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Abstract

The goal of this thesis is to extract synonym pairs from a large collection of text,

using minimal supervision. The initial motivation is to use the extracted synonyms

to improve machine translation evaluation. The approach is based on the word

embeddings popularized by Mikolov et al. (2013a). We analyze how distributional

word vectors can be used to extract synonyms for English and German, and what

are the frequent error categories. We propose the measure relative cosine similarity,

to increase the precision of the extraction. Furthermore, we show that by combining

differently trained word embeddings, or using a part-of-speech tagger, the perfor-

mance of the extraction can be improved. The final system is evaluated manually,

and in the task of machine translation evaluation for both languages. We show our

system can extract synonyms from part-of-speech tagged text that can be used to

improve machine translation evaluation.

Keywords: synonym extraction, minimal supervision, machine translation evaluation,

word embeddings
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1 Introduction

In this thesis we explore different methods to extract synonyms from text. We try to

do this using as little supervision as possible, with the goal that the same method can

be applied to multiple languages. With supervision we mean, the use of resources that

involve some type of linguistic annotation (other than word boundaries), or methods that

were trained using such resources.

1.1 Motivation

The initial motivation for this task comes from machine translation evaluation. In machine

translation evaluation a hypothesis translation is compared to a reference translation. A

hypothesis translation is a translation that is to be evaluated and possibly machine made.

A reference translation is a translation that was made by a proficient human translator.

To evaluate if a machine translation system works well, a lot of hypothesis translations are

compared to reference translations. This comparison between hypothesis and reference

is often done automatically. If a hypothesis sentence and reference sentence have the

same meaning, the hypothesis translation is considered a good translation. A frequently

used evaluation system that makes this comparison is Meteor (Denkowski and Lavie,

2014; Banerjee and Lavie, 2005). Meteor makes an alignment between the hypothesis and

reference sentence to see to what extend they convey the same meaning. It searches for

the best alignment from a set of possible alignments. The possible alignments are defined

by what parts of the two sentences can match. Finding possible matches is done by means

of four modules:

1. Exact matching

2. Stemmed matching

3. Synonym matching

4. Paraphrase matching

In the exact matching module, words that are exactly the same are matched. In the

stemmed matching module, words are matched that are the same after stemming. In

the paraphrase matching module, paraphrases of each other are matched. The synonym

module, matches words that are synonyms.

(1) The practiced reviewer chose to go through it consistently .

(2) The expert reviewers chose to go through it in a coherent manner .
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Figure 1: Meteor 1.5 alignment of hypothesis sentence (1), and reference sentence (2).

As an example, the best alignment for the hypothesis sentence (1) and reference sentence

(2) is shown in Figure 1. In the example, the exact matches are indicated by the black

filled dot. The stemming module matched “reviewer” with “reviewers”. The paraphrase

module matched “consistently” with “in a coherent manner”, and the synonym module

matched “practiced” with “expert”.

Three of these matching modules use language dependent resources. Paraphrases and

synonyms come from a pre-constructed lexical database, and stemming happens with a

pre-trained stemmer. For this reason, not all modules are available for all languages.

Currently, in Meteor 1.5, the synonym module is only available for English. It uses

synonyms from the lexical database WordNet (Miller, 1995). Manual construction of

lexical resources such as WordNet can be expensive, and time consuming. Also, the

resource is to be created for each different language.

A resource that is available for many languages is raw text. Recently, research on word

embeddings and distributional word vectors has contributed greatly to the value of unan-

notated text data. Many methods for training word vectors that reflect word similarity

have been proposed that rely on the distributional hypothesis, i.e. words that are used

and occur in the same contexts tend to purport similar meanings (Harris, 1954). Two out

of these methods are the continuous bag-of-words model, and the skip-gram model from

Mikolov et al. (2013a), which we will describe in the next section. It can be interesting to

see if the lexical information that is captured in the word vector spaces can be extracted,

and stored in a lexical database such as WordNet.

This thesis aims to extract synonyms from large collections of unannotated text. The

motivations are the recent advances in distributional semantics and the large application

domain of lexical databases, such as WordNet. Our major application of interest in the

current work is machine translation evaluation.
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1.2 Word and Synonym

In most recent work on synonym extraction the synonyms from WordNet are used for

evaluation. In WordNet, synonyms are described as “words that denote the same concept

and are interchangeable in many contexts”. In the current work, our notion of words is

merely a string of characters. Since there is homography, i.e. one word can have different

lemmas, with different meanings and origins, we modifiy this notion of synonyms slightly.

We think of synonyms as: words that denote the same concept and are interchangeable

in many contexts, with regard to one of their senses.

1.3 Outline

In Chapter 2, we will proceed to describe the distributional word vectors we used in

our experiments, and the related work in synonym extraction. In Chapter 3 we describe

different experiments in which we explore synonym extraction using the continuous bag-of-

words model, and the skip-gram model. Chapter 4 describes and evaluates few methods

that introduce some supervision, such as using a synonym thesaurus from a different

language together with a partial translation dictionary, or using a part-of-speech tagger.

In Chapter 5 we do an evaluation of a system that combines different proposed findings,

for English and German. We evaluate manually, and by using the extracted synonyms

for the task of machine translation evaluation. Chapter 6 concludes the thesis by giving

a summary of the findings and possibilities for future work.
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2 Related Work

2.1 Distributional Word Vectors

Distributional word vectors, or word embeddings, are word representations that can be

constructed from raw text, or a collection of documents, based on their context. The rep-

resentation of each word will be a vector of numbers, usually real numbers. In some cases

linguistic information, such as word dependency information, or morphological informa-

tion, is also used during the construction process (Levy and Goldberg, 2014; Luong et al.,

2013). These word vector representations can then be used to calculate, for example,

word similarity and have a wide application domain.

In the last years, many new methods have been proposed to construct distributional word

vectors based purely on raw text (Mikolov et al., 2013a; Pennington et al., 2014). Some

methods also use the document structure that can be present in the data (Huang et al.,

2012; Liu et al., 2015b,a).

In this work, we experiment mostly with word vectors trained using the continuous bag-of-

words model (CBoW), and the skip-gram model (SG) developed by Mikolov et al. (2013a).

It has been shown that these vectors, especially for the skip-gram model, can also encode

relations between words in a consistent way (Mikolov et al., 2013b). This means that they

not only encode word similarity, but also similarity between pairs of words. For example,

the offset between the vectors for “queen” and “king” lies very close to the offset between

“woman” and “man”, i.e. v(queen)− v(king) ≈ v(woman)− v(man).

This property has been exploited to extract hypernyms from raw text by Fu et al. (2014)

and Tan et al. (2015). In Fu et al. (2014), they automatically learned, in a supervised

way, a piecewise linear projection that can map a word to its hypernym in the word vector

space, for Chinese. To do this they clustered the vector offsets (v1 − v2), and then found

a projection for each cluster. Using this method they could succesfully find hypernym

pairs. In Tan et al. (2015) they searched for hypernym pairs, but in English. They also

used a projection to project a word to its hypernym in the word vector space. However,

instead of automatically learning this projection by using a thesaurus, they concatenated

the words “is”, and “a” into an “is a” token in the corpus, and used this as projection.

So, v(w) + v(is a) would lie very close to the vector for the hypernym of word w.

Both the CBoW and the SG model can be seen as a feed forward neural network, that

is constructed from a word, and its context. The architecture of the neural network is

shown in Figure 2. In the CBoW model a word representation is trained that is optimal

for predicting the word, given its surrounding words, i.e. the contextual window. In the

SG model, the word representation is trained such that the contextual window can be

predicted from the word representation. In Figure 2, the word is represented as w(t).
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Figure 2: Continuous bag-of-words architecture on the left, and skip-gram on the right.

The contextual window, here of size 2 (two words to the left, and two to the right), is

represented as w(t − 2), w(t − 1), w(t + 1), w(t + 2). The final word vector is built from

the weights from the projection layer. During training the window iterates over the text,

and updates the weights of the neural network. Two training methods were proposed by

Mikolov et al., hierarchical softmax, and negative sampling. In hierarchical softmax, the

weights are updated based directly on the difference between the predicted and desired

target word. In negative sampling, the weights are also updated based on a sample of

randomly picked non-target words. It has been shown to be fast enough for training

state-of-the-art word vectors, using the word2vec toolkit1.

Depending on the application, it can be benificial to modify pre-trained word vectors

towards specific properties. Faruqui et al. (2014) have shown a method to refine a vec-

tor space using relational information, such synonymy and hypernymy, from a lexical

database. For the task of antonym detection, Ono et al. (2015) transformed a pre-trained

vector space by maximizing the similarity between synonyms and maximizing the simi-

larity between antonyms. Since we would like to use as little supervision as possible, we

did not resort to these particular methods. Another method to transform vector spaces

is canonical correlation analysis (CCA). This method was used by Faruqui and Dyer

(2014) to project separately trained vectors from two different languages to a common

vector space, using a word-to-word translation dictionary. We also experimented with

this method so we will explain this method in more detail in the next paragraph. A

different method that builds multilingual word vectors is used by Hermann and Blunsom

(2014). This method uses a parallel corpus to train word vectors for both languages. The

reason to choose the CCA method is because we can then make use of bigger monolingual

corpora, with probably a less domain-restricted vocabulary.

In canonical correlation analysis, as used by Faruqui and Dyer (2014), the goal is to find

1https://code.google.com/p/word2vec/
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a projection for each vector space that maps words from each space to a common vector

space. Words that have the same meaning (translations) should have a high correlation

in the common vector space.

Let Ve and Vd be two vector vocabularies, say for English and German, and let φe be a

projection vector that maps vectors from Ve to the common vector space Vc, and φd a

projection that maps vectors of German words to the commmon space Vc. For the words

“for” and “für”, that are translations of each other, let v(for) and v(für) be their vectors

in Ve and Vd respectively. The correlation ρ between φev(for) and φdv(für) is calculated

as given in Equation 1, where E stands for expectation.

ρ(x, y) =
E[x · y]√
E[x2]E[y2]

(1)

Given a set of word-to-word translations, CCA finds a φe and φd such that the correlation

is maximized for the set of translations. Advantages of this method are that even though

not for every word there is a translation, the full vocabulary of both languages can still be

projected to the common space. Also, the number of dimensions of the two vector spaces

doesn’t have to be of the same size, which allows for optimizing the individual vector

spaces before projecting them. How we exactly applied this method will be explained

in Chapter 4. The implementation2 we used for CCA is the one from Faruqui and Dyer

(2014).

2.2 Synonym Extraction

Many methods that have been developed for synonym extraction use three main ideas.

Firstly, the distributional hypothesis (Van der Plas and Tiedemann, 2006; Gupta et al.,

2015; Saveski and Trajkovski, 2010; Pak et al., 2015; Plas and Bouma, 2005). Secondly,

the assumption that words that translate to the same word have the same, or a very

similar, meaning (Van der Plas and Tiedemann, 2006; Gupta et al., 2015; Saveski and

Trajkovski, 2010; Lin et al., 2003) . And third, the use of linguistic patterns that are

typical, or atypical for synonyms to occur in (Lin et al., 2003; Yu et al., 2002).

Van der Plas and Tiedemann (2006) used both distributional word similarity, and trans-

lational context for synonym extraction in Dutch. They used a big monolingual corpus

to construct a measure for distributional similarity, which was based on grammatical re-

lations. Furthermore, they used different parallel corpora, and automatic alignment, for

the construction of a translational context. The authors remark that when only using

the distributional similarity there were some word categories that show up frequently but

2https://github.com/mfaruqui/eacl14-cca
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are not synonyms, which are antonyms, (co)hyponyms, and hypernyms. When using the

translational context, these error categories were less frequent, and more synonyms were

found.

These word categories seem a common problem when using purely distributional methods

(Pak et al., 2015; Plas and Bouma, 2005; Lin et al., 2003). However, the advantage of

using methods based on distributional properties is that the coverage is usually larger

than that of manually constructed corpora, as also mentioned by Lin et al. (2003). They

tackle the problem of discriminating synonyms from other strongly related words using

linguistic patterns. For example, some English patterns in which synonyms hardly occur

that they mention are “from X to Y”, and “either X or Y”.

In Yu et al. (2002), instead of filtering by means of linguistic patterns, they used partic-

ular patterns in which synonyms occur frequently. Their application domain was finding

synonyms for gene and protein names. They found that in MEDLINE abstracts synonyms

are often listed by a slash or comma symbol. This is probably a more domain dependent

pattern. Some other patterns they found were “also called”, or “known as”, and “also

known as”. In this thesis, we do not resort to a pattern based approach, as they are

language and domain dependent.
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3 Synonyms in Word Vector Space

In this Chapter we explain different experiments we did to analyze how synonyms behave

in different word vector spaces. First, we analyze the effect of contextual window size,

the number of dimensions, and the type of word vectors on the precision of extraction,

for English and German. Secondly, we take a closer look at the categories of words

that are (cosine) similar in the vector space. Then, we take a look at cosine similarity,

and the measure of relative cosine similarity. Last, we examine the overlap of the most

similar words in different vector spaces. We begin by describing the data set, and the

preprocessing.

3.1 Data and Preprocessing

For English and German, we use a 150 million word section of the NewsCrawl corpus from

the Workshop on Machine Translation 20153. As preprocessing, for both languages, we

apply lowercasing, tokenization, and digits are conflated (3.45 → 5.55). In this thesis, we

do not deal with multi word units. For example, for a separable verb in either German

or English (e.g. abholen / to pick up) can only be found as one word in infinitive, or past

perfect (abgeholt/picked up).

We only consider the vocabulary of words that occur at least 10 times in the corpus to

ensure that the vectors have a minimum quality. We randomly split the vocabulary into a

training, development, and testing sections with proportions 8:1:1 respectively. In Table

1, statistics about these sections are given.

Language Corpus V V≥10 SV≥10
Vtrain Strain Vdev Sdev Vtest Stest

English 150M 650.535 136.821 21.098 109.454 16.882 13.681 2.116 13.683 2.100

German 150M 2.421.840 279.325 16.304 223.458 13.056 27.933 1.599 27.933 1.649

Table 1: Dataset Statistics: V indicates the size of the full corpus vocabulary, V≥10 indicates

the vocabulary size for words with counts greater or equal to 10. Sx indicates the number of

words for which at least one synonym is known, that also occurs in V≥10.

For evaluation, we use the synonyms from WordNet 3.0 for English, and GermaNet 10.0

for German. In both WordNet and GermaNet words carry a corresponding part of speech.

In WordNet these are nouns, verbs, adjectives, and adverbs. In GermaNet, synonyms are

given for nouns, verbs, and adjectives. Because in the experiments in this chapter the

part of speech of words is unknown, we consider the synonyms of each word to be those

of all the parts of speech it can potentially have in WordNet or GermaNet.

3http://www.statmt.org/wmt15/translation-task.html
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3.2 Evaluation

We evaluate several experiments in terms of precision, recall and f-measure. Precision

is calculated as the proportion of correctly predicted synonym word pairs from all pre-

dictions. Because synonymy is symmetric, we consider the word pair (w1, w2) equivalent

to (w2, w1) during evaluation. Recall is calculated as the proportion of synonym pairs

that were correctly predicted from all synonym pairs present in WordNet, or GermaNet.

In the experiments we sometimes only search for synonyms for words in a subset of the

vocabulary (e.g. Strain). In this case, recall is calculated only with regard to the synonym

pairs from WordNet or GermaNet that involve a word from the mentioned vocabulary.

F-measure is the harmonic mean of precision and recall and is given by Equation 2.

F = 2 · precision · recall
precision+ recall

(2)

3.3 Quantitative Analysis of Training Parameters

In this experiment, we trained CBoW, SG, and Global Vectors (GloVe) (Pennington

et al., 2014) with different training parameters, and evaluated synonym precision for the

{1st, 2, 4}-most-similar word(s), for vocabulary Strain. With similarity we refer to cosine

similarity. The parameters we varied are the contextual window size, and the number of

dimensions of the vectors. The window size varied over {2, 4, 8, 16, 32}. The number

of dimensions varied over {150, 300, 600, 1200}. The experiment is conducted for both

English and German, and used 150M words per language. We fixed the number of training

iterations, 5 for CBoW and SG, and 25 for GloVe. For the CBoW and SG training we

used negative sampling with 5 negative samples. These are the default values given by

the respective authors.

The results for the CBoW and SG vectors, for both English and German, are shown in

Tables 2, 3, 4, and 5.

We excluded the results for the GloVe vectors, as they showed lower precision, and to

limit the scope of the study. The general trends of the GloVe vectors were that they

had higher precision for larger window sizes. The vectors with highest precision of 0.067

for English were of dimension 300, with a window size of 32. For German, the highest

precision was 0.055, and the vectors were of dimension 1200, with a window size of 32 as

well.
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English CBoW

dim. 150 300 600 1200

win. 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

P-1 0.077 0.076 0.072 0.066 0.058 0.084 0.083 0.079 0.072 0.068 0.086 0.086* 0.081 0.074 0.068 0.083 0.083 0.082 0.073 0.067

P-2 0.058 0.056 0.055 0.051 0.046 0.062 0.061 0.059 0.055 0.052 0.063 0.063 0.060 0.056 0.052 0.061 0.061 0.060 0.055 0.050

P-4 0.039 0.039 0.038 0.036 0.032 0.042 0.042 0.041 0.039 0.036 0.043 0.043 0.042 0.039 0.036 0.042 0.042 0.041 0.039 0.036

Table 2: Precision for different window sizes and number of dimensions, using the CBoW model, for English.

English Skip-gram

dim. 150 300 600 1200

win. 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

P-1 0.069 0.062 0.055 0.048 0.044 0.069 0.062 0.053 0.048 0.044 0.066 0.059 0.046 0.043 0.039 0.061 0.051 0.039 0.034 0.030

P-2 0.050 0.045 0.040 0.037 0.034 0.050 0.046 0.039 0.036 0.033 0.049 0.044 0.035 0.032 0.030 0.045 0.039 0.029 0.026 0.024

P-4 0.034 0.032 0.028 0.026 0.024 0.034 0.032 0.028 0.025 0.024 0.033 0.030 0.025 0.023 0.021 0.031 0.026 0.020 0.018 0.017

Table 3: Precision for different window sizes and number of dimensions, using the Skip-gram model, for English.

German CBoW

dim. 150 300 600 1200

win. 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

P-1 0.073 0.082 0.082 0.083 0.080 0.076 0.084 0.086 0.086 0.082 0.076 0.087 0.089* 0.088 0.080 0.076 0.083 0.086 0.085 0.081

P-2 0.052 0.057 0.057 0.058 0.056 0.054 0.060 0.062 0.061 0.059 0.054 0.060 0.062 0.062 0.059 0.053 0.059 0.062 0.060 0.058

P-4 0.034 0.036 0.038 0.038 0.037 0.036 0.039 0.041 0.040 0.039 0.035 0.039 0.041 0.041 0.040 0.035 0.039 0.041 0.040 0.039

Table 4: Precision for different window sizes and number of dimensions, using the CBoW model, for German.

German Skip-gram

dim. 150 300 600 1200

win. 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

P-1 0.065 0.068 0.066 0.064 0.064 0.064 0.069 0.064 0.062 0.060 0.063 0.064 0.057 0.051 0.049 0.061 0.059 0.046 0.039 0.035

P-2 0.048 0.049 0.049 0.046 0.046 0.048 0.049 0.048 0.045 0.046 0.047 0.046 0.042 0.039 0.037 0.046 0.043 0.035 0.030 0.027

P-4 0.032 0.033 0.032 0.032 0.031 0.033 0.033 0.032 0.031 0.031 0.031 0.031 0.029 0.027 0.026 0.031 0.029 0.025 0.022 0.020

Table 5: Precision for different window sizes and number of dimensions, using the Skip-gram model, for German.
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In general, it can be noticed from Tables 2, 3, 4, and 5 that the CBoW vectors give higher

precision than SG for both German and English. A reason for this could be that CBoW

vectors tend to be slightly more syntactical compared to SG vectors. It could be that the

syntactical constraint on synonyms, as they are to appear in similar contexts, has enough

influence for CBoW vectors to perform better.

It can also be noticed that for English, smaller contextual windows, 2 and 4, generally give

better precision, for both CBoW and SG vectors. For German, the optimal window size

lies between 8 and 16 for CBoW, and around 4 for SG vectors. A possible explanation for

the difference in optimal window size between English and German can be the difference in

types of synonyms that are available. As WordNet contains synonyms for nouns, verbs,

adjectives and adverbs, whereas GermaNet does not include synonyms for adverbs. It

could be that adverbs require only a small contextual window to be predicted, compared

to nouns, verbs, and adjectives. Another observation that can be made is that for both

English and German the optimal window size for SG tends to be slightly lower than for

CBoW vectors. Again, this can be due to training difficulty. A larger window can make

the training of the SG model more difficult, as a bigger context is to be predicted from

one word.

To get an impression of the performance if we would use the most-similar words as syn-

onyms we calculated precision, recall and f-measure on the test set Stest. For English,

using choose the CBoW vectors of dimension 600 with window size 4, precision is 0.11,

recall 0.03, and f-measure is 0.05. For German, using a CBoW model of dimension 600

with a window size of 8, precision is 0.08, recall is 0.05, and f-measure 0.06. For both

languages, these scores are very low. In the next section, we look at some frequent error

categories, with the goal to get more insight in the reason behind these low scores.

3.4 Distributionally Similar Words

Only looking at precision, calculated on WordNet or GermaNet, allows us to compare

different vector spaces with regard to finding synonyms. However, it might not reflect

actual precision, due to sparsity of WordNet and GermaNet. Also, it gives only few cues

for possible improvements.

For this reason, we also looked more in depth to the most-similar words. For 150 randomly

chosen English words from Strain we looked at the 1st-most-similar word, and 2nd-most-

similar words and categorized them. This was done manually. Categories were made

based on what was found during the analysis. The word vectors used to create the 1st-

most similar, and 2nd-most-similar words were from the CBoW model of dimension 600,

with window size 2, from the previous experiment. The results from this analysis are

shown in Table 6. The categories we found are the following:
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• WordNet-Synonyms : Synonyms as given in WordNet.

• Human-Synonyms : Synonyms judged by a fluent, but non-native, English speaker.

• Spelling Variants : Abbreviations, differences between American and British spelling,

and differences in hyphenations.

• Related: The two words are clearly semantically related, but not consistently enough

to make a separate category.

• Unrelated / Unknown: The relation between the two words is unknown.

• Names : Names of individuals, groups, institutions, cities, countries or other topo-

graphical areas.

• Co-Hyponyms : The two words share a close hypernym.

• Inflections / Derivations : Inflections or derivations other than plural.

• Plural : The found word is the plural version of the given word.

• Frequent collocations : The two words occur frequently next to each other.

• Hyponyms : The found word is conceptually more specific.

• Contrastive: There appears an opposition or big contrast between the meaning of

the two words.

• Hypernym: The found word is conceptually more general.

• Foreign: A non-English word.

What can be noticed from Table 6 is that the number of human-synonyms is about twice

as big as the number of synonyms given by WordNet, considering that WordNet considers

spelling variants also to be synonyms. This suggests that the actual precision may lie a

corresponding amount higher. As WordNet would give a precision of 0.12 for this set of

words, where the human annotation gives 0.25. A reason for this big difference can be that

resources such as WordNet are usually constructed by manually adding the synonyms for

a given word. Which requires the annotator to think of all the word senses of a word, and

their synonyms. This can be a difficult task. Here, the two words are presented and the

question is whether they are synonyms. It is probably easier to find the corresponding

word senses of both words in this case.

The two biggest error categories are the related words, and unknowns. Since both cat-

egories are rather vaguely defined, and consisting of many subcategories we will not go

into much more detail on these. There appears some overlap with the error types that
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Category 1st-most-similar 2nd-most-similar Example

WordNet-Synonyms 18 7 laundry / washing

Human-Synonyms 29 20 masking / obscuring

Spelling variants 8 4 commander / cmdr

Related 27 33 head-on / three-vehicle

Unrelated / Unknown 13 20 gat / por

Names 15 15 consort / margherete

Co-hyponyms 15 13 sunday / saturday

Inflections / Derivations 12 10 figuring / figured

Plural 11 2 tension / tensions

Frequent Collocations 7 5 dragon / lantern

Hyponyms 5 12 swimsuit / bikini

Contrastive 3 7 rambunctious / well-behaved

Hypernym 2 4 laundry / chores

Foreign 2 4 inhumation / éventualité

Table 6: Counts per category for the most similar word and second most similar word, of 150

randomly chosen English words, in a CBoW model of dimension 600 with a window size of 2.

were also found by Lin et al. (2003), Plas and Bouma (2005) and, Pak et al. (2015),

namely co-hyponyms, and hyponyms. However, contrastives and hypernyms do not seem

as frequent in our experiment. Some other major error categories we found are different

types of inflections and derivations, and in particular plurals. This category is for our

application, machine translation evaluation, not a very big problem, as the inflections

might already have been matched by the stem module of Meteor. Another category that

is fairly frequent are names. The reason is probably that names might not have many

single-word synonyms. The error category of frequent collocations can be explained by

the fact that both words usually occur together, and are thus trained on a set of very

similar contexts. This effect, that more frequently co-occurring words get similar vectors,

we tried to tackle by adapting the training method. This is described in the next section.

3.5 Neighbors as Negative Samples

As observed in the previous section, frequently co-occurring words seem to get similar

vectors. However, we do not expect words more likely to be synonyms when they co-occur

more frequently. We tried to remove this effect when training the vectors. Normally, when

training the vector for a word w, a number of randomly chosen words are picked from

the vocabulary, i.e. negative samples, to estimate the learning gradient. Instead of only

choosing arbitrary words from the corpus, we also added the word that directly precedes

w, and the word directly following it. We expected that this way frequent collocating

words would get more different representations in the vector space.
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Random samples Neighboring samples P-1

5 0 0.11

5 2 0.10

4 2 0.10

3 2 0.10

Table 7: Precision for the most-cosine similar word when changing the number and type of

negative samples.

We trained CBoW vectors of dimension 600, with a window size of 2, using 5 randomly

chosen negative samples. We also trained CBoW vectors of the same dimension and

window size, but 3 or 4 randomly chosen samples, and the two neighboring words as

samples. For these vectors we evaluated the synonym precision of the most-cosine-similar

word for the vocabulary Strain. The results are shown in Table 7.

What can clearly be seen from the table, is that adding the neighboring words as negative

samples does not improve the precision. The neighboring words seem even worse samples

than randomly chosen samples. This can be seen when we compare the vectors with 5

random samples and no neighboring samples, with the vectors using 3 random samples

and the two neighboring samples. Since sometimes training vectors with the same training

parameters can give slightly different vectors we repeated this experiment. The second

time, the precision values were almost the same, and the same conclusions could be drawn.

Since this approach did not seem to work, and frequent collocations are not the biggest

error category we did not further research the error category of frequent collocations. We

expect that it might also be possible to resolve the error category by concatenating the

frequent collocations in the corpus.

3.6 Relative Cosine Similarity

One idea we tested with the goal to improve precision was to only consider word pairs that

have very high cosine similarity. In practice this would mean, to set a threshold, and only

consider those word pairs that have a cosine similarity higher than the threshold. Our

expectation was that synonyms are most similar compared to the other word relations.

We plotted precision, recall and f-measure on Strain against the cosine similarity threshold.

This is shown in Figure 3.

What we found however, is that even when you increase the cosine similarity threshold,

precision does not increase. It does not even reach the precision we got from our baseline,

of taking the most-similar word. This indicates that cosine similarity on its own is not a

good indicator for synonymy. Still, we get higher precision with choosing the most-similar

word. We manually looked at the top-10 most similar words of the 150 words from the
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Figure 3: Precision (blue), recall (red),

and f-measure (green) on Strain plotted

against the cosine similarity threshold.

Figure 4: Cosine similarity against n-

most similar, for the 3-most-similar words.

If the most-similar word is synonym its line

is green, and for related words purple.

previous section, and their cosine similarity. We noticed that when a synonym, inflection

or contrastive occurs in the top-10, their cosine similarity is usually much higher than

that of the other words in the top-10. That is, the difference in cosine-similarity between

the most-similar word, and the second-most-similar word is very high for these categories.

When we looked at this for other categories such as, co-hyponyms, unknowns, and just

related words this was not the case. This can be seen when we plot the cosine similarity

of the 3-most-similar words for synonyms, and related words taken from the previous

experiment. This is shown in Figure 4.

In this figure two things can be noticed. Firstly, it is hardly possible to separate the

start, at position 1, of the green synonyms from the purple related words by means of a

horizontal cosine threshold. This corresponds to the observation we made earlier, that a

cosine similarity threshold does not increase precision. Secondly, many green lines tend to

decrease, and many purple lines stay relatively horizontal. This indicates that, in general,

the difference in cosine similarity between synonyms and other similar words (from the top-

10) is bigger compared to for example co-hyponyms. We also found this bigger difference

for inflections, and contrastives. This observation could be used to increase precision, as

we can possibly filter out some co-hyponyms, related words, and unknowns.

To test this hypothesis, we choose a difference measure to calculate similarity. We cal-

culate similarity, relative to the top-n most similar words. We calculate relative cosine

similarity between word wi and wj as in Equation 3.

rcsn(wi, wj) =
cosine similarity(wi, wj)∑

wc∈TOPn
cosine similarity(wi, wc)

(3)

This will give words that have a high cosine similarity compared to other words in the

top-10 most-similar words a high score. If all words in the top-10 most similar words
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Figure 5: Precision (blue), recall (red), and

f-measure (green) on Strain plotted against the

relative cosine similarity threshold.

Figure 6: Relative cosine similarity against

n-most similar position, for the 3-most-similar

words. If the most-similar word is synonym its

line is green, and for related words purple.

have almost an equal cosine similarity, they will get a lower score. When we do the same

experiment again, changing the similarity threshold and plotting precision, recall and f-

measure, but for relative cosine similarity instead, we can see that precision goes up when

we increase the rcs-threshold. This is shown in Figure 5. In Figure 6, it can also be

noticed that when we look at the relative cosine similarity for three most similar words of

words where the most similar word is synonym (green), or just a related word (purple),

part of the synonyms is now separable from the related words by a horizontal line, i.e. an

rcs-threshold. This confirms our earlier hypothesis.

In this experiment, we used WordNet synonyms to calculate precision, recall and f-

measure, and find the optimal rcs10-threshold. However, what can be noticed is that

the tilting point for the precision to go up lies at an rcs10-threshold of 0.10. This is not a

coincidence, as 0.10 is also the mean of the relative cosine similarities for 10 words. If a

word has an rcs10 higher than 0.10, it is more similar than an arbitrary similar word. If

for a language synonyms are more similar compared to other similar word relations, we

can find this tilting point at 1
n
, where n is the number of most-similar words we consider

for calculating rcsn.

So, relative cosine similarity gives us the flexibility to increase precision, at the cost

of recall. Also, we can identify the tilting point for precision to go up. Since it is a

normalized measure we expect that the optimal thresholds for different languages will lie

very close to each other, which makes it easy to generalize the method to other languages,

without explicit synonym data in the respective language. This under the assumption

that synonyms are one of the most similar words, among similar words in the respective

language and vector space, as appears to be the case for English, and also German. That

it also holds for German will be shown in the next section, particularly in Figure 7.
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Constant Varies P (both) P (both|synonym) P (both|synonym)− P (both)

CBoW win. 2 dimension 300 & 600 0.38 0.67 0.29

CBoW dim. 600 window 2 & 4 0.31 0.60 0.30

CBoW dim. 600 window 4 & 8 0.32 0.60 0.28

CBoW dim. 600 window 2 & 8 0.24 0.52 0.28

dim. 300 win. 2 CBoW & SG 0.19 0.48 0.29

Table 8: Overlap between differently trained pairs of vector spaces, for arbitrary words, and

synonyms.

3.7 Overlap of Similar Words in Different Vector Spaces

In this section, we explore if we could use a combination of different vector spaces, trained

using different training parameters to improve the synonym extraction. For this we an-

alyze the most-cosine-similar words of vocabulary Strain in different vector spaces. We

considered pairs of vector spaces with different training parameters. Then, we calculated

the probability that an arbitrary word is most-cosine-similar in both vector spaces, which

we call P (both). We also calculated the probability that a synonym is most-cosine-similar

in both vector spaces, which we call P (both|synonym). We altered the dimension, window

size and training method (CBoW vs. SG). We mostly considered CBoW vectors, as they

gave highest precision in previous experiments. The results of this experiment are shown

in Table 8.

What can be seen in this table is that for all changes in parameters P (both|synonym) is

considerably higher than P (both). This indicates that it can be a good cue for synonymy

if a word is most-cosine-similar in differently trained vector spaces. We can also see that

the general overlap seems highest when only changing the dimension, and lowest when

changing the training paradigm, and fairly constant when doubling the window size. For

all conditions, P (both|synonym)−P (both) is fairly constant. This indicates that the cue

for synonymy is almost equal for all pairs.

Because the numbers seem quite constant, we expected that it is maybe just the inflections

that overlap between both vector spaces. For this reason we repeated the experiment, but

the second time we only considered word-pairs that have a Levenshtein distance bigger

than 3, to exclude the majority of the inflections. The results are shown in Table 9. In

this table we can see that the observations made earlier still hold.

To use this observations in our earlier synonym extraction method we calculate rcsm10 in

each vector space m for the 10 most-cosine-similar words on Strain in each space, and

simply sum the rcs10 of the different models. The summed relative cosine similarity

between word wi and wj is calculated as in Equation 4, where TOPm
10(wi) is the set
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Constant Varies P (both|ld > 3) P (both|synonym, ld > 3) P (both|ld > 3)− P (both|synonym, ld > 3)

CBoW win. 2 dimension 300 & 600 0.31 0.61 0.30

CBoW dim. 600 window 2 & 4 0.23 0.55 0.32

CBoW dim. 600 window 4 & 8 0.24 0.56 0.32

CBoW dim. 600 window 2 & 8 0.17 0.48 0.31

dim. 300 win. 2 CBoW & SG 0.12 0.42 0.30

Table 9: Overlap between differently trained pairs of vector spaces, for arbitrary words, and

synonyms, when only considering word-pairs with a Levenshtein distance larger than 3.

containing the 10 closest cosine-similar words of wi in vector space m.

rcsM10 =
M∑
m

rcsm10(wi, wj) if wj ∈ TOPm
10(wi)

0 otherwise
(4)

As in the previous section, we again plot precision, recall, and f-measure against the

threshold, but now using the summed rcs10 of a CBoW model, and a SG model. We did

this for both German and English. For English, the CBoW model has dimension 600, and

was trained with a window size of 4. The SG model is of dimension 150, and window size

2. For German, the CBoW model is of dimension 600 as well, and but has a window size

of 8. The results are shown in Figure 7. If we compare it to the results from Figure 5, we
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Figure 7: Precision (blue), recall (red), and f-measure (green), on Strain for English (left) and

German (right), using the summed rcs10 score for a CBoW and SG model.

can see that for English, the general precision, recall, and f-measure lies slightly higher

using two vector spaces. Also, we can see that the tilting point now lies at around 0.2

instead of 0.1. It lies twice as high, as we sum rcs10 of two spaces. Also, our expectation

that for different languages this tilting point lies at the same threshold seems correct for

German. The bump in both graphs around a threshold of 0.1 is because some words only

occur in the top-10 most similar words in one of the two vector spaces.

When we choose the threshold that gives optimal f-measure on the Strain, and use it to

extract synonyms for Stest, we find for English a WordNet precision of 0.12, a recall of

18



0.5, and an f-measure of 0.7. Compared to our baseline, of only taking the most similar

word precision is 1% higher, recall is 2% higher, and f-measure 1%. For German, we find

a precision of 0.12, recall of 0.07, and f-measure of 0.09. Compared to the baseline, it

means precision went up with 4%, recall with 2%, and f-measure with 3%. From this,

we conclude that combining differently trained models helps to extract synonyms, both

in precision, and recall. Also, combining the scores from the different vector spaces does

not prevent us from finding the tilting point, from where precision rises.
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4 Adding Resources

We looked at using a part-of-speech tagger to improve the synonym extraction in different

ways. Furthermore, we briefly explored the possibility to make clusters of word relations,

and see how synonymy is distributed over these clusters. In the last experiment, we also

look at the discriminative power of these relational clusters after projecting them to a

common English–German vector space by means of CCA.

4.1 Homography

The initial motivation to resort to POS-tagging is homography, i.e. one word (here, string

of non-space characters) has several word-senses. In Figure 8, an example of homography

of the words <phone>, and <call> is given. The word-senses, and their respective part

of speech are shown in the leaves of the tree. The dotted link represents the synonym

relation between the word-senses of <phone>, and <call> for the action of making a

telephone call.

<phone>

a speech sound

Noun

a telephone

Noun

to phone

Verb

<call>

to call

Verb

to name

Verb

a cry

Noun

Figure 8: Schematic representation of the synonym relation between the corresponding word-

senses of the words <phone>, and <call>.

Homography can be a problem for finding synonyms when using one vector for each word,

as the vector for <phone> is trained on all the different word-senses that occur in the

corpus. In the case of <phone>, it is probably used more frequently as the noun telephone,

or as a verb for the action of calling, compared to the noun meaning of a speech sound,

in our news corpus. This can make it difficult to find synonyms with regard to this less

frequent meaning.

To train vector representations for each word-sense, ideally we would disambiguate each

word in the corpus first, and then train the vectors on these disambiguated meanings.

To our knowledge, there is not yet the possibility to do completely unsupervised word

sense disambiguation. As can be seen in the example in Figure 8, some of the word-senses

can be separated by their POS. Since POS-tagging is available for many languages, and

there are also options for unsupervised POS-tagging (Christodoulopoulos et al., 2010) we

experimented with this.
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4.2 Simple Part-of-Speech Tagging

To very naively separate some word-senses we preprocessed both the English and Ger-

man corpora from the previous chapter with the Stanford POS-tagger (version 3.5.2)

(Toutanova et al., 2003), using the fastest tag-models. Afterwards, we rewrote the POS

tags to the following simplified tags:

• Nouns

• Verbs

• Adjectives

• Adverbs

• Other (no tag)

A table with the simplification rules for the tags can be found in the Appendix. An

example of what the text looks like after tagging and simplification is given in Sentence

(1).

(1) Every day N , I walk V my daily Adj walk N .

In the example we can see that walk V is separated from walk N, which will give us two

different vectors. We chose these four tags as they correspond to the POS-tags provided

in WordNet and GermaNet. In this way, we can have a straightforward way to evaluate on

the vocabulary (e.g. Strain). For each word, we now evaluate with regard to the synonyms

that have the same POS in WordNet or GermaNet.

Another advantage of having these simple POS-tags is that we can filter bad synonyms

from the 10-most cosine similar words. Synonyms are very similar also on a grammatical

level, as they are interchangeable in many contexts, so they should be of the same part-

of-speech.

Because the vocabulary has changed, and the average frequency of words is now lower, as

some words are split, we again analyze what word vector training parameters work best.

We train CBoW and Skip-gram vectors on the tagged corpus, varying the dimensions

over {150, 300, 600}, and the contextual window size over {2, 4, 16, 32}. We calculate

precision for the first-most-similar and second-most-similar word for all words in Strain.

The results are shown in Tables 10, 11, 12, and 13.

If we look at table 10, we can see that the highest precision is obtained using a CBoW

model with a window size of 4, and 600 dimensions. If we compare this to the best
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CBoW (Tagged)

dim. 150 300 600

win. 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

P-1 0.079 0.080 0.073 0.067 0.060 0.084 0.085* 0.080 0.074 0.066 0.084 0.084 0.081 0.073 0.069

P-2 0.058 0.056 0.053 0.049 0.045 0.061 0.061 0.059 0.055 0.050 0.061 0.062 0.059 0.055 0.053

Table 10: Precision for different window sizes and number of dimensions, using the CBoW

model, for POS-tagged English.

Skip-gram (Tagged)

dim. 150 300 600

win. 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

P-1 0.068 0.065 0.057 0.049 0.045 0.069 0.066 0.057 0.052 0.046 0.067 0.062 0.052 0.046 0.041

P-2 0.050 0.047 0.041 0.038 0.036 0.050 0.047 0.042 0.038 0.035 0.050 0.045 0.038 0.034 0.031

Table 11: Precision for different window sizes and number of dimensions, using the Skip-gram

model, for POS-tagged English.

CBoW (Tagged)

dim. 150 300 600

win. 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

P-1 0.086 0.092 0.094 0.092 0.090 0.092 0.100 0.100 0.099 0.094 0.090 0.102 0.103* 0.101 0.101

P-2 0.060 0.065 0.066 0.065 0.063 0.065 0.069 0.072 0.070 0.069 0.064 0.070 0.072 0.071 0.071

Table 12: Precision for different window sizes and number of dimensions, using the CBoW

model, for POS-tagged German.

Skip-gram (Tagged)

dim. 150 300 600

win. 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

P-1 0.084 0.085 0.086 0.082 0.080 0.085 0.085 0.083 0.077 0.077 0.082 0.079 0.072 0.066 0.065

P-2 0.059 0.061 0.061 0.059 0.058 0.061 0.063 0.059 0.057 0.056 0.058 0.059 0.053 0.049 0.047

Table 13: Precision for different window sizes and number of dimensions, using the Skip-gram

model, for POS-tagged German.

results on the non-tagged corpus, from Table 2 in Chapter 3, the optimal window size

has stayed the same. Also CBoW vectors still perform better than Skip-gram vectors,

and also low windows work best for Skip-gram vectors. However, the best performing

number of dimensions went from 600 to 300 when adding the POS-tag for English. A

possible explanation can be that since the part of speech tags separate some of the word

context, based on grammatical properties, the same information can be encoded with less

dimensions.

For German, the precision went up when adding the POS-tags. This can be seen if we

compare the precision from Tables 4 and 5 with Tables 12 and 13.The best vectors are

still CBoW vectors of dimension 600, with a contextual window of 8. When we tried

to find the reason why German has such a precision increase, compared to English, we

found that it lies partially at the level of POS-tag simplification. As in the German
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part-of-speech tagset, the Stuttgart-Tübingen tagset (STTS), names are not considered as

nouns. For this reason we did not simplifify them to an N-tag, and they were excluded

during evaluation. This was not the case for English. Names are one of the frequent error

categories we found in Chapter 3.

This highlights another use of the POS-tagger, which is that we can simply exclude

categories for which we don’t want to find synonyms, and maybe even further filter bad

synonym candidates from the 10-most-similar words. An example would be the frequent

error category of plurals, but also other types of inflections, which can be filtered, as they

are given a different POS-tag (before simplification). These insights will be used in the

final system, presented in Chapter 5.

To compare using the simplified POS-tags with the previous approaches we also calculated

precision, recall and f-measure on Stest. We found, compared to the baseline of looking

only at the most-similar word, that for English precision did not change (11%). Recall

increased from 3% to 4%, and f-measure as from 5% to 6%. For German, precision

increased with 8% to 12%, recall from 5% to 7%, and f-measure from 6% to 9%.

From this experiments we conclude that POS-tags can help to increase synonym extraction

in three ways. Firstly, they can separate some of the word-senses, however this effect is

minor. Secondly, they can filter words that are not grammatically similar enough, such

as plurals. And third, they can exclude synonyms for categories for which there no, or

very few synonyms, such as names.

4.3 Clusters of Vector Offsets

In this section, we look at clusters of vector offsets (v1 − v2). In previous research on

especially Skip-gram vectors, semantic or lexical relations between words seem to be

encoded in vector offsets (Mikolov et al., 2013b; Tan et al., 2015; Fu et al., 2014). We do

not know if synonymy is also represented by the offset of vectors. In this thesis, we do

not directly try to find a vector offset that represents synonymy. We expect that if we

can make sensible relational clusters, this can already give information on if two words

are synonyms or not. For example, if the vector offset of two words is in the plural-

cluster, they are probably not synonyms. Not only the relation between the two words,

but also the word class of the words might give information on synonymy. For example,

as mentioned in the previous section, it can be beneficial to recognize names, as they have

very few synonyms. For this reason, we also experiment with concatenating the vector of

a word with its vector offset (v1||v1 − v2). In this way, We hope to find relations that go

together with particular word categories.

We consider 1500 English word pairs, constructed by taking 1500 arbitrary words from
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CCA Normal

CboW SG CboW SG

v1 − v2 0.001 0.001 0.002 0.002

v1||v1 − v2 0.002 0.003 0.005 0.003

Table 14: Variance in synonym probability of word-pair clusters for different word-pair vectors,

in different vector spaces.

Strain and their most-cosine-similar word. We cluster the word pairs in 100 clusters, using

k-means clustering. For this, we use the scikit-learn implementation of k-means in Python

Pedregosa et al. (2011).

We calculate for each cluster the probability of a word to be a synonym, i.e. the proportion

of synonyms in the cluster. We expect that a good clustering has a high variance in their

synonym probability distribution over the clusters. If the variance is high, this means

some clusters contain many synonyms, and some contain only few clusters. In this case,

the cluster of a word-pair gives a strong cue on synonymy. When calculating the variance

we only considered clusters that contain at least 10 word-pairs, since very small clusters

have an unreliable estimate of their synonym probability.

We make clusters for both v1 − v2 and v1||v1 − v2 vectors, for the CBoW and Skip-gram

vectors. We also look at CboW and Skip-gram vectors that were projected using canonical

correlation analysis (CCA), as explained in Chapter 2. This can be interesting, because

if it is possible to get good clusters in such common vector space, it might be possible

to use synonym resources in one language, to find improve finding synonyms in a second

language.

To apply CCA, we require a table of word-to-word translations between English and Ger-

man. We constructed this from the English-to-German, and German-to-English trans-

lation dictionaries from Freedict.org (Eyermann, 2015). We added the translations from

either dictionary for all words in the respective vector vocabularies. This resulted in

32,387 word-to-word translations.

Because k-means clustering gives different clusters depending on the initialization of the

centroids, we repeated the experiments three times, and report averaged results. The

results are shown in Table 14.

What can be seen from the variance is that Skip-gram and CBoW clusters seem to perform

equally well in separating synonyms when using the vector offset. We can also see that

performance is slightly worse after projecting the vectors with CCA. This is in line with

the findings of Faruqui and Dyer (2014), where they also found slightly worse performance

in word-relation task when projecting Skip-gram vectors.
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When we consider not only the offset, but the concatenation of the word-vector and the

offset, we find better separating clusters. Again, after projecting, the variance is lower,

especially for CBoW. We also looked manually at each of the clusterings. We noticed that

when using only the offset vector, clusters generally represent relations, such as plurals,

or present and past tense. Also, we noticed that the relations are generally clearer for

Skip-gram clusters. However, when we looked at the concatenation of the vector and the

offset the clusters seemed less clear. They seemed to be a mix between word categories

and relations. So, the reason we think why the clusterings of concatenated vectors have

bigger variance is because it is clustering the word categories maybe has higher impact

on the synonym probability. In this thesis we did not look further into the properties of

these clusters. But, it could be interesting to explore further in future work.

We also experimented with combining the synonym probability of a word pair’s cluster,

with the relative cosine score. We did this in a straightforward way, by taking the product

of the relative cosine similarity of a word-pair, and the probability that the pair is a

synonym based on its cluster. So the combined score for a word pair (wi, wj) is calculated

as in Equation 5, where g(wi, wj) is either the offset between the vectors of wi and wj, or

the vector of wi concatenated with the offset between the two vectors. And cl(·) assigns

the cluster of the vector of the word-pair.

score(wi, wj) = rcsn(wi, wj) · P (synonym|cl(o(wi, wj)) (5)

We made clusters in CBoW and Skip-gram vectors of all words in Strain and their most-

cosine-similar word, and optimized the threshold of the combined score on Strain. Then

we used the optimal threshold to extract synonym from the test set Stest. When using

clusters of the offset of the two word vectors, precision is 0.08, recall 0.07, and f-measure

0.07. When using clusters of the concatenation of the vector for the first word, and the

offset of the two word vectors, precision is also 0.08, recall is 0.6, and f-measure is 0.7.

We observe that the recall is higher when only using the vector offsets, even though the

variance for this condition in the experiment is lower, compared to using the concatenated

condition. This might indicate that the clustering in the experiment might be too small

to make proper estimations for their synonym probability.

From this observations we conclude that there is still room for improvement with regard

to exploiting the vector offsets for synonym extraction. Mainly, because the results on

the test set are lower than when not using the clusters.
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5 Final System and Evaluation

In this Chapter we will describe the final systems, for English and German, that we con-

structed from the findings from the previous Chapters. We evaluate the system perfor-

mance manually, and by using the extracted synonyms in machine translation evaluation.

5.1 The System

For the final systems we used bigger corpora than those used in the previous experiments.

We used 500 million word sections from the same corpora as before, the English and

German NewsCrawl 2014 corpora from the workshop on machine translation in 2015. We

part-of-speech tagged the corpora using the same parser and models as in Chapter 4.

However, we do not simplify the POS-tags, but only tag words with any of the different

tags for nouns, verbs, adjectives or adverbs. We exclude the tags for names, as they have

few to no synonyms. In Sentence (1), an example is given of a tagged sentence.

(1) I often RB like VBP to walk VB my daily JJ walk NN .

The exact tags we consider for English and German are given in the Appendix. It should

be noted that in the German tagset, there is only one tag for nouns, that covers both

singular and plural nouns. This might results in more errors. For machine translation

evaluation we do not expect this to have a big negative impact, as plurals would also have

been matched by Meteor in the stemming module. However, it might result in a worse

human evaluation.

For English, we train CBoW vectors of dimension 300, with a contextual window size of

4. We also train Skip-gram vectors of dimension 300, with a contextual window size of 2.

For German, we train vectors with the same specifications, except for the German CBoW

model we use a contextual window of size 8, and for Skip-gram a window of size 4.

We only consider words that occur at least 20 times in the corpus. The English vocabulary

we consider, i.e. that is frequent and is tagged, contains 115,632 words, and the German

vocabulary 311,664.

We then calculate the summed relative cosine similarity of both the CBoW and the Skip-

gram vectors for the full vocabulary with regard to the top-10 most cosine-similar words.

We select words with a summed rcs10 similarity higher than 0.22. We choose 0.22 as it lies

slightly above the expected tilting point of 0.2. For English, we obtain 16,068 word-pairs.

For German, we obtain 96,998 word-pairs. It should be noticed that the word-pairs are

also tagged, which can be useful depending on the application.
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5.2 Manual Evaluation

To evaluate the precision of the obtained synonyms, we took a random sample of 200

word pairs for both languages. The word pairs were then annotated for synonymy. The

annotation categories are synonyms, non-synonyms, or unknown. In the description the

unknown category is indicated for when an annotator does not know any of the two words.

The annotators could also indicate hesitation, but still had to give a preference for any of

the three categories.

For English, annotation is done by two annotators. One annotator is native English

speaker, and one fluent non-native speaker. For German, annotation is also done by two

annotators. One annotator is native German speaker, and one intermediate non-native

speaker.

We discriminate several situations:

SS: Both annotators annotate synonymy

NN: Both annotators annotate non-synonymy

SU: One annotator annotates synonymy, and the other unknown

NU: One annotator annotates non-synonymy, and the other unknown

SN: One annotator annotates synonymy, and the other non-synonymy

UU: Both annotators annotate unknown

We assume that if both annotators do not know the words, there is no synonymy. We

can calculate a lower bound of precision (P−syn), and an upper bound of precision (P+
syn).

For the lower bound, we only consider word-pairs of category SS as synonyms, and the

rest as non-synonyms. For the upper bound, we consider word-pairs of category SS and

SU as synonyms, and the rest as non-synonyms.

We also calculate a lower and upper bound for non-synonymy (P−¬syn, and P+
¬syn), and the

percentage of disagreement on the two categories synonym, and non-synonym (Pdisagree).

This way we can get a better idea of how many clear errors there are, and how many

errors are discutable.

The results for both English and German are shown in Table 15. What can be noticed is

that for German, the precision is quite a bit lower than for English. However, the number

of found word-pairs is much higher. One reason can be that the threshold should be higher

in order to get comparable precision. A second reason can be that for English the error

categories, such as plurals, are separated by a POS-tag, resulting in higher precision. In
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Manual Evaluation P−syn P+
syn P−¬syn P+

¬syn Pdisagree PUU

English 0.55 0.59 0.15 0.21 0.16 0.05

German 0.30 0.35 0.42 0.49 0.15 0.03

Table 15: Manual evaluation of the final systems.

the German tagset these are not separated. We found that 10% of the German word-pairs

in this set are plurals. For English, there were no such cases. For our application, these

errors should not be a big problem, as plurals would otherwise have been matched by the

stemming module of Meteor.

The percentage of unknown words seems fairly small, and about the same for both lan-

guages. Also the disagreement on synonymy seems about the same for both languages

(around 15%).

5.3 Application in Machine Translation Evaluation

To see if the extracted synonyms can be beneficial in an application we also used them in

machine translation evaluation. We use them in the synonym module of the Meteor 1.5

evaluation metric. As mentioned in the introduction, Meteor already uses synonyms for

English, but not yet for German. For English, we add our 16,068 word-pairs to the existing

resource (WordNet) that Meteor uses. For German, the synonym resource will consist

only of our 96,998 word-pairs. Meteor weighs the scores from each matching module.

For English, we use the default weights as mentioned by Denkowski and Lavie (2014), as

synonyms were already incorporated for English. For German, we use the default weights

for all other modules, except we use the same weight for the synonym module as used for

English (0.80).

We evaluate in two steps. First, we look at the impact of adding the synonyms on the

Meteor score of a set of hypothesis and reference sentences. Secondly, we look if the

updated Meteor score also better correlates with human judgments. For both steps, we

use the data from the metrics task of the workshop on machine translation 20144 (WMT

2014) (Machácek and Bojar, 2014).

To evaluate the impact of adding the synonyms on the Meteor score, we use the news-test

reference sentences from the language pair German-English, for English. This set consists

of around 3000 segments, or sentences. For German, we use the reference sentences

from the language pair English-German. This set consists of around 2700 segments,

or sentences. We choose the news-test hypothesis sentences generated by the UEDIN-

SYNTAX machine translation system for both English, and German (Williams et al.,

4http://www.statmt.org/wmt14/results.html
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2014). As this systems has high scores for each language pair, based on the human-

annotated system rankings (Bojar et al., 2014).

We calculate the Meteor score for the following two condition:

1. Using all four modules, with the default weights, and the existing synonym resource

(no synonyms for German).

2. Using all four modules, using default weights, and adding our synonyms to the

existing resource.

Meteor score English German

Condition 1 0.27658 0.36048

Condition 2 0.27674 0.36298

Table 16: Meteor scores, using the existing synonym resource (condition 1), and when adding

our extracted synonyms (condition 2).

In Table 16, the Meteor scores for each condition and each language is shown. What

can be noticed from the results is that in both cases the Meteor score is higher when

adding the extracted synonyms. This means more synonym alignments could be made

between the hypothesis, and reference segments of each language, after adding the new

synonyms. Furthermore, it can be noticed that for German adding the synonyms has a

bigger impact than for English. This can be caused by two things. Firstly, because there

were no synonyms yet for German. Secondly, we extracted more synonyms for German

than for English, as German has a bigger vocabulary size.

To evaluate if we do better machine translation, we evaluate the correlation to human

judgments over the hypotheses sentences of different machine translation systems. We

calculate segment level Kendall’s τ correlation as calculated in the WMT 2014 for the

default Meteor 1.5 metric, and after adding our synonyms to the synonym module. This

correlation coefficient is expected to predict the result of the pairwise comparison of two

translation systems. In the WMT 2014, this is calculated using human judgments on

a ranking task of 5 systems per comparison. The correlation is then calculated as in

Equation 6, where Concordent is the set of human comparisons for which the Meteor

score suggests the same order, and Discordant is the set of all human comparisons for

which a given metric disagrees. When the Meteor score gives the same rankings as the

human judgments correlation will be high, and vise versa.

τ =
|Concordant| − |Discordant|
|Concordant|+ |Discordant|

(6)

To calculate the correlation, we used the human judgments from the metric task of the

WMT 2014, and calculated the Meteor scores for hypotheses from the 13 translation
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German-English segment-corr. system-corr.

Condition 1 0.334* 0.927*

Condition 2 0.333* 0.927*

English-German segment-corr. system-corr.

Condition 1 0.238* 0.263*

Condition 2 0.243* 0.277*

Table 17: System level correlations, and segment level correlations for the default Meteor 1.5

score (condition 1), and when adding the extracted synonyms (condition 2)

systems for the language pair German-English, and the 18 translation systems for English-

German.

We also calculated the system level correlation, which indicates to what degree the evalu-

ation metric orders the translation systems in the same order as the human judgments do,

based on the total system score that the evaluation metric gives to each system. This is

calculated as the Pearson correlation, as described by Machácek and Bojar (2014), or in

Equation 7, where H is the vector of human scores of all systems translating in the given

direction, M is the vector of the corresponding scores as predicted by the given metric,

here Meteor. H̄ and M̄ are their means respectively.

r =

∑n
i=1(Hi − H̄)(Mi − M̄)√∑n

i=1(Hi − H̄)2
√∑n

i=1(Mi − M̄)2
(7)

Both the segment-based correlations and the system-level correlations are shown in Table

17 for the same conditions as mentioned before. What can be noticed is that for English it

appears that adding the synonyms to the existing synonym resource has a small negative

effect on the segment correlation. A reason for this can be that Meteor ignores the POS-

tags that were given to the synonyms. If two words are synonymous with regard to their

part of speech, but not synonymous if they are of different parts-of-speech, Meteor will

align them in both situations. In the case when the words are of different POS, they will

be falsely aligned by Meteor.

For German, adding the extracted synonyms improves the Meteor metric. Both the seg-

ment level correlation, and the system level correlation increase when adding the extracted

synonyms. This might seem odd at first, since the German synonyms had a lower pre-

cision in manual evaluation compared to the English synonyms. But still, they perform

better in machine translation evaluation. This can be explained by, what was already

mentioned earlier, that a significant part of the German synonym errors are inflections,

due to the difference in POS-tagset. A second explanation is that the synonyms extracted

for German are less ambiguous with respect to their POS. German frequently uses com-

pounding (e.g. schwierigkeitsgrade/ degree of difficulty), and grammatical case markers.

This might result in less ambiguous words. The negative effect, that Meteor does not use

the POS of the synonyms, could be smaller for German for this reason.

30



6 Conclusions & Future Work

In this thesis we explored different methods to extract synonyms from text. The initial

motivation was to use the extracted synonyms to improve machine translation evaluation.

We tried to extract the synonyms using as little supervision as possible, with the goal that

the same method can be applied to multiple languages. We experimented with English

and German.

We used word vectors trained using the continuous bag-of-words model (CBoW), and the

skip-gram model (SG) proposed by Mikolov et al. (2013a). We evaluated different training

parameters for training these vectors, with regard to synonym extraction. It appeared

that for our experiments CBoW vectors gave higher precision and recall than SG vectors.

The number of dimensions did not appear to play a very big role. For our experiments,

dimensions of 300, and 600 seemed to give best results. The optimal contextual windows

size seemed to be around 4 for English, and 8 for German. We hypothesized that the

difference in window size can be because of the difference in the distributions of word

categories of the synonyms in WordNet and GermaNet. If this is not the case, it could

be interesting to see what would be the underlying reason for this difference, and what

optimal window sizes are for other languages.

For English, we manually looked at frequent error categories when using these vectors for

this task. The biggest well-defined error categories we found are inflections, co-hyponyms,

and names. A more vague error category is that category of related words for which the

exact type of relation is not clear.

We found that the cosine similarity on its own is a bad indicator to determine if two

words are synonymous. We proposed relative cosine similarity, which calculates similarity

relative to other cosine-similar words in the corpus. This seems to be a better indicator,

and can help to improve precision, at the cost of recall. Also, the optimal thresholds for

finding synonyms for English, and German using this measure, are almost the same. This

gives hope for easy extension of this method to other languages, for which there is no

synonym data. It would be very interesting to see to which other languages this method

can generalize, and to which languages it cannot.

We also experimented with combining similarity scores from differently trained vectors,

which seems to slightly increase both precision, and recall. Furthermore, we explored the

advantages of using a part-of-speech tagger, as a way of introducing some light supervision.

POS-tags can help performance in different ways. Firstly, it can disambiguate some of the

meanings of homographs. Secondly, it can help filtering bad synonym candidates. And

third, it can prevent extraction of synonyms for word categories that have no, or very

few synonyms, such as names. For future research, it can be interesting to see what the

effect is of using an unsupervised POS-tagger (Christodoulopoulos et al., 2010). Or, to
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tackle the problem of homography in a different way. Future research could include using

topical word embeddings (Liu et al., 2015b,a), or global context vectors (Huang et al.,

2012). These types of vectors both make different vectors for each word, using topical

information to disambiguate some of the different word-senses.

We evaluated our final approach for both English and German. We did a manual eval-

uation, with two annotators per language. Also we applied the extracted synonyms in

machine translation evaluation. From the manual evaluation, for the parameters we chose,

the English synonyms had higher precision than the German ones. The most probable rea-

son for this is that the English POS-tagset better separates the frequent error categories

mentioned in Chapter 3.

When applying the synonyms in the Meteor machine translation evaluation metric, for

English there was a small negative effect. This is most probably due to the fact that Me-

teor does not use the POS-tags of the extracted synonyms, resulting in overgeneralization

of synonymy on the extracted word-pairs. For German, using the extracted synonyms has

a clear positive effect on the evaluation metric. The reason why the effect of ignoring the

POS-tags seems smaller could be that German uses compounding, and more elaborate

case marking. This could result in less ambiguous words, which makes the effect of ignor-

ing POS-tags smaller. For future research on improving Meteor, it could be interesting

to incorporate POS-tags, to prevent this overgeneralization of synonyms.
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Appendix

Simplification of the English and German Tags

Simplification rules for rewriting tags from the Penn Treebank Tagset (PTTS), and for

rewriting tags from the Stuttgart-Tübingen Tagset (STTS), as used in Chapter 4.

PTTS tag Simplified tag

JJ ADJ

JJR ADJ

JJS ADJ

NN N

NNS N

NNP N

NNPS N

RB ADV

RBR ADV

RBS ADV

RP ADV

MD V

VB V

VBZ V

VBP V

VBD V

VBN V

VBG V

STTS tag Simplified tag

ADJA ADJ

ADJD ADJ

ADV ADV

NN N

VVFIN V

VVIMP V

VVINF V

VVIZU V

VVPP V

VAFIN V

VAIMP V

VAINF V

VAPP V

VMFIN V

VMINF V

VMPP V

Table 18: Tagset simplifications.
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Final Selection of English and German Tags

Selected tags for the final system as described in Chapter 5, for English from the Penn

Treebank Tagset (PTTS), for German from the Stuttgart-Tübingen Tagset (STTS).

English

Nouns: NN, NNS

Verbs: MD, VB, VBZ, VBP, VBD, VBN, VBG

Adjectives: JJ, JJR, JJS

Adverbs: RB, RBR, RBS, RP

German

Nouns: NN

Verbs: VVFIN, VVIMP, VVINF, VVIZU, VVPP, VAFIN, VAIMP, VAINF, VAPP, VMFIN,

VMINF, VMPP

Adjectives: ADJA, ADJD

Adverbs: ADV, PAV
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Index

C

canonical correlation analysis, 5, 24

co-hyponyms, 12

concordent, 29

contextual window, 4

continuous bag-of-words model, 4

contrastive, 12

D

discordant, 29

distributional hypothesis, 2

distributional word vectors, 4

F

f-measure, 9

frequent collocations, 12

G

global vectors, 9

H

hierarchical softmax, 5

homography, 3, 20

hypernym, 12

hyponyms, 12

hypothesis translation, 1

L

lower bound of precision, 27

N

names, 12

negative samples, 13

negative sampling, 5

P

pearson correlation, 30

precision, 9

R

recall, 9

reference translation, 1

relative cosine similarity, 15, 31

S

segment level kendall’s τ correlation, 29

skip-gram model, 4

spelling variants, 12

summed relative cosine similarity, 18

supervision, 1

synonyms, 3

T

the stuttgart-tübingen tagset, 22

U

upper bound of precision, 27

V

vector offsets, 23

W

word embeddings, 4
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