

Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Ilana Rampula

Semantic Relation Extraction from Unstructured Data

in the Business Domain

Institute of Formal and Applied Linguistics

 Supervisor of the master thesis: RNDr. Pavel Pecina, Ph.D.

 Gosse Bouma, Ph.D.

Study programme: Master of Computer Science

 Specialization: Mathematical Linguistics

Prague 2016

I would like to thank my supervisors, Pavel Pecina in Prague and Gosse Bouma in

Groningen, for their guidance and insight throughout the thesis. I am grateful for the

unique opportunity of working on real business data. I would like to thank everyone

who made it happen. Very special thanks go to my dear friend Feraena Bibyna, whose

help and support had a great impact on the completion of this thesis. Finally, I would

like to thank my family for their love and endless support.

I declare that I carried out this master thesis independently, and only with the cited

sources, literature, and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.

121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles

University in Prague has the right to conclude a license agreement on the use of this

work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In Prague date 13.05.2016 signature

Název práce: Extrakce sémantických vztahů z nestrukturovaných dat v komerční

sféře

Autor: Ilana Rampula

Ústav: Ústav formální a aplikované lingvistiky (ÚFAL)

Vedoucí diplomové práce: RNDr. Pavel Pecina, Ph.D. & Gosse Bouma, Ph.D.

Abstrakt:

V posledních letech se využití textové analytiky v komerční sféřě postupně stává

významým tématem pro vědecké a praktické aplikace. Zaměřili jsme se na určování

vztahů mezi entitami z dat dodaných partnerskou společností. Analýza textu z této

sféry ale vyžaduje jiný přístup: počítání s nepřesnostma a specifickými atributy. V této

práci jsme se rozhodli ukázat využití dvou metod pro určování vztahů: tzv. Snowball

systém a Metodu vzdáleného dohledu (z angl. Distant Supervision), které jsme

přizpůsobili pro dodaná data. Dané metody byli implementovány pro využití

strukturovaných a nestrukturovaných dat z firemní databáze.

Klíčová slova: Získavání informací, Určování vztahů mezi entitami, Textová

analytika, Distant Supervision, Snowball

Title: Semantic Relation Extraction from Unstructured Data in the Business Domain

Author: Ilana Rampula

Institute: Institute of Formal and Applied Linguistics

Supervisors of the master thesis: RNDr. Pavel Pecina, Ph.D. & Gosse Bouma, Ph.D.

Abstract:

Text analytics in the business domain is a growing field in research and practical

applications. We chose to concentrate on Relation Extraction from unstructured data

which was provided by a corporate partner. Analyzing text from this domain requires

a different approach, counting with irregularities and domain specific attributes. In this

thesis, we present two methods for relation extraction. The Snowball system and the

Distant Supervision method were both adapted for the unique data. The methods were

implemented to use both structured and unstructured data from the database of the

company.

Keywords: Information Retrieval, Relation Extraction, Text Analytics, Distant

Supervision, Snowball

Contents
Introduction .. 1
1 Background .. 5

1.1 Text Analytics in the Business Domain ... 5

1.2 The Task of Relation Extraction .. 8
1.3 Methods .. 10

1.3.1 Supervised Methods for Relation Extraction 10

1.3.2 The Snowball System ... 12

1.3.3 Distant Supervision .. 16

1.4 Algorithms and Methods .. 19
1.4.1 The Machine Learning Tool – Vowpal Wabbit 19

1.4.2 Vector Space Model ... 24

1.5 Evaluation Methods ... 27

2 Data .. 30
2.1 Description and Analysis ... 30
2.2 Data Preparation ... 33

2.2.1 Text Normalization ... 33

2.2.2 Stemming .. 34

2.2.3 Lemmatization .. 35

2.2.4 Part of Speech Tagging .. 36

2.2.5 MorphoDiTa Evaluation ... 37

2.2.6 Named entity recognition ... 38

3 Methods .. 40
3.1 Data preparation ... 41

3.2 Feature Engineering ... 43
3.3 Snowball ... 45

3.4 Distant Supervision .. 48
4 Results .. 50

4.1 Results on Development Dataset ... 50
4.1.1 Distant Supervision .. 50

4.1.2 Snowball System .. 54

4.2 Results on Test Dataset .. 58
4.2.1 Distant Supervision .. 58

4.2.2 Snowball System .. 59

Conclusion ... 61

Bibliography ... 63
List of Tables.. 65
List of Figures .. 66

List of Abbreviations.. 67
Attachment ... 68

1

Introduction

 Text Analytics in the business domain is a growing field both in research and in

practical applications. It is not surprising that most of the commercially available tools

for advanced analytics implement text analytics or data mining components1. Those

companies usually include text analytics under the umbrella of Business Intelligence

(BI). Business Intelligence is most commonly referred to as a collection of software

tools and algorithms allowing a business entity to analyze their data and deduct

information that would benefit their business needs. The tools for BI are expected to

support all levels of business management and business processes. This kind of support

can be only provided via in-depth data analysis, using all available data sources (Baars

& Kemper, 2008). That said, up until recent years most of BI infrastructures were built

on structured data alone, ignoring the huge quantities of unstructured information (Fan,

et al., 2006). Structured data opposed to unstructured data is highly organized

information, usually stored in a database with a predefined metadata and format.

Structured data is composed of numerical data such as keys and scores. It can also

contain string values with a known format such as names, emails, flags, and categories.

This type of data is easily searchable. It can be processed directly and is usually self-

explanatory. Unstructured data, on the other hand, has no apparent structure. It is very

heterogeneous, as would be expected from natural language. It can be a challenging

task to extract specific pieces of information from such data. Nevertheless, the

constantly growing amount of data and the needs of the business entities to understand

their data lead to an unavoidable shift in Business Intelligence approaches to the

analysis of unstructured data, more commonly called Text Analytics. That is, text

analytics is considered an inseparable part of understanding company's data. The

outputs of text analysis can be used in business decision making or in operational

processes. Marketing campaigns can be directed at specialized customer audience,

offering the right products to the right clients. Business management relies on reports

and dashboards when planning next steps, text analytics can provide more information

on trends and preferences of the business customers. There are many more fields in

1 For a review see http://www.predictiveanalyticstoday.com/top-software-for-text-analysis-

text-mining-text-analytics/

http://www.predictiveanalyticstoday.com/top-software-for-text-analysis-text-mining-text-analytics/
http://www.predictiveanalyticstoday.com/top-software-for-text-analysis-text-mining-text-analytics/

2

the business domain that can use text analytics for their benefit, such as, email

classification, summarization and sentiment analysis.

 Out of the diverse ways to use text analytics methods in the business domain, we

chose to concentrate on Semantic Relations Extraction (RE) between Named Entities

(NE). RE is a way to represent unstructured data in a structured form. Such

transformation could allow business analysts to use the volume of unstructured data in

their models combined with already available structured data. Semantic Relations

express a given quality between two (or more) entities. An entity, in this case, is a

Named Entity such as a person, location, organization, date, etc. A relation can depict

anything from the place of birth to the year of graduation or date of establishment. By

extracting specific facts from the text, we actually convert subpart of unstructured data

to structured data. Since the focus of big companies is clients’ information, semantic

relations between the client and another entity provide a clear added value. As

mentioned before, the purpose of BI is to collect information for making better

decisions. Any additional relevant piece of information about a company’s clients

could immediately improve the quality of the data the company holds.

 Semantic Relation extraction usually consists of two main steps. Firstly, in order to

extract Semantic Relations from unstructured data efficiently, the text has to be labeled

with Named Entities. The process of automatically detecting and labeling Named

Entities is called Named Entity Recognition (NER). Named Entity Recognition is not

a trivial task. Fortunately, there exist ready-to-use tools for NER. For example in this

work, we use the NameTag tool for annotating named entities in Czech (Straková, et

al., 2013). The second step is to understand how a certain relation between named

entities is expressed in the unstructured text. The methods for detecting relations in

text vary on several levels. First of all, there are many ways to parse and analyze the

text surrounding the extracted named entities. For example, one would have to decide

whether to parse the text on a morphological or syntactic level. Choosing the features

to represent the text has one of the greatest effects on the results of the extraction. In

addition, the methods for RE vary on the level of supervision they require and the

algorithm that implements the extraction. There are supervised, semi-supervised and

unsupervised methods for RE. In the following chapters, the implementation from the

phase of data preparation and processing through feature selection to the

implementation of the methods themselves is described in greater detail.

3

 The thesis presents two methods for RE – Snowball2 (Agichtein & Gravano, 2000)

and Distant Supervision (Mintz, et al., 2009). Supervised machine learning methods

require significant investment into hand labeling training examples. Both methods

counter the need for manual labor, each in their own way. The Snowball system is

initiated using a number of seed examples that are input into an iterative process to

extract more examples to be used for training. Distant Supervision takes advantage of

existing databases that contain lists of named entities and the relations that hold

between them. The database is then used directly as training examples, eliminating the

need of manually creating training data. For the purpose of extracting RE from the

business based corpora, both methods are modified to fit the domain.

 The data used through the thesis was provided by an industrial partner. We have

acquired the company’s agreement to use a small part of their database as the dataset

in this work. The relational database consists of client records, with several tables

containing different detailed information related to the client. As in majorities of large

companies, a significant part of the database is in the form of raw unstructured text.

We were granted access to one of the tables in the database containing such data.

Opposed to corpora containing only textual data, such databases are unique because

all the information, structured and unstructured, is interlinked. Every piece of

unstructured text is connected to a client profile and personal information. In this

thesis, those links are used to enhance the process of relation extraction. On the other

hand, we demonstrate how the extracted relations enrich the structured data. Given the

data provided to us, we chose the country-of-origin relation serving as an example for

the RE methods implementation.

 Working with such data presented several challenges. The corpora are rather large

and sparse, with many missing or wrong entered values. Even the structured data is

rarely unified, having variations in the same categorical value. The unstructured data

contains domain specific abbreviations and misspellings. Additionally, the data is in

the Czech language, bringing complexity to the task, as Czech is a morphologically

rich language.

 As mentioned above, there are numerous tools on the market focusing on text

analytics for the business domain. To the best of our knowledge, relation extraction

from unstructured data as presented in this work was not implemented by any of those

2 Not to be confused with the Snowball stemmer.

4

tools. Furthermore, the research of relation extraction is concentrated on different

domains, such as Wikipedia, news feeds, and social media. Relation extraction from

the business domain’s unstructured data requires a different approach, counting with

irregularities and domain specific attributes. We believe that the approach provided in

this work is novel, particularly due to the unique data and the modification of the

methods implemented here. Moreover, the methods depicted here are suitable for the

extraction of a variety of relations, depending on the available database structure, type

of information stored in it and the information the company is interested in extracting.

For example, using a database containing bio-medical information, one can extract

biomedical relations, between symptoms, medications, and effects using experiment

descriptions as the source of unstructured data.

 The structure of the thesis is as follows:

In the first chapter, a throughout background is given in several sections. The chapter

includes an overview of text analytics in the business domain, RE definition and

detailed description of RE methods, algorithms and evaluation metrics. The data

description, preprocessing methods, and data analysis are given in Chapter 2. In this

Chapter, we also present the practical challenges involved in working with real data

and the linguistic challenges of analyzing Czech text. The modification and the

implementation of the used methods are described in Chapter 3. The description of the

experiments, the different feature sets used in them and the results of the experiments

are depicted in Chapter 4. Chapter 5 is dedicated to concluding remarks and future

work.

5

1 Background

1.1 Text Analytics in the Business Domain

 In the growing world of unlimited data, enterprise companies are facing a serious

challenge. The effort invested in documenting all available information regarding

clients and other involved parties, market trends and competitors stands across losing

the ability to understand the vast data at hand. By now, every big company understands

that the key to gaining an advantage over its competitor’s lies is data governance and

analysis. Business intelligence (BI) is a range of solutions that enables companies to

get a handle on its data through reports and analytical tools, where the main goal of a

BI system is to prepare the grounds for making better, more intelligent decisions

(Gangadharan & Swami, 2004). There is a variety of components that can be used by

a BI system. In general, those components can be divided into two main types. The

first is reporting and visualization, enabling an organized view of the data with specific

stress on areas of interest. The other is analysis and data discovery, those components

are delivering additional information not available in the existing data as is.

 BI covers various fields, two of them are data mining and text analytics. Data mining

is a process of finding patterns and tendencies in a large amount of data. Data mining

uses many different methods for data discovery such as machine learning and statistics.

Data mining usually refers to the analysis of structured data, while text mining or text

analytics is the analogous process that deals with textual data. In a way, text analytics

in the business domain is data mining on unstructured data. Technically, data mining

and text mining are applying the same analytical functions on different data domains.

Contrarily to structured data analysis, text analytics requires additional steps before

the data is accessible to be used by a computer. Natural Language Processing (NLP)

can help a computer to understand relevant pieces of information to be used in text

analytics. NLP is used to convert raw text into structured features, in a way that those

features can be used side by side with originally structured attributes. The purpose of

both text analytics and data mining is to apply automatic methods in order to extract

new information such as patterns, clusters, unique values or outliers, and other

dependencies.

 Data mining is capable of handling only a very limited section of the data resources

of a company. In 1999, Dörre at al. estimated that about 90% of a company’s data is

of unstructured form. Probably, today, the distribution of structured and unstructured

6

data in a company’s databases is tilted towards unstructured data even more. Data

mining cannot deal with documents such as emails, letters, contracts and phone

recordings (Dörre, et al., 1999). On the other hand, with platforms like Hadoop3, it is

possible now to store and process gigantic amounts of data of all types and sizes. Many

BI software companies already realized the potential in the growing market of text

analytics and there is a range of solutions available for Big Data users. Nevertheless,

there is a vast range of opportunities to explore in the growing field. In our point of

view, there is a place to integrate academic research achievements into practical

applications. This thesis is an example of such integration.

 Business entities are interested in a range of possible extracted information, from

simple keyword detection to complex sentiment analysis. Moreover, text analytics can

be used on a collection level to identify trends and classifications. More specifically,

users of data and text mining are interested in various tasks like automatic

classification of documents by topic, extraction of entities, events and concepts and

identification of personal attributes and sentiments. A market survey conducted in

2014 by Alta Plana Corporation4, which delivers business analytics strategy

consulting, highlights the different use cases and approaches of text analytics in the

business domain. According to the survey, text analytics is most useful in four industry

groups: consumer-facing businesses, public administration and government, life

sciences and clinical medicine, and scientific and technical research. All of the listed

groups are interested in improving functional applications, such as search and

customer service, mainly aimed at meeting operational needs (Grimes, 2014). In this

thesis, the business entity providing the data is a customer-facing company. The main

interest expressed by the company is in detecting personal attributes of clients, to be

used in personalized campaigns and for other marketing purposes. Another use case of

text analytics in this type of company is for data quality. Data Quality refers to the

level of coherence and accuracy of the data representing entities in the real world. The

extracted information can be used to fill in missing values in the database and to

validate the existing values.

 Theoretically, the tasks described above as part of text analytics could be performed

by a person. There are several advantages in automated text analytics. Firstly, given a

3 http://hadoop.apache.org/

4 http://altaplana.com/index.html

http://hadoop.apache.org/
http://altaplana.com/index.html

7

large amount of text data, automatic processes are quicker than manual analysis. With

modern technology, like Hadoop, it is possible to process very large document

collections with parallel computing, many times faster than before. Secondly, humans

are prone to errors, while computers are performing deterministically according to a

given algorithm. Additionally, there are methods to counter over-fitting and

generalization errors. Thirdly, human annotations are subjective, while computers

have objective judgments. A real life example of the advantages brought by text

analytics in the business domain is demonstrated in the following citation:

The case study of ClearForest and Dow Chemical Co. is only a tip of the iceberg of

what text analytics can accomplish in a variety of scenarios.

 In the following sections, we demonstrate how with one text analytics task it is

possible to achieve improved data quality and gain insight into a selected personal

attribute of a client. The attribute is extracted in the form of Semantic Relation between

the customer and the entity representing the attribute. Subsequently, the extracted

values are brought back into the database to be used for integration in the company’s

predictive analysis or directly in various operational functionalities.

“In 2001, Dow Chemical Co. merged with Union Carbide Corp., requiring the

integration of 35,000 Union Carbide research and development reports into Dow’s

document management system. Dow partnered with ClearForest Corp., a

commercial developer of text-driven business solutions, to help integrate the new

combined document collection. Using technology it had developed, ClearForest

indexed the documents, identifying chemical substances, products, companies, and

people for inclusion in the combined database. Dow was able to add more than 80

years’ worth of Union Carbide research to its information management system and

approximately 100,000 new chemical substances to its registry. When the project

was complete, Dow estimated it had spent some 3$ million less than it would have

if it had used its own methods for indexing documents. Bow also estimated it had

reduced the time it would have spent sorting documents by 50% and data errors by

10%-15%.” - (Fan, et al., 2006).

8

1.2 The Task of Relation Extraction

 In the previous section, we described the goals and tasks of text analytics in the

business domain. As mentioned above, in text analytics, various methods have been

implemented for structuring unstructured data. Semantic Relations Extraction is an

example of such a method. Given a raw text, the algorithm is expected to detect bits

of relevant information, in a way that enables the user to populate a relational database

with the outputs, add the extracted values to analysis algorithms or merely correcting

the existing data values.

 Semantic relations represent facts about named entities. For example, in the

sentence Prague is the capital of Czech Republic, there are two named entities

<Prague, Czech Republic> with a relation {X is the capital of Y}. Other entities can

belong to the same relation, e.g. <Paris, France>. Moreover, this relation can be

expressed in a variety of ways:

- Prague, Czech Republic’s capital is also the historical capital of Bohemia.

- Prague is the 15th largest city in the European Union, and it is the capital of

the Czech Republic.

A relation is defined as a set of entities {𝑛1, … 𝑛𝑖} where the elements of the set are in

a given relation R. For binary relations, the set is an ordered pair < 𝑛1, 𝑛2 > with a

predefined relation between the two entities in the pair. In our context, < 𝑛1, 𝑛2 > are

two named entities of the same or different type (i.e. person, location, date, etc.). A

relation can be defined using a pattern. For example, the pattern

{𝑛1 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑎𝑡ℎ𝑒𝑟 𝑜𝑓 𝑛2} is a relation between two named entities, both of the type

Person, expressed through the context words between the two named entities. We

would say that 𝑛1 and 𝑛2 are in relation R if the relation holds, i.e. 𝑛1 really is the

father of 𝑛2 (Bach & Badaskar, 2007). This relation can be expressed in many other

ways, corresponding to additional patterns. The patterns can be used to extract entities

in the given relation. By simply comparing the sentences in the dataset to the pattern,

we can find new pairs belonging to this relation.

 The first step before approaching a relation extraction task is to detect the entities

involved in the relations. In named entity recognition, a tool is trained to distinguish

tokens referring to named entities from other tokens. Every language marks differently

proper names, for example, by capitalization, special cases or syntactic constructions.

Therefore, a named entity recognizer has to be implemented to use those language

9

specific marks. Generally, named entities are names of people, places, organizations

times, and dates. The NER system not only identifies that a certain token is a named

entity but also labels it according to the type it belongs to. This enables generalization

over different types of named entities. For example, one can deduct patterns

surrounding proper names of people and differentiate them from the patterns

surrounding locations.

 NER holds two challenges on top of the actual recognition. Firstly, same named

entity can be expressed in different ways. For example United States of America refers

to the same named entity as USA. When extracting relation between named entities, it

is important to relate the numerous different occurrences of NE to the same real entity

in the world. Secondly, not all mentions of named entities are transparent. Take for

example the sentence: John said to Marry that he was happy to see her. An NER

system will recognize correctly two named entities of the type Person in the sentence

– John and Marry. But there are two more mentions of people in the sentence, of the

form he and her. Relating the pronouns to the correct names mentioned previously in

the text is a sub-task of co-reference resolution called anaphora resolution. Ideally, we

would want to consider the pronouns that refer to NE when extracting semantic

relations. In this work, we do not perform anaphora resolution.

 After the detection of named entities is completed, we can extract the relations

between them. As was noted by Craven and Kumlien (1999), extracting relations

between named entities is actually an information extraction task. The goal of an

information extraction task is to correctly identify text instances that express the

required information without falsely marking text instances that do not. In the case of

relation extraction, the required information is a relation between two named entities

expressed through the context surrounding them. Each text instance in the corpora (a

sentence, record or paragraph) can be classified as either relevant or irrelevant with

respect to the required information. Namely, either containing information regarding

the desired fact or not. Instances containing the information are considered positive

examples and instances missing it are marked as negative examples (Craven &

Kumlien, 1999). Here, we use a similar approach to RE, defining it as a binary

classification task.

 There are several options how to classify the text instances. One of the options is to

hand code rules or patterns that would deterministically classify the texts as relevant

or irrelevant. In the previous section, we noted the advantages of automatic methods

10

as opposed to manual methods. Additionally, constructing well-performing extraction

patterns is a hard task that can be performed only by an expert. It requires a deep

understanding of how certain relations are expressed, and a significant amount of time

to capture all possible cases and exceptions. In the next section, we present methods

for automatically identifying relations.

1.3 Methods

1.3.1 Supervised Methods for Relation Extraction

 One group of methods for automatic classification is based on machine learning.

Machine learning algorithms differ in the type of supervision they require. In

supervised machine learning, some instances from the collection of texts have to be

manually labeled. The instances are sections of text with one label per instance. A

sentence is usually taken as an instance, however, bigger or smaller chunks of text are

possible as well. After the training data is labeled, a model is trained on the labeled

examples. This model can then be used for classifying new unlabeled instances.

Bringing this back to our context, only some of the text instances actually express a

relation in a given corpus. Our goal is to find as many instances containing related

pairs as possible, without extracting false examples. If we would come to implement

supervised machine learning algorithm for RE, we would need to read through the text

and decide which instances are positive examples of a relation and which instances are

negative examples. Usually, we would need to have a substantial amount of labeled

examples, where the concrete number of training examples depends on the task and

data at hand. Such a framework is called supervised machine learning since we

supervise the learning process with the labeled examples.

 In order to classify the units of text using a machine learning algorithm, we need to

convert them into a structured representation usually in the form of a feature vector.

Namely, we need to extract the text features that may help us to determine if the text

expresses the relation we are interested in. The features can be anything from word

forms in the text up to syntactic relations. The features can be also constructed from

other related information, such as the length of the instance, the origin of the text

instance (i.e. web page) or any other metadata connected to the particular data instance.

Vector representation helps us to count how many times each feature appeared in the

text instance (or in the whole collection). We can then easily compare vectors

11

representing different data instances and present the difference between the vectors in

a numerical form, for example using the cosine measure. Figure 1. describes the

process of supervised machine learning for relation extraction.

 The main drawback of supervised methods is the amount of manual labor involved

in labeling the training data. Moreover, in order to extend the method to the extraction

of new relations or a new domain, one would need to create new training data and the

model needs to be retrained on newly labeled data. The supervised methods might not

scale well with the increase in the amount of data. If the added data is not similar to

the training data, the methods performance might decrease (Bach & Badaskar, 2007).

 In semi-supervised methods, the instances are not labeled with the relations for

training, but some other information is given to the machine learning algorithm to

partially guide the learning process. Semi-supervised methods usually rely on existing

databases with a predefined ontology. Since this kind of reference database is not

always available, some researchers suggested open relation extraction – an

unsupervised approach (Banko, et al., 2007). Unsupervised machine learning

algorithms are implemented to group unlabeled examples according to similarity,

building on the fact that instances expressing the same relation would share similar

feature values.

 Next, we present two semi-supervised methods that are proposing two different

ways of dealing with the lack of labeled data. In the following section, the Snowball

system is described – a bootstrapping approach which uses a number of seed examples

to iteratively extract new entities. The Distant Supervision framework follows. This

Corpora

Dataset

Feature Extraction

Feature Vectors Machine Learning Algorithm

Relation

 Labeling

New Instance

Feature Extraction

Feature Vector Relation Classifier

 L

Labeled Instance

Figure 1. Supervised Machine Learning for RE

12

method introduces weakly supervised examples to be used as training material for a

machine learning algorithm.

1.3.2 The Snowball System

 Snowball (Agichtein & Gravano, 2000) is a relation extraction system that uses only

a number of training examples, usually referred to as seeds. Contrary to the supervised

machine learning approach, the only manual step in Snowball is the construction of

the seed examples. From those training examples, the system builds relation extraction

patterns, using the context surrounding the named entities in the initial seeds. The

patterns are then used for extracting new entities with the same relation from the text.

The process is iterative. Namely, the extracted entities can serve as the seeds for

extracting new patterns. Essentially, the Snowball system is using a bootstrapping

technique. It requires only a hand-full of labeled examples to initiate the process of

relation extraction. In bootstrapping, the system initiates with a number of examples

and uses the systems output to create more training examples to be used in the next

round.

 The Snowball system was built on the ideas introduced by Brin and his system the

DIPRE (Brin, 1999). DIPRE stands for Dual Iterative Pattern Expansion. Brin

extracted relations from a collection of HTML documents. DIPRE was optimized to

extract relation from the web. It counts with repetitive occurrences of entities in a

similar context. Similarly to the Snowball system, DIPRE requires from the user to

input a small number of training examples to start the iterative process. DIPRE system

does not utilize named entity recognition. Instead, the user has to come up with a

regular expression that would represent a pattern the entities must match, for example,

capitalization or the length of the name.

 The second stage of the extraction is finding the entities from the seeds in the texts.

Depending on the context words around the entities, DIPRE builds patterns that are

expected to match the actual expression of the relation in natural language. First, the

DIPRE algorithm converts the sentence with the detected entities into a 7-tuple:

< 𝑒1, 𝑒2, 𝑜𝑟𝑑𝑒𝑟, 𝑈𝑅𝐿, 𝑙𝑒𝑓𝑡, 𝑚𝑖𝑑𝑑𝑙𝑒, 𝑟𝑖𝑔ℎ𝑡 >. The 7-tuple consists of the two entities

involved (𝑒1, 𝑒2), the order in which the entities occur in the sentence, the URL of the

document in which the entities were found, and the context words on the left, right and

between the entities in the text. Next the 7-tuple representations are converted to

patterns. Not all 7-tuples become a pattern. Instead, the 7-tuples are collapsed into the

13

most representative pattern. The pattern is converted to a 5-tuple, containing the order

of the named entities, the URL prefix, the context words between and on the left and

right of the named entity < 𝑜𝑟𝑑𝑒𝑟, 𝑢𝑟𝑙 𝑝𝑟𝑒𝑓𝑖𝑥, 𝑙𝑒𝑓𝑡, 𝑚𝑖𝑑𝑑𝑙𝑒, 𝑟𝑖𝑔ℎ𝑡 >. The order and

the middle are matched in the grouped 7-tuples, and the URL prefix, right and left

values are the longest common ground in the grouped occurrences. Brin limited the

patterns to be supported by more than one seed and required the 5-tuple to have non-

empty values. The constructed patterns can be used for finding new entities with the

same relation. From this point the algorithm recursively repeats the step, using the

extracted entities as the new seeds for the process.

To summarize, DIPRE follows the steps below:

1. Find seed examples in the text.

2. Construct patterns based on the text.

3. Find new pairs in the text using the patterns.

4. Repeat from step 1.

 Coming back to the Snowball system, Agichtein and Gravano (2000) introduced

two main modifications of the DIPRE algorithm. Firstly, the pattern extraction

algorithm was modified to use named entity recognition, thus the patterns are different

in the Snowball system. Secondly, Snowball uses an evaluation method to filter out

weak patterns to prevent falsely extracted entities.

 The pattern generation process in the Snowball system starts with finding the seed

entities in the text, where they appear closely to each other. The seed patterns are

prepared from the context around the seed NE. This step is the same as in the DIPRE

algorithm. Next, the text is analyzed and tagged with named entities. NER helps to

avoid ambiguous patterns. Figure 2. illustrates a simplified Snowball process. In

Figure 2, one of the patterns is highly ambiguous: <…PER from ORG…>. Without

NER, the pattern would extract all strings of the form <NE1 from NE2> (i.e. extracting

both “Bob from Florida” and “Bob from Vodafone”). The snowball algorithm only

considers sentences that contain a pair of named entities, ignoring sentences like “the

book from the shelf”. DIPRE, on the other hand, used a rule-based approach, for

14

example, limiting the entities to capitalized strings. Needless to say that a state-of-the-

art NER has a higher accuracy in detecting named entities.

 Additionally to NER, the Snowball system uses a more flexible representation of

the context surrounding the named entity pairs. Instead of using the words on the left,

right and middle in the pattern to find a precise match, the system represents the

context in a vector-space fashion. The left, right and middle (LP, RP, MP) are

represented as weighted vectors associated with terms. Thus, the patterns are flexible

enough to capture minor variation in word order and additional words or punctuation.

The patterns are constructed with the intention of capturing the majority of entities in

the relation without catching invalid pairs of entities in the process. In other words, the

system aims at both high precision and high recall5.

 Matching of patterns to text segments requires the texts to be converted to the

pattern format as well. For every text instance that contains both named entities in

question, the system generates a 5-tuple representation to be matched to the pattern.

As mentioned above, the context in which the NE appear is converted to three vectors.

The left and right vectors (LT, RT) are constructed by taking the weights of the terms

on the left and on the right, within some predefined distance from the left and right

NE. The middle vector (MT) contains the weights of the terms in between the NE. The

weights of the terms are their frequencies in the respective context. The vectors are

normalized and scaled by a factor of relative importance. According to Agichtein &

Gravano (2000), the middle context contains the most informative features. Therefore,

5 Precision and recall are described in the Evaluation Metrics section of this chapter.

Figure 2. The Snowball System

15

the middle vector is scaled to have higher weights. The Snowball system compares the

text instances to the pattern by summing up the corresponding context vector products.

𝑀𝑎𝑡𝑐ℎ(𝑃, 𝑇) = 𝐿𝑃 ∙ 𝐿𝑇 + 𝑅𝑃 ∙ 𝑅𝑇 + 𝑀𝑃 ∙ 𝑀𝑇

The Match score is calculated only if both NE are the same in the pattern and the text.

Otherwise, the score is zero.

 Generation of new patterns is accomplished by grouping text instances according

to the named entities they contain. Using the Match function above, the algorithm

calculates the similarity between the context vectors. For every pair of named entities,

the instances are clustered with a threshold similarity. Every cluster represents a

distinct pattern that expresses a relation between the two named entities. In order to

finalize the representation of the pattern, each group of the three context vectors from

the cluster is collapsed to its centroid. The result is a representative 5-tuple:

< 𝑙𝑒𝑓𝑡 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑, 𝑁𝐸1, 𝑚𝑖𝑑𝑑𝑙𝑒 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑, 𝑁𝐸2, 𝑟𝑖𝑔ℎ𝑡 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 >

Those patterns are used in the next step of detecting new pairs of named entities with

the same relation.

 Extraction of new pairs of named entities from the text is performed in several

steps. First, the system chooses text instances containing the entities that were labeled

with relevant named entity tags. Then, the text segment is converted to a 5-tuple of the

form < 𝐿𝑇, 𝑁𝐸1, 𝑀𝑇, 𝑁𝐸2, 𝑅𝑇 >. Snowball extracts the pair if the score calculated by

the Match function is higher than a threshold (the value of the threshold is the same as

in the previous step). The score is calculated for all relevant patterns and the pair is

extracted if the 5-tuple is similar enough to at least one of the patterns. Next, Snowball

filters out some of the extracted pairs based on an evaluation metric.

 Evaluation is necessary for pattern generation. Often a pattern generated by one

valid instance would extract invalid pairs, even if the pair is labeled with the correct

NE. The reason for this would be the lack of valuable information in the context of

those instances. To avoid generation of partially invalid patterns, the Snowball system

chooses the patterns that are selective. To calculate the selectivity of a pattern, the

system counts the precision of the pattern. Namely, how many times the pattern

extracts correct pairs out of all extracted instances in which two named entities with

the relevant tags occur. In this calculation, the manually constructed seed pairs are

used to validate correct extractions. The system takes the first generated patterns from

the seed instances and tries to extract new pairs with those patterns. The result is a list

of newly extracted pairs for each pattern. Snowball then compares the list to the seeded

16

pairs. If it finds pairs in the list that only match with the first NE to the seed pair but

not matches the other, the selectivity of the pattern is reduced. After the initial

evaluation, only the best patterns are kept for the next iteration. NE pairs must be

filtered as well. If a wrong pair is used in a new pattern generation, it will cause

generation of incorrect patterns. The pairs are evaluated according to the selectivity

and the number of the patterns that generated the pair. After the evaluation of the

extracted pairs, the most reliable ones are added to the list of seed pairs. The extended

list is used in the evaluation of the patterns in the next round.

 In summary, Snowball is a relation extraction system that uses bootstrapping

principles to minimize the need for manual labor. Additionally, the system is easily

adaptive to new domains since the manually constructed seeds are the only

requirement for training. For each new domain, the user needs to provide only new

seed examples, without relabeling the text.

 The method described above as well as the DIPRE method count with having

multiple appearances of each pair of related named entities in the corpora. Thus, each

pattern extracts only the entities that fit perfectly, without extracting false results.

Collectively, all the patterns together should capture all possible instances of the

relation. As shown later on, the assumption of redundant examples in the dataset does

not hold for the task at hand. Meaning, in a limited dataset containing private personal

information, there is only a handful of occurrences of each pair. Thus, the process had

to be modified. We describe the variant implemented in this thesis in the Methods

Chapter.

1.3.3 Distant Supervision

 The Distant supervision approach was first introduced by Craven and Kumlien

(1999). Their work focused on the extraction of biological information from various

resources online that contain mainly unstructured data. The authors’ goal was to map

information from the unstructured knowledge sources into a database. Distant

Supervision is a method that exploits existing databases for training data. In fact,

related pairs found in the existing databases are directly used as “labels” for the text

instances containing the pair. Craven and Kumlien (1999) coined such data instances

weakly labeled. In their work, every sentence containing two named entities with a

known relation between them is considered a positive training example. Such positive

examples are then used in a text classifier. All other sentences are considered negative

17

examples. For classification, a Naïve Bayes classifier with simple unigram frequencies

was used. In this implementation, each sentence is represented as a bag of words. The

Naïve Bayes algorithm estimates the probability of a sentence expressing a given

relation.

 Mintz et al. proposed an extension of the method based on the ideas of Craven and

Kumlien (Mintz, et al., 2009). In the implementation of their distant supervision

method, they use a large semantic database – Freebase for supervising the relation

extraction. Freebase is a database that contains relations such as is-a or is-part with

corresponding examples of pairs in that relation. As in the original approach, Mintz et

al. assumed that a sentence containing two words that exist in a semantic database

expresses the relation of this pair. Several sentences can be combined to represent the

way a given relation is expressed in the text. The representative sentences are

converted to features to be used in a machine learning classifier of relations. The

following diagram (Figure 3.) demonstrates the process of Distant Supervision as was

implemented by Mintz et al.:

Figure 3. Distant Supervision

18

As seen in the diagram, the method is divided into two stages – training and testing.

The first step of the training stage is named entity recognition. Out of the sentences

labeled with named entity tags, the system selects sentences containing pairs

mentioned in the Freebase database. Those sentences are processed for extraction of

features. Next, if the same pair of NE appears in the text more than once, the features

from the different sentences are combined into one feature vector. This step makes the

feature vectors that are used as positive examples more informative. The feature vector

constructed from different sentences will contain many different words that express

the relation, making the probability that a new data instance with an NE pair in the

same relation will be classified correctly. Note that this detail in the implementation is

somewhat similar to the Snowball system – there we construct one representative seed

vector from different seed examples to capture all the different features that express

the relation. The training stage also includes a weighting stage that evaluates the

features, giving lower weights to less productive features. In order to provide negative

examples for the classification, more feature vectors are constructed from sentences

with pairs that are not in any relation in Freebase. Based on the generated vectors, a

multi-class logistic regression classifier is built. In the testing stage, the documents are

labeled with NE. Then, features are extracted from all sentences containing two NE of

the same type as in the relation of interest, for example <PER, ORG>. The system

constructs a feature vector for every pair of named entities, from all the sentences

containing the pair. The NE pairs are then classified with the logistic regression

classifier. The output of the classifier is the name of the relation predicted for the

named entities pair and the confidence score stating the probability of the predicted

relation to be correct. The system was evaluated on held-out data from Freebase and

on manually annotated data. The method uses several lexical features, such as the

sequence of words between the two entities, POS tags of these words, the order in

which the NE appear in the sentence, the words to the left of the first named entity and

to the right of the second entity in a predefined window and their POS tags. The

features that are entered into the feature vector are a combination of all of the features

mentioned above. Each feature used by the classifier is then of the form: <LWP NE1T

MWP NE2T RWP> where LWP stands for words and POS tags on the left, NE1T is

the type of the first named entity, MWP is the middle context words and their POS

tags, NE2T is the type of the second named entity and RWP is the right context words

and POS tags. A conjunctive feature of this form limits the recall of the system and

19

improves its precision since all parts of the conductive feature from training should

match the target data instance to be considered similar. As noted by the authors, this

approach is only possible when dealing with large datasets. In small datasets, it could

lead to too distinct features that appear in the data only once blocking the learning

process.

 The method implemented by Mintz et al. holds three main advantages. Firstly, the

quantity of unlabeled data used in the method is unlimited. The number of pairs in the

database does not need to be large in order to extract new pairs from millions of

documents. Secondly, aggregating features from numerous source sentences improves

precision dramatically. Thirdly, the method avoids domain specific constraints by

using the unlabeled data directly (Mintz, et al., 2009). The same method can be applied

using a variety of databases with different relations. However, such complex features

as were constructed in their method can work only for a very large dataset.

 The next section introduces the algorithms, tools and methods that we used to

implement our variant of the Snowball system and the Distant Supervision method.

1.4 Algorithms and Methods

 We present two frameworks for Relation Extraction. The Snowball system uses a

bootstrapping algorithm for finding patterns for relation extraction. This method does

not require a machine learning algorithm to learn the new patterns. Instead, it

iteratively extracts additional examples using a vector space model. In the Distant

Supervision paradigm, a classifier is used to mark new instances with relations. One

of the ways to approach the classification task is a machine learning approach,

implemented in the same way as a supervised method presented previously, only using

weakly labeled training examples instead of manually labeled examples. In this

section, we present the machine learning framework for Distant Supervision and the

vector space model for the Snowball system.

1.4.1 The Machine Learning Tool – Vowpal Wabbit

For the implementation of Distant Supervision, we have chosen to use the Vowpal

Wabbit (VW), an online machine learning tool (Langford, et al., 2007). The VW

project is a learning system sponsored by Microsoft Research and before that

by Yahoo! Research. It is an open source project for fast and scalable learning

algorithms. VW is usually used for ad prediction, document classification, spam

20

detection, and more. The system includes several optimization algorithms with the

baseline being sparse gradient descent (GD). VW has a combinatorial design, by

adding command line parameters, one can change, for example, the features used, the

loss function and the feature weights (see Table 1.).

Table 1. Vowpal Wabbit Design6

Vowpal Wabbit Design

Format {binary, text}

IO {File, Pipe, TCP, Library}

Features {sparse, dense}

Feature {index, hashed} with namespaces

Feature manipulators {ngrams, skipgrams, ignored, quadratic, cubic}

Optimizers {online, CG, LBFGS} parallelized

Representations {linear, MF, LDA}

Sparse Neural Networks by reduction

Losses {squared, hinge, logistic, quantile}

Multiclass {One-Against-All, ECT}

Cost-sensitive {One-Against-All, WAP}

Contextual Bandit {Ips, Direct, Double Robust}

Structured {Imperative Searn, Dagger}

Understanding {l1, audit, Prog. Validation}

1.4.1.1 Input Format

 The input format for the VW is very intuitive. Actually, this is one of the reasons

we chose to use VW. Not like most machine learning platforms, the VW system does

not require from the user to create an index of all possible features and their counts in

the data7. It seems VW was created especially for text analysis. The input data should

list each data instance (record) on a separate line. To create a valid data input it is

enough to start the line with the label or the class and a “|”. Then list all the words in

the data instance:

-1 | very simple data format

On the other hand, the input format also allows more complicated and useful

formations. For example, each data instance can be assigned an importance weight:

1 0.5 | weighted data instance format

Another useful feature is the Namespace option. One can separate different kinds of

features by grouping them under one Namespace. This option is very useful during

6 The options used in this thesis are marked with bold.

7 See for example http://www.cs.waikato.ac.nz/ml/weka/ for the arff data format.

21

feature selection. By using the –ignore X flag, one can choose to ignore all the features

grouped under the X namespace.

1 0.5 |text weighted data instance format with namespaces |numeric 12 5 8797

The features themselves can be listed as in the examples above or one could specify

the name of the feature and its value, using the equal sign:

-1 | length=5 count=3 country=Spain

And finally, it is possible to assign a weight per each feature in each data instance. For

example to represent the sentence “to be or not to be” you can use the following format:

1 0.9 |details author=Shakespeare play=Hamlet |text to:2 be:2 or not

There are additional options, presented in the summary below:

Table 2. Vowpal Wabbit input format

Label [Importance] [Base] ['Tag] |Namespace Feature:float ... |Namespace:float Feature \n

Namespace String[:Float] Namespace is a mechanism for feature manipulation and grouping.

Feature String[:Float]

Importance a multiplier on learning rate, default 1

Base a baseline prediction, default 0

Tag an identifier for an example echoed on example output

1.4.1.2 Command line parameters and arguments

 VW is a C++ library. The system is designed to be run from the command line. The

manipulation of the machine learning algorithm and its parameters is done by inserting

command line parameters and arguments. Table 3. lists all the parameters and

arguments used in this work. To start the learning on the training dataset, the following

format can be used to read training data from a file, create a cache and pass through

the data n times. The resulting model is stored in the predictor.vw file:

vw -d train.txt -c --passes n -f predictor.vw

By adding the parameters from Table 3. and passing different values, we can change

the way the machine learning model is trained.

After the training, the created model is tested on a different dataset. The predictions

can be stored into the predictions.txt file:

vw -d dev.txt -t -i predictor.vw -p predictions.txt

In the Methods Chapter, we describe the specific commands used for our experiments.

22

Table 3. Vowpal Wabbit command line options

 Parameter Use

1 [-d] [- data] <f> Read examples from f

2 -- passes <n> Iterate over dataset n times.

3 -c [- cache] Creates a binary cache of dataset for faster loading next

time (required with --passes n for n > 1)

4 -p [- predictions] <po> File to dump predictions into

5 -f <filepath> where to save final predictor

6 -t [- testonly] Don't train, even if the label is there – used for testing

8 -ignore <a> Remove a namespace and all features in it

9 --ngram <N> Generate N-grams on features.

10 --skips <S> Generate skips in n-grams. Can be used only in conjunction

with n-gram parameter.

11 -power_t <p> [= 0.5] Specifies the power on the learning rate decay.

12 -l [-learning_rate] <l> [= 10] scales learning rate, default 0.5 or 10 for non-default rule

13 -loss_function

{squared,logistic,hinge,quantile}

Switch loss function. Squared is default.

14 --l1 <value> L1 Regularization default is 0

15 --l2 <value> L2 Regularization default is 0

1.4.1.3 Vowpal Wabbit Algorithms

 VW is an online learning system. Basically, it means that it learns as it goes. Let

𝑋 ∈ ℝ𝑛×𝑑 be a dataset of n data instances with d features, 𝑥𝑖 ∈ ℝ𝑑 be the ith data

instance, and 𝑦 ∈ {0, 1}𝑛 be the corresponding set of binary labels, compute a

prediction 𝑦̂𝑤(𝑥) = ∑ 𝑤𝑖𝑥𝑖𝑖 for every data instance. Next, compare the prediction with

actual label 𝑦𝑖 and update weights, so the prediction would be closer to true value. In

order to update the feature weights Vowpal Wabbit uses Gradient Descent algorithm.

Gradient Descent is a method for finding a minimum of a function by making step by

step decisions about the direction you should head. As part of a machine learning

algorithm, GD is minimizing a loss function. The algorithm’s objective is to find the

local minimum of the function.

To find the best direction towards

the minimum, we take the

gradient of the function in a

specific point and take one step to

the opposite direction. The

gradient is parallel to a derivative

generalized to more than one

dimension. Figure 4. illustrates

graphically the intuition behind

the Gradient Descent algorithm. We start at point x1. Derivation of the function in a

X1

X2

X3

X5

X4

Figure 4 Gradient Descent

23

particular point gives us the gradient ∇𝑙(𝑤𝑖) =
𝜕𝑙(𝑦̂𝑤(𝑥),𝑦)

𝜕𝑤𝑖
. The green arrow points in

the direction of the negative gradient at points x1…5. At each step, the following step

is calculated with 𝑤𝑖+1 = 𝑤𝑖 − 𝜂∇𝑙(𝑤𝑖). The derivation of the function gives us the

slope of the line orthogonal to the function line at that point. At point x5 the algorithm

converges. At this point the slope equals 0, meaning that we reached the local

minimum. Note that if we would start at a different point we could reach a lower

minimum. At each iteration GD calculates the direction of the steepest descent with

step size controlled by the learning rate, η.

η= 𝜆𝑑𝑘 (
𝑡0

𝑡0 + 𝑤𝑡
)

𝑝

Where 𝑤𝑡 is the sum of the importance weights of all examples seen so far. With the

available parameters, we can adjust the learning rate parameters λ using -l parameter

and p with --power_t parameters. The learning rate is the size of the step we are taking.

A higher learning rate will make the model converge faster – making larger step

towards the minimum. However a very high learning rate may jump over the

minimum, and the algorithm may not converge at all. One can adjust the --power_t

parameter in the range [0,1]. 0 means the learning rate does not decay while 1 is very

aggressive decay. Since we can run each iteration with a different step size, it makes

sense to reduce the step size as we are coming closer to the minimum. This parameter

allows us to start with a higher learning rate – making larger steps in the beginning,

without being afraid to skip over the minimum8.

 Vowpal Wabbit optimizes per example the following function:

 ∑ ℓ(𝑥𝑖, 𝑦𝑖 , 𝑤)+𝜆1||𝑤||
1

+
𝜆2

2
||𝑤||2

2

𝑖

Where 𝜆1 and 𝜆2 are the L1 and L2 regularization functions. ℓ(𝑥𝑖, 𝑦𝑖, 𝑤) is the selected

loss function. The parameters --l1 and --l2 specify the level (lambda values) of L1 and

L2 regularization. L1 is also known as Lasso regularization and L2 is known as Ridge

regularization. Ridge regularization parameter 𝜆2 controls the trade-off between fitting

the training data and keeping the weights small. When 𝜆2 = 0 there is no

regularization, and VW will optimize only the loss function. The highest the 𝜆2

parameter is, the prediction weights will become closer to zero. With Ridge

8 https://github.com/JohnLangford/vowpal_wabbit/wiki

https://github.com/JohnLangford/vowpal_wabbit/wiki

24

regularization all the features are included. Lasso regularization sets the weights for

most features to zero, with a few set to a value larger than zero.

Given a prediction 𝑦̂𝑤(𝑥) and a label y, a loss function 𝑙(𝑦̂𝑤(𝑥), 𝑦) measures the

deviation of the predicted value from the true label. VW currently supports the

following loss functions, with the Squared loss being the default.

Table 4. Loss functions in VW

Loss Function

Squared
1

2
(𝑦̂𝑤(𝑥) − 𝑦)2

Quantile 𝜏(𝑦 − 𝑦̂𝑤(𝑥))Ι(𝑦 ≥ 𝑦̂𝑤(𝑥)) + (1 − 𝜏)(𝑦̂𝑤(𝑥) − 𝑦)Ι(𝑦 ≤ 𝑦̂𝑤(𝑥))

Where I is the Indicator function and 𝜏 is the quantile.

Logistic log (1 + exp(−𝑦𝑦̂𝑤(𝑥)))

Hinge max (0,1 − 𝑦𝑦̂𝑤(𝑥))

An online learning system updates the model as it goes through the examples. Such a

system has a great advantage in speed. But it is important to be aware that it is also

very sensitive to initiation and the order of the data. For example, if all the negative

examples are in the beginning of the file, the system will perform poorly. It is important

to randomize the data before learning.

1.4.2 Vector Space Model

 We have used a Vector Space Model to support the implementation of the Snowball

system (Salton, et al., 1975). Vector Space Model represents the target data instances

and the seeds as vectors of attributes. Vector Space Model is most commonly used for

Information Retrieval tasks. We want to represent the collection of our data in a

document space, where Di is the ith document in the collection. Each document is

represented by an n-dimensional vector, consisting of n terms 𝐷𝑖 = (𝑡𝑖1, 𝑡𝑖2, … , 𝑡𝑖𝑛).

The terms can be weighted according to their importance. 𝑡𝑖𝑗 represents the weight of

the jth term in document i. Given the vectors for two documents, it is possible to

compute a similarity coefficient between them, 𝑠(𝐷𝑖, 𝐷𝑗). The similarity measure can

be the inner product of the two vectors, or an inverse function of the angle between the

vectors. When the document vectors are identical, the angle will be zero, producing a

25

maximum similarity measure. In Information Retrieval systems, we want to rank the

documents according to their relevance given a query. Here we are using the same

idea, only that our documents are the records – sometimes very short data instances

and our query is the seed. We want to rank the data instances by their similarity to the

seed vector. The vector space model method can be divided into three parts. The first

part is indexing of the features from the data instances. We need to create an index

containing all the possible features – to be able to use the same index across all data

instances for the same feature. Then, create a feature vector for each data instance. The

vector will have the count of the occurrences of each feature at the index associated

with that feature. The result is a very sparse vector space, with many zero values. The

second part is weighting of the vectors to improve the performance on the task at hand.

The last part is ranking of the data instances with respect to the seed according to a

similarity measure.

 Before indexing, we need to decide how we want to engineer our features. In IR, it

is common to disregard the stop-words (i.e. the, a) when indexing. Stop-words are

believed to lower the performance of the retrieval because they are not informative

with regards to the relevance of the document to the query. In the implementation of

the Snowball system, we experimented with different stop-word lists to improve

performance. Other linguistic features can be added to the index. For example, word

n-grams, stemmed words, lemmas, part of speech tags or any combination of those. It

is important to apply all the feature extraction techniques in all stages of the model

building – the index has to contain all possible features; the seeds and data instances

should be processed for feature extraction similarly in order to be comparable.

Meaning, if the index does not contain POS tags, only word forms, the seed vector

cannot contain POS tags. On the other hand, if the seed is stemmed and the data

instance is not, the similarity score will be very low. In the Data Chapter, we review

shortly all feature manipulation techniques used in this work. The Results Chapter

describes the feature sets used in the experiments.

 Term weighting has an influence on the precision and recall of the retrieval system.

One wants to find as many relevant documents as possible without retrieving irrelevant

documents. In the Snowball system, we want to extract new instances of named entities

in the relation without selecting named entities of a different relation. The term

weighting for the vector space model is applied based on single term statistics. We can

refer to term weighting as a scheme of three types: local weighting, global weighting,

26

and length normalization. The scheme for term i in data instance j is represented by:

𝐿𝑖𝑗𝐺𝑖𝑁𝑗. Local weighting ensures that terms that appear more often in the data instance

represent this record better than terms that appear less often. Global weighting on the

other hand takes into account the number of records in the dataset the term appears in.

If the document frequency of the term is low, it means that this term is more specific

to the data instance. For example, functional words will appear in all instances and will

have a high local frequency, but they are less informative than content words. Length

normalization is used for scaling vectors of different lengths. Long data instances will

have more terms than short instances, which would make their chances to be retrieved

higher. Cosine normalization reduces the impact of long documents. For local term

weighting we have experimented with term-frequency weighting: 𝑡𝑓𝑖𝑗 = 𝑛𝑖𝑗 where 𝑛𝑖𝑗

is the row count of term i occurrences in data instance j; relative frequency: 𝑟𝑡𝑓𝑖𝑗 =
𝑛𝑖𝑗

𝑙𝑗

where 𝑛𝑖𝑗 is the raw count of term i occurrences in data instance j normalized for

instance j length 𝑙𝑗; and log of the term-frequency: 𝑙𝑜𝑔𝑡𝑓𝑖𝑗 = log(𝑡𝑓𝑖𝑗) + 1.

Additionally, following the work by Chisholm and Kolda (1999) we have used square

root weighting: 𝑖𝑓𝑡𝑓𝑖𝑗 > 0 𝑠𝑞𝑟𝑡𝑡𝑓𝑖𝑗 = √𝑡𝑓𝑖𝑗 − 0.5 + 1

Logarithmic weighing or square root weighting are preferable to raw frequencies. A

score measured by raw frequencies would grow linearly as the frequency increases –

meaning that if a term appears twice as many times in a record, the score with be twice

as high. Logarithmic and square root functions are non-linear and give a better estimate

of the instance scores. Global weighting was performed using IDF weighting – inverse

document frequency 𝑖𝑑𝑓𝑖 = log (
𝑁

𝑑𝑓𝑖
) where N is the number of data instances in the

dataset, dfi is the number of data instances the term i appeared in.

 The similarity in vector space models is expressed via associative coefficients based

on the inner product of the data instance vector and the seed vector, where feature

overlap indicates similarity. The most popular similarity measure is the cosine

coefficient, which measures the angle between the two vectors. Since we perform

cosine vector normalization, the similarity measure is simply the dot product of the

vectors.

27

1.5 Evaluation Methods

 When talking about results of various tasks and experiments, one needs to keep in

mind that results are relative to the difficulty of the task no matter how they are

measured. For example, the accuracy of a morphological analyzer of English cannot

be compared to an analyzer of Czech. Even though on the surface the task is similar,

the performance on different languages cannot be expected to be the same.

Unfortunately, for most NLP tasks there are no standardized evaluation sets for

comparing systems. Without such a standard, how can we evaluate a new system?

 In order to evaluate an information extraction system, we would need first to

estimate an upper and lower bound for the expected performance. The upper bound is

usually set by human performance on the task, namely, human annotation. Difficult

tasks for humans are expected to be difficult for computers as well. The lower bound

is the Baseline - the simplest algorithm with the simplest settings. A baseline can be

based on frequency or co-occurrence. Our goal, when evaluating a system, is to gain

improvement in performance over the baseline. In the best case, the system’s

performance will be reaching the upper bound. For the estimation of performance

bounds and for evaluation of experiments we need to set the evaluation metric. The

most common metrics for information extraction tasks are accuracy, precision, recall

and the F-measure.

 Going back to the definition of Relation Extraction task, we want to evaluate how

well the system manages in extracting the right relations from the text instances

without extracting wrong relations. We can measure how well our system performs

using Precision and Recall. I will use the definition and illustration of Precision and

Recall from Manning and Schütze (1999).

System Target

Relation

Wrong

Relation

Extracted TP FP

Not Extracted FN TN

FP TP FN

TN

Target Extracted

Figure 5. Illustration of Precision and Recall (Manning & Schütze, 1999)

28

Figure 5. illustrates the world of possibilities in extracting relations both in a graphical

form and as a contingency matrix. After applying an algorithm for relation extraction,

we have two sets: the set of the actual relations in the documents and the set of the

relations we managed to extract. True Positives (TP) are the relations from the actual

set that we managed to extract. False Positives (FP) are the relations we extracted that

are not in the actual set, therefore, they are false. False Negatives (FN) are the relations

we left behind – the relations from the actual set that were not extracted. True

Negatives (TN) are the instances that do not contain any relation or containing a

relation, not from the actual set, and our system did not extract those correctly. The

numbers in the contingency matrix are the counts on instances from each region in the

diagram. Precision is defined as a measure of the proportion of extracted items that the

system got right. In other words, out of everything the system extracted, how many are

correct:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall is defined as the proportion of the actual target instances that the system

extracted. Or, how many relations were extracted out of the actual set:

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

 In a relation extraction system, it is possible to trade off Precision and Recall. If we

“extract” the target relation from all the text instances, we will be able to gain 100%

recall. All the target relations will be obviously extracted but with them, all the false

positives as well, dragging precision down. Essentially, when building an extraction

system, we need to decide if we are striving for high precision, not allowing false

positives in our outputs, or high recall, where we would like to see more results even

if some are not correct. There exists another measure that combines precision and

recall scores into one measure of performance –the F-measure. In the definition

bellow, we assume equal weight for precision and recall, although different weights

are possible.

 𝐹 =
2𝑃𝑅

𝑅 + 𝑃

Where P is precision and R is recall.

 An additional common measure of performance is accuracy. Accuracy is simply the

percentage of correctly labeled entities, either as correctly extracted or as true

negatives. Manning and Schütze (1999) list in their book several disadvantages of

29

accuracy over precision and recall. In the type of tasks, we are dealing with the number

of true negatives is significantly larger than the number of entities in all the other sets.

The accuracy calculation is not sensitive to this disproportion while recall and

precision are. When all set counts are equal, the F-measure will produce higher scores

when extracting true positives, where accuracy will only count with the number of

errors. With giving different weights to precision and recall, we can create a more

flexible measure, which would correspond to our preferences.

30

2 Data

2.1 Description and Analysis

 The data used in this thesis was provided by an industrial partner. The corpus

contains real customer data, describing personal information and points of interaction

with the company. The database includes structured and unstructured information that

are related to a specific party. The data given for the purpose of the thesis contains data

from 2006 to 2015. As this data is private, it is highly confidential. The data cannot be

shared, copied or described with details that include names and other identification

information. We have tried to provide the most informative data description as

possible, given this limitation.

 For the experiments, we used information from two main tables. The Party table

consists of structured information about business parties. The other table - Text - was

the source of the unstructured data. The Text table contains a description of one

interaction point of the parties with the company. The descriptions are between 1 to

1,631 tokens long, spanning over 1 to 10,000 characters. The number of records in the

Text table is 1,931,651. To establish the data to be used in the thesis, the tables were

joined into one table that would consist of textual unstructured information associated

with structured data about the related party. Since our relation involves a Person, the

joined table was split by the type of the party into persons and organizations. In the

final Person table, there are 1,202,845 records corresponding to the number of people

who had a text description associated with them. As we are interested in recognizing

the origin country, we extracted the information related to foreign clients.

 The same party entity may have more than one interaction point with the company.

Moreover, the description length varies from one word to lengthy texts. For the binary

Country of Origin relation, we took as data instances the occurrences of the named

entities of interest with the context surrounding them within a predefined window.

Meaning, that many of the text descriptions were not considered at all. On the other

hand, some text descriptions yielded several data instances. The corpus was then split

into three sets: training, development and test. Figure 7. illustrates the preparation of

the datasets.

 Unfortunately, the vast majority of the textual data could not be used for the

demonstration of the methods implemented here. The data to be used was constrained

in two ways. Firstly, the text has to contain a named entity. Secondly, the same attribute

31

expressed by the named entity has to be part of the structured data, to be used in the

Distant Supervision implementation and the Snowball evaluation. The only attribute

we found having both conditions was the country of origin. We had to exclude Czech

clients from the dataset since the mentions of Czech Republic in the text had many

different senses, compared to the mentions of the foreign countries.

The datasets were created the way that each dataset contains the same distribution of

classes – 72% negative examples to 28% positive examples. For the Distant

PARTY TEXT

JOINED

1,931,651 94,303,903

ORGANIZATION PERSON

1,254,082

51,237 1,202,845

LABELED UNLABELED

CZECH OTHER

1,068,170 73,838

Country-of-Birth Relation

1,142,008 60,837

Containing Country NE

6,529

DEV TEST

1,089 1,087 4,353

TRAIN

Figure 6. Dataset Preparation

32

Supervision method, we have used the training data set to train the models, the

development dataset to select features and tune the parameters and the test dataset to

test the final model. In Snowball, we combined the training and developments datasets

to tune the system’s parameters and select features. The test dataset was used to test

the tuned system.

Table 5. Distribution of classes

 TRAIN DEV TEST

Positive examples 1,234 309 309

Negative example 3,119 778 780

 The data domain presented two main areas of challenges. The first one originates

from the structure of the database and the way the structured information is stored in

the database. The structured data consists of keys and flags. The details of a person are

then presented as an array of numbers, i.e. [34, 45, 5]. In order to translate the keys

into their meaning, one needs to access a translation table, where the keys are mapped.

The translated description is more accessible – [Czech Republic, Prague, Married].

The mapping of the keys to their meaning is most important in relation to the Distant

Supervision method. When extracting the country-of-origin relation, we compare the

structured country-of-origin column to the countries found in the text. The column

contains numbers, where each number signifies a country. In order to compare the

values from the column to the values extracted from the text, they have to be translated

first. Additionally, some of the structured data is filled in incorrectly or in a non-unified

fashion. Comparing the column containing country-of-origin key with another column

containing place-of-birth description, we noticed that some of the data was filled in

incorrectly. Namely, the description of the place of birth did not correspond to the

country key in the next column. That means that either there is an error in the country

key or in the description. Moreover, the place of birth description contains a mixture

of cities and countries, with many different entered values for the same entity, for

example, {SR, Slovensko, Slovenska Republika}, not to mention spelling mistakes

and typos. This is surprising because such data is usually referred to as structured or

at least semi-structured and we did not expect such irregularities in this part of the data.

Those issues pose a serious problem for our methods. The unstructured data in not

manually labeled, and we are using the structured data to supervise the learning. If

there are errors in the data it will affect the performance of the algorithms. In order to

33

estimate the percentage of badly entered data, we manually counted how many

mismatches and mistakes appeared in the country-of-origin and place-of-birth

columns in the Foreign table. Out of 100 records, 2 were labeled with a non-matching

country code, 4 birth place entries were misspelled and 10 were invalid values, making

it 16% of invalid entries. The majority of mistakes are made in countries other than

Slovakia – constituting about 50% of the Foreign table.

 The second challenge is in the unstructured part of the database. The unstructured

data contains texts that were submitted by company’s personnel, as a transcript of the

interaction point with the client. Since the description is for internal purposes only, the

text contains many company specific abbreviations. It seems the writers of the

descriptions were not concerned with the correctness of the texts. We encountered

spelling mistakes and missing white space after punctuation. In the next section, we

address the challenges faced when processing the data on different levels of analysis.

2.2 Data Preparation

 In this section, we discuss the modification applied to unstructured data and the

additional analysis performed on the tokens, such as Lemmatization, Stemming, and

named entity recognition.

2.2.1 Text Normalization

2.2.1.1 Punctuation

 In order to minimize the errors caused by wrong spacing after punctuation, we added

a space after punctuation if it was preceded by a string of letters and followed by a

string of letters, excluding @ from the punctuation list to avoid parsing emails.

 In some of our experiments, we discarded punctuation and numeric characters

entirely when building the feature vectors. In others, we replaced all punctuation by

“PUN” string to group all possible punctuation strings into one. The same procedure

was applied to the numeric characters replacing them with “NUM” string. The

reasoning for discarding or replacing non-letter characters is the possibility that they

introduce noise without adding information for our classification.

2.2.1.2 Capitalization

 Many natural language processing application can benefit from normalizing the text

by lowercasing the tokens. We want to consider tokens which are uppercased in the

beginning of sentences as the same feature as the same token in the middle of the

34

sentence. On the other hand, some capitalized words are uppercased for a different

reason – names of people, organizations and location are capitalized as well. This

information is essential for recognizing named entities and differentiating names from

regular words, for example, Apple and apple. In this work, we decided to lowercase

tokens after applying the named entity recognizer. In this way, we first provide

complete information to the NER allowing it to use capitalization as a feature. Then

we generalize over capitalized and lowercased tokens in the rest of the analysis.

2.2.1.3 Stop-words

 Stop-words are functional words such as prepositions, determiners, and

conjunctions. In many applications, such words are removed from the text while

processing because they are very frequent and uninformative. When we classify text

instances we want the features to be selective for the class. For example, the word

capital is probably very important to identify is-capital relation, but the word the

would appear in most of the sentences, not giving us a hint of which class the sentence

belongs to. On the other hand, some prepositions are very important in the task of

relation extraction. A proposition is sometimes the whole context between named

entities, as in Bob from England. In those cases, stop-words should not be ignored. We

decided to put the stop-words elimination to the test and created experiments with and

without stop-words. We used a compiled list of 256 stop-words for Czech9. We have

also experimented with different stop-word lists. The second stop-word list is a subset

of the complete list, excluding prepositions that could be beneficial for out relation

extraction methods. We have also compiled a stop-word list from company’s

abbreviations.

2.2.2 Stemming

 Stemming refers to the removal of characters at the end of the word in an attempt to

grasp the core of the word. Most algorithms for stemming are built to remove suffixes

leaving only the stem of the word. For example, with stemming we can deduct that

writer and write share the same root, they are semantically related. Note that both

writer and write are in their base dictionary form. The main idea behind stemming is

similar to the reasoning for lowercasing tokens. We want to be able to generalize over

variant forms of a word because the variants originate from the same semantic

9 https://sites.google.com/site/kevinbouge/stopwords-lists

35

meaning. As with other normalizing techniques, stemming may improve the results of

one task on a specific collection but may reduce the performance over a different

collection or a different task. We have experimented with both stemmed features and

non-stemmed features.

 Stemming was performed by the Snowball10 stemmer for Czech that was ported to

python from the Java implementation by Ljiljana Dolamic, University of Neuchatel11

(Porter, 2001). The stemmer is implemented in two modes: light and aggressive. The

light stemmer removes grammatical case endings from nouns and adjectives,

possessive adjective endings from names, and takes care of palatalization. The

aggressive stemmer also removes diminutive, augmentative, and comparative suffixes

and derivational suffixes from nouns. In our experiments, we used the aggressive

stemmer.

2.2.3 Lemmatization

 Lemmatization is similar to stemming, but instead of chopping off letters from the

end of the word, it reduces the word to its base form or dictionary form. Taking the

examples write and writer, both words are in base form, therefore, would not be

changed by lemmatization. On the other hand, writers and writes would be reduced to

writer and write correspondently. In a way, lemmatization reduces inflectional

morphology and stemming reduces derivational morphology. In this thesis, we used a

morphological analyzer – MorphoDiTa (Straková, et al., 2014). MorphoDiTa stands

for Morphological Dictionary and Tagger. It performs full morphological analysis,

including lemmatization, part of speech tagging and tokenization. The analyzer comes

with a trained model for Czech, which achieves state-of-the-art results. It is possible

to train the analyzer for other languages using annotated data. MorphDiTa was

developed specifically to cope with morphologically rich languages, such as Czech.

As other Slavic languages, Czech is an inflective language. Most of the inflective

morphology of Czech is expressed through suffixes, marking cases, gender, and

number. In lemmatization algorithm, all of those suffixes have to be identified and

removed to get to the base form. MorphoDiTa is easily suited for different inflective

languages because it is not using any language-specific knowledge. Instead, it creates

10 The Snowball Stemmer, not to be confused with the Snowball system for RE.

11 http://research.variancia.com/czech_stemmer/

36

templates it deducts from clustering common form endings. Based on an annotated

dataset, the system collects all word forms labeled with the same lemma and builds a

trie structure. Since in Czech inflective morphology is expressed via suffixes, word

forms of the same lemma share the same prefix. In a trie, the prefix is expressed with

linked nodes, one node per letter. The suffixes are then branch out of the end of the

prefix as shown in Figure 8. (Straková, et al., 2014). When looking for a suitable prefix,

the system takes into consideration the length of the suggested suffix, not to exceed a

predefined length. Namely, the suffix cannot be too long. On the other hand, the system

tries to find the longest prefix. The template is set of all the suffixes of the defined

prefix. New lemmas either share the template defined by a different lemma or create a

new template. Our algorithm is using MorphoDiTa Python bindings. We input raw

text and the system outputs the corresponding lemma and part of speech tag per word

form.

2.2.4 Part of Speech Tagging

 Part of Speech (POS) Tagging refers to the assignment of a grammatical tag such as

noun, verb or adjective to a word. As for lemmatization, we used the MorphoDiTa tool

to POS tag the data (Straková, et al., 2014). The POS tagger of the system is going

hand in hand with the lemmatization algorithm. After the system suggests a list of

possible lemma – tag pairs, the tagger performs disambiguation for choosing the most

probable tag in the context. The tagger is implemented as supervised, rich feature

averaged perceptron. MorphoDiTa used the Prague Dependency Treebank 2.5

(Bejček, et al., 2012) for training. In our algorithm, we used the 2-position tags

provided by the system corresponding to POS in the first position and sub-POS in the

Figure 7. Trie representation of word forms in MorphoDiTa. Taken from Straková, et al (2014)

37

second. Figure 9. presents the distribution of first position POS tags in the data. It is

surprising that only 19 tokens were not identified (labeled X), given that many tokens

are domain specific abbreviations.

Table 6. POS tags description

Value Description Value Description

A Adjective P Pronoun

C Numeral V Verb

D Adverb R Preposition

I Interjection T Particle

J Conjunction X Unknown, Not Determined, Unclassifiable

N Noun Z Punctuation (also used for the Sentence Boundary token)

2.2.5 MorphoDiTa Evaluation

 The MorphoDiTa system we used for POS tagging and lemmatization was trained

on normalized manually annotated texts. POS tagger was trained on PDT 2.5 which

contains a collection of Czech newspaper texts (Bejček, et al., 2012). We consider here

newspaper texts as normalized, because in comparison to the texts in our collection we

do not expect so many errors, misspellings, and spacing issues. The same can be

claimed with regards to the lemmatization training data. In order to evaluate how well

MorphoDiTa copes with our irregular data, the results on a small section of the data

were manually evaluated. To simplify the task, only the first position of the POS tags

was considered for evaluation. Table 7. summarizes the results of our manual

evaluation on 100 data instances, on both lemmatization and POS tagging. We also

brought the results reported by Straková et al. (2014) for comparison.

146501

126287

69635

53455
40818

27141 26259 21704 17347

1384 177 19

0

20000

40000

60000

80000

100000

120000

140000

160000

N Z V R C A P J D T I X

N
u

m
b

er
 o

f
to

k
en

s

POS tag

Distribution of POS Tags

Figure 8. Distribution of POS Tags

38

Table 7. MorphoDiTa performance

 Accuracy on Business Domain Accuracy reported by Straková et al. (2014)

Lemma 88.5% 97.80%

POS Tag 96% 99.18%

 This evaluation was performed for estimation only. The amount of manually

annotated instances is not enough for a definitive evaluation. That said, we have

noticed interesting domain specific errors. Lemmatization process is expectedly failing

on misspelled words, while the POS tagger is guessing the tag correctly in many cases,

even of unrecognized words. A difficult lemmatization task is to recognize domain

specific abbreviations. But if such abbreviation is in the dictionary, lemmatization can

help with text normalization, as in the case of the lemma číslo, which appears in the

text as č. In Lemmatization, we encountered a small number of errors that are not

domain specific, amounting to 2%. This percentage corresponds to the error rate

evaluated by Straková et al. (2014). We expect that the performance would be worse

if we did not fix the spacing issue before the morphological analysis.

2.2.6 Named entity recognition

 One of the most important components of RE is Named Entity Recognition (NER).

Named Entities constitute the building blocks of relations. The system we used for

NER is the NameTag (Straková, et al., 2013). It is based on a Maximum Entropy

Markov Model, with a Viterbi algorithm which is used to decode probabilities

estimated by the maximum entropy classifier. NameTag achieves a state of the art

results for Czech with 82.82% F-score on the Czech Named Entity Corpus. As with

MorphoDiTa, the recognizer is available with a trained language model for Czech. The

NER is classifying named entities into a two-level hierarchy. There are 7 upper-level

classes, including numbers, time expressions, personal names, geographical names,

and institutions. The lower level consists of fine-grained 42 named entity classes (the

full hierarchy can be found in Attachment 1 (Ševčíková, et al., 2007)). In this work,

we only use the Country named entities. We manually evaluated NameTag on the

Country label. The results are presented in Table 8. The results reported by Straková

et al. (2014) are brought only for orientation. Those scores were calculated for all of

the classes in the hierarchy while our evaluation considered only one upper-level and

one fine-grained class.

39

Table 8. NameTag Evaluation

Upper Level Fine-Grained

Recall Precision F-score Recall Precision F-score

Reported By

Straková et al.

(2014)

- - 80.30 - - 77.22

Manual

Evaluation
86.11 68.38 76.23 81.48 72.13 76.52

 For evaluation we manually labeled 100 data instances with the class GC,

corresponding to Countries and States. We then labeled the data instances with

NameTag and compared the results. We counted the number of correctly labeled

entities with the label GC and entities labeled with another geographical tag. Most of

the countries were correctly labeled with GC, confirming that an upper-level

geographical label would not provide better performing models. That is, taking a high-

level tag would result in unnecessary noise as demonstrated in lower precision in the

manual evaluation. Most of the errors resulted from incorrect labeling of domain

specific abbreviations, which are considered by the tool as countries. In Table 7. we

present the most frequent GC labeled tokens. Table 7. covers over 75% of the extracted

NE. The tokens labeled “PK”, “KC”, “IT”, “CZK” are not countries. The label “PK”

was assigned to 13.13% of the extracted NE. The reason for such errors is the fact that

the same abbreviation can signify a country. For example, PK is the ISO code that

refers to Pakistan and IT is the ISO code of Italy. Some of the countries were not

caught by NameTag because of parsing errors, where white space was missing

between words. Some countries were labeled with GU, a class of Castles. Considering

that most of GU labeled entities are actually cities, we decided to include only the GC

tag in our models.

Table 9. Most frequent Country labels

NE Label Count Presentage NE Label Count Presentage

ČR 1,040 22.28% České 62 1.33%

PK 613 13.13% Slovenské 60 1.29%

Slovensko 414 8.87% Německu 56 1.20%

Slovensku 249 5.33% IT 55 1.18%

KC 186 3.98% Polsku 52 1.11%

USA 130 2.78% Německa 41 0.88%

Slovenska 96 2.06% Slovenská 40 0.86%

SR 87 1.86% Ruska 37 0.79%

Ukrajině 81 1.74% Rusku 31 0.66%

Ukrajinu 74 1.59% CZK 28 0.60%

Polska 64 1.37% Česká 25 0.54%

40

3 Methods

 In the original implementations of the Snowball system and the Distant Supervision

method as presented in this work, both rely on finding all the named entities of interest

in the text. The methods are using the context words surrounding the named entities

as features. It is important to note that in the data used here, only one of the named

entities is present in the text. In this work, we use the structured data entries as the

second named entity in the relation. We rely on the fact that a specific text instance is

related to a party, given to us from the structure of the database. More specifically, the

country-of-origin relation is a relation between two entities <Person, Location>. The

name of the person is part of the structured data. The name is rarely present in the text.

Moreover, the person’s name and the location of their origin are not mentioned in any

of the data instances together. But, we know that each text instance is related to one

person – the client. In our implementation, we take the context surrounding only one

of the named entities in the relation – the country.

 There is another important difference between the traditional relation extraction and

the methods presented in this thesis. Similarly to the approach of Craven and Kumlien

(1999), we do not extract pairs of named entities in the given relation directly. Instead,

we classify the context as informative for the given relation or not informative, making

the task a binary classification task. In other words, if the context surrounding the

country expresses the country-of-origin relation, we are assuming that the mentioned

country is the birth country of the client. After classifying the data instances, we can

pair the named entity from the text to the name of the client from the structured data

to provide a list of pairs. Take, for example, the following sentences:

1. The client is a citizen of Canada.

2. After a vacation in Spain, the client opened this request.

The context in the first sentence is informative. Reading the sentence we can tell with

some assurance that the client related to this text is from Canada. Compared, the

second sentence does not provide us with similar information. Our methods are built

to detect this difference.

 Changing the task to a binary classification task required relabeling of the data. In

the implementation of the Distant Supervision method by Mintz et al. (2009), the

structured data was used as labels. In our data, the structured data we could use in such

a way is the country-of-origin column in the Party table. In order to create binary labels

41

to train the Distant Supervision models and for the evaluation of the Snowball system

we constructed a simplifying assumption: If the country mentioned in the text is the

same as in the structured data, we consider this data instance a positive example. The

rest are negative examples. This assumption greatly simplifies the task at hand. There

are over 150 different countries in the database. We have 6500 data instances. This is

too small of a dataset to classify the data to 150 labels. On the other hand, we are aware

that this assumption brings noise with it. It is not necessary that the context in which

one would mention their country of origin would actually be informative for this

relation. To summarize the above modifications:

1. The textual data contains only one of the NE from the relation.

2. We consider the task as a binary classification of the NE context.

3. We assume that if a country mentioned in the text is the same as in the

structured data, the context expresses the relation.

In the following sections, we will describe the dataset preparation and the implemented

methods in length, with the three modifications described above in mind.

3.1 Data preparation

 The data used here is hosted on a cluster, with many tables containing different kinds

of information. The description of the tables resided in a different system. For the

preparation of the datasets, we used Hive - data warehouse software for reading,

writing, and managing large datasets residing in a distributed storage12. All the data

related procedures were run from the company’s server using SQL-like Hive

commands. The prepared data was fed as input to Python scripts for further analysis

and processing.

 The Snowball algorithm requires the data instances to be converted to feature

vectors. The Distant Supervision method has a different data representation following

the format of Vowpal Wabbit. Nevertheless, in both methods, we need to extract

features to represent the data instances. The features used in the original methods are

constructed from the context words between the named entities to the left side of the

first entity, and to the right of the second. As we do not have both named entities in

the text, the datasets are prepared with features only from the left and right side of the

NE. Actually, the NE in the text is the second NE in the relation, meaning that our

12 https://hive.apache.org/

https://hive.apache.org/

42

context is the right context and the middle and left merged together to the left context.

As was mentioned in the previous chapter the named entity recognition was performed

using the NameTag tool (Straková, et al., 2013). We included only the data instances

that contained named entities tagged with the label GC. We created various datasets

with several options for the number of tokens taken from each side of the named entity.

Another variation in the datasets is in the processing applied on the extracted tokens.

For each method, we engineered and evaluated different feature set, optimized for the

performance of the individual method. We have prepared the data to be used in the

experiments using the following scheme:

Table 10. Data preparation for country-of-origin relation

1 For every record:

2 Extract named entities

3 For every named entity:

4 If the named entity is a country:

5 Extract the surrounding words around the NE

6 Process the extracted words to add linguistic features:

7 Normalization

8 Lemmatization

9 Stemming

10 POS tagging

11 If the country in the text is the same as in the country-of-origin column:

12 Label the record with 1

13 Else:

14 Label the record with -1

15 Write the processed tokens as features into the output file

16 Split the data into Training, Development and Test datasets

As the baseline dataset, we extracted only 1 context token from each side of the NE.

We did not apply any normalization procedure. Other datasets included lemmas and

POS tags produced by the MorphoDiTa (Straková, et al., 2014). We have also used a

stemmer to include stems in some of the datasets. Additionally, we experimented with

n-grams up to a third degree. For the Distant Supervision method, all the produced

datasets were split into Training, Development and Test datasets. We have kept the

same distribution of classes in all three datasets. The training dataset was used to train

the machine learning methods with different parameters and features. The

43

development dataset was used to test the models while tuning parameters and selecting

features. The test dataset was used to test the final model with the selected features.

The Snowball System does not involve training, therefore, we combined the training

and development datasets for tuning the system parameters and for feature selection.

The test dataset was used to test the performance of the system.

3.2 Feature Engineering

 One of the most influential parts of any machine learning or bootstrapping algorithm

is the selection of features. Engineering good features suitable for the selected method

is sometimes a challenging task. Our goal is to find the best performing set, with the

least computational effort spent on creating the features. All of the features used in our

implementation are based on the words surrounding the named entity in the data

instance in which they appear. We experimented with several types of features: word

forms, part-of-speech tags, lemmas, stems, in different context windows. We have

evaluated different feature sets separately for the Snowball system and for the Distant

Supervision method. The best combination of features was chosen in the following

way: First, we evaluated the effect of window size on word form features. The size of

the context surrounding the words affects the amount of information the system is

receiving. One might think that the largest the context window the better are the results.

But this is not the case. Especially when the model used is a bag of words, we might

confuse the system with irrelevant features. Each task has a different ideal ratio

between giving enough of information without giving irrelevant one. In our task, we

have found that a rather small window is required since the words closest to the named

entity are the most informative. Taking the best-performing window we tried to

improve performance by removing stop-words. Stop-words are frequently used words

such as functional words (e.g. determiners and prepositions). Some algorithms can

benefit from stop-words removal because usually those words are less informative. We

have used three different stop-word lists. The first list is constructed from a complete

list of 256 stop-words for Czech13. The second stop-word list is a subset of the

complete list, excluding prepositions and adverbs that could be beneficial for the

relation extraction methods. We excluded the prepositions {do, na} used with

locations. We also excluded adverbials which refer to locations such as {kde, daleko}.

13 https://sites.google.com/site/kevinbouge/stopwords-lists

44

The reduced list contains 239 stop-words. The third list contains company specific

abbreviations. The third list was also used in combination with the other two stop-

word lists. In the following experiments, we exchanged numeric values and

punctuation by PUN and NUM respectively, following by experiments ignoring those

value entirely. Punctuation rarely holds additional information with regards to the

relation we are extracting. We assume that the methods would benefit from the

removal of punctuation tokens. Numerical values are even less informative. The data

contains a lot of different numerical tokens, making similar feature vectors seem

farther away than they really are. Taking the best performing setting up till now, we

changed word forms to lemmas and stems. Lemmas and stems contribute to the

generalization of the models. By converting word forms to lemmas or stems we

collapse several word forms into one. Since the semantic core meaning of the word is

usually preserved when it is lemmatized we should gain from such a generalization.

Take for example the following sentences:

1. Klientka se vrací na Slovensko.

2. Klient se vrátil na Slovensko.

The meaning of the sentences is very similar, with identical informatively with regards

to the relation. With word forms, the two sentences are represented with two different

feature vectors. After lemmatization, the two sentences would have identical feature

vectors: {Klient se vrátit na Slovensko .}. In the subsequent experiment, we added POS

tags as well.

 In an attempt to improve the results further, we added bigram and trigram features.

N-grams are useful for a more accurate representation of the context. Some words on

their own have a different meaning in a sequence with other words. Taking the

example above, we would rather consider se as one feature together with the verb.

Since other occurrences of se can be less informative in a combination with other

verbs. Vowpal Wabbit offers an n-gram parameter, which creates n-grams with

different n value, and uses those during training. Another useful parameter is the skip-

grams which can be used in combination with the n-gram parameter to create n-grams

by skipping over a predefined window of words, making the features in the form of

n-skip-k-gram. Those features are useful for detecting distant relations between words.

45

3.3 Snowball

 The Snowball method described in the Background chapter counts with having

multiple appearances of each pair of related named entities in the same context. It is

clear that this assumption of having many examples of both NEs in the same data

instance is not valid for this domain data. Not only that the pairs of NEs are not

repetitive, but the data instances contain only one NE, having the other as part of the

structured data. Given those differences, we had to modify the algorithm. We describe

the original Snowball implementation below.

Table 11. The Snowball system by (Agichtein & Gravano, 2000)

1 Find seed NE pairs in the text

2 For every pair:

3 Extract the words around the NE pair

4 Prepare LP vector from the words to the left of NE1

5 Prepare RP vector from the words to the right of NE2

6 Prepare MP vector from the words between NE1 and NE2

7 Normalize and scale the vectors by a factor of relative importance

8 Prepare pattern from LP, RP, MP vectors

9 Extract named entities from the text

10 Find sentences with NE pairs of the same type as in the relation

11 Convert sentences to pattern format using steps 3-8 – Create and normalize LT, RT, MT

12 For every seed pattern:

13 For every text pattern:

14 If both NEs are of the same type as in seed pattern:

15 Calculate Match Score (𝑀𝑎𝑡𝑐ℎ(𝑃, 𝑇) = 𝐿𝑃 ∙ 𝐿𝑇 + 𝑅𝑃 ∙ 𝑅𝑇 + 𝑀𝑃 ∙ 𝑀𝑇)

16 Else: Score = 0

17 Rank scores

18 Extract NE pairs from text patterns according to a similarity threshold

19 Evaluate extracted NE pairs

20 Collapse patterns vectors to their centroid, use those vectors as the seed patterns

21 Repeat from line with newly extracted NE pairs

 In our implementation of the Snowball, there are several differences from the

original implementation above. We could not have seeded the process with pairs of

named entities. Our text instances do not contain both named entities of the relation.

Moreover, the NE that appears in the text might be part of a different relation, such as

the location of a vacation or the location of a workplace. Seeding with the contexts

46

surrounding any Country would bring noise to the system. It would have been

impossible to identify which of the context vectors express the relation country-of-

origin and which express a different relation. Therefore, we have decided to seed the

system with context words directly. We have manually constructed two seed vectors

of possible features to serve as the seed pattern for the right and left context. The seed

features were selected in a trial and error method. The initiation of the system had the

largest impact on the results of the extraction. If we seed the system with too many

options, the algorithm extracts many data instances at the first iteration and fails to

extract any relevant data instances at the next iteration. As in the Snowball system by

Agichtein and Gravano (2000), we only consider sentences that contain the Country

labeled named entities. The data instances were labeled with named entities during

data preparation. We extract the context words in a predefined window to the right and

left of the labeled NE. We have changed the pre-processing of the words in the feature

engineering stage. We have first experimented with word tokens. We then added

different normalization procedures – stop-words removal, removal and normalization

of punctuation and numbers. Stems, lemmas and part of speech tags were added to

some of the datasets. Finally, the features were converted to the vector format. After

the vectors were constructed, we applied different weighting schemes. We have used

cosine length normalization for all of the vectors in the system. For term weighting,

we experimented with term frequencies, relative term frequencies, Log normalization

and SQRT normalization. For global weighting, we used IDF.

 At that point, we have two seed vectors – LS and RS, corresponding the left seed

pattern and the right seed pattern respectively. We also have a collection of data

instances all converted to feature vectors. Each data instance is now presented as two

vectors one for each side of the named entity. As in the original Snowball system, we

take the dot product of the corresponding context vectors and sum them up to calculate

the similarity score between the seed vectors and the data instances:

𝑀𝑎𝑡𝑐ℎ(𝑆, 𝑇) = 𝐿𝑆 ∙ 𝐿𝑇 + 𝑅𝑆 ∙ 𝑅𝑇

In order to identify which instances are most similar to the seed pattern, we rank the

Match scores. The best ranking data instances are processed in two ways. First, the

data instance is labeled as 1 – meaning considered a positive example. It also means

that we can extract the named entity from the data instance and the second named

entity from the structured data to produce an NE pair in the relation. Then the features

from the data instance are evaluated. The best features are added to the seed pattern

47

for the next iteration. To choose the best ranking data instances we have added a

similarity threshold as a parameter. During parameter tuning, we experimented with

different thresholds to produce the best trade-off between recall and precision. If we

set the similarity threshold parameter too low, we allow data instances that are barely

similar to the seed pattern to be extracted. This way we increase recall, with many

instances passing through the bottleneck. But at the same time, we are decreasing

precision, labeling data instances that are not similar to the seed as positive examples.

Another parameter in the system is connected to feature evaluation. After we have

extracted the similar data instances, we want to enrich the seed patterns with their

features. We could add all features to the seed. But, this would add unnecessary noise

to the seed feature vectors. Instead, we use a count of overlap of each feature in all

extracted data instances in a given iteration. The intuition behind this decision is that

features that appear in more extracted data instances are more likely to be connected

to the relation we are trying to detect. We add to the seed vector only features that are

not part of the seed already. The overlap count threshold parameter was tuned in our

experiments. Here, similarly to the similarity score threshold, we consider recall and

precision trade-off. If we set the count too high, there might be not enough features

above this count to enrich the seed vectors. Without enrichment, the next iteration will

not extract additional data instances. The recall and precision, in this case, will stay

the same as in the iteration beforehand. If we set the overlap count threshold too low,

the seed vector will be enriched with uninformative features. The recall, in this case,

would increase and the precision would decrease.

 According to Agichtein & Gravano (2000), the middle context bares the most

informative features. Therefore, in their implementation, the middle vector is scaled to

have higher weights. In our implementation, the left vector is comparable to the middle

vector. We have experimented with seeding only the left patterns to examine their

claim.

 The whole system is implemented in Python. We have used external libraries such

as ufal.morphodita and ufal.nametag for morphological analysis and named entities

recognition. Stemming was performing using a ready to use implementation of the

Snowball stemmer for Czech14. All other components of the system were implemented

using the standard libraries.

14 http://research.variancia.com/czech_stemmer/

http://research.variancia.com/czech_stemmer/

48

The following description depicts the algorithm of our system:

Table 12. Modified Snowball Implementation

1 Tag the data with Named Entities

2 Select the data instances containing GC NE label

3 Construct seed patterns

4 Convert seed patterns into two feature vectors – Lseed, Rseed

5 Weight the seed vectors with one of {raw,relative,sqrt,log} local weights

6 Weight the seed vectors with IDF global weight (optional)

7 Normalize and scale the seed vectors

8 For every data instance:

9 If data instance was not labeled already:

10 Extract the words around the NE

11 Process the words for linguistic features {stem,lemma,POS-tag}

12 Prepare LT vector from the words to the left of the NE

13 Prepare RT vector from the words to the right of the NE

14 Weight the text vectors with one of {raw,relative,sqrt,log} local weights

15 Weight the text vectors with IDF global weight (optional)

16 Normalize and scale the text vectors

17 Calculate Match Score (𝑀𝑎𝑡𝑐ℎ(𝑆, 𝑇) = 𝐿𝑆𝑒𝑒𝑑 ∙ 𝐿𝑇 + 𝑅𝑆𝑒𝑒𝑑 ∙ 𝑅𝑇)

18 Rank scores

19 If score above similarity threshold:

20 Label the data instance as positive example

21 Collapse extracted vectors into Left and right vectors

22 For every feature in the collapsed vectors:

23 If feature count is above overlap threshold:

24 If feature not in the corresponding seed vector already:

25 Add feature to the corresponding seed vector

26 Repeat from line 5 with the new seed vectors

3.4 Distant Supervision

 Following the work of Craven and Kumlien (1999) and Mintz et al. (2009), we

implemented the Distant Supervision method that exploits the structured part of the

database for training data. We used values from the Country column as weak labels

for the text instances. As mentioned before, we consider every data instance that

contains the named entity identical to the value in the Country column a positive

training example. All other data instances, which contain named entities tagged with

49

GC (Country) other than the one in the structure data, are considered negative

examples. We then trained a classifier using the weakly labeled data. The classifier is

trained to identify whether the context words express the relation of interest. For all

the models implemented as part of the Distant Supervision method, we have used

Vowpal Wabbit. We have used a simple unigram model as a baseline, with word

tokens from the surrounding context of NE represented as a bag of words. From the

vast possibilities of data representation formats in Vowpal Wabbit, we have chosen to

use the simplest representation. We did not use namespace tags, per namespace

weights, or per instance weights. We have also decided not to weight particular

features. The data format is then simply:

1 | f1 f2 f3 NE f4 f5 f6

 Dataset modification was presented in a previous section under Feature

Engineering. After the best performing feature set was chosen, we used the dataset to

tune parameters and the learning method to select the best performing combination.

The machine learning method is divided into two stages – training and testing. To train

the classifier we have chosen different parameter schemes from the options

implemented in Vowpal Wabbit. We have trained several models using different loss

functions, regularization and learning rates. In the experiments depicted in the

following chapter, we tried four different loss functions: Squared, Quantile, Logistic,

and Hinge. Additionally, we have tuned the Lasso and Ridge regularization parameters

by adopting the --l1 and --l2 parameters for each of the loss functions. We have tried

different learning rates within the range of the default value as well as different values

for the power_t parameter. All of the feature engineering and parameter tuning

experiments were tested on the development dataset.

50

4 Results

 The results are presented separately for the Distant Supervision method and the

Snowball system. The first section is devoted to the experiment results on the

development dataset, including Feature Engineering and Parameter Tuning

experiments. The second section presents the results on the test dataset, using the best

performing models from the first section.

4.1 Results on Development Dataset

4.1.1 Distant Supervision

 The first set of experiments is designed to select the best feature set for the learning

algorithms. We have used the default settings in Vowpal Wabbit. The default loss

function is Squared, without Lasso and Ridge regularizations. The default learning rate

is 10 and the default power_t is 0.5. The models were built with one pass through the

data. As noted before, Vowpal Wabbit is an online learning system. In online learning,

the features weight vector is updated for each example. This makes the algorithm very

sensitive to the order of the data instances. To reduce the effect of data ordering, all

the experiment were run 5 times on differently randomized datasets. The results

reported are averaged from the 5 runs.

 Experiments 1-10 contain datasets with different window size for the context

surrounding the named entity. A window size of 1 takes one token on each side of the

named entity. The feature vector also contains the named entity itself. We have also

added an experiment with only the left context words included as features. Another

experiment does not include the named entity in the feature vector.

Table 13. Window size experiments for Distant Supervision

Experiment Window Size Recall Precision F-score

1 1 86.41 92.39 89.29

2 2 86.41 92.91 89.50

3 3 89.66 90.55 90.08

4 4 88.57 91.23 89.87

5 5 85.03 89.28 87.07

6 6 86.49 89.33 87.86

7 7 84.53 86.13 85.27

8 8 83.84 87.24 85.45

9 9 83.15 84.43 83.72

10 10 81.51 88.27 84.68

11 3 only left side 87.96 92.24 90.03

12 3 without NE 67.64 79.23 72.93

51

The best results in this set of experiments are with the smaller window size. Three

context words on each side are enough for the algorithm to learn if the sentence

describes the country-of-origin relation. It makes sense since the word right next to the

named entity is semantically the most informative. The named entity itself proved to

be an important feature for the classification. The F-score of the experiment without

NE is almost 20 lower than the same experiment with the NE. Taking only the left

context words, yielded very similar results, with only 0.05 points difference in F-score.

Nevertheless, we decided to continue with the experiments using the highest achieving

model, with 3 words from both sides of the context.

 In the next experiment set, we tested different stop-word lists. Complete refers to

the full stop-word list; Reduced refers to the stop-word list without relevant

prepositions and adverbs; Domain refers to the domain specific stop-word list.

Table 14. Stop-words removal experiments for Distant Supervision

Experiment Stop-word list Recall Precision F-score

13 No stop-word list 89.66 90.55 90.08

14 Complete 85.82 92.32 88.93

15 Reduced 86.92 91.68 89.23

16 Domain 83.94 91.16 87.34

17 Complete + Domain 84.14 93.13 88.39

18 Reduced + Domain 84.46 92.55 88.31

The removal of words from the domain specific stop-words list did not improve the

performance of the algorithm. All three experiments that include domain list removal

did not over-perform the model without stop-word list. All the experiments in this set

produced higher precision than the model without stop-words removal. On the other

hand, the recall decreased in those models. We do not use stop-word lists in the

subsequent experiments, given that the F-score did not improve after stop-word

removal.

 In the following set of experiments we have normalized the data by exchanged

numeric values and punctuation by PUN and NUM respectively. Additional setting

includes the removal of numbers and punctuation.

52

Table 15. Numbers and punctuation normalization experiments for Distant Supervision

Experiment Experiment setting Recall Precision F-score

19 No normalization 89.66 90.55 90.08

20 Punctuation replaced 86.47 90.84 88.58

21 Punctuation removed 87.31 91.65 89.40

22 Numbers replaced 87.57 92.08 89.75

23 Numbers removed 87.31 91.28 89.24

24 Both replaced 87.96 91.41 89.61

25 Both removed 87.51 92.13 89.74

Punctuation and numerical values usually do not contribute the text classification task

since their semantic input is poor. On the other hand, removal of those features did not

improve the performance.

 The next set of experiments tests whether linguistic features contribute to

performance. By linguistic features, we mean linguistically driven modifications of the

word tokens. We performed morphological analysis to extract lemmas and part of

speech tags. We have also stemmed the tokens. It is a common claim that feature

vectors represent one term frequency at each position (Salton, et al., 1975). In this

work we tried a different approach where each term is represented at several points in

the vector. Instead on merely changing the representation of one token from word form

to lemma or stem, we add both stems and lemmas to the bag of words language model.

In Mintz et al. work (2009), they constructed complex features, representing the whole

pattern as one feature. We are taking the opposite approach, breaking the

representation of the pattern to many separate features. We have also combined

lemmas with POS tags and Stems with POS tags as one feature.

Table 16. Linguistic features experiments for Distant Supervision

Experiment Experiment setting Recall Precision F-score

26 Word forms 89.66 90.55 90.08

27 Lemmas 88.60 92.85 90.64

28 POS tags 83.17 91.32 87.01

29 Stems 87.31 91.84 89.51

30 Lemmas - POS tags 91.00 93.92 92.42

31 Stems - POS tags 87.96 92.91 90.34

32 Lemmas +Stems 87.89 90.18 89.01

As expected, lemmas contribute the performance of the system. The model can

generalize over several word forms using their lemmatized representation. The

combination of lemmas with POS tags achieves the highest F-score of 92.42. It is

surprising that stemming did not have a similar effect on the performance.

53

 We have added another set of experiments using n-gram and skip-gram models. An

n-gram model takes n consecutive words and concatenates then into one feature. Skip-

gram model creates n-gram features by combining n words separated by k words from

each other. The best model so far was created as a unigram model (1-gram) of lemma-

tag terms. In the following experiments, we used the lemma-tag features and created

bigram and trigram models from them. Similarly, we created skip-bigram and skip-

trigram models with skipping over one word and two words.

Table 17. N-gram and Skip-gram experiments for Distant Supervision

Experiment Experiment setting Recall Precision F-score

33 Unigram 91.00 93.92 92.42

34 Bigram 85.24 91.46 88.24

35 Trigram 86.73 91.40 89.00

36 Skip 1 bigram 90.42 93.54 91.94

37 Skip 2 bigram 89.06 94.16 91.51

38 Skip 1 trigram 87.64 94.32 90.84

39 Skip 2 trigram 89.84 93.92 91.82

Bigram and trigram models did not improve the performance over the unigram model.

Skip-gram models provided better results than the regular n-gram models, but not

exceeding the unigram performance.

 Next, we performed another set of experiments for parameter tuning. Table 18.

includes results of the best performing sets of parameters per loss function. All the

experiments were run on the following feature set: 3 tokens on each side on the named

entity including the NE; the tokens are lemmatized, and a POS tag is attached to every

lemma (lemma-tag); without normalization of punctuation and numbers; without stop-

words removal. The tuned parameters include: loss function {squared, hinge, quantile,

logistic}; L1 and L2 regularization {0, 0.01, 0.001, 0.0001, 0.00001}; Learning rate

{1 5 10 15 50}; Power_t {0 0.1 0.3 0.5 0.7 0.9 1}. We have experimented with a

different number of passes through the data. We concluded that the number of passes

in the range of 8-12 achieves relatively close results. Therefore, we tune the other

parameters with a fixed value of 10 for the --passes parameter. We have tuned the

parameter in a matrix-like fashion. We defined several categorical values for each

parameter orienting around the default value. We then ran the algorithm with all

possible combinations of those values. Again the data was randomized 5 times and the

results are averaged over the different datasets.

54

Table 18. Parameter tuning for Distant Supervision

Exp Loss

Func.

L1 L2 Power t Learn

Rate

Recall Precisio

n

F-score

40 Logistic 0.001 0 0.3 10 100 98.43 99.21

42 Squared 0.001 0.0001 0.9 50 100 97.22 98.59

44 Quantile 0.01 0.001 0.3 5 100 97.06 98.50

46 Hinge 0.01 0 0.1 5 100 97.06 98.50

Best performing model for the country-of-origin relation extraction using the logistic

loss function has been achieved by using L1 regularization with lambda value 0.001,

0.3 power on the learning rate decay, and default lambda learning rate parameter. With

those parameters, the logistic model yields 99.21 F-score.

 All the loss functions produced well performing models. There is no significant

difference between the results in Table 18. Actually, we did not observe consistent

different between the results produced by specific values in any of the parameters. All

values in different combinations produced results which are close to the best

performing model.

4.1.2 Snowball System

 The method used in the Snowball system is very different from the Distant

Supervision method. We decided to tune the similarity threshold and the overlap

threshold first since with some parameters the system fails to perform. For the first

parameter tuning, we used 3 tokens from each side of the named entity as features.

After finding the best values for those parameters, we test the system on other feature

sets (similarly to the Distant Supervision feature engineering). We then performed

another set of experiments to tune the system again with the selected feature set,

adjusting the term weighting scheme.

 In Table 19. we present the experiments of the initial parameter tuning. In Distant

Supervision experiments, we chose the best model by F-score, as Recall and Precision

are more or less balanced in all of the experiments. In the Snowball system, we

concentrated on Precision scores when selecting the best performing model. The recall

scores in the above experiments are significantly higher than the precision scores. In

fact, as experiment 16 shows, if we the recall is almost 100, we get a baseline precision

of 29.22. We could achieve the same precision and recall scores if we would simply

label all instances with 1. In Snowball, we want to achieve a higher percentage of

correctly labeled data instances, even if the recall scores are decreasing. The best

performing model after the first parameter tuning is with similarity threshold 0.2 and

55

overlap threshold of 5, achieving 30.83 precision score. Note that this is only a minor

improvement over the baseline precision.

Table 19. Similarity and overlap parameters tuning for the Snowball system

Experiment Similarity Overlap Recall Precision F-score

1 0.11 10 91.33 30.09 45.27

2 0.11 15 88.33 30.22 45.03

3 0.12 5 89.38 30.11 45.05

4 0.12 15 84.44 30.27 44.57

5 0.13 5 88.41 30.12 44.93

6 0.13 15 83.79 30.30 44.51

7 0.13 20 83.14 30.66 44.80

8 0.14 5 87.11 30.13 44.77

9 0.14 15 83.55 30.36 44.53

10 0.14 20 81.93 30.64 44.59

11 0.15 5 86.22 30.25 44.79

12 0.15 15 82.66 30.28 44.33

13 0.15 20 80.87 30.57 44.36

14 0.16 5 84.93 30.28 44.64

15 0.16 20 80.23 30.54 44.24

16 0.2 5 73.01 30.83 43.36

17 0.01 1 95.46 29.22 44.73

 With the selected overlap and similarity threshold parameters, we continued to

feature engineering experiments. As in the previous Section, we first present the results

of different window size feature sets.

Table 20. Window size experiments for Snowball

Experiment Window Size Recall Precision F-score

18 1 92.62 29.59 44.85

19 2 64.91 31.53 42.44

20 3 73.01 30.83 43.36

21 4 75.12 29.28 42.14

22 5 76.90 29.86 43.01

23 6 75.93 29.78 42.78

24 7 76.58 29.48 42.57

25 8 77.55 29.53 42.78

26 9 83.38 29.44 43.51

27 10 78.44 29.20 42.55

28 3 only left side 76.34 31.62 44.72

30 2 only left side 65.56 31.86 42.88

Similarly to the Distant Supervision results, Snowball performs better with a smaller

window size. Moreover, taking only the two tokens on the left side of the NE yielded

the best precision score so far: 31.86.

 Next, we experimented with different stop-word lists. The following experiments

were run with two tokens making the left context, ignoring the right context. We have

56

used the same stop-word lists as in the Distant Supervision experiments: Complete list,

Reduced list and Domain list.

Table 21. Stop-words removal experiments for snowball

Experiment Stop-word list Recall Precision F-score

31 No stop-word list 65.56 31.86 42.88

32 Complete 60.53 30.21 40.30

33 Reduced 63.94 30.93 41.69

34 Domain 31.60 55.79 40.35

35 Complete + Domain 50.81 58.32 54.31

36 Reduced + Domain 26.42 54.79 35.65

The removal of words from the domain specific stop-words list improves the precision

of the algorithm dramatically. In combination with the complete stop-word list, the

algorithm achieves balanced recall and precision, with 54.31 F-score. This is the best

performing setting so far. The complete stop-word list and the reduced list alone did

not have such an effect on the performance.

 We continue with experimentation, using the two tokens from the left, and removing

stop-words from the domain and complete lists. The following set of experiments, we

test the effect of punctuation and numbers normalization.

Table 22. Numbers and punctuation normalization experiments for Snowball

Experiment Experiment setting Recall Precision F-score

37 No normalization 50.81 58.32 54.31

38 Punctuation replaced 50.89 57.61 54.04

39 Punctuation removed 50.97 57.49 54.04

40 Numbers replaced 50.97 57.81 54.18

41 Numbers removed 30.39 55.72 39.33

42 Both replaced 30.71 55.65 39.58

43 Both removed 51.05 57.48 54.08

Punctuation and numerical values did not effect the results. In all of the experiments

above, the precision stayed stable, while the recall dropped in experiments 41 and 42.

Based on those results, we decided not to normalize punctuating and numerical values

in subsequent experiments.

 In the following set of experiments, we apply morphological analysis on the token

constituting the left context. We replaced the word forms with lemmas and Stems. We

have also tried to combine POS tags with lemmas and stems. The last experiment takes

both stems and lemmas as features.

57

Table 23. Linguistic features experiments for Snowball

Experiment Experiment setting Recall Precision F-score

44 Word forms 50.81 58.32 54.31

45 Lemmas 15.33 58.94 24.33

46 Stems 19.29 59.57 29.15

47 Lemmas - POS tags 13.44 56.93 21.74

48 Stems - POS tags 19.55 58.81 29.35

49 Lemmas +Stems 60.03 58.62 59.32

All of the experiments performed well from a precision point of view. However,

lemmas and stem on their own produced lower recall levels. The combination of stems

and lemmas achieve the highest results in both recall and precision, with 59.32 F-score.

 We have not implemented n-gram supporting algorithm for Snowball. In order to

incorporate successfully n-gram features, we would need to adjust the seed

representation and the seed enrichment method. We leave this extension for future

work.

 Feature engineering helped us to improve the performance of the system. We

continued our experiments with term weighting parameters. The term weighting

scheme is of the form 𝐿𝑖𝑗𝐺𝑖𝑁𝑗. We have applied the same normalization to all of the

vectors. We experimented with local and global weighting schemes. We first tested

term frequencies, relative term frequencies, Log normalization and SQRT

normalization as local weighting. Subsequently, we applied global weighting – IDF in

combination with the different local weights. IDF weighting was applied on the data

instances only while local weighting was applied on the seed vectors as well.

Table 24. Weighting scheme parameter tuning for Snowball

Experiment Weight scheme Recall Precision F-score

50 Tf 60.03 58.62 59.32

51 Rel 67.61 58.06 62.47

52 Log 78.98 58.00 66.88

53 Sqrt 79.15 58.09 67.01

54 Tf-idf 45.22 57.25 50.53

55 Rel-idf 47.20 57.93 52.02

56 Log-idf 43.67 56.46 49.25

57 Sqrt-idf 52.19 58.61 55.22

The best performing weighting scheme is SQRT local normalization without global

normalization and with cosine length normalization. The best performing feature set

included stems and lemmas of the two tokens from the left side of the NE. We removed

stop-words from the complete general stop-word list and from the domain specific

stop-word list. With those settings, we have achieved 67.01 F-score.

58

4.2 Results on Test Dataset

4.2.1 Distant Supervision

 On the test dataset, we have tested the best performing models from the different

stages of Feature engineering and parameter tuning. The results are presented in the

following tables. We first tested the model with word forms, window size 3 and default

Vowpal Wabbit parameters. The next well-performing model was created by changing

the word forms to lemma-POS format. Subsequently, we present the results of the

system using the best performing parameter sets.

Table 25. Results on the test dataset feature engineering stage for Distant Supervision

Experiment Experiment

settings

Recall Precision F-score

1 3 word form 86.60 92.48 89.44

2 3 Lemma-POS 88.54 92.95 90.68

Table 26. Results on the test dataset parameter tuning stage for Distant Supervision

Exp Loss

Func.

L1 L2 Power t Learn

Rate

Recall Precisio

n

F-score

3 Logistic 0.001 0 0.3 10 95.23 97.23 96.21
4 Squared 0.001 0.0001 0.9 50 96.87 95.55 96.19
5 Quantile 0.01 0.001 0.3 5 1 97.06 98.50
6 Hinge 0.01 0 0.1 5 94.88 92.05 93.44

The results on the test dataset are close to the results on the development dataset.

However, the F-scores are lower using the test dataset. The best performing model is

using lemma-POS features, with Quantile loss function, L1 regularization with lambda

value 0.01 and L2 regularization with lambda value 0.001, the power_t parameter set

to 0.3 and 5 as the value of lambda parameter of the learning rate. This model achieves

98.5 F-score on the test dataset.

 The results show that the machine learning algorithm used for the Distant

Supervision is not sensitive to the specific dataset used to test the models. The feature

set that we chose and the parameters we tuned perform very well on a dataset different

from the development dataset. The Distant Supervision models benefit from certain

linguistic modifications such as lemmatization and part of speech tagging. We did not

find other linguistic modifications such as punctuation normalization and numerical

values normalization beneficial for our models. Stop-words removal did not improve

the performance of the models as well. That said, we cannot conclude that those feature

59

modifications would not be helpful on different data or using a different method. We

have also found that the method requires a rather small context window for learning.

In fact, wider context window decreases the results. We conclude that the most

informative context words are the ones closer to the named entity.

4.2.2 Snowball System

 In this Section, we provide the results of the Snowball system on the test dataset. As

in the previous Section, we tested Snowball performance in different stages of feature

selection and parameter tuning.

Table 27. Results on the test dataset of the Snowball system

Exp. Experiment setting Recall Precision F-score

1 2 Left word forms; similarity 0.2; overlap 5 66.44 33.27 44.34

2 2 Left word forms; similarity 0.2; overlap 5; stop-words 29.26 57.05 38.68

3 2 lemmas & stems; similarity 0.2; overlap 5; stop-words 45.09 59.41 51.27

4 2 lemmas & stems; similarity 0.2; overlap 5; stop-words;

sqrt 51.46 59.09 55.01

The results on the test dataset are significantly lower than the results on the training

dataset. The best performing feature set and parameters achieve 55.01 F-score, 12

points less than the F-score achieved during training. The reason for the lower

performance on the test dataset lays in the architecture of the algorithm. The algorithm

requires that we find similar data instances to the seed patterns and extract useful

features to expand the seed patterns. This makes the algorithm very sensitive to the

data it runs on. Not like machine learning algorithms, we do not provide the system

with many positive examples to train a model. In machine learning, after the model is

trained, the classifier can evaluate new data instances individually. In the Snowball

system, we do not train a model. We can tune the parameter of the system to run on

new datasets, but the performance would still depend on the data the system is using

for this particular run. The performance of the algorithm also depends on the size of

the dataset. Snowball tries to generalize the pattern to extract as many positive

examples as possible. If the dataset is too small, the generalization will be poor. It is

not given that the iterative process will identify all the possible pattern that express the

relation. We have tested the Snowball system on a dataset half the size of the training

dataset. Therefore, it is expected that the performance will be lower.

 The Snowball system showed significantly higher results using linguistically

modified features, both in training and testing stages. We have used both stems and

60

lemmas to represent each term in the feature vector. As noted before, in this approach

the feature vectors are twice as long, with more than one vector point per term. Using

this representation the system achieved significantly higher results, both in training

and testing. Snowball performed better after the removal of stop-words from both the

standard list of stop-words and the domain specific stop-words list during training. On

the test dataset, this experiment yielded better precision but lower recall. However, in

subsequent experiments on the test dataset, the system achieved balanced recall and

precision scores, with the removal of stop-words. The best results both in training and

testing were achieved after SQRT normalization of the feature vectors.

 Even though the results on the test dataset are lower than the results on the training

dataset, we consider the system successful. The overall performance on the test dataset

is 10 points higher than the baseline 44.85 F-score. The precision of the system is 30

points higher than the baseline. Given the results of Snowball on the test dataset, we

were able to extract 51% of the positive examples with 59% correctly extracted

examples.

61

Conclusion

 In this thesis, we presented results of two methods for relation extraction applied to

the business domain. The Snowball system (Agichtein & Gravano, 2000) and Distant

Supervision (Craven & Kumlien, 1999; Mintz, et al., 2009) were both adapted for the

unique data provided by a corporate partner. The methods were implemented to use

both structured and unstructured data from the database of the company. Throughout

the work, we have used the country-of-origin relation to demonstrating the

implementation and results of the methods.

 On the task of country-of-origin relation extraction the Distant Supervision method

achieved significantly higher results than the Snowball system. On the test dataset of

1089 examples, Distant Supervision achieved 98.5 F-score. While the Snowball

system achieved only 55.01 F-score on the same dataset. Given those results, we

conclude that the machine learning approach is more suitable for this task. The Distant

Supervision algorithm did not require a large dataset to train a well-performing model.

Moreover, there are no task-specific components in this method, therefore, we expect

it to perform well on other datasets and relations.

 The Snowball system has an advantage over the Distant Supervision method. Except

seed construction, it does not require labeled data. There is no learning involved,

therefore, the algorithm can be simply applied to new datasets as is. After the seed

patterns are constructed, the system will find similar patterns and extract relation pairs.

In practice, though, running the system on a rather small dataset, we realized that

Snowball is sensitive to the similarity and overlap threshold parameters. For both

parameters, a small difference between the passed values meant a great different in the

results. Tuning those parameters for a new dataset or relation would require labeled

dataset for evaluation. Moreover, on such a small dataset the results of the system are

not definitive, extracting only half of the positive examples, and marking half of the

extracted examples incorrectly. That said, the system achieves significantly higher

results over the baseline. We believe that the system would perform better on a larger

dataset. As Snowball depends on having the repetitive appearances of positive

examples in the data, the more data we have, the better generalization the Snowball

system will achieve.

 This thesis is an experimental work. We do not have previous work to compare our

results to. Both methods were successfully implemented on the business domain data.

62

We are confident that the resulting implementation of this thesis can be applied to

extract other relations, given the demanded structure, where the named entity of the

extracted relation is present in both structured and unstructured data. We expect that

other companies could use the algorithms as well. As part of future work, we would

like to confirm this assumption by testing both methods on additional datasets of other

companies, and by extracting other relations.

 The performance of the algorithms depends on the quality of the data used. If the

labels in the structured data are incorrect, the system will consider a positive example

negative or vice versa. The quality of the text also affects the performance. Spelling

mistakes might harm generalization, as might spacing errors and non-standard

abbreviations. As part of future work, we want to test this effect, by standardizing the

data and comparing the results to the ones achieved in this work. Another factor

affecting the quality of the data is the performance of the linguistic tools used in this

thesis. We have performed a small evaluation of the NameTag and Morphodita tools

(Straková, et al., 2013; Straková, et al., 2014). Although the tools perform fairly well

on this domain data, it is possible to improve their performance by training them on

labeled domain data language models. After the tools are trained on domain data, it

would be interesting to compare the performance of differently trained tool on other

data from a similar domain.

63

Bibliography

Agichtein, E. & Gravano, L., 2000. Snowball: Extracting relations from large plain-

text collections. s.l., ACM, pp. 85-94.

Baars, H. & Kemper, H. G., 2008. Management support with structured and

unstructured data—an integrated business intelligence framework. Information

Systems Management, pp. 132-148.

Bach, N. & Badaskar, S., 2007. A review of relation extraction.. In: Literature review

for Language and Statistics II. s.l.:s.n.

Banko, M. et al., 2007. Open information extraction from the web. s.l., s.n., pp. 2670-

2676.

Bejček, E. et al., 2012. Prague Dependency Treebank 2.5–a revisited version of PDT

2.0. s.l., s.n., pp. 231-246.

Brin, S., 1999. Extracting patterns and relations from the world wide web. In: The

World Wide Web and Databases. s.l.:Springer Berlin Heidelberg, pp. 172-183.

Chisholm, E. & Kolda, T. G., 1999. New term weighting formulas for the vector space

method in information retrieval, s.l.: Oak Ridge National Laboratory, US.

Cortes, C. & Vapnik, V., 1995. Support-vector networks. In: Machine learning.

Boston: Kluwer Academic Publishers, pp. 273-297.

Craven, M. & Kumlien, J., 1999. Constructing biological knowledge bases by

extracting information from text sources. ISMB, August, Volume 1999, pp. 77-86.

Dörre, J., Gerstl, P. & Seiffert, R., 1999. Text mining: finding nuggets in mountains of

textual data. s.l., ACM, pp. 398-401.

Duchi, J., Hazan, E. & Singer, Y., 2011. Adaptive subgradient methods for online

learning and stochastic optimization. The Journal of Machine Learning Research,

Issue 12, pp. 2121-2159.

Fan, W., Wallace, L., Rich, S. & Zhang, Z., 2006. Tapping the power of text mining.

Communications of the ACM, 49(9), pp. 76-82.

Gangadharan, R. G. & Swami, S. N., 2004. Business intelligence systems: design and

implementation strategies. s.l., IEEE, pp. 139-144.

Grimes, S., 2014. Text Analytics 2014: User Perspectives on Solutions and Providers,

s.l.: Alta Plana Corporation .

Joachims, T., 1998. Text categorization with support vector machines: Learning with

many relevant features. s.l., Springer Berlin Heidelberg, pp. 137-142.

Jurafsky, D. & Martin, J. H., 2009. Speech and Langauge Processing. Second ed.

s.l.:Pearson Education Interational.

Karampatziakis, N. & Langford, J., 2010. Online importance weight aware updates,

s.l.: arXiv preprint arXiv:1011.

Langford, J., Li, L. & Strehl, A., 2007. Vowpal wabbit open source project, s.l.:

Yahoo!.

Manning, C. D. & Schütze, H., 1999. Foundations of statistical natural language

processing. s.l.:MIT press.

64

Mintz, M., Bills, S., Snow, R. & Jurafsky, D., 2009. Distant supervision for relation

extraction without labeled data. s.l., Association for Computational Linguistics, p.

1003–1011.

Porter, M. F., 2001. Snowball: A language for stemming algorithms, s.l.: s.n.

Salton, G., Wong, A. & Yang, C.-S., 1975. A vector space model for automatic

indexing. Communications of the ACM, pp. 613-620.

Ševčíková, M., Žabokrtský, Z. & Krůza, O., 2007. Named entities in Czech: annotating

data and developing NE tagger. Text, Speech and Dialogue. Springer Berlin

Heidelberg, pp. 188-195.

Straková, J., Straka, M. & Hajič, J., 2013. A New State-of-The-Art Czech Named Entity

Recognizer. místo neznámé, Springer Verlag, Berlin / Heidelberg, pp. 68-75.

Straková, J., Straka, M. & Hajič, J., 2014. Open-Source Tools for Morphology,

Lemmatization, POS Tagging and Named Entity Recognition. Baltimore, Maryland,

Association for Computational Linguistics, pp. 13-18.

Vlachos, A. & Clark, S., 2014. Application-Driven Relation Extraction with Limited

Distant Supervision. s.l., s.n., pp. 1-6.

65

List of Tables
Table 1. Vowpal Wabbit Design .. 20
Table 2. Vowpal Wabbit input format ... 21

Table 3. Vowpal Wabbit command line options .. 22
Table 4. Loss functions in VW .. 24
Table 5. Distribution of classes .. 32
Table 6. POS tags description .. 37
Table 7. MorphoDiTa performance ... 38

Table 8. NameTag Evaluation.. 39
Table 9. Most frequent Country labels ... 39
Table 10. Data preparation for country-of-origin relation ... 42

Table 11. The Snowball system by (Agichtein & Gravano, 2000) 45
Table 12. Modified Snowball Implementation .. 48
Table 13. Window size experiments for Distant Supervision 50
Table 14. Stop-words removal experiments for Distant Supervision 51
Table 15. Numbers and punctuation normalization experiments for Distant

Supervision ... 52
Table 16. Linguistic features experiments for Distant Supervision 52
Table 17. N-gram and Skip-gram experiments for Distant Supervision 53
Table 18. Parameter tuning for Distant Supervision .. 54

Table 19. Similarity and overlap parameters tuning for the Snowball system 55
Table 20. Window size experiments for Snowball .. 55

Table 21. Stop-words removal experiments for snowball ... 56
Table 22. Numbers and punctuation normalization experiments for Snowball 56

Table 23. Linguistic features experiments for Snowball ... 57
Table 24. Weighting scheme parameter tuning for Snowball 57

Table 25. Results on the test dataset feature engineering stage for Distant Supervision

 .. 58
Table 26. Results on the test dataset parameter tuning stage for Distant Supervision

 .. 58
Table 27. Results on the test dataset of the Snowball system 59

66

List of Figures
Figure 1. Supervised Machine Learning for RE .. 11
Figure 2. The Snowball System ... 14

Figure 3. Distant Supervision ... 17
Figure 4 Gradient Descent ... 22
Figure 5. Illustration of Precision and Recall (Manning & Schütze, 1999) 27
Figure 6. Dataset Preparation ... 31
Figure 7. Trie representation of word forms in MorphoDiTa. Taken from Straková, et

al (2014) ... 36
Figure 8. Distribution of POS Tags ... 37

file:///D:/ilana.rampula/thesis/content/diplomaThesis.docx%23_Toc450917343
file:///D:/ilana.rampula/thesis/content/diplomaThesis.docx%23_Toc450917344
file:///D:/ilana.rampula/thesis/content/diplomaThesis.docx%23_Toc450917345
file:///D:/ilana.rampula/thesis/content/diplomaThesis.docx%23_Toc450917346
file:///D:/ilana.rampula/thesis/content/diplomaThesis.docx%23_Toc450917347
file:///D:/ilana.rampula/thesis/content/diplomaThesis.docx%23_Toc450917348
file:///D:/ilana.rampula/thesis/content/diplomaThesis.docx%23_Toc450917349
file:///D:/ilana.rampula/thesis/content/diplomaThesis.docx%23_Toc450917349
file:///D:/ilana.rampula/thesis/content/diplomaThesis.docx%23_Toc450917350

67

List of Abbreviations

RE Relation Extraction

NE Named Entity

NER Named Entity Recognition

BI Business intelligence

NLP Natural Language Processing

GD Gradient Descent

SVM Support Vector Machine

POS Part of Speech

VW Vowpal Wabbit

68

Attachment

Attachment 1 – Full hierarchy extracted by NameTag (Ševčíková, et al., 2007).

