic while the waveforms of three vowels are
periodic.

10

Figure 2.5: Illustration of the Helmholtz’s experiment (adapted from [24])

furthermore, these color rays could be reconstituted into white light using the
second prism. Therefore, white light can be analyzed into color components. We
also know that each primary color corresponds to a range of frequencies. Hence,
decomposing white light into colors is a form of frequency analysis.

In digital processing, the sine wave or sinusoid is a very important type of
signal:

xa(t) = A cos(ωt+ φ) −∞ < t <∞ (2.4)

where A is the amplitude of the signal, ω is the angular frequency in radians per
second, and φ is the phase in radians. The frequency f of the signal in hertzs is
related to the angular frequency by:

ω = 2πf (2.5)

Clearly, the sinusoid is periodic with period T = 1/f from equation 2.2. Its
digital version has the form:

x[n] = A cos(ωn+ φ) −∞ < n <∞ (2.6)

However, from equation 2.3, x[n] is periodic with periodN if and only if ω = 2π/N
or its frequency f = ω/2π is a rational number. Therefore, the digital signal in
equation 2.6 is not periodic for all values of ω.

A sinusoid with a specific frequency in speech processing is known as a pure
tone. In the 19th century, Helmholtz discovered the connection between pitches
and frequencies using a tuning fork and a pen attached to one of its tines [67]
(figure 2.5). While the tuning fork was vibrating as a specific pitch, the pen was
drawing the waveform across a piece of paper. It turned out that each pure tone
is related to a frequency.

Hence, frequency analysis of a speech signal can be seen as decomposing it
as sums of sinusoids. An example of speech signal decomposition is illustrated
in figure 2.6. The process of changing a signal from time domain to frequency
domain is called frequency transformation.

A spectrum is a representation of sound in frequency domain as it plots the
amplitude at each corresponding frequency (see figure 2.3b). On the other hand,
a spectrogram (see figure 2.3c) is a three dimension representation of spectral
information. As usual, the horizontal axis displays time and the vertical axis
displays frequencies. The shade at each time-frequency point represents the am-
plitude level. The higher the amplitude, the darker (or hotter if using colors) the
shade. Spectrograms are effective visual cues to study the acoustics of speech.

11

−1

0

1

0.0 0.5 1.0 1.5 2.0

−1.0

−0.5

0.0

0.5

1.0

0.0 0.5 1.0 1.5 2.0

−1.0

−0.5

0.0

0.5

1.0

0.0 0.5 1.0 1.5 2.0

Figure 2.6: Decomposing a speech signal into sinusoids

Time domain
properties

Periodic Aperiodic

Continuous
Fourier Series

(FS)
Fourier Transform

(FT)
Aperiodic

Discrete
Discrete Fourier

Transform
(DFT)

Discrete-Time
Fourier Transform

(DTFT)
Periodic

Discrete Continuous
Frequency domain

properties

Table 2.1: Summary of Fourier analysis techniques (reproduced from [10])

2.3 Frequency Analysis

Fourier analysis techniques are mathematical tools which are usually used to
transform a signal into the frequency domain. Which type of those techniques is
chosen depends on whether a signal is analog or digital, and its periodicity. In
summary, four types of Fourier analysis techniques are summarized in table 2.1.
Each technique consists of a pair of transformations.

The Fourier Series (FS) of a continuous periodic signal x(t) with period T is
defined as:

ck =
1

T

∫

T

x(t)e−j2πkt/Tdt (2.7)

x(t) =
∞∑

k=−∞

cke
j2πkt/T (2.8)

12

The Fourier Transform (FT) of a continuous aperiodic signal x(t) is defined
as:

X(ω) =

∫ ∞

−∞
x(t)e−jωtdt (2.9)

x(t) =

∫ ∞

−∞
X(ω)ejωtdω (2.10)

The Discrete Fourier Transform (DFT) of a discrete periodic signal x[n] with
period N is defined as:

ck =
1

N

N−1∑

n=0

x[n]e−j2πkn/N (2.11)

x[n] =
N−1∑

k=0

cke
j2πkn/N (2.12)

The Discrete-Time Fourier Transform (DTFT) of a discrete aperiodic signal
x[n] is defined as:

X(ω) =
∞∑

n=−∞

x[n]e−jωn (2.13)

x[n] =
1

2π

∫

2π

X(ω)ejωndω (2.14)

2.4 Short-Term Processing of Speech

Speech signals are non-stationary, which means their statistical parameters (in-
tensity, variance, ...) change over time [4]. They may be periodic in a small
interval, but no longer have that characteristic when longer segments are consid-
ered. Therefore, we cannot analyze them using Fourier transformations since it
requires the knowledge of signals for infinite time. This problem led to a set of
techniques called short-time analysis. Their ideas are splitting a signal into short
segments or frames, assuming that the signal is stationary and periodic in one
segment and analyzing each frame separately. The essence of those techniques is
that each region needs to be short enough in order to satisfy the assumption, in
practice, 10 to 20 ms. The spectrogram as discussed in section 2.2 is an example
of short-time analysis. DTFT (section 2.3) is applied in each frame resulting a
representation of spectra over time.

Given a speech signal x[n], the short-time signal xm[n] of frame m is defined
as:

xm[n] = x[n]wm[n] (2.15)

with wm[n] is a window function that is zero outside a specific region. In general,
we want wm[n] to be the same for all frames. Therefore, we can simplify it as:

wm[n] = w[m− n] (2.16)

w[n] =

{
ŵ[n] |n| ≤ N

2

0 |n| > N
2

(2.17)

where N is the length of the window.

13

x[m] w[m]ejωm

e−jωm

X(m,ω)

Figure 2.7: Block diagram of filter bank view of short-time DTFT

2.4.1 Short-time Fourier analysis

Considering Fourier analysis, given signal x[n], from 2.13 the DTFT of frame
xm[n] is:

X(m,ω) = Xm(ω) =
∞∑

n=−∞

xm[n]e−jωn

=
∞∑

n=−∞

x[n]w[m− n]e−jωn
(2.18)

Equation 2.18 is short-time DTFT of signal x[n]. It can be interpreted in two
ways [52]:

• Fourier transform view: Short-time DTFT is considered as a set of DTFT
at each time segment m, or

• Filter bank view: We rewrite 2.18 using a convolution1 operator as:

X(m,ω) = e−jωm(x[m] ∗ w[m]ejωm) (2.19)

Equation 2.19 is equivalent to passing x[m] through a bank of bandpass
filters centered around each frequency ω (figure 2.7).

2.4.2 Spectrograms

The magnitude of a spectrogram is computed as:

S(ω, t) =
∣∣X(ω, t)2

∣∣ (2.20)

There are two kinds of spectrograms: narrow-band and wide-band (figure 2.8).
Wide-band spectrograms use a short window length (< 10 ms) which leads to
filters with wide bandwidth (> 200 Hz). In contrast, narrow-band spectrograms
use longer window (> 20 ms) which corresponds to narrow bandwidth (< 100
Hz). The difference in window duration between two types of spectrograms re-
sults in time and frequency representation: while wide-band spectrograms give a
good view of time resolution such as pitches, they are less useful with harmonics
(i.e. component frequencies). Narrow-band spectrograms have a better resolu-
tion with frequencies but smear periodic changes over time. In general, wide-band
spectrograms are more preferred in phonetic study.

1The convolution of f and g is defined as:

f [n] ∗ g[n] =

∞∑

k=−∞
f [k]g[n− k]

14

Time (s)
0 1.896

-0.05179

0.08456

0

Time (s)
0 1.896

0

5000

Fr
eq

ue
nc

y
(H

z)

Time (s)
0 1.896

0

5000

Fr
eq

ue
nc

y
(H

z)

Figure 2.8: Two types of spectrograms: (a) original sound wave (b) wide-band
spectrogram using 5 ms Hanning windows (c) narrow-band spectrogram using 23
ms Hanning windows

15

Spectral domain Cepstral domain
Frequency Quefrency
Spectrum Cepstrum
Phase Saphe
Amplitude Gamnitude
Filter Lifter
Harmonic Rahmonic
Period Repiod

Table 2.2: Corresponding terminology in spectral and cepstral domain (repro-
duced from [4])

φv w
· ·

φ′ln v eyv w
· + + ·x y

Figure 2.9: A homomorphic system with multiplication as input and output
operation with two equivalent representations (adapted from [48])

2.5 Cepstral Analysis

The term cepstrum was first defined by Bogert et al. [8] as the inverse Fourier
transform of the log magnitude spectrum of a signal. The transformation was
used to separate a signal with simple echo into two components: a function of the
original signal and a periodic function of which frequency is the echo delay. The
independent variable of the transformation was not frequency, it was time but
not the original time domain. Thus, Bogert et al. referred this new domain as
quefrency domain, and the result of this process was called cepstrum. Both terms
are anagrams of analog terms in spectral domain (frequency and spectrum) by
flipping the first four letters. The authors also invented other terms in quefrency
domain using the same scheme (table 2.2), however only some of them are used
today.

In an independent work, Oppenheim was doing his PhD thesis on non-linear
signal processing as the concept of homomorphic system [48]. In a homomorphic
system, first the vector space of input operation was mapped on a vector space
under addition, where we could apply linear transformation. Then, the intermedi-
ate vector space was mapped on a vector space of output operation. An example
of a homomorphic transformation is illustrated in figure 2.9. The application of
such systems in signal processing is known as homomorphic filtering.

Consider a homomorphic filtering with convolution as input operation. The
first component of the system is responsible to map a convolution operation into
an addition operation, or deconvolution:

D(s1[t] ∗ s2[t]) = D(s1[t]) +D(s2[t]) (2.21)

Intuitively, this transformation can be done by cascading Fourier transforms,

16

logarithms and inverse Fourier transforms as the definition of cepstrum.
The definition of the complex cepstrum of a discrete signal is:

x̂[n] =
1

2π

∫

2π

X̂(ω)ejωndω (2.22)

where X(ω) is the DTFT of x[n] and:

X̂(ω) = log[X(ω)] = log(|X(ω)|) + j arctan(X(ω)) (2.23)

Similarly, the real cepstrum is defined as:

x̂[n] =
1

2π

∫

2π

log(|X(ω)|)ejωndω (2.24)

17

Chapter 3

Approaches in Speaker
Identification

After a careful review of speech processing theory in chapter 2, this chapter
discusses contemporary methods and techniques used in speaker identification.
The chapter is divided into three parts. The first part is dedicated to feature
extraction or the front-end of a speaker identification system, which is firmly
based on the theory introduced in chapter 2. Methods to model speakers or the
back-end are described in the second part. Finally, the state-of-the-art technique
in speaker identification, i-vector, is introduced.

3.1 Speaker Feature Extraction

The short-time analysis ideas discussed in section 2.4 and cepstral analysis tech-
niques in section 2.5 have provided a powerful framework for modern speech
analysis. In fact, the short-time cepstrum is the most frequently used analysis
technique in speech recognition and speaker recognition. In practice, spectrum
and cepstrum are computed by DFT as a sampled version of DTFT [53]:

X[k] = X(2πk/N) (3.1)

The complex cepstrum is approximately computed using the following equations:

X[k] =
N−1∑

n=0

x[n]e−j2πkn/N (3.2)

X̂[k] = log(|X[k]|) + j arctan(X[k]) (3.3)

x̂[n] =
1

N

N−1∑

k=0

X̂[k]ej2πkn/N (3.4)

Finally, the short-time spectrum and cepstrum are calculated by replacing a signal
with its finite windowed segments xm[n].

3.1.1 Mel-frequency cepstral coefficients

First introduced in 1980 [12], Mel-Frequency Cepstral Coeffcients (MFCCs) are
one of the best known parameterizations in speech recognition. MFCCs are dif-
ferent from the conventional cepstrum as they use a non-linear frequency scale

18

0 2,000 4,000 6,000 8,000 10,000
0

1,000

2,000

3,000

Frequency (Hz)

F
re
q
u
en
cy

(m
el
)

Figure 3.1: Relationship between the frequency scale and mel scale

based on auditory perception. MFCCs are based on mel scale. A mel is a unit
of ”measure of perceived pitch or frequency of a tone” [14]. In 1940, Stevens and
Volkman [63] assigned 1000 mels as 1000 Hz, and asked participants to change the
frequency until they perceived the pitch changed some proportions in comparison
with the referential tone. The threshold frequencies were marked, resulting a
mapping between real frequency scale (in Hz) and perceived frequency scale (in
mel). A popular formula to convert from frequency scale to mel scale is:

fmel = 1127 ln

(
1 +

fHz
700

)
(3.5)

where fmel is the frequency in mels and fHz is the normal frequency in Hz. This
relationship is plotted in figure 3.1.

MFCCs are often computed using a filter bank of M filters (m = 0, 1, ...,M −
1), each one has a triangular shape and is spaced uniformly on the mel scale
(figure 3.2). Each filter is defined by:

Hm[k] =





0 k < f [m− 1]
k−f [m−1]

f [m]−f [m−1] f [m− 1] < k ≤ f [m]
f [m+1]−k

f [m+1]−f [m]
f [m] ≤ k < f [m+ 1]

0 k ≥ f [m+ 1]

(3.6)

Given the DFT of the input signal in equation 3.2 with N as the sampling size
of DFT, let us define fmin and fmax the lowest and highest frequencies of the
filter bank in Hz and Fs the sampling frequency. M + 2 boundary points f [m]
(m = −1, 0, ...,M) are uniformly spaced between fmin and fmax on mel scale:

f [m] =
N

Fs
B−1

(
B(fmin) +m

B(fmax)−B(fmin)

M + 1

)
(3.7)

where B is the conversion from frequency scale to mel scale given in equation 3.5
and B−1 is its inversion:

fHz = 700

(
exp

(
fmel
1125

)
− 1

)
(3.8)

19

Figure 3.2: A filter bank of 10 filters used in MFCC

The log-energy mel spectrum is calculated as:

S[m] = ln

[
N−1∑

k=0

|X[k]|2Hm[k]

]
m = 0, 1, ...,M − 1 (3.9)

with X[k] is the output of DFT in equation 3.2.
Although traditional cepstrum uses inverse discrete Fourier transform (IDFT)

as in equation 3.4, mel frequency cepstrum is normally implemented using discrete
cosine transform II (DCT-II) since S[m] is even [31]:

x̂[n] =
M−1∑

m=0

S[m] cos

[(
m+

1

2

)
πn

M

]
n = 0, 1, ...,M − 1 (3.10)

Typically, the number of filters M ranges from 20 to 40, and the number of
kept coefficients is 13. Some research reported that the performance of speech
recognition and speaker identification systems reached peak with 32-35 filters
[65, 18]. Many speech recognition systems remove the zeroth coefficient from
MFCCs because it is the average power of the signal [4].

3.1.2 Linear-frequency cepstral coefficients

Linear-Frequency Cepstral Coefficients (LFCCs) are very similar to MFCCs ex-
cept that their frequency is not warped by a non-linear frequency scale, but a
linear one (figure 3.3). The boundary points of the LFCC filter bank are spaced
uniformly in frequency domain, between fmin and fmax:

f [m] = fmin +m
fmax − fmin
M + 1

(3.11)

Although MFCCs are more popular as features in speaker recognition, their
high frequency range has poor resolution due to the characteristic of mel scale.
Some works have proven the effect of frequency resolution on speaker recognition,
for instance, Zhou et al. suggested that LFCCs performed better than MFCCs
in female trials [70], or Lei and Gonzalo concluded that LFCCs had significant
improvement in nasal and non-nasal consonant regions [40]

20

Figure 3.3: A filter bank of 10 filters used in LFCC

3.1.3 Linear predictive coding and linear predictive cep-
stral coefficients

The basic idea of linear predictive coding (linear predictive analysis) is that we
can predict a speech sample by a linear combination of its previous samples [31].
A linear predictor of order p is defined as a system of which the output is:

x̃[n] =

p∑

k=1

αkx[n− k] (3.12)

α1, α2, ..., αp are called prediction coefficients, or linear prediction coefficients
(LPCs). The prediction coefficients are determined by minimizing the sum of
squared differences between the original signal and the predicted one. The pre-
diction error is:

e[n] = x[n]− x̃[n] = x[n]−
p∑

k=1

αkx[n− k] (3.13)

The linear predictive cepstral coefficients (LPCCs) can be computed directly
from LPCs using a recursive formula [31]:

σ2 =
∑

n

e2[n] (3.14)

ĉ[n] =





0 n < 0

lnσ n = 0

αn +
∑n−1

k=1

(
k
n

)
ĉ[k]an−k 0 < n ≤ p∑n−1

k=n−p
(
k
n

)
ĉ[k]an−k n > p

(3.15)

Linear predictive coding is a powerful technique, and is widely used in speech
quantization. In speaker recognition, many studies have been conducted on the
effectiveness of linear prediction methods. Dhonde and Jagade concluded that
LPCs were good as features for speech recognition but not for speaker recognition
[16], while according to Atal’s study, LPCCs yielded the best accuracy in speaker
identification among linear predictor derived parameter representations [3]. Be-
sides MFCCs, LPCCs are one of the most commonly used features in speaker
recognition.

21

3.2 Speaker Modeling Techniques

Given a set of feature vectors, we wish to build a model for each speaker so that
a vector from the same speaker has higher probability belonging to that model
than any other models. In general, any learning method can be used, but in
this section we focus on the most basic approaches in text-independent speaker
identification.

3.2.1 k-nearest neighbors

k-Nearest Neighbors (kNN) is a simple, nonparametric learning algorithm used
in classification. Each training sample is represented as a vector with a label, and
an unknown sample is normally classified into one or more groups according to
the labels of the k closest vectors, or its neighbors. An early work using kNN in
speaker identification used the following distance [26]:

d(U,R) =
1

|U |
∑

ui∈U

min
rj∈R
|ui − rj|2 +

1

|R|
∑

rj∈R

min
ui∈U
|ui − rj|2

− 1

|U |
∑

ui∈U

min
uj∈U,j 6=i

|ui − uj|2 −
1

|R|
∑

ri∈R

min
rj∈R,j 6=i

|ri − rj|2 (3.16)

Despite its straightforward approach, classification using kNN is costly and
ineffective due to these reasons [34]: (1) it has to store all training samples, thus
a large storage is required; (2) all computations are performed in the testing
phase; and (3) the case that two groups tie when making decision needs to be
further investigated (because the system should classify a sample into only one
class). Therefore, in order to apply this method effectively, one has to speed up
the conventional approach, for example, using dimension reduction [34], or use
kNN as a coarse classifier in combination with other methods [69].

3.2.2 Vector quantization and clustering algorithms

The idea of vector quantization (VQ) is to compress a set of data into a small
set of representatives, which reduces the space to store data, but still maintains
sufficient information. Therefore, VQ is widely applied in signal quantization,
transmitting and speech recognition.

Given a k-dimension vector a = (a1, a2, ..., ak)
T ∈ Rk, after VQ, a is assigned

to a vector space Sj:
q(a) = Sj (3.17)

with q(·) is the quantization operator. The whole vector space is S = S1 ∪ S2 ∪
... ∪ SM , each partition Sj forms a non-overlapping region, and is characterized
by its centroid vector zj. Set Z = {z1, z2, ..., zM} is called a codebook and zj is
the j-th codeword. M is the size or the number of levels of the codebook. The
error between a vector and a codeword d(x, z) is called distortion error. A vector
is always assigned to the region with the smallest distortion:

q(a) = Sj ⇐⇒ j = argmin1≤j≤M d(a, zj) (3.18)

22

Figure 3.4: A codebook in 2 dimensions. Input vectors are marked with x sym-
bols, codewords are marked with circles (adapted from [51]).

A set of vectors {x1, x2, ..., xN} is quantized to a codebook Z = {z1, z2, ..., zM}
so that the average distortion:

D =
1

N

N∑

i=1

min
1≤j≤M

d(xi, zj) (3.19)

is minimized over all input vectors. Figure 3.4 illustrates a codebook in 2 dimen-
sional space. K-means and LBG (Linde-Buzo-Gray) are two popular techniques
to design codebooks in VQ.

The K-means algorithm is described as follows [31]:

Step 1 Initialization. Generate M codewords using some random logic or as-
sumptions about clusters.

Step 2 Nearest-neighbor classification. Classify each input vector xi into region
Sj according to equation 3.18.

Step 3 Codebook updating. Re-calculate a centroid using all vectors in that
region:

ẑj =
1

Nj

∑

x∈Sj

x (3.20)

Nj is the number of vectors in region Sj.

Step 4 Iteration. Repeat step 2 and 3 until the difference between the new
distortion and the previous one is below a pre-defined threshold.

The LBG algorithm is a wrapper algorithm around unsupervised clustering
techniques proposed in 1980 [41]. It is a hierarchical clustering algorithm, which
first starts with a 1-level codebook, then uses a splitting method to obtain a 2-
level codebook, and continues until a M -level codebook is acquired. The formal
procedure of LBG is described as follows [31]:

23

Step 1 Initialization. Set M = 1. Find the centroid of all data according to
equation 3.20.

Step 2 Splitting. Split M codeword into 2M codewords by splitting each vector
zj into two close vectors:

z+j = zj + ε

z−j = zj − ε

Set M = 2M .

Step 3 Clustering. Using a clustering algorithm (e.g., K-means) to reach the
best centroids for the new codebook.

Step 4 Termination. If M is the desired codebook size, stop. Otherwise, go to
step 2.

In speaker identification, after preprocessing, all speech vectors of a speaker
are used to build a M -level codebook of that speaker, resulting in L codebooks
of L different speakers [41]. The average distortion with respect to codebook (or
speaker) l of a test set {x1, x2, ..., xN} corresponding to an unknown speaker is:

Dl =
1

N

N∑

i=1

min
1≤j≤M

d(xi, z
l
j) (3.21)

N average distortions are then compared, and the speaker’s ID is decided by the
minimum distortion:

l∗ = argmin1≤l≤LD
l (3.22)

3.2.3 Hidden Markov model

In speech and speaker recognition, we always have to deal with a sequence of
objects. Those sequences may be words, phonemes, or feature vectors. In those
cases, not only the order of the sequence is important, but also its content. Hid-
den Markov models (HMMs) are powerful statistical techniques to characterize
observed data of a time series.

A HMM is characterized by:

• N : the number of states in the model, the set of states S = {s1, s2, ..., sN}.

• A = {aij}: the transition probability matrix, where aij is the probability of
taking a transition from state si to state sj:

aij = P (qt+1 = sj | qt = si)

where Q = {q1q2...qL} is the (unknown) sequence of states corresponding
to the time series.

• B = bj(k): the observation probabilities, where bj(k) is the probability of
emitting symbol ok at state j. Let X = {X1X2...XL} be a sequence, bj(k)
can be defined as:

bj(k) = P (Xt = ok | qt = sj)

24

• π = {πi}: the initial state distribution where:

πi = P (q1 = si)

For convenience, we use the compact notation λ = (A,B, π) as a parameter set
of a HMM.

The observation probabilities B can be discrete or continuous. In case it
is continuous, bj(k) can be assumed to follow any continuous distribution, for
instance, Gaussian distribution bj(k) ∼ N (ok;µj,Σj), or a mixture of Gaussian
components:

bj(k) =
M∑

m=1

cjmbjm(k) (3.23)

bjm(k) ∼ N (ok;µjm,Σjm) (3.24)

where M is the number of Gaussian mixtures, µjm,Σjm are the mean and covari-
ance matrix of the m-th mixture, and cjm is the weight coefficient of the m-th
mixture. cjm satisfies:

M∑

m=1

cjm = 1 1 ≤ j ≤ N (3.25)

The probability density of each mixture component is:

bjm(k) =
1√

(2π)R |Σjm|
exp

[
−1

2
(ok − µjm)TΣ−1jm(ok − µjm)

]
(3.26)

where R is the dimensionality of the observation space.
There are 3 basic problems with regards to HMMs:

• Evaluation problem: Given a HMM λ = (A,B, π) and an observation se-
quence O = {o1o2...oL}, find the probability that λ generates this sequence
P (O | λ). This problem can be solved by the forward algorithm [2, 15.5].

• Optimal state sequence problem: Given a HMM λ = (A,B, π) and an
observation sequence O = {o1o2...oL}, find the most likely state sequence
Q = {q1q2...qL} that generates this sequence, namely find Q∗ that maxi-
mizes P (Q | O, λ). This problem can be solved by the Viterbi algorithm [2,
15.6].

• Estimate problem: Given a training set of observation sequences X = {Ok},
we want to learn the model parameters λ∗ that maximize the probability of
generating X , P (X | λ). This problem is also known as the training process
of HMMs, and is usually implemented using the Baum-Welch algorithm [2,
15.7].

HMMs provide an effective framework to model time sequences, hence they
have become popular in speech technology. After their success in speech recog-
nition, this technique was adapted as a text-dependent speaker identification
framework. Feature vectors can be used directly with continuous HMMs [50, 64]
or in combination with VQ (see section 3.2.2) [46, 1]. A HMM-based speaker

25

Figure 3.5: A left-to-right HMM model used in speaker identification (adapted
from [1]).

identification system builds a HMM for each speaker, and the model that yields
the highest probability for a testing sequence gives the final identification.

If using VQ, first a codebook corresponding with each speaker is generated.
By using codebooks, the domain of observation probabilities becomes discrete,
and the system can use discrete HMMs. However, in some cases, a codebook of a
different speaker may be the nearest codebook to the testing sequence, thus the
recognition is poor [46]. Continuous HMMs are able to solve this problem, and
Matsui and Furui showed that continuous HMMs had much better results than
discrete HMMs.

In speaker identification, the most common types of HMM structure are ergod-
ic HMMs (i.e., HMMs that have full connection between states) and left-to-right
HMMs (i.e., HMMs only allow transitions in the same direction, or transitions to
the same state). A left-to-right HMM is illustrated in figure 3.5).

3.2.4 Gaussian mixture model: The baseline

Gaussian mixture models (GMMs) are generative approaches in speaker identi-
fication that provide a probabilistic model of a speaker’s voice. However, unlike
the HMM approach in section 3.2.3, it does not involve any Markov process.
GMMs are one of the most effective techniques in speaker recognition, and are
also considered the baseline model in this field.

A Gaussian mixture distribution is a weighted sum of M component densities:

p(~x | λ) =
M∑

i=1

pibi(~x) (3.27)

where ~x is a D-dimensional vector, bi(x) is the i-th component density, and pi is
the weight of the i-th component. The mixture weights satisfy:

M∑

i=1

pi = 1

26

Each mixture component is a D-variate Gaussian density function:

bi(~x) =
1√

(2π)D/2 |Σi|1/2
exp

[
−1

2
(~x− ~µi)TΣ−1i (~x− ~µi)

]
(3.28)

µi is the mean vector, and Σi is the covariance matrix.
A GMM is characterized by the mean vector, covariance matrix and weight

from all components. Thus, we represent it by a compact notation:

λ = (pi, ~µi,Σi) i = 1, 2, ...,M (3.29)

In speaker identification, each speaker is characterized by a GMM with its
parameters λ. There are many different choices of covariance matrices [56], for
example, the model may use one covariance matrix per component, one covariance
matrix for all components or one covariance matrix for components in a speaker
model. The shape of covariance matrices can be full or diagonal.

Given a set of training samples X, probably, the most popular method to
train a GMM is maximum likelihood (ML) estimation. The likelihood of a GMM
is:

p(X | λ) =
T∏

t=1

p(~xt | λ) (3.30)

ML parameters are normally estimated using the expectation maximization (EM)
algorithm [56].

Among a set of speakers characterized by parameters λ1, λ2, ..., λn, a GMM
system makes its prediction by returning the speaker that maximizes the a pos-
teriori probability given an utterance X:

ŝ = argmax1≤k≤n P (X | λk) =
P (X | λk)P (λk)

P (X)
(3.31)

If prior probabilities of all speakers are equal, e.g. P (λk) = 1/n ∀k, since P (X)
is the same for all speakers and logarithm is monotonic, we can rewrite equation
3.31 as:

ŝ = argmax1≤k≤n logP (X | λk) (3.32)

= argmax1≤k≤n

T∑

t=1

log p(~xt | λk) (3.33)

Despite of their power, GMMs still face some disadvantages [66]. Firstly,
GMMs have a large number of parameters to train. This fact not only leads to
expensive computation, but also requires a sufficient amount of training data.
Therefore, the performance of a GMM is unreliable if it is trained on a small
dataset. Secondly, as a generative model, GMMs do not work well with unseen
data, which easily yield low likelihood scores. Fortunately, these two problems
can be overcome by speaker adaptation. The main idea of speaker adaptation
is building speaker-dependent systems by adapting (i.e. modifying) a speaker-
independent system constructed using all speaker data. A GMM trained on all
speaker identities is the universal background model (UBM), of which concept
was discussed in section 1.2. The GMM-UBM is then modified into a speaker’s
model using maximum a posteriori (MAP) adaptation [57].

27

GMM UBM
MAP

Adaptation

Feature
Extraction

Utterance

m =




m1

m2

...
mK




GMM Supervector

Figure 3.6: Computing GMM supervector of an utterance

3.3 I-Vector: The State-of-the-Art

Given an adapted GMM, by stacking all means of its components, we have a
vector called GMM supervector. Thus, we can easily obtain a GMM supervector
of a speaker through speaker adaptation, as well as a GMM supervector of an
arbitrary utterance by adapting a single utterance only. The process of calculating
a GMM supervector of an utterance is illustrated in figure 3.6.

In Joint Factor Analysis (JFA) [35], the supervector of a speaker is decomposed
into the form:

s = m+ V y +Dz (3.34)

where m is the speaker-and-channel independent supervector, which is normally
generated from the UBM. V and D are factor loading matrices, y and z are
common speaker factors and special speaker factors respectively which follow a
standard normal density. V represents the speaker subspace, while Dz serves as
a residual. The supervector of an utterance is assumed to be synthesized from s:

M = s+ Ux (3.35)

where U is a factor loading matrix that defines a channel subspace, x are common
channel factors having standard normal distributions. In summary:

M = m+ Ux+ V y +Dz (3.36)

In [13], based on an experiment showing that JFA channel factors also con-
tained speaker information, a new single subspace was defined to model both
channel and speaker variabilities. The new space was referred as total variability
space, and the new speaker-and-channel dependent supervector was defined as:

M = m+ Tw (3.37)

T is a low rank rectangular matrix, and w is a random vector with standard
normal distribution. The new type of vectors were referred as identity vectors
or i-vectors. Extracted i-vectors can be used as features for other classification
back-end such as support vector machines, or to be used directly using cosine
kernel scoring:

score(wtarget, wtest) =
〈wtarget, wtest〉
‖wtarget‖‖wtest‖

(3.38)

28

The i-vector technique is considered to be an effective way to reduce from high di-
mensional input data to low dimensional feature vectors. Today, i-vector systems
have become the state-of-the-art in speaker recognition [33, 45].

29

Chapter 4

Deep Neural Networks

It has been more than 70 years since Warren McCulloch and Walter Pitts mod-
eled the first artificial neural network (ANN) that mimicked the way brains work.
These day, ANNs have become one of the most powerful tools in machine learning,
and their effectiveness have been tested empirically in many real world applica-
tions. In combination with the deep learning paradigm, ANNs have achieved
state-of-the-art results in plenty of areas, especially in natural language process-
ing and speech technology (see [60] for more details).

This chapter serves as reference for ideas and techniques we use directly in
our speaker identification systems. First, an overview of ANNs and deep learning
is presented, then we review some available applications of ANNs in speaker
identification.

4.1 Artifical Neural Networks at a Glance

The concept of ANNs was inspired by the biological nature of the human brain.
The brain consists of interconnected cells called neurons, which transmit infor-
mation to each other using electrical and chemical signals. The lines that connect
neurons together are called axons. If the sum of signals at one neuron is sufficient
to activate itself, the neuron will transmit this signal along axons to other neu-
rons attached at the other end of axons. In fact, the brain contains about 1011

neurons, each connects on average to 10,000 others. The fastest switching time
of nerons is 10−3 seconds, which is much slower than that of a computer: 10−10

seconds [47]. However, in reality, humans are able to make complex decisions
such as face detection or speech recognition in surprisingly effective ways.

ANN models are based closely on the biological neural system. In ANNs, the
basic processing unit is a perceptron (figure 4.1). The inputs of a perceptron may
come from the environment, or from other perceptrons’ outputs. Each input is
associated with a weight ; therefore, a perceptron combines its input as a weighted
sum plus a bias. The strength of aggregation is then modified by an activation
function, yielding the final output of the perceptron. Let x be the input vector,
w be the corresponding weight vector, b be the bias and ϕ be the activation
function. The output of a perceptron is formulated as:

y = ϕ(w · x+ b) (4.1)

Common activation functions are sigmoid, tanh and rectified linear (ReL).

30

...

x1

x2

x3

x3

+1

y

w1

w2

w3

wn

ϕ(·)

b

Figure 4.1: A perceptron

Sigmoid

σ(x) =
1

1 + e−x
(4.2)

Tanh

tanh(x) =
ex − e−x
ex + e−x

(4.3)

ReL
f(x) = max(0, x) (4.4)

The visual representation of a perceptron is a hyperplane in n-dimensional
space, since its ouput is a linear combination of inputs. Thus, a single perceptron
is not very interesting. Now let us organize perceptrons into a layer, and cascade
these layers into a network. We shall give one more restriction, that is connections
between layers follow only one direction. The type of ANNs that we have just
defined is called a feedforward neural network (FNN), or multilayer perceptron
(MLP). The layer that receives connections from inputs is the input layer, the
outermost layer is the output layer, and the rest of the layers between the input
and output layers are called hidden layers. Figure 4.2 illustrates a MLP with
three layers. The computation of a MLP can be defined by the following formula:

h(l) = ϕ(l)(W (l) · h(l−1) + b(l)) (4.5)

where h(l) is the output vector of layer l, l = 1...L where L is the number of layers
in the network. h(0) is the input of the network. W (l), b(l) and ϕ(l) in turn are
the weight matrix, the bias vector and the activation function of layer l.

The role of activation functions in MLPs is very important, because they give
MLPs the ability to compute nonlinear function: if outputs of hidden layers were
linear, the network output would be just a linear combination of inputs, which is
not very useful. In regression, the activation function used in the output layer is
usually linear, while in classification of K classes, it could be a sigmoid (K = 2)
or softmax (K > 2) function. Choosing activation functions for hidden layers
will be discussed further in section 4.5.

31

Given a set of samples {(x(1), y(1)), ..., (x(M), y(M))} and a MLP with initial
parameters θ (characterized by weight matrices and bias vectors), we would like
to train the MLP so that it can learn the mapping given in our set. If we see the
whole network as a function:

ŷ = F (x; θ) (4.6)

and define some loss function E(x, y, θ), then the goal of training our network
becomes minimizing E(x, y, θ). Luckily, the gradient of E tells us the direction
to go in order to increase E:

∇E(θ) =

[
∂E

∂θ1
, ...,

∂E

∂θn

]
(4.7)

Since the gradient of E specifies the direction to increase E, at each step param-
eters will be updated proportionally to the negative of the gradient:

θi ← θi + ∆θi (4.8)

where:

∆θi = −η∂E
∂θi

(4.9)

The training procedure is gradient descent, and η is a small positive training
parameter called learning rate.

In our systems, we employ two types of loss functions:

Mean squared error

E =
1

K

K∑

k=1

(y
(m)
k − ŷ(m)

k)2 (4.10)

Cross entropy error

E = − 1

K

K∑

k=1

y
(m)
k log(ŷ

(m)
k) (4.11)

where m is the index of an arbitrary sample, K is the number of classes. y
(m)
k

represents the k-th column (corresponding to the probability of class k) of vector
y(m).

In conventional systems, the gradient components of the output layer can be
computed directly, while they are harder to compute in lower layers. Normally,
the current gradient is calculated using the error of the previous step. Since errors
are calculated in the reverse direction, this algorithm is known as backpropagation.

4.2 Deep Learning and Deep Neural Networks

Until the 1980s, the only applicable structure of ANNs is a shallow structure,
which is an ANN with a few hidden layers. The universal approximation theorem
[11, 30], which states that any function can be approximated by an ANN with
three layers with arbitrary accuracy, makes additional hidden layers become un-
necessary. Moreover, the backpropagation algorithm did not work well with deep
FNNs (see section 4.5), and the computation ability back then was also limited.

32

Input Layer

Hidden Layer

Output Layer

Figure 4.2: A feedforward neural network with one hidden layer

However, the deep structure in human information processing mechanisms
suggests the necessity and effectiveness of deep learning algorithms. In 2006,
Hinton et al. introduced the deep belief network, a deep neural network (DNN)
model composed of Restricted Boltzmann Machines [28]. A deep belief network
was trained in unsupervised fashion, one layer at a time from the lowest to the
highest layer [28]. Deep feed-forward networks were effectively trained using the
same idea by first pre-training each layer as a Restricted Boltzmann Machine,
then fine-tuning by backpropagation [27]. Later, deep belief networks achieved
low error rates in MNIST handwritten digits, and good results in TIMIT phone
recognition [60]. Today, ANNs with deep structures are trained on powerful GPU
machines, overcoming both resources and time limits.

Although the history of deep learning originates from ANNs, the term ”deep
learning” has broader interpretation. There are many definitions of deep learning,
but they both mention two key aspects [15]:

1. ”models consisting of multiple layers or stages of nonlinear information
processing”; and

2. ”methods for supervised or unsupervised learning of feature representation
at successively higher, more abstract layers”

4.3 Recurrent Neural Networks

A recurrent neural network (RNN) is a model of ANNs used to deal with se-
quences. It is similar to an ANN except that it allows a self-connected hidden
layer that associates with a time delay. Weights of the recurrent layer are shared
across time. If we unfold a RNN in time, it becomes a DNN with a layer for each
time step.

There are many models of RNNs, but let us consider a simple RNN invented
by Elman [17]. The proposed RNN has just three layers, and the hidden layer
is self-connected (figure 4.3). The RNN is parameterized by weight matrices

33

Figure 4.3: A simple recurrent neural network

Figure 4.4: A bidirectional recurrent neural network unfolded in time

and bias vectors [Win,Wh,Wout, bin, bout]. Given input sequence x1, x2, ..., xT , the
output of the RNN is computed as:

ht = ϕz(Win · xt +Wh · ht−1 + bin) (4.12)

ŷt = ϕo(Wout · ht + bout) (4.13)

The simple RNN model is elegant, yet it only captures temporal relations in
one direction. Bidirectional RNNs [61] were proposed to overcome this limitation.
Instead of using two separate networks for the forward and backward directions,
bidirectional RNNs split the old recurrent layer into two distinct layers, one for
the positive time direction (forward layer) and one for the negative time direction
(backward layer). The output of forward states are not connected to backward
states and the other way around (figure 4.4).

4.4 Convolutional Neural Networks

A convolutional neural network (CNN) is similar to an ordinary FNN as the ouput
of each layer is a combination of the input, the weight matrix and the bias vector
followed by a non-linear transformation. However, what make a CNN different is
its local connectivity. Rather than having a full connection between a layer and
its input, a CNN uses some small filters, slides it across all sub-regions of the
input matrix and aggregates all results. In other words, it takes advantages of

34

the convolution operation (see section 2.4.1) between the filters and the input.
The inspiration of CNNs is said to be based on the receptive field of a neuron,
i.e. sub-regions of the visual field that the neuron is sensitive to.

There are several types of layers that make up a CNN:

Convolutional layer A convolutional layer consists of K filters. In general,
its input has one or more feature maps, e.g., a RGB image has 3 channels
red, green and blue. Therefore, the input is a 3-dimensional matrix and its
feature maps is considered the depth dimension. Each filter need to have
3-dimensional shape as well with its depth extend to the entire depth of the
input (see figure 4.5). The output of the layer is K feature maps, each one
is computed as the convolution of the input and a filter k, plus its bias:

hijk = ϕ((Wk ∗ x)ij + bk) (4.14)

where i and j are the row index and the column index, ϕ is the activation
function of the layer and x is its input. Thus the output of a convolutional
layer is also a 3-dimensional matrix, and its depth is defined by the number
of filters.

Pooling layer A pooling layer is usually inserted between two successive convo-
lutional layers in a CNN. It downsamples the input matrix, thus reducing
the space of representation and the number of parameters. The depth di-
mension remains the same. A pooling layer divides the input into (usually)
non-overlapping rectangle regions, of which size defined by the pool shape.
Then, it outputs the value of each region using the max, sum or average
operator. If a pooling layer uses the max operator, it is called a max pooling
layer. The pool size is normally set as (2, 2) as larger sizes may lost too
much information.

Fully-connected layer One or more fully-connected layers may be placed at
the end of a CNN, to refine features learned from convolutional layers, or
to return class scores in classification.

The most common architecture of CNNs stacks convoltional layers and pool
layers in turn, then ends with fully-connected layers (e.g., LeNet [38]). It is worth
considering that a convolutional layer can be substituted by a fully-connected
layer of which weight matrix is mostly zero except at some blocks, and the weight
of those blocks are equal.

4.5 Difficulties in Training Deep Neural

Networks

The reason that the gradient descent algorithm did not work well with DNNs was
not fully understood until Hochreiter’s diploma thesis in 1991 [29]. In his work, he
presented that DNNs suffered from widely known issues by now: the vanishing
and exploding gradient ; i.e. in DNNs using the backpropagation algorithm to
spread errors, gradients either shrink to zero and disappear, or grow rapidly. In
other words, lower layer gradients in DNNs are unstable, they tend to learn with
much slower speed, which makes DNNs hard to train.

35

Figure 4.5: An illustration of 3-dimensional convolution (adapted from [38])

The vanishing gradient mainly occurs due to the calculation of local gradients.
In the backpropagation algorithm, a local gradient is the aggregate sum of the
previous gradients and weights, multiplied by its derivative. Since parameters
are usually initialized as small values, their gradients are less than 1; therefore
gradients of lower layers are smaller than those of above layers and are easier
to reduce to zero. The exploding gradient, on the other hand, normally hap-
pens in neural networks with long time dependencies, for instance RNNs, since
a large number of components to compute local gradients are prone to explode.
In practice, some factors affect the influence of vanishing and exploding gradient
problem, which includes the choice of activation functions, the cost function and
network initialization [22].

−6 −4 −2 0 2 4 6

−1

−0.5

0

0.5

1

sigmoid
tanh

Figure 4.6: Sigmoid and tanh function

A closer look to the role of ac-
tivation functions can give us an
intuitive understanding of these
problems. A sigmoid is a mono-
tonic function that maps its in-
puts to range [0, 1] (figure 4.6).
It was believed to be popular in
the past because of the biological
inspiration that neurons also fol-
lowed a sigmoid activation func-
tion. A sigmoid function saturates
at both tails, at which values re-
main mostly constant. Thus, gra-
dients at those points is zero, and
this phenomenon will be propagat-
ed to lower layers, which makes
the network hardly learn anything.
In consequence, we should pay attention at the initialization phase so that weights
are small enough not to fall into saturated regions.

36

The tanh function also has a S-shape like sigmoid, except that it ranges from
−1 to 1 instead of 0 to 1. Its characteristics are also the same, but tanh is
empirically recommended over sigmoid because it is zero-centered. According to
LeCun et al., weights should be normalized around 0 to avoid ineffective zigzag
updates, which leads to slow convergence [39].

In three types of activation functions, ReL has the cheapest computation
and does not suffer from the vanishing gradient along activation units. Many
researches reported that ReL improved DNNs in comparison with other activation
functions [42]. However, ReL could have problems with 0-gradient case, where a
unit never activates during training. This issue may be alleviated by introducing
a leaky version of ReL:

f(x) =

{
x x > 0

0.01x otherwise
(4.15)

A unit with ReL as activation function is called a rectifier linear unit (ReLu).

4.6 Neural Network in Speaker Recognition

There are generally two ways to use ANNs in speaker recognition tasks: either as a
classifier or a feature extractor. The first usage is referred as a direct, model-based
method, while the second one is known as an indirect, feature-based method.

ANNs has been used to classify speakers since the 90s [59, 19]. However,
due to computation limits, neural networks were used as one-vs-all classifiers
[19] or pairwise classifiers [59] rather than one large network for all speakers.
ANN structures in those days had only one hidden layer for reasons discussed
in section 4.2. With one-vs-all classifiers, there are N classifiers to identify N
speakers. Each ANN is trained with the corresponding speaker data and anti-
speaker data. The target speaker is decided corresponding to the ANN with the
highest output probability. On the other hand, with pairwise classifiers, there
are N(N + 1)/2 classifiers. A sample may be passed through all ANNs, and their
output are combined by voting. The alternative way is to organize classifiers as
in a binary search tree, so that the expected number of comparisons is O(log2N).

In 1998, Konig et al. used features extracted from a bottleneck layer of a 5-
layer MLP in speaker verification [36]. A bottleneck layer is a layer before the
output layer of a neural network that has a reduced number of hidden nodes. This
type of features is referred later as bottleneck features. In [36], bottleneck features
alone performed worse than cepstrum, but reduced error in combination with it.
Bottleneck features can be used as input to extract i-vector (section 3.3) as in
[58], where bottleneck features and GMM posteriors made the best combination
in speaker verification on DAC13 corpora.

37

Chapter 5

Experiments and Results

In this chapter, our approach to speaker identification is discussed. Close-set
speaker identification is chosen as the task to assess the efficiency of our systems.
The first section reviews available corpora that have been used for evaluation of
this task and results of different systems on those data. After that, our choice of
database, TIMIT, and the reference systems are introduced. Details about our
approach is given next, and finally experiments and their results are presented.

5.1 Corpora for Speaker Identification

Evaluation

In the history of speaker recognition, public speech corpora play an important role
in research development and evaluation, which allows researchers to compare the
performance of different techniques. TIMIT, Switchboard and KING are some
of the most commonly used databases in speaker identification. However, since
they were not specifically designed for speaker identification, their usages varied
among researches, making different evaluation conditions.

5.1.1 TIMIT and its derivatives

The TIMIT database [71] was developed to study phoneme realization and for
training and evaluating speech recognition systems. It contains 630 speakers of
8 major dialects of American English; each speaker read 10 different sentences of
approximately 3 seconds. However, TIMIT is considered a near-ideal condition
since its records were obtained in a single session in a sound booth [54]. Another
derivative of TIMIT is NTIMIT, which was collected by playing TIMIT origi-
nal speeches through an artificial mouth, then recording using a carbon-button
telephone handset and transferring via long distance telephone lines [32].

Many systems were evaluated on TIMIT and NTIMIT databases, either on
complete databases or their subsets. For instance, Reynolds reported the accuracy
of GMM speaker identification system as a function of the population size [54]
with accuracy almost 100% in every case of TIMIT original 16 kHz data, while
Farrell et al. compared the performance of different classification methods (VQ,
kNN, MLP, ...) on a subset of TIMIT of 38 speakers of New England dialect,
downsampled to 8 kHz [19] (see table 5.1). The ratio of training to testing data
is not identical in these two reports.

38

Speaker model 5 speakers 10 speakers 20 speakers

FVSQ (128) 100% 98% 96%
TSVQ (64) 100% 94% 88%
MNTN (7 levels) 96% 98% 96%
MLP (16) 96% 90% 90%
ID3 86% 88% 79%
CART 80% 76% -
C4 92% 84% 73%
BAYES 92% 92% 83%

Table 5.1: Speaker identification accuracy of different algorithms on various sizes
of speaker population (reproduced from [19]). Data were selected from 38 speakers
of New England subset of TIMIT corpus. FSVQ (128): full-search VQ with
codebook size of 128; TSVQ (64): tree-structured VQ with cookbook size of 64;
MNTN (7 levels): modified neural tree network pruned to 7 levels; ID3, CART,
C4, BAYES: different decision tree algorithms.

Speaker model 60 second 30 second 10 second

GMM [56] 95% - 94%
kNN [26] 96% - -
Robust Segmental 100% 99% 99%
Method [21] (Top40Seg) (Top20Seg) (TopSeg2to7)

Table 5.2: Speaker identification accuracy of different algorithms on the SWB-
DTEST subset of Switchboard corpus

5.1.2 Switchboard

The Switchboard corpus is one of the largest public collections of telephone con-
versations. It contains data recorded in multiple sessions using different hand-
sets. Conversations were automatically collected under computer supervision
[23]. There are two Switchboard corpora, Switchboard-I and Switchboard-II.
Switchboard-I has about 2400 two-sided conversations from 534 participants in
the United States.

Due to its hugeness, many researchers wanted to evaluate their systems on
a part of the Switchboard corpus. An important subset of Switchboard-I is
SPIDRE, SPeaker IDentification REsarch, which was specially planned for close
or open-set speaker identification and verification. SPIDRE includes 45 target
speakers, 4 conversations per target and 100 calls from non-targets.

Gish and Schmidt achieved identification accuracy of 92% on the SPIDRE 30
second test using robust scoring algorithms [21]. Besides, some systems were test-
ed on a subset of 24 speakers of Switchboard (which was referred as SWBDTEST
in [21]), with accuracy higher than 90% [54, 21, 26] (table 5.2).

5.1.3 KING corpus

The KING corpus was designed for closed-set speaker identification and verifica-
tion experiments. It contains 51 male speakers divided into two groups (25 and
26 speakers), each group was recorded at different locations. Each speaker has

39

Speaker model Accuracy (5 second test) (%)

GMM-nv 94.5± 1.8
VQ-100 92.9± 2.0
GMM-gv 89.5± 2.4
VQ-50 90.7± 2.3
RBF 87.2± 2.6
TGMM 80.1± 3.1
GC 67.1± 3.7

Table 5.3: Speaker identification accuracy of different algorithms on a subset of
King corpus (reproduced from [56]). VQ-50 and VQ-100: VQ with codebook size
of 50 and 100; GMM-nv: GMM with nodal variances; GMM-gv: GMM with a
single grand variance per model; RBF: radial basis function networks; TGMM:
tied GMM; GC: Gaussian classifier.

Dialect No. #Male #Female Total
New England 1 31 (63%) 18 (27%) 49 (8%)
Northern 2 71 (70%) 31 (30%) 102 (16%)
North Midland 3 79 (67%) 23 (23%) 102 (16%)
South Midland 4 69 (69%) 31 (31%) 100 (16%)
Southern 5 62 (63%) 36 (37%) 98 (16%)
New York City 6 30 (65%) 16 (35%) 46 (7%)
Western 7 74 (74%) 26 (26%) 100 (16%)
Army Brat 8 22 (67%) 11 (33%) 33 (5%)
Total 8 438 (70%) 192 (30%) 630 (100%)

Table 5.4: TIMIT distribution of speakers over dialects (reproduced from [71])

10 conversations corresponding to 10 sessions. There are two different versions
of data: the telephone handset version and the high quality microphone one.
Reynolds and Rose used a KING corpus subset of 16 speakers in telephone line
to compare the accuracy of GMM to other speaker models [56]. The first three
sessions were used as training data, and testing data was extracted from session
four and five. Performance was compared using 5 second tests. Results of those
models are summarized in table 5.3.

5.2 Database Overview

Although TIMIT does not represent the real speaker recognition condition, we
decided to evaluate our systems on it since TIMIT is the only database we possess
at the moment, which has been widely used for speaker identification evaluation.
After a brief review in section 5.1.1, this section provides more details about the
sentence distribution in the TIMIT corpus.

TIMIT contains 6300 sentences spoken by 630 speakers, which were divid-
ed into a training set and a test set for speech recognition evaluation. Selected
speakers came from 8 major dialect regions of the United States, and the distri-
bution of speakers in different dialects as well as the gender ratio was unbalanced
(table 5.4).

40

Sentence type #Sentences
#Speaker/
sentence

Total
#Sentence/

speaker
Dialect (SA) 2 630 1260 2
Compact (SX) 450 7 3150 5
Diverse (SI) 1890 1 1890 3
Total 2342 6300 10

Table 5.5: The distribution of speech materials in TIMIT (reproduced from [71])

There are three types of sentences in the corpus:

SA sentences The dialect sentences designed at SRI. There are 2 sentences of
this type, and every speaker read both of these sentences.

SX sentences The phonetically-compact sentences designed at MIT. Each speak-
er read 5 of these sentences, and each sentence was recorded by 7 different
people.

SI sentences The phonetically-diverse sentences selected from the Brown corpus
and the Playwrights Dialog. Each speaker read 3 of these sentences, and
each sentence was read by only one speaker.

Table 5.5 summarizes the distribution of sentences to speakers. Because of the
composition of TIMIT, different division of data into training set and test set
should affect performance of testing systems. Let 10 sentences of one speaker
in TIMIT be named SA1−2, SI1−3 and SX1−5, where SA, SI and SX are sentence
types, and index n of each sentence indicates the relative order within all sentences
spoken by one person. To strictly make TIMIT text-independent, in [54] the last
two SX sentences were used as test data and the remaining were training data,
while in [37], SA1−2, SI1−2 and SX1−2 were used for training, SI3 and SX3 were
used for validation, and SX4−5 were used for testing.

5.3 Reference Systems

While some researches achieved almost perfect accuracy on the TIMIT database
(99.5% on all 630 speakers [54] and 100% on a subet of 162 speakers [37]), original
data are not very suitable for investigating the capability of our systems. Instead,
we downsampled data from 16 to 8 kHz (TIMIT-8k) and chose approaches de-
scribed in [19] as our references systems.

Close-set speaker identification in [19] was performed on population size of 5,
10 and 20. Speakers were selected from a subset of 38 speakers of New England
dialect of TIMIT (38 speakers in dialect region 1 in the training set). All data were
downsampled to 8 kHz, and 5 sentences were chosen randomly and concenated
to use as training data. The remaining 5 sentences were used separately as test
data. As a result, the duration of training data of each speaker ranged from 7 to
13 seconds, and each test lasted 0.7 to 3.2 seconds.

After removing silence and pre-emphasizing, speech data were processed using
a 30 ms Hamming window applied every 10 ms. Then 12th-order linear predictive
coding (section 3.1.3) was performed for each frame, and 12 LPCCs extracted

41

from that were used as features. Several techniques were compared in the speaker
identification task, including:

Full-search VQ VQ technique described in section 3.2.2

Tree-structured VQ VQ technique except that codebooks are organized in a
tree structure which is efficient for searching the closest one in the identifi-
cation phase. Note that the searching algorithm is non-optimal.

MLP A MLP with one hidden layer is constructed for each speaker. The input
of the MLP is a feature vector, and the output is the label of that vector,
as 1 if it is from the same speaker of the MLP, and 0 otherwise. In the
identification phase, all test vectors of an utterance are passed through
each MLP, and the outputs of each MLP are accumulated. The speaker is
decided as the corresponding MLP with the highest accumulated output.

Decision tree All training data are used to train a binary decision tree for
each speaker with identical input and output manner as in MLP method.
The probability of classification using decision trees is used to determine
the target speaker. Pruning is applied after training to avoid overfitting.
Various decision tree algorithms were considered, including C4, ID3, CART
and a Bayesian decision tree.

Neural tree network A neural tree network has a tree structure as in deci-
sion trees, but each non-leaf node is a single layer of perceptrons. In the
enrollment phase, the single layer perceptron at each node is trained to clas-
sify data into subsets. The architect of neural tree networks is determined
during training rather than pre-defined as in MLPs.

Modified neural tree network A modified neural tree network is different
from a neural tree network as it uses the confidence measure at each leaf
besides class labels. Confidence measure helps to improve significantly in
pruning in comparison to neural tree networks [19].

The best performance of each method is summarized in table 5.1.

5.4 Experimental Framework Description

In this project, we would like to investigate the efficiency of DNN, or more specif-
ically, RNN (see section 4.3) in text-independent speaker identification. Our
model was inspired by the RNN model proposed by Hannun et al., which outper-
formed state-of-the-art systems in speech recognition [25]. As in general speaker
identification systems, we divided our framework into two main components: a
front-end which transform a speech signal into features, and a back-end as a
speaker classifier.

5.4.1 Preprocessing

The original data of TIMIT are in Sphere format, so first they need to be convert-
ed into WAV format before using. Because each file in TIMIT is a clean single

42

Speech signal
Pre-

emphasis
Frame

Blocking
Windowing DFT

Mel-
Frequency
Warping

DCTLifteringDifferentialDifferential

MFCCs∆MFCCs∆∆MFCCs

Spectrum

Figure 5.1: The process to convert speech signals into MFCC and its derivatives

sentence, silence is negligible. Therefore, voice activity detection is omitted since
it may remove low-energy speech sound and lead to decrease in the performance
[37]. We do not use chanel equalization either for the same reason [54].

5.4.2 Front-end

We employed two different types of features in our framework: MFCCs (section
3.1.1) and LFCCs (section 3.1.2). The computation of MFCCs is described in
figure 5.1. LFCCs are acquired by the same process as MFCCs except that they
are warped by a linear frequency band rather than mel-frequency warping. Details
of each step are:

Pre-emphasis Pre-emphasis refers to the process of increasing the magnitude
of higher frequencies with respect to that of lower frequencies. Since speech
sound contains more energy in low frequencies, it helps to flatten the signal
and to remove some glottal effects from the vocal tract parameters. On the
other hand, pre-emphasis may increase noise in the high frequency range.
Perhaps one of the most frequently used form of pre-emphasis is the first-
order differentiator (single-zero filter):

x̃[n] = x[n]− αx[n− 1] (5.1)

where α is usually ranged from 0.95 to 0.97. In our framework, we use
α = 0.97.

Frame Blocking As we use a short-time analysis technique to process speech
(section 2.4), in this step, the speech signal is blocked into frames, each
frame contains N samples and advances M samples from its previous frame
(M < N). As a result, adjacent frames overlap N −M samples. The signal
is processed until all samples are in one or more frames, and the last frame
is padded with 0 to have the length of exact N samples. Typically, N ranges
from 20 to 30 ms, and M is about half of N .

Windowing As frame blocking breaks the continuity at the beginning and the
end of each frame, they are multiplied by a window function to reduce dif-
ferences, providing smooth transitions between frames. A window function

43

0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

Sample

A
m
p
li
tu
d
e

Hamming
Hanning

Figure 5.2: Hamming and Hanning windows of length 64

is defined as a mathematical function that is zero outside a specific region
(section 2.4) and its simplest form is a rectangular window:

w[n] =

{
1 0 ≤ n ≤ N − 1

0 otherwises
(5.2)

where N is the length of the window. However, the rectangular window
does not have the effect to cancel boundary differences. Instead, bell-shaped
windows are more preferred, such as Hamming windows:

w[n] =

{
0.54− 0.46 cos

(
2πn
N−1

)
0 ≤ n ≤ N − 1

0 otherwises
(5.3)

or Hanning windows:

w[n] =

{
0.5− 0.5 cos

(
2πn
N−1

)
0 ≤ n ≤ N − 1

0 otherwises
(5.4)

Again, N is the length of the window. Figure 5.2 illustrates these two types
of window functions.

DFT Speech frames are transformed from time domain to frequency domain as
discussed in section 2.3 using DFT as a sampled version of DTFT (section
3.1). The DFT of the m-th frame of the signal is defined as:

Xm[k] =
N−1∑

n=0

xm[n]e−j2πkn/N (5.5)

After this step, we compute |Xm[k]|2 for all frames, resulting in a short-time
spectrum of the original signal.

Mel-frequency warping The spectrum of each frame is warped by a band of
B filters (equation 3.6) to obtain the mel-frequency spectrum:

Sm[b] =
N−1∑

k=0

|Xm[k]|2Hb[k] b = 0, 1, ..., B − 1 (5.6)

44

DCT Finally, the mel cepstrum is acquired from the mel spectrum using DCT:

x̂m[n] =
B−1∑

b=0

ln(Sm[b]) cos

[(
b+

1

2

)
πn

B

]
n = 0, 1, ..., B − 1 (5.7)

In our framework, we discard the first coefficient and keep the first K coef-
ficients (except the first one) of the cepstrum as MFCCs.

Liftering Again, a filter is used to balance energies between coefficients of MFCCs,
and is called a lifter in cepstral domain. Let ci be the i-th coefficient, it is
then liftered as:

ĉi =

[
1 +

L

2
sin
(πn
L

)]
ci n = 1, 2, ..., K < L (5.8)

Here, L is the lifter coefficient, and its default value is L = 22 in our
framework. From this point, we referred MFCCs as the liftered version to
use as speaker identification features.

Differential The MFCCs are often referred as static features since they only
contain information of their current frame. In order to capture temporal
relations, cepstral coefficients are modified by calculating their first and sec-
ond order derivatives. The first order derivative is called delta coefficients,
and the second order is called delta-delta coefficients. Delta coefficients are
computed from cepstral coefficients as follow:

∆ct =

∑D
τ=1 τ(ct+τ − ct−τ)

2
∑D

τ=1 τ
2

(5.9)

D is the size of delta window, and is normally chosen as 1 or 2. Consequent-
ly, delta-delta coefficients are computed as derivatives of delta-coefficients.
While delta coefficients provide information about rate of speech, delta-
delta coefficients disclose knowledge about acceleration.

In practice, delta and delta-delta coefficients are added to cepstral coefficients
to extend them with dynamic features. Moreover, the energy (sum of spectral
values in one frame) and its derivatives are also incorporated as features. For ex-
ample, 38 dimension MFCC vector was used as features for a speaker recognition
system, which included 12 MFCCs, 12 delta MFCCs, 12 delta-delta MFCCs, the
log energy, the log energy derivative (delta energy) and the second log energy
derivative (delta-delta energy) [44].

Moreover, feature vectors of multiple frames can be concatenated to be used
as the input of the next step. A context of size C is added to a current frame
by appending features of its C frames each side along with it. We summarized
parameters of our front-end in table 5.6.

5.4.3 Back-end

Lying in the heart of our speaker identification framework is a DNN with a
bidirectional recurrent layer inspired by the model in [25]. Hannun et al.’s model
was composed of 5 hidden layers, but in our model, the number of hidden layers is

45

Parameter Meaning
frame length Number of samples in one frame
frame step Number of samples advanced between frames
window Type of window
no ffts Number of bins in DFT
no fbs Number of filters in mel/linear filterbank
min freq The minimum frequency in the filterbank
max freq The maximum frequency in the filterbank
no ceps Number of kept cepstral coefficients
preemphasis coefficient Pre-emphasis coefficent
lifter coefficient Lifter coefficent
type Type of features, e.g., MFCC, MFCC+∆, ...
context size Number of feature vectors at each side

to be added as context

Table 5.6: Parameters of the front-end and their meanings

left as a parameter. For all terms regarding ANNs, we refer the reader to section
4.1.

Let L be the number of layers in our model, where layer 0 is the input and
layer L is the output layer. Then, the bidirectional recurrent layer is placed at
position L − 2. Figure 5.3 illustrates the structure of our model. The input of
the DNN is a sequence of speech features of length T , x = x0, x1, ..., xT−1, where
xt denotes the feature vector at frame t, t = 0...T − 1.

For the first L − 3 layers, the output of the l-th layer at time t is computed
as:

h
(l)
t = ϕ(W (l) · h(l−1)t + b(l)) (5.10)

where W (l) and b(l) are the weight matrix and the bias vector of layer l. ϕ is the
activation function, and is selected between sigmoid, tanh and ReL.

The recurrent layer is decomposed into two separate layers for the forward
and the backward processes (figure 5.4):

h
(f)
t = ϕ(W (L−2) · h(l−1)t +W (f) · h(f)t−1 + b(f)) (5.11)

h
(b)
t = ϕ(W (L−2) · h(l−1)t +W (b) · h(b)t+1 + b(b)) (5.12)

Note that h
(f)
t must be computed in order t = 0, ..., T − 1 while h

(b)
t must be

computed in reverse order t = T − 1, ..., 0. The output of this layer is simply the
linear combination of both the forward and the backward output:

h
(L−2)
t = h

(f)
t + h

(b)
t (5.13)

Layer L− 1 again is a normal layer:

h
(L−1)
t = ϕ(W (L−1) · h(L−2)t + b(L−1)) (5.14)

and the output layer is the softmax layer of which each neuron output predicts
the probability of a speaker to be the target in the training set:

h
(L)
t = softmax(W (L) · h(L)t + b(L)) (5.15)

46

Figure 5.3: The structure of our DNN model

Figure 5.4: A closer look at the recurrent layer

where:

softmax(z)j =
exp(zj)∑
k exp(zk)

(5.16)

Here zj represents the j-th column of vector z.

47

Given a training dataset of S speakers, the DNN simply classifies the target
speaker of frame t as the one that maximizes the conditional probability:

ŝt = argmax1≤s≤S P (s | xt) = ŷt,s = h
(L)
t,s (5.17)

The predicted speaker for the whole speech sequence x is defined by simple voting
as summing the accuracy of all frames and normalizing.

The DNN model is trained using the backpropagation algorithm to minimize
mean squared or cross entropy error. Parameter update is performed in batch,
where each batch contains about 500 frames. We implemented three different
update methods:

Gradient descent

θt+1 = θt − η
∂E

∂θt
(5.18)

Momentum [49]

vt+1 = µvt − η
∂E

∂θt
(5.19)

θt+1 = θt + vt+1 (5.20)

Nesterov’s accelerated momentum [6]

vt+1 = µvt − η
∂E

∂(θt + µvt)
(5.21)

θt+1 = θt + vt+1 (5.22)

θt is a parameter value at time t, E is the loss function and η is the learning
rate. In momentum methods, µ is the momentum and vt represents the velocity
of update at time t.

The learning rate is usually initialized with small value (e.g, 10−5 to 10−3) and
is reduced by some constant after some predefined number of epochs. Besides,
RMSProp, an adaptive learning rate method, was also employed to tune the
learning rate locally for each parameter. The update rule of RMSprop is:

gt+1 = kgt + (1− k)

(
∂E

∂θt

)2

(5.23)

θt+1 = θt − η
∂E

∂θt
· 1√

gt+1 + 10−8
(5.24)

k is the decay rate, and its typical values are 0.9, 0.99 or 0.999.
To avoid overfitting, during training we use L2 regularization and/or dropout

[62], which drops some neurons (i.e., set their value to zeros) at some probability
p. Figure 5.5 illustrates the idea of dropout. Dropout is performed in all layers
except at the input and the recurrent layer.

For reference, all hyperparameters of the back-end are summarized in table
5.7.

48

Figure 5.5: The visualization of dropout (adapted from [62])

Type Hyperparameter Options Parameters

Model Structure
Size of each layers
Activation function Sigmoid, tanh, ReL

Training Cost function Mean squared,
cross entropy

Learning rate
Update rule Gradient descent

Momentum momentum
Nesterov’s accelerated momentum
momentum
RMSprop decay rate

Regularization L2 regularization regularization
parameter

Dropout dropout rate

Table 5.7: Hyperparameters of the back-end and their choices

5.4.4 Configuration file

Our framework was implemented in Python using NumPy 1 and Theano li-
braries. Theano is a math compiler that supports symbolic mathematical func-
tions. Therefore, gradient expressions are derived automatically, and compu-
tation graphs can be optimized, which later can be deployed on CPU or GPU
without changing users’ code [7]. The system and training parameters are defined
using a configuration file in YAML format 2. An example of configuration files is
presented in figure 5.6.

1www.numpy.org
2yaml.org

49

www.numpy.org
yaml.org

!!python/object:sre.train.Train

name: ’template’

system: !!python/object/new:sre.sresystem.SRESystem

kwds:

frontend: !!python/object:sre.frontend.Frontend

preemphasis_coefficient: 0.97

frame_length: 320

frame_overlap: 160

max_freq: 6000

min_freq: 300

no_fbs: 26

no_ffts: 512

window_func: !!python/name:numpy.lib.function_base.hanning ’’

no_ceps: 13

lifter_coefficient: 22

context_size: 0

type: ’mfcc’

backend: !!python/object/new:sre.backend.Backend

kwds:

no_hiddens: [50, 50, 50]

no_input: 13

no_output: 20

activation: !!python/name:sre.backend.rel ’’

algorithm: !!python/object/new:nn.training_algorithms.TrainingAlgorithm

kwds:

rate: 0.001

cost_function: !!python/name:nn.costs.cross_entropy_error ’’

update_rule: !!python/object/new:nn.updates.RMSprop

kwds:

decay_rate: 0.99

train_path: ’/home/timit/timit-train.list’

trial_path: ’/home/timit/timit-trial.list’

batch_size: 500

max_epochs: 1000

eval_epoch: 20

Figure 5.6: An example of initializing and training a speaker identification system.
Here the front-end returns 13 MFCCs and the back-end has 3 hidden layers with
50 neurons at each level.

5.5 Experiments and Results

5.5.1 Experiment 1: Performance on small size
populations

In this experiment, our framework’s performance is assessed on a small set of
speakers. All tests are evaluated on TIMIT-8k data with the same conditions
described in the reference paper (section 5.3). However, since training ANNs

50

Front-end Description
MFCC23 23 MFCCs
LFCC23 23 LFCCs
MFCC∆38 19 MFCCs and 19 delta MFCCs
MFCC∆∆38 12 MFCCs, 12 delta MFCCs, 12 delta-delta MFCCs,

delta energy and delta-delta energy

Table 5.8: Description of testing front-ends

Back-end 5 speakers 10 speakers 20 speakers
RNN-structured 100 200 400
FNN-structured 300 600 600

Table 5.9: Hidden layer size with regard to population size

require a validation set as the stop condition, we decided to use 2 files as validation
data. The number of files in training data remains the same as 5 files since training
duration should have great influence on identification performance. As a result,
for each speaker, 5 sentences are used as training data, 2 sentences are used as
validation data and the remaining 3 sentences are used as 3 evaluation tests.
The reason that we use a validation dataset is that other stop condition types
(pre-defined number of epochs, minimum loss values) varies between different
population sizes, making it hard to choose a good stopping value.

In the reference paper, it seems that the authors used only one evaluation set
for each population size, but we do not know exactly which speakers and which
files they used in each part. Therefore, in order to compare our results with their
performance, for each population size, both speaker selection and data (training,
validation, test) division are performed randomly three times, resulting in three
different evaluation sets. Each testing configuration is trained and evaluated on
all three sets, and the reporting accuracy is the mean of all test cases.

Each speech utterance is processed using a 20 ms Hanning window every 10
ms. Then DFT spectrum is warped by a Mel/linear filterbank of 26 filters with
limiting frequency range 300-3140 Hz. Delta and delta-delta cepstral coefficients
are computed around a window size of 2 frames.

We select four types of front-ends to extract features from speech data, of
which details are described in table 5.8. In addition to the proposed RNN frame-
work, we also implement a FNN back-end in order to compare their power in
speaker identification task. Their combinations result in 6 testing systems. All
systems have 3 hidden layer structure and use ReL as activation functions. Since
the number of testing speakers affects the size of our neural network models, the
size of systems in each case is chosen according to table 5.9.

Each system is trained using RMSprop with cross entropy error and L2 reg-
ularization parameter is 0.001. During training, a dropout rate of 5% is applied.
RNN-structured systems are trained with learning rate 10−4, while the MLP sys-
tem is trained with learning rate 10−3. The best system is chosen based on its
accuracy on the validation set, and the training process stops if the accuracy does
not improve after 20 epochs or the number of training cycles reaches 1000.

Experiment results with a single frame as input (context size is 0) are summa-
rized in table 5.10. In comparison with reference systems (table 5.1), all systems

51

System 5 speakers 10 speakers 20 speakers

RNN+MFCC23 84.4% 82.2% 86.7%
RNN+LFCC23 95.5% 86.7% 85.6%
RNN+MFCC∆38 88.9% 90.0% 83.3%
RNN+MFCC∆∆38 91.1% 88.9% 83.9%
FNN+MFCC23 93.3% 94.4% 88.3%
FNN+MFCC∆∆38 95.5% 97.8% 90.5%

Table 5.10: Identification accuracy of different testing systems

of ours only yield higher accuracy than reference decision tree algorithms ID3, C4
and CART. However, the reason of poor results is due to the difference between
validation accuracy and evaluation accuracy. As using only two files to validate,
in all cases, our systems easily achieve high accuracy on the validation set (above
95%), and in more than half of them, they get 100% correct on validation data
and the training process stops. Using more data on validation and evaluation
may alleviate this problem. This is definitely a disadvantage of ANNs in com-
parison with other methods since a part of data (normally from the training set)
is needed for validation.

Our best system is FNN+MFCC∆∆38. Interestingly, RNN-structured sys-
tems do not show their superiority against FNN-structured systems in this task.
Although FNN systems have more free parameters than RNN ones, it only takes
45 minutes to train a FNN on 1000 epochs in comparison with 9 hours of a RNN
with data of 20 speakers. In some cases, the accuracy of 5 speaker test condition
is lower than that of 10 speaker test condition, since it is too easy to obtain 100%
correct on the validation dataset of 5 speakers. Otherwise, the accuracy drops
when the number of speakers is 20.

We also investigate the influence of context size on the identification result.
Four systems are tested with context size 1, 2 and 3, corresponding to 3, 5 and
7 consecutive frames as input. The results are presented in table 5.11. With
two RNN-structured systems, the best results are achieved when using longer
contexts. The explanation for this phenomenon is that the longer the input vector,
the finer the parameters are tuned in order to identify correctly. Therefore, it is
not as easy as before to get high accuracy on the validation set, so that the gap
between validation accuracy and test accuracy is reduced. However, there is an
opposite trend within two FNN-structured systems, as their performance reduces
while increasing the size of context, especially when the number of speakers is 20.
Since we keep the same configuration while increasing input context, this may be
a sign of overfitting as our models could achieve high accuracy on the validation
set but are not very good at generalization.

5.5.2 Experiment 2: Performance with regard to training
duration

The purpose of this experiment is to examine our framework performance on
various training duration. Testing systems are evaluated on a population of 20
speakers with training data ranged from 1 to 5 files. The length of each file is
about 3 seconds. Again, we use TIMIT-8k data with the same test conditions

52

System Context 5 speakers 10 speakers 20 speakers

RNN+MFCC23 0 84.4% 82.2% 86.7%
RNN+MFCC23 1 82.2% 92.2% 89.4%
RNN+MFCC23 2 86.7% 86.7% 90.6%
RNN+MFCC23 3 91.1% 92.2% 90.0%
RNN+MFCC∆∆38 0 91.1% 88.9% 83.9%
RNN+MFCC∆∆38 1 86.7% 86.7% 88.9%
RNN+MFCC∆∆38 2 88.9% 91.1% 90.0%
RNN+MFCC∆∆38 3 95.5% 96.7% 92.8%
FNN+MFCC23 0 93.3% 94.4% 88.3%
FNN+MFCC23 1 93.3% 94.5% 81.1%
FNN+MFCC23 2 91.1% 97.8% 76.1%
FNN+MFCC23 3 93.3% 93.3% 85.6%
FNN+MFCC∆∆38 0 95.5% 97.8% 90.5%
FNN+MFCC∆∆38 1 86.7% 98.9% 85.6%
FNN+MFCC∆∆38 2 97.8% 94.5% 85.6%
FNN+MFCC∆∆38 3 97.8% 97.8% 79.4%

Table 5.11: Identification accuracy with different input context sizes. The best
context size in each case is marked as bold.

described in section 5.5.1, and each test condition is repeated three times.
Of four systems chosen in this experiment, two RNN-structured systems use a

context of size 3, and two FNN-structured systems are evaluated without context.
The summary of our four systems’ performances are illustrated in figure 5.7a.
Having the same type of front-end, RNN systems tend to identify better than
FNN systems. On the other hand, MFCCs with dynamic features (MFCC∆∆38)
outperform normal MFCCs in both types of back-ends.

Moreover, the performance of our two best systems, RNN+MFCC∆∆38 and
FNN+MFCC∆∆38 is compared with two best systems in [19], full-search VQ
and modified neural tree network in the same test conditions (figure 5.7b). There
is only small difference between full-search VQ, RNN+MFCC∆∆38 and FNN+
MFCC∆∆38 when the number of training files is between 2 and 4. Otherwise,
full-search VQ is still the most efficient system if using 1 file as training data with
about 72% accuracy. The gap between all systems reduces as using more training
files.

5.5.3 Experiment 3: Performance on large populations

Our last experiment is dedicated to illustrate the effect of population size on
identification accuracy. Intuitively, accuracy tends to decrease as the population
grows larger, but this rate is not equal in different systems. We also use the same
data division as in the previous experiments, and gradually increase the number
of speakers to 100. Data are not restricted to 38 speakers of New England dialect
as before. Four systems participating in this experiment use input from a single
frame (without context), and their size and learning rate are adjusted according to
table 5.12 and 5.13 respectively. Although the number of perceptrons per layer
is very large, the accuracy only slightly changes by 2-3% when those numbers

53

1 2 3 4 5

50

55

60

65

70

75

80

85

90

95

Number of training files

A
cc

u
ra

cy
(%

)

(a)

RNN+MFCC23
RNN+MFCC∆∆38
FNN+MFCC23
FNN+MFCC∆∆38

1 2 3 4 5

50

55

60

65

70

75

80

85

90

95

100

Number of training files

A
cc

u
ra

cy
(%

)

(b)

RNN+MFCC∆∆38
FNN+MFCC∆∆38
MNTN
FSVQ

Figure 5.7: Identification accuracy of our systems and two best systems from [19]
(MNTN: modified neural tree network, FSVQ: full-search VQ) as a function of
training duration

Back-end 40 speakers 60 speakers 80 speakers 100 speakers
RNN-structured 800 1200 800 1000
FNN-structured 2400 3600 4800 6000

Table 5.12: Hidden layer size with regard to population size

Back-end 40 speakers 60 speakers 80 speakers 100 speakers
RNN-structured 10−4 5 · 10−5 5 · 10−5 5 · 10−5

FNN-structured 5 · 10−4 5 · 10−4 10−5 5 · 10−5

Table 5.13: Learning rate with regard to population size

double or reduce by half, so we decide to keep these values to evaluation.
The experiment results are presented in figure 5.8. It is noteworthy that most

54

20 40 60 80 100

70

80

90

Population size

A
cc

u
ra

cy
(%

)

Identification accuracy

RNN+MFCC23
RNN+MFCC∆∆38
FNN+MFCC23
FNN+MFCC∆∆38

Figure 5.8: Identification accuracy as a function of population size

systems’ accuracy drops sharply when the number of testing speakers is 60, which
might be due to data division. Otherwise, the results in this experiment agree
with those in our second experiment (section 5.5.2) as RNN systems yield high-
er accuracy than FNN systems, and using dynamics features improves systems’
performance. The accuracy of FNN+MFCC23 decreases at the highest rate.

5.5.4 Experiment 4: Sex identification

As we have achieved accuracy of above 90% on a small population of the TIMIT
corpus in speaker identification task (section 5.5.1), one could guess that the
accuracy in sex identification must be higher. The reason of this prediction bases
on the fact that there are only two classes in sex identification, male and female,
thus we have more data to train and validate. In this section, we would like to
show the capability of some neural network models to identify speakers’ gender.

There is only one test condition for this task. The test condition includes 20
speakers in the training set, 10 speakers in the validation set and 40 speakers in
the test set. The number of male speakers and that of female speakers in each
set are equal, and all sets are mutually disjoint. The number of files per speaker
in the training, validation and test set are 3, 2 and 2 respectively. Using random
selection from the whole corpus, we produce 3 datasets in total.

We only use one type of frontend, MFCC+∆∆38, in this experiment. For the
backend, two types of models are considered:

• RNN: The same type of the RNN model we use in previous experiments.
Its hidden layers have 20 perceptrons.

• CNN: A CNN that consists of:

– A convolutional layer containing 6 feature maps of size (5, 5)

– A max pooling layer with shape (2, 2)

– A convolutional layer containing 12 feature maps of size (4, 4)

55

– A max pooling layer with shape (2, 2)

– An output layer with softmax activation function

The input of the CNN model has shape (15, 38) by stacking 15 frames of
MFCC+∆∆38.

Both systems are trained by RMSprop algorithm with rate 10−4. In the end,
RNN system achieves accuracy of 97.9%, and CNN system achieves accuracy of
98.3%. Both systems reach 100% correct on the validation set in less than 100
epochs.

5.5.5 Epilogue: Language identification

The same structure of DNNs could be applied to recognize the language of an
utterance. However, since the TIMIT corpus is in English, we could not use those
data in the language identification task. Unfortunately, at this moment, we do
not have access to any multilingual speech database. Therefore, the task is left
for future research.

56

Chapter 6

Conclusion and Future Work

Close-set text-independent speaker identification is a hard problem since its com-
plexity depends on the number of enrolled speakers. Researches in past decades
focused on small populations with telephone quality that resembled real condi-
tion. Some approaches achieved good results (section 5.1) with accuracy over
90%. Past research works were reported on different corpora, some of them were
private database while others were not specifically designed for speaker identifi-
cation. Moreover, some research used only a subset of a large corpus, making it
impossible to compare its performance without knowing the exact subset. Un-
fortunately, the latest techniques in speaker recognition usually evaluate their
performance on speaker verification rather than speaker identification, so there
is no recent corpus for speaker identification. Therefore, in order to assess a new
technique capability, it is essential to choose a widely used corpus and reproduce
test conditions as close as possible. For that reason, despite of its unrealistic
characteristics, TIMIT was chosen as our evaluation data.

ANNs and DNNs (chapter 4) has been proven as powerful techniques in speech
processing. Furthermore, a RNN is a DNN which is capable of capturing long
distance relations. Thus, it is especially suitable for sequential data.

Based on a successful RNN model in speech recognition (section 5.4.3), we pro-
posed our experimental model to solve the speaker identification task. MFCCs,
LFCCs (section 3.1.1, 3.1.2) in combination with their dynamic features (section
5.4.2) were extracted from speech signals as input to the backend. Our systems
were implemented in Python using the Theano library, and training was initial-
ized through a configuration file.

Several systems in [19] were chosen as references in our experiments. From
experiment results (section 5.5), our systems were less advanced than reference
systems when they were tested in small population due to limited amount of
validation data. FNN systems yielded better results than RNN systems in small
population evaluation, but in most cases, as the number of enrolled speakers in-
creased, the RNN structure had demonstrated its advances over the FNN struc-
ture. Moreover, using MFCCs with dynamic features yielded the best identifica-
tion results.

There are some highlights in using ANNs in speaker identification:

Pros:

• The ANN paradigm is powerful, yet simple and elegant, and ANNs
can be trained easily using gradient descent algorithms.

57

• With GPU-support scientific computing library like Theano, ANNs are
implemented effectively without spending too much effort (gradients
are computed directly rather than by propagating errors).

Cons:

• The most effective technique to train ANNs requires a validation dataset,
which is usually a part of training data.

• When using one large ANN for all speakers, the optimal size of each
layer in the network can only be determined by trial. Thus, when the
number of speakers increases, several configurations must be tried in
order to find a good size for the network.

• ANNs in general have too many hyperparameters: learning rate, up-
date rule, regularization, ... that could affect their performance. There-
fore, there are a huge amount of configurations that can be considered,
and the selected configuration may not be the optimal one.

• RNNs has shown its effectiveness over FNNs, but they are time-consuming.
It took a model for 100 speakers 5-6 days to finish 1000 epochs.

Further research directions can be explored to improve our understanding
about the capability of ANNs in speaker identification:

• Trying more configurations: A searching tactic through configuration space
(hyperparameter training) should help finding better configurations of the
system.

• Voting scheme: The target speaker is determined simply by summing and
normalizing probabilities of all frames. Other kinds of score combinations
or a second classifier may help improve the accuracy.

• Exploring other types of DNNs: Long short-term memory and deep belief
network are DNN structures that have more effective training schemes than
normal RNNs.

• Exploring DNN bottleneck features (section 4.6)

58

Bibliography

[1] Sayed Jaafer Abdallah, Izzeldin Mohamed Osman, and Mohamed Elhafiz
Mustafa. Text-independent speaker identification using hidden Markov mod-
el. World of Computer Science and Information Technology Journal (WC-
SIT), 2(6), 2012.

[2] Ethem Alpaydin. Introduction to Machine Learning. 2nd edition, 12 2009.
ISBN 9780262012430.

[3] Bishnu S. Atal. Effectiveness of linear prediction characteristics of the speech
wave for automatic speaker identification and verification. The Journal of
the Acoustical Society of America, 55(6):1304–1312, 1974.

[4] Homayoon Beigi. Fundamentals of Speaker Recognition. Springer, 2011 edi-
tion, 2011.

[5] J. Benesty, M. M. Sondhi, and Y. Huang. Introduction to speech processing.
In Jacob Benesty, M. Mohan Sondhi, and Yiteng (Arden) Huang, editors,
Springer Handbook of Speech Processing. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2007. ISBN 3540491252.

[6] Yoshua Bengio, Nicolas Boulanger-Lewandowski, and Razvan Pascanu. Ad-
vances in optimizing recurrent networks. In Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on, pages 8624–
8628. IEEE, 2013.

[7] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Raz-
van Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-Farley,
and Yoshua Bengio. Theano: a CPU and GPU math expression compiler.
In Proceedings of the Python for Scientific Computing Conference (SciPy),
2010. Oral Presentation.

[8] B. Bogert, M. Healy, and J. Tukey. The quefrency alanysis of time se-
ries for echoes: Cepstrum, pseudo-autocovariance, cross-cepstrum and saphe
cracking. In Proceedings of the Symposium on Time Series Analysis, pages
209—-243. John Wiley and Sons, Inc., 1963.

[9] J.P. Campbell, Jr. Speaker recognition: A tutorial. Proceedings of the IEEE,
85(9):1437–1462, 9 1997. ISSN 0018-9219. doi: 10.1109/5.628714.

[10] Paul Cuff. ELE 201: Information signals - course notes, 2015. URL http:

//www.princeton.edu/~cuff/ele201/kulkarni.html.

59

http://www.princeton.edu/~cuff/ele201/kulkarni.html
http://www.princeton.edu/~cuff/ele201/kulkarni.html

[11] George Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of control, signals and systems, 2(4):303–314, 1989.

[12] Steven B. Davis and Paul Mermelstein. Comparison of parametric represen-
tations for monosyllabic word recognition in continuously spoken sentences.
Acoustics, Speech and Signal Processing, IEEE Transactions on, 28(4):357–
366, 8 1980. ISSN 0096-3518. doi: 10.1109/TASSP.1980.1163420.

[13] Najim Dehak, Patrick Kenny, Réda Dehak, Pierre Dumouchel, and Pierre
Ouellet. Front-end factor analysis for speaker verification. Audio, Speech,
and Language Processing, IEEE Transactions on, 19(4):788–798, 2011.

[14] John R. Deller, Jr., John G. Proakis, and John H. Hansen. Discrete Time
Processing of Speech Signals. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 1st edition, 1993. ISBN 0023283017.

[15] Li Deng and Dong Yu. Deep learning: Methods and applications. Now
Publisher Inc, 2014. ISBN 1601988141.

[16] S. B. Dhonde and S. M. Jagade. Feature extraction techniques in speaker
recognition: A review. International Journal on Recent Technologies in Me-
chanical and Electrical Engineering (IJRMEE), 2(5):104–106, 5 2015. ISSN
2349-7947.

[17] Jeffrey L. Elman. Finding structure in time. Cognitive science, 14(2):179–
211, 1990.

[18] Zheng Fang, Zhang Guoliang, and Song Zhanjiang. Comparison of different
implementations of MFCC. Journal of Computer Science and Technology,
16(6):582–589, 11 2001. ISSN 1000-9000.

[19] Kevin R. Farrell, Richard J. Mammone, and Khaled T. Assaleh. Speaker
recognition using neural networks and conventional classifiers. Speech and
Audio Processing, IEEE Transactions on, 2(1):194–205, 1994.

[20] Sadaoki Furui. 40 Years of Progress in Automatic Speaker Recognition, vol-
ume 5558 of Lecture Notes in Computer Science, pages 1050–1059. 6 2009.

[21] Herbert Gish and Michael Schmidt. Text-independent speaker identification.
Signal Processing Magazine, IEEE, 11(4):18–32, 1994.

[22] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training
deep feedforward neural networks. In International conference on artificial
intelligence and statistics, pages 249–256, 2010.

[23] John J. Godfrey, Edward C. Holliman, and Jane McDaniel. SWITCH-
BOARD: Telephone speech corpus for research and development. In Acous-
tics, Speech, and Signal Processing, 1992. ICASSP-92., 1992 IEEE Interna-
tional Conference on, volume 1, pages 517–520. IEEE, 1992.

[24] Rachel Hall. The math of waves, 2014. URL http://thesoundofnumbers.

com/category/lectures/.

60

http://thesoundofnumbers.com/category/lectures/
http://thesoundofnumbers.com/category/lectures/

[25] Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos,
Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam
Coates, and Andrew Y. Ng. Deepspeech: Scaling up end-to-end speech
recognition. arXiv preprint arXiv:1412.5567, 2014.

[26] A. L. Higgins, L. G. Bahler, and J. E. Porter. Voice identification using
nearest-neighbor distance measure. In Acoustics, Speech, and Signal Process-
ing, 1993. ICASSP-93., 1993 IEEE International Conference on, volume 2,
pages 375–378. IEEE, 1993.

[27] Geoffrey E. Hinton and Ruslan R. Salakhutdinov. Reducing the dimension-
ality of data with neural networks. Science, 313(5786):504–507, 2006.

[28] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning
algorithm for deep belief nets. Neural computation, 18(7):1527–1554, 2006.

[29] S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Diploma
thesis, Institut f. Informatik, Technische Univ. Munich, 1991.

[30] Kurt Hornik. Approximation capabilities of multilayer feedforward networks.
Neural networks, 4(2):251–257, 1991.

[31] Xuedong Huang, Alex Acero, and Hsiao-Wuen Hon. Spoken Language Pro-
cessing: A Guide to Theory, Algorithm, and System Development. Prentice
Hall PTR, 1st edition, 2001. ISBN 0130226165.

[32] Charles Jankowski, Ashok Kalyanswamy, Sara Basson, and Judith Spitz.
NTIMIT: A phonetically balanced, continuous speech, telephone band-
width speech database. In Acoustics, Speech, and Signal Processing, 1990.
ICASSP-90., 1990 International Conference on, pages 109–112. IEEE, 1990.

[33] Ye Jiang, Kong-Aik Lee, Zhenmin Tang, Bin Ma, Anthony Larcher, and
Haizhou Li. PLDA modeling in i-vector and supervector space for speaker
verification. In INTERSPEECH, 2012.

[34] J. Kacur, R. Vargic, and P. Mulinka. Speaker identification by k-nearest
neighbors: Application of PCA and LDA prior to KNN. In Systems, Signals
and Image Processing (IWSSIP), 2011 18th International Conference on,
pages 1–4, 6 2011.

[35] Patrick Kenny, Gilles Boulianne, Pierre Ouellet, and Pierre Dumouchel.
Speaker and session variability in GMM-based speaker verification. Audio,
Speech, and Language Processing, IEEE Transactions on, 15(4):1448–1460,
2007.

[36] Yochai Konig, Larry Heck, Mitch Weintraub, and Kemal Sonmez. Nonlinear
discriminant feature extraction for robust text-independent speaker recog-
nition. In Proc. RLA2C, ESCA workshop on Speaker Recognition and its
Commercial and Forensic Applications, pages 72–75, 1998.

[37] Jacques Koreman, Dalei Wu, and Andrew C. Morris. Enhancing speaker
discrimination at the feature level. In Speaker Classification I, pages 260–
277. Springer, 2007.

61

[38] LISA lab. Convolutional neural networks (LeNet), 2015. URL http://

deeplearning.net/tutorial/lenet.html.

[39] Yann A. LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller.
Efficient backprop. In Neural networks: Tricks of the trade, pages 9–48.
Springer, 2012.

[40] Howard Lei and Eduardo López Gonzalo. Mel, linear, and antimel frequency
cepstral coefficients in broad phonetic regions for telephone speaker recogni-
tion. In INTERSPEECH, pages 2323–2326, 2009.

[41] Y. Linde, A. Buzo, and R. M. Gray. An algorithm for vector quantizer
design. Communications, IEEE Transactions on, 28(1):84–95, 1 1980. ISSN
0090-6778. doi: 10.1109/TCOM.1980.1094577.

[42] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlinear-
ities improve neural network acoustic models. In Proc. ICML, volume 30,
2013.

[43] Macquarie University. Speech waveforms. URL http://clas.mq.edu.au/

speech/acoustics/waveforms/speech_waveforms.html.

[44] Jorge Martinez, Hector Perez, Enrique Escamilla, and Masahisa Mabo Suzu-
ki. Speaker recognition using Mel frequency cepstral coefficients (MFCC) and
vector quantization (VQ) techniques. In CONIELECOMP 2012, 22nd In-
ternational Conference on Electrical Communications and Computers, 2012.

[45] Pavel Matějka, Ondřej Glembek, Fabio Castaldo, Md Jahangir Alam,
Oldřich Plchot, Patrick Kenny, Lukáš Burget, and Jan Honza Černocky.
Full-covariance ubm and heavy-tailed PLDA in i-vector speaker verification.
In Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE Interna-
tional Conference on, pages 4828–4831. IEEE, 2011.

[46] Tomoko Matsui and Sadaoki Furui. Comparison of text-independent speaker
recognition methods using VQ-distortion and discrete/continuous HMM’s.
Speech and Audio Processing, IEEE Transactions on, 2(3):456–459, 1994.

[47] Tom M. Mitchell. Machine Learning, chapter 4. McGraw-Hill Education, 3
1997. ISBN 0070428077.

[48] Alan V. Oppenheim. Superposition in a Class of Nonlinear Systems. PhD
thesis, MIT, 1965.

[49] Boris Teodorovich Polyak. Some methods of speeding up the convergence
of iteration methods. USSR Computational Mathematics and Mathematical
Physics, 4(5):1–17, 1964.

[50] Alan B. Poritz. Linear predictive hidden Markov models and the speech sig-
nal. In Acoustics, Speech, and Signal Processing, IEEE International Con-
ference on ICASSP’82., volume 7, pages 1291–1294. IEEE, 1982.

[51] Mohamed Qasem. Vector quantization. URL http://www.mqasem.net/

vectorquantization/vq.html.

62

http://deeplearning.net/tutorial/lenet.html
http://deeplearning.net/tutorial/lenet.html
http://clas.mq.edu.au/speech/acoustics/waveforms/speech_waveforms.html
http://clas.mq.edu.au/speech/acoustics/waveforms/speech_waveforms.html
http://www.mqasem.net/vectorquantization/vq.html
http://www.mqasem.net/vectorquantization/vq.html

[52] Thomas F. Quatieri. Discrete-Time Speech Signal Processing: Principles
and Practice. Prentice Hall, 2001.

[53] Lawrence R. Rabiner and Ronald W. Schafer. Introduction to Digital Speech
Processing. Now Publishers Inc, 2007.

[54] Douglas A. Reynolds. Speaker identification and verification using gaus-
sian mixture speaker models. The Lincoln Laboratory Journal, 8(2):173–192,
1995.

[55] Douglas A. Reynolds. Automatic speaker recognition: Current approaches
and future trends. Speaker Verification: From Research to Reality, pages
14–15, 2001.

[56] Douglas A. Reynolds and Richard C. Rose. Robust text-independent speaker
identification using Gaussian mixture speaker models. Speech and Audio
Processing, IEEE Transactions on, 3(1):72–83, 1995.

[57] Douglas A. Reynolds, Thomas F. Quatieri, and Robert B. Dunn. Speaker
verification using adapted gaussian mixture models. Digital signal processing,
10(1):19–41, 2000.

[58] Fred Richardson, Douglas Reynolds, and Najim Dehak. Deep neural network
approaches to speaker and language recognition. 2015.

[59] Laszlo Rudasi and Stephen A Zahorian. Text-independent talker identifi-
cation with neural networks. In Acoustics, Speech, and Signal Processing,
1991. ICASSP-91., 1991 International Conference on, pages 389–392. IEEE,
1991.

[60] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural
Networks, 61:85–117, 2015.

[61] Mike Schuster and Kuldip K. Paliwal. Bidirectional recurrent neural net-
works. Signal Processing, IEEE Transactions on, 45(11):2673–2681, 1997.

[62] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning Research, 15(1):1929–
1958, 2014.

[63] S. S. Stevens and J. Volkmann. The relation of pitch to frequency: A revised
scale. The American Journal of Psychology, 53(3):329–353, 1940.

[64] Naftali Z. Tisby. On the application of mixture AR hidden Markov models to
text independent speaker recognition. Signal Processing, IEEE Transactions
on, 39(3):563–570, 1991.

[65] Vibha Tiwari. MFCC and its applications in speaker recognition. Interna-
tional Journal on Emerging Technologies, 1(1):19–22, 2010.

[66] R. Togneri and D. Pullella. An overview of speaker identification: Accuracy
and robustness issues. Circuits and Systems Magazine, IEEE, 11(2):23–61,
2011. ISSN 1531-636X.

63

[67] James S. Walker and Gary W. Don. Mathematics and Music: Composition,
Perception, and Performance. Chapman and Hall/CRC, 2013.

[68] WebExhibits. Newton and the color spectrum. URL http://www.

webexhibits.org/colorart/bh.html.

[69] H. Zeinali, H. Sameti, and B. BabaAli. A fast speaker identification method
using nearest neighbor distance. In Signal Processing (ICSP), 2012 IEEE
11th International Conference on, volume 3, pages 2159–2162, 10 2012. doi:
10.1109/ICoSP.2012.6492008.

[70] Xinhui Zhou, Daniel Garcia-Romero, Ramani Duraiswami, Carol Espy-
Wilson, and Shihab Shamma. Linear versus mel frequency cepstral coef-
ficients for speaker recognition. In Automatic Speech Recognition and Un-
derstanding (ASRU), 2011 IEEE Workshop on, pages 559–564. IEEE, 2011.

[71] Victor Zue, Stephanie Seneff, and James Glass. Speech database develop-
ment at MIT: TIMIT and beyond. Speech Communication, 9(4):351–356,
1990.

64

http://www.webexhibits.org/colorart/bh.html
http://www.webexhibits.org/colorart/bh.html

List of Figures

1.1 Some areas in speech processing (adapted from [9]) 3
1.2 Structures of (a) speech identification and (b) speech verification

(adapted from [55]) . 4

2.1 Sampling a sinusoidal signal at different sampling rates; f - signal
frequency, fs - sampling frequency (adapted from [4]) 8

2.2 Quantized versions of an analog signal at different levels (adapted
from [10]) . 9

2.3 An adult male voice saying [a:] sampled at 44100 Hz: (a) waveform
(b) spectrum limited to 1400 Hz (c) spectrogram limited from 0
Hz to 8000 Hz . 10

2.4 Periodic and aperiodic speech signals (adapted from [43]). The
waveform of voiceless fricative [h] is aperiodic while the waveforms
of three vowels are periodic. 10

2.5 Illustration of the Helmholtz’s experiment (adapted from [24]) . . 11
2.6 Decomposing a speech signal into sinusoids 12
2.7 Block diagram of filter bank view of short-time DTFT 14
2.8 Two types of spectrograms: (a) original sound wave (b) wide-band

spectrogram using 5 ms Hanning windows (c) narrow-band spec-
trogram using 23 ms Hanning windows 15

2.9 A homomorphic system with multiplication as input and output
operation with two equivalent representations (adapted from [48]) 16

3.1 Relationship between the frequency scale and mel scale 19
3.2 A filter bank of 10 filters used in MFCC 20
3.3 A filter bank of 10 filters used in LFCC 21
3.4 A codebook in 2 dimensions. Input vectors are marked with x

symbols, codewords are marked with circles (adapted from [51]). . 23
3.5 A left-to-right HMM model used in speaker identification (adapted

from [1]). 26
3.6 Computing GMM supervector of an utterance 28

4.1 A perceptron . 31
4.2 A feedforward neural network with one hidden layer 33
4.3 A simple recurrent neural network 34
4.4 A bidirectional recurrent neural network unfolded in time 34
4.5 An illustration of 3-dimensional convolution (adapted from [38]) . 36
4.6 Sigmoid and tanh function . 36

5.1 The process to convert speech signals into MFCC and its derivatives 43

65

5.2 Hamming and Hanning windows of length 64 44
5.3 The structure of our DNN model 47
5.4 A closer look at the recurrent layer 47
5.5 The visualization of dropout (adapted from [62]) 49
5.6 An example of initializing and training a speaker identification

system. Here the front-end returns 13 MFCCs and the back-end
has 3 hidden layers with 50 neurons at each level. 50

5.7 Identification accuracy of our systems and two best systems from
[19] (MNTN: modified neural tree network, FSVQ: full-search VQ)
as a function of training duration 54

5.8 Identification accuracy as a function of population size 55

66

List of Tables

2.1 Summary of Fourier analysis techniques (reproduced from [10]) . . 12
2.2 Corresponding terminology in spectral and cepstral domain (re-

produced from [4]) . 16

5.1 Speaker identification accuracy of different algorithms on various
sizes of speaker population (reproduced from [19]). Data were
selected from 38 speakers of New England subset of TIMIT corpus.
FSVQ (128): full-search VQ with codebook size of 128; TSVQ (64):
tree-structured VQ with cookbook size of 64; MNTN (7 levels):
modified neural tree network pruned to 7 levels; ID3, CART, C4,
BAYES: different decision tree algorithms. 39

5.2 Speaker identification accuracy of different algorithms on the SWB-
DTEST subset of Switchboard corpus 39

5.3 Speaker identification accuracy of different algorithms on a subset
of King corpus (reproduced from [56]). VQ-50 and VQ-100: VQ
with codebook size of 50 and 100; GMM-nv: GMM with nodal
variances; GMM-gv: GMM with a single grand variance per model;
RBF: radial basis function networks; TGMM: tied GMM; GC:
Gaussian classifier. 40

5.4 TIMIT distribution of speakers over dialects (reproduced from [71]) 40
5.5 The distribution of speech materials in TIMIT (reproduced from

[71]) . 41
5.6 Parameters of the front-end and their meanings 46
5.7 Hyperparameters of the back-end and their choices 49
5.8 Description of testing front-ends 51
5.9 Hidden layer size with regard to population size 51
5.10 Identification accuracy of different testing systems 52
5.11 Identification accuracy with different input context sizes. The best

context size in each case is marked as bold. 53
5.12 Hidden layer size with regard to population size 54
5.13 Learning rate with regard to population size 54

67

List of Abbreviations

ANN Artificial neural network

CNN Convolutional neural network

DCT-II Discrete cosine transform II

DFT Discrete Fourier Transform

DNN Deep neural network

DTFT Discrete-Time Fourier Transform

EM Expectation maximization

FNN Feedforward neural network

FS Fourier Series

FT Fourier Transform

GMM Gaussian mixture model

HMM Hidden Markov model

IDFT Inverse discrete Fourier transform

JFA Joint factor analysis

kNN k nearest neighbors

LPC Linear prediction coefficients

LPCC Linear predictive cepstral coefficients

MAP Maximum a posteriori

MFCC Mel-frequency cepstral coefficients

ML Maximum likelihood

MLP Multilayer perceptron

ReL Rectified linear

ReLu Rectified linear unit

RNN Recurrent neural network

68

UBM Universal background model

VQ Vector quantization

69

	Introduction
	Problem Definition
	Components of a Speaker RecognitionSystem
	Thesis Outline

	Speech Signal Processing
	Speech Signals and Systems
	Analog and digital signals
	Sampling and quantization
	Digital systems

	Signal Representation: Time Domain and Frequency Domain
	Frequency Analysis
	Short-Term Processing of Speech
	Short-time Fourier analysis
	Spectrograms

	Cepstral Analysis

	Approaches in Speaker Identification
	Speaker Feature Extraction
	Mel-frequency cepstral coefficients
	Linear-frequency cepstral coefficients
	Linear predictive coding and linear predictive cepstral coefficients

	Speaker Modeling Techniques
	k-nearest neighbors
	Vector quantization and clustering algorithms
	Hidden Markov model
	Gaussian mixture model: The baseline

	I-Vector: The State-of-the-Art

	Deep Neural Networks
	Artifical Neural Networks at a Glance
	Deep Learning and Deep Neural Networks
	Recurrent Neural Networks
	Convolutional Neural Networks
	Difficulties in Training Deep NeuralNetworks
	Neural Network in Speaker Recognition

	Experiments and Results
	Corpora for Speaker IdentificationEvaluation
	TIMIT and its derivatives
	Switchboard
	KING corpus

	Database Overview
	Reference Systems
	Experimental Framework Description
	Preprocessing
	Front-end
	Back-end
	Configuration file

	Experiments and Results
	Experiment 1: Performance on small sizepopulations
	Experiment 2: Performance with regard to training duration
	Experiment 3: Performance on large populations
	Experiment 4: Sex identification
	Epilogue: Language identification

	Conclusion and Future Work
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations

