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Description of the project

Hybrid Logic is a formalism used to represent knowledge and enable inference on
it. The term covers a number of logical systems living between modal and classical
logic. As it offers a good trade-off between complexity and expressivity, its theory
has been investigated for more than fifteen years. However theorem provers (and
model builders) for this logic have only been developed relatively recently.

One of the most recent theorem provers for Hybrid Logic is HTab ([Hoffmann
and Areces, 2003]). HTab is one of the few theorem provers (and model builders)
for Hybrid Logic that support not only basic Hybrid Logic but also the universal
and difference modalities and the down-arrow binder. It was developed by the
TALARIS team (INRIA), and is based on a prefixed tableaux method adapted
from the terminating tableaux introduced by T. Bolander and P. Blackburn in
[Bolander and Blackburn., 2007].

HTab’s performance has been compared with a number of other theorems provers
and the results are good. But although a number of optimizations have already
been incorporated into HTab, a potentially interesting one has not, namely caching.
Caching can be defined as the storing of intermediate results in order to avoid re-
computing them again.

Caching has been applied to a family of logics closely related to Hybrid Logic,
namely the Description Logic family. So it is natural to ask: will caching help in
the case of Hybrid Logic, including Hybrid Logic with the global modality? The
aim of this thesis is to find out whether this optimization will be useful in this
setting or not. We will restrict our attention to basic Hybrid Logic and the logic
enriched with the universal modality, as Hybrid Logics containing the down-arrow
binder are known to be undecidable.

This thesis is organized into eight chapters. In the first chapter, we briefly
introduce the two families of languages: Hybrid Logic and Description Logic, and
provide the main definitions needed for the rest of the report. The aim of this
section is to provide the theoretical background needed in order to understand the
similarities and differences between these two families.

In Chapter 2 we present the tableau algorithm. After providing a brief history
of tableaux in different logics, we introduce the specific algorithm covered in this
thesis: the prefized tableau calculus for Hybrid Logic. Finally we present HTab, an
implementation of this calculus for Hybrid Logic.

Chapter 3 provides a general introduction to the caching optimization, and
discusses the approaches for caching already existing for the case of Description
Logics.

Chapters 4 to 6 are the core of this work, as they explain in more detail each
of the caching approaches, and how they can — and cannot — be implemented in
Hybrid Logic. Chapter 4 introduces the main ideas needed to carry out UNSAT
caching for the Hybrid Logic H(@, A), and Chapter 5 discusses its implementation.
In Chapter 6 we discuss two other methods: MIXED caching and Global caching.

7
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We show that MIXED caching cannot be used with Hybrid Logic, and discuss what
GLOBAL caching for Hybrid Logic might look like.

In Chapter 7 we provide some testing examples, and some early results on
the UNSAT caching implementation. This testing stage is extremely important
in order to know effectively if the improvement was significant, or even successful.
The testing was carried out using an automated testing environment developed at
INRIA called GridTest.

Finally, Chapter 8 contains our conclusions: what we have learned during this
work and what we would like to do next.



Chapter 1

Logical background

What is logic and why is it important? Intuitively, we can see logic as a tool that
helps us to reason things out and to act rationally; thinking clearly is important
to everyone in their everyday lives. But from a mathematical perspective, “logics”
are formal languages for representing information in such a way that conclusions
can be drawn. And there are many different logical formalisms: they offer different
expressiveness (that is, they differ in what kinds of information they can represent)
and also differ in the efficiency of their reasoning procedures.

In this section we introduce two families of logics which offer a good compromise
between expressiveness and efficiency, and which are closely related to one another:
Hybrid Logic and Description Logic ([Areces., 2003]).

1.1 Two flavors: Hybrid and Description Logics

Hybrid Logics were first investigated in the work of Arthur Prior, a philosophical
logician who invented and used them in his investigations of the logic of time and
tense in the mid 1960s. The earliest published reference is [Prior, 1967, Chapter 5
and Appendix B3]. Hybrid Logics have been intensively investigated, and these
investigations for the most part have been theoretical: the main results concern
expressive power (model theory), axiomatizations, completeness and complexity.

The history of Description Logics (or terminological languages, as they were
initially called) started with the development of the KL-ONE system of Brachman
and Schmolze [1985]. Because of their applicability to problems as varied as de-
ductive databases, image retrieval, system modeling and information classification,
they flourished rapidly. Applications and effective inference algorithms, together
with complexity results, are the main results in the field. In particular, many ex-
isting tableau algorithms for Description Logics already implement various types
of caching optimization, and most of the work of this thesis is based on adapting
these implementations (when possible, which it isn’t always) to the case of Hybrid
Logic.

1.2 Introducing Hybrid Logics

“Hybrid Logic” is a loose term covering a number of logical systems living between
modal and classical logic.

The simplest hybrid languages use formulas to refer to specific points in a model.
To build a simple hybrid language, take an ordinary language of propositional modal
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logic (built over some collection of propositional variables p, ¢, r and so on), and
add a second type of atomic formula. These new atoms are called nominals, and
are typically written 4, 7 and k. Both types of atoms can be freely combined to
form more complex formulas in the usual way; for example

CIAP)NO(IAG) — O(pAa)

is a well formed formula.

Now for the key idea: we insist that each nominal must be true at exactly one
point in any model. In this way a nominal names a point by being true there and
nowhere else. This simple idea gives rise to richer logics. Once we have nominals,
we can think of other interesting ideas: why not introduce an operator that allows
us to jump to the point named by a nominal? This is what the @;¢ (read “at i, ©”)
formula does: it moves the point of evaluation to the point named by ¢ and checks
whether ¢ is true there. @;y is Prior’s T'(i,p) construct (“p is true at time 7”),
which he used to define his “third grade tense logics” [Prior, 1967]. It is also related
to the Holds(i,¢) operator introduced in [Allen, 1984] for temporal representation
in AL

1.2.1 Hybrid Details:

The basic hybrid language is H, which corresponds to the basic modal logic ex-
tended with nominals. Further extensions will be named by listing the added op-
erators. The most expressive system we will discuss in this thesis is H(@, A), the
basic hybrid system extended with the satisfaction operator @ and the universal
modality A.

The following two definitions give the syntax and semantics of H(@, A).

Definition 1 Suppose we are given the countably infinite sets of symbols REL =
{R1, Ry, ...} (the relational symbols), PROP = {p1,ps, ...} (the propositional vari-
ables) and NOM = {iy,43,...} (the nominals). Then the well-formed formulas of
the hybrid language H(Q, A) in the signature (REL, PROP,NOM) are given by the
following recursive definition:

FORMS :=T [p|i|—p | w1 Ap2 | (R)p Qo] Ap

where p € PROP, i € NOM, R € REL and ¢, ¢1, 2 € FORMS. For T C FORMS,
PROP(T) and NOM(T') denote, respectively, the set of propositional variables and
nominals which occur in formulas in T.

Now for the semantics, in the rest of the section we assume fixed a signature
(REL, PROP,NOM).

Definition 2 A hybrid model M is a triple M = (M,{R;}, V) such that M is a
non-empty set, {R;} is a set of binary relations on M, and V : PROP UNOM —
Pow(M) is such that for all nominals i € NOM, V(i) is a singleton subset of M.
We usually call the elements of M states or worlds, R; the accessibility relations,
and V' the valuation.

Let M = (M,{R;},V) be a model, m € M. Then the satisfiability relation is
defined as follows
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MmET always
MmEp iff meV(p), PePROP
M,mE=i iff meVl[i, i€ NOM
MmE-p iff MmlpEe
MmE@i ANoa  iff MymE @1 and M,m = ¢y
M,mE (Ryp f 3Im' . (R(m,m') & M,m' |Ep)
M,mEAp iff Ym . (M,m' =)
M,mE Qo iff M,m' =y, where V(i) = {m'}, i € NOM
A formula ¢ is satisfiable if there is a model M and a world m € M such that
M;m = ¢. A formula ¢ is valid if for all models M, M = .

1.2.2 Translations:

We said earlier that “Hybrid Logic” is a loose term covering a number of logical
systems living between modal and classical logic. This is not a metaphor, it is
a simple mathematical fact: it is straightforward to translate Hybrid Logic into
first-order logic.

Following [Areces., 2003], let us describe the first-order correspondence language
for Hybrid Logic. This is the first-order language with equality that contains a set
UREL of unary predicates P, one for each propositional variable p € NOM, and a
binary predicate R for each modal operator (R).

Hence, the hybrid signature is of the form ({R;} U UREL, {}, CONS, VAR).

Any hybrid model M = (M,{R;},V) can be seen as a first-order model over
the hybrid signature, for the accessibility relations R; can be used to interpret the
binary predicates R;, unary predicates can be interpreted by the subsets that V'
assigns to propositional variables, and constants can be interpreted by the worlds
that nominals name. We let the context determine whether we are thinking of
first-order or hybrid models, and continue to use the notation M = (M, {R;}, V).

The standard translation ST for H(@, A), is given in the following definition.

Definition 3 The translation ST, from the hybrid language Hs(@Q, A) over (REL,
PROP, NOM) into first-order logic over the signature (RELU{P; | p; € PROP}, {},
NOM, {z,y}) is defined as follows

STI(ZJ) = (II? = ij), ij € NOM
STx(pJ) = Pj(x), p; € PROP
STw(SO/\w) = STI(L,O)/\STI(’(/J)
ST.((R)p) = Fy.(R(z,y) A STy(p))
ST.(Ap) = Ve.ST.(p)
ST2(Qip) = (5Ta(p))|a/i]

where y is a new variable not yet used.

The translation given above is truth-preserving. To state this formally, one
makes use of the observation that models and assignments for Hybrid Logic can be
considered as models and assignments for first-order logic and vice versa.

Proposition 1 Let ¢ be a hybrid formula, then for all hybrid models M, m € M
Mm@ iff M |= ST, (p)[x «— m].

Now, we introduce the satisfiability problem for Hybrid Logic as the task of
showing that a given formula is satisfiable. That is, given an hybrid formula ¢,
find a model M and a world m € M such that M,m = ¢. The complexity of
the satisfiability problem for the Hybrid Logic H(@) is PSPACE-complete, while for
H(@, A) is EXPTIME-complete.
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1.3 Introducing Description Logics

Description Logics (DLs) are a family of formal languages with a clearly specified
semantics, usually in terms of first-order models, together with specialized inference
mechanisms to account for knowledge classification.

As this thesis is about Hybrid Logic, why discuss Description Logic. There are
a number of reasons. One has already been mentioned: we are interested in caching
mechanisms, and these have been extensively investigated by the Description Logic
community, so there of relevance to this that we can learn from Description Logic.

But there are other reasons for looking at Description Logic. One is that the
basic systems of Description Logic and Hybrid Logic really are very closely related
(as will become clear below). In particular, if you take the logic ALC plus Nominals
(O) (this is defined below) it is very closely related to H(@, A). Thus knowing both
approaches gives two perspectives on the same set of ideas.

But, as we shall see in the course of the thesis, although they are closely related,
it is not always straightforward, or even possible to directly transfer methods from
Description Logic to Hybrid Logic.

1.3.1 Description Logic details:

Most description languages model information as a pair (T, A), where T is a set
of formulas concerning “terminological” information (the T-Box) and A is a set of
formulas concerning “assertional” information (the A-Box).

Another way to look at this separation of information is from a database point
of view: the T-Box is a general schema concerning the classes of individuals to be
represented, their general properties and mutual relationships, while the A-Box is a
partial instantiation of this schema, containing assertions relating either individuals
to classes, or individuals to each other.

Definition 4 Let CON = {C1,C5,...} be a countable set of atomic concepts,
ROL = {R1, Ra,...} be a countable set of atomic roles and IND = {ay,as,...}
be a countable set of individuals. & = (CON,ROL,IND) is a signature. Once a
signature S is fived, an interpretation Z for S is a tuple T = (AT, T), where

— AT is a non empty set.
— T is a function assigning an element aiz € AT to each constant a;; a subset
C’Z-I C AT to each atomic concept C;; and a relation Rl—I C AT x AT to each

atomic role R;.

In other words, a Description Logic interpretation is a model for a particular kind
of first-order signature, where only unary and binary predicate symbols are allowed
and the set of function symbols is empty.

The atomic symbols in a Description Logic signature can be combined by means
of concept and roles constructors, to form complex concept and role expressions.
Each Description Logic is characterized by the set of concept and roles construc-
tors they allow. Figure 1.1 defines the roles and concepts constructors for some
Description Logics, together with their semantics.

We will not discuss in detail all possible languages which can be obtained by
combining constructors from Figure 1.1.

The language AL (Attributive language) is defined as the Description Logics al-
lowing universal quantification, conjunction, unqualified existential quantifications
of the form IR.T', and negation of atomic concept (negation of concepts that do not
appear on the left hand side of axioms). ALC is AL extended with full negation.
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Constructor Syntax Semantics

concept name C cz

top T AT

negation (C) -C AT\ CT

conjunction C1nCsy CII N C2I

disjunction (U) C1uCs ctuct

universal quant. VR.C {d1 | Vd2 € AT (R%(dy,d2) — d2 € CT)}

existential quant. (£) IR.C {dy | 3d2 € AT.(R¥(d1,d2) Ada € CT)}

number restr. (Q) (>n R.C) {d1 | {d2 | R%(d1,d2) and d2 € CT}| > n}
(€n R.C) | {d1||{d2| R*(d1,d2) and dy € CT}| < n}

one-of (O) {a1,...,an} | {d|d=a? for some a;}

role name R R?

inverse roles (7) R! {(d1,d2) | RT(d2,d1)}

Figure 1.1: Common operators of Description Logics

We will be interested in languages having full Boolean expressivity and usually
consider ALC and its extensions. In particular, we will be interested in the logic
ALC plus nominals (O).

Let’s give some notation for the following definitions. Given a language L,
let CON(L) be the set of complex concept expressions and ROL(L) be the set of
complex role expressions which can be formed by using the constructors of L.

In Description Logics we want to perform inferences given certain background
knowledge.

Definition 5 (Knowledge bases) Fiz a description language L, a knowledge
base ¥ in L is a pair ¥ = (T, A) such that

— T is the T(erminological)-Box, a finite, possibly empty, set of expressions of
the form Cy; C Cy where Cy,Cy are in CON(L). Cy = Cs is notation for
C1 E Cy and Cy C Cy. Formulas in T are called terminological axioms.

— A is the A(ssertional)-Box, a finite, possibly empty, set of expressions of the
forms a:C or (a,b): R where C is in CON(L), R is in ROL(L) and a,b are
individuals. Formulas in A are called assertions.

It is time to define the appropriate notion of inference for Description Logics.

Definition 6 Let T be an interpretation and ¢ a terminological axiom or an as-
sertion. Then T models ¢ (notation, T = @) if

- p=C1C(Cy cdeIZQC’gZ, or
o =a:C and a* € C*, or
- ¢ =(a,b):R and (a*,b?) € RT.

Let ¥ = (T, A) be a knowledge base and T an interpretation, then T models ¥
(notation, T |= X) if for all p € TU A, T |= ¢. We say in this case that T is a
model of the knowledge base ¥. Given a knowledge base ¥ and a terminological
aziom or assertion ¢, X = ¢ if for all models T of ¥ we have I = .

1.3.2 Reasoning Tasks:

In Description Logics the term T-Boz reasoning is used for inferences from a knowl-
edge base ¥ = (T, A) where T is non-empty, and similarly, A-Boz reasoning is
inference for A non-empty. We can define a number of reasoning tasks or reasoning
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services which can be provided by a knowledge representation system. The fol-
lowing are some of the standard reasoning tasks usually considered in Description
Logics.

Definition 7 Let ¥ be a knowledge base, C1,C2 € CON(L), R € ROL(L) and
a,b € IND, we define the following reasoning tasks

— Subsumption, ¥ = C; C Cs.

Check whether for all interpretations T such that T = % we have C¥ C C%.
- Instance Checking, ¥ = a:C.

Check whether for all interpretations T such that T =% we have a* € CT.
—  Concept Satisfiability, ¥ & C = L.

Check whether for some interpretation T such that T = ¥ we have CT # {}.

Research on Description Logics has focused mainly on understanding the re-
lations between the reasoning tasks mentioned above, and on establishing their
computational complexity. In this work, we are interested in the Concept Satisfia-
bility checking reasoning task, particularly those involving tableau algorithms.

A full discussion of the relationship between Hybrid Logic and Description Logic,
and in particular the relationship between H(@,A) and ALC + O is not possible
here; for a detailed account we refer the reader to the very clear account given in
[Areces., 2003]. However it will be useful to point out the main points of contact,
and the main points of difference, between these two formalisms.

First it should be clear that although Hybrid Logic talks of formulas ¢, and
Description Logic talks of concepts C, concepts and formulas correspond in a very
direct way. Furthermore, it should also be clear that the boolean expressivity offered
by both formalisms is the same and that (R) corresponds to 3R and [R] corresponds
to VR. These correspondences were first pointed out by Klaus Schild [Schild, 1991]
in his well known paper that pointed out the link between the Description Logic
ALC and the basic modal logic K.

Second, it should clear be that the nominals of Hybrid Logic play a similar role
to used in the individuals in the A-Box and O (indeed, individuals are often called
“nominals” in the description logic literature,). Furthermore, it should also be clear
that A-Box statements of the form a : C' correspond to formulas of the form @;p.
But here we also see a difference: in Description Logic, expressions of the form a : C'
are only found in the A-Box; in Hybrid Logic they belong to the basic language.

What about A7 Basically, a Description Logic subsumption relation of the
form Cy C Cy corresponds to a Hybrid Logic formula of the form A(¢ — ), as
this asserts that the constraint ¢ — v holds globally. The other way round, the
hybrid formula A(¢ — 1) can not be expressed in Description Logics. We can see
this kind of formulas as “boolean T-Boxes” ([Areces et al., 2003])

Summing up, H(@, A) and ALC + O have a lot in common, and from the above
description it should be clear that the two languages have similar expressivity. It
should come as no surprise that the satisfiability problems for H(@, A) and the
subsumption problem for ALC + O (with non-empty T-Boxes) have identical com-
putational complexity: both are EXPTIME complete.

But the differences are also clear. Hybrid Logic is “flat” in the sense that there
is only one level of language: nominals are simply formulas that can be combined
with any other formula, and A and @ are simply treated as additional modalities.
Description Logic is more structured; it makes a distinction between the A-Box and
the T-Box.
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To conclude, there is a clear conceptual and theoretical link between hybrid
and Description Logic. But the differences between the two formalisms can have
unexpected consequences when it comes to implementing caching algorithms.
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Chapter 2

Tableaux Algorithm

“A tableauz algorithm is a formal proof procedure, existing in many varieties and
for different logics, but always with certain characteristics.” ([D’Agostino et al.,
1999]).

More specifically, we can see a tableau algorithm as a decision procedure that
aims to determine the satisfiability of an input formula in a given logic. Intuitively,
it tries to construct, for the input formula ¢, a model of ¢. It does so by “breaking
the formula down” into its sub-formulas and deducing constraints on the model
it is going to build. This “breaking down” is realized through “tableau expansion
rules” (or just “tableau rules”).

As we mentioned in the previous section, the work done in this thesis consist
in adding the caching optimization to a tableau algorithm for satisfiability. In
this section we present the basic prefized tableau algorithm for the Hybrid Logic
H(@, A) described in [Bolander and Blackburn., 2007], where a terminating decision
procedure for Hybrid Logics up to H(@, A, &7 1) is introduced. Then we provide a
procedural view of the algorithm. Finally we present HTab ([Hoffmann and Areces,
2003]), the tableau based reasoner for Hybrid Logics covered in this thesis, together
with a brief explanation of the optimizations already present in HTab.

But first let us have a brief look at the history of tableau algorithms.

2.1 A little bit of tableau history

The history of tableau essentially begins with Gentzen (1935), for classical logics
([Gentzen, 1969]). He introduced the sequent calculus, the motivation for which was
proof-theoretic. In 1955, Beth motivated by semantic concerns (that is, opposite to
Gentzen’s syntactical motivation), introduced the terminology “semantic tableau”
as a method for constructing a counter-example. Quoted from Beth ([Beth, 1955]):

“If such a counter-example is found, then we have a negative answer to our
problem. And if it turns out that no suitable counter-example can be found, then
we have an affirmative answer...”.

It is clear from this quotation that Beth’s idea of the tableau method was to
use it as a refutation procedure.

However, there is a more semantic way of thinking about tableau: as a search
method for models meeting certain characteristics. This approach for tableau was
first introduced by Smullyan in 1968, in the First-Order Logic book ([Smullyan,
1995]), through which the tableau method became more widely known.

There is a connection between these two views of the tableau method (i.e.
tableau as a proof procedure and as a model search procedure): if we search for a

17
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model in which a given formula ¢ is false (i.e. we search for a model of —¢), and
we reach a closed tableau, then it means that there is no such model, and so ¢ is
valid.

Smullayan’s work was extended by Fitting (1972) to the case of modal logic
([Fitting, 1972]). Fitting also gave a tableau system using “prefixes” in which the
idea was to designate possible worlds in such a way that syntactical rules determined
accessibility. Prefixed tableau systems are the ones we use in this thesis, as such
tableaus are also used in Hybrid Logic.

For Description Logics, the first tableau algorithm was proposed by Schmidt-
SchauB and Smolka in 1991 ([Schmidt-Schau8 and Smolka, 1991]), for the De-
scription Logic ALC, and the approach was quickly extended to other descriptions
logics. There were implementations of the these algorithms, which behaved well
in practice. But it was only after the implementation of FaCT, by Ian Horrocks
([Horrocks, 1999]), using a highly optimised implementation of a tableau algorithm,
that other highly efficient systems started to be designed. Nowadays, thanks the
high applicability of descriptions logic, its tableau algorithms make use of many
highly sophisticated optimizations.

2.2 A prefixed tableau

A prefized tableau for the Hybrid Logic H(@, A) ([Bolander and Blackburn., 2007)) is
a tableau where the formulas occurring in its rules are prefived formulas of the form
o:p, where o is a prefiz and ¢ is a formula in H(@, A). The intended interpretation
of o:p is that o denotes a world at which ¢ holds.

The set of prefizes will be denoted by PREF. We require that NOMNPREF =
0.

Definition 8 Let’s write op € 0 for any prefixed formula o occurring in a tableau
branch 6. This expression means that ¢ is true at o on 6.

The presence of nominals enables Hybrid Logics to express equality of words. In
order to handle this notion of equality, we define the notion of equivalence classes
of prefixes and representative of a class:

Definition 9 Define a binary relation ~g on the prefizes of a branch 6 by {(o,T) €~y
|oa,7a € 6,6 € NOM}.

Definition 10 Let 6 be a branch of a tableau, and let o be a prefix occurring on
0. The nominal urfather of o on 0, written sy(o), is defined to be the earliest
introduced prefix T on 0 for which T ~g 0. A prefiz o is called a nominal urfather
on 0 if 0 = sg(7) for some prefix T.

We also need to introduce a concept that enables us to have terminating tableaus
in the presence of the universal modality. We withdraw from some prefixes the
privilege of firing the rule (¢) if the information that they have is already included
in the information of another prefix.

Definition 11 For a prefiz o, let L (a) be the set of formulas true at s¢(c), of the
shape ©8, =00, s and —s, with s being a propositional symbol or a nominal. We
call these formulas local formulas.

Definition 12 Let 6 be a branch of a tableau. We define the inclusion urfather
of a prefiz o on 0, written ug(c), to be the smallest prefiz T for which: L%(c) C
LY(1). A prefiz o is called an inclusion urfather on 0 if o = ug(7) for some
prefix T.
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1 The prefix 7 is new on the branch.
2 The prefix 7 is already on the branch. ? 7 is the earliest introduced prefix in
the branch making a true.

Figure 2.1: Rules of the prefixed tableaux method for H(@, A)

Then a prefized tableau is simply a tree with finite number of branches where the
edges represent applications of tableau rules and the nodes are labelled by the set
of prefized formulas obtained by the rule application corresponding to the incoming
edge.

2.2.1 Prefixed Tableau Rules

The tableaux rules for H(@, A) are given in Figure 2.1. Note that in addition to the
prefixed formulas, these rules include “accessibility statements” of the form o, for
o and 7 prefixes. The intended interpretation of o< is that the world denoted by
T is accessible from the word denoted by o, by means of the “accessibility relation”
.

We explain the rules by dividing them into groups:

Propositional rules:

— The (A) rule is just a rewriting rule. When applied, the denominator of the
rule break down the conjunction into its conjuncts.

— The (V) rule, on the other hand, matches a disjunction and creates new
branches corresponding to the disjuncts that will be explored by the tableau
algorithm.

Global rules:

— The (A) rule copies the universally quantified formula to every prefix in the
branch.
— The (E) rule generates a new world where the quantified formula holds.
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Modal rules:

— The (<) rule generates new accessible worlds, while
— The (O) rule extends the label of the accessible worlds.

Rules for dealing with nominals:

— The satisfaction rule (@), when applied to a prefixed formula ¢:@,p, the
denominator of the rule copies the formula ¢ in the earliest prefix of the
branch for which a holds.

— The (vId) rule enforces the representative of an equivalence class of prefixes
to receive all true formulas of the class.

The rules (<) and (E) are called prefix generating rules. They choose the small-
est prefix that is not present in the branch. Their saturation constraint is that they
can’t be applied twice on the same prefixed formula on the same branch:

— (<) can not be applied to oy on @ if it has been applied to 7 with o ~g 7
— (E) is never applied to oEg if there is a prefix 7 such that 7¢

Another saturation constraint is that a formula is never added to a tableau branch
where it already occurs. Thus:

— (@) is never applied to o if it has already been applied to 7¢

Also, given that the hybrid language incorporates the universal modality (.A),
additional restrictions are required by blocking (<) to ensure termination: the
loopcheck.

— The rule (<) is only applied to a formula o6 on a branch if ¢ is an inclusion
urfather on that branch

A saturated tableau is a tableau in which no more rules can be applied that
satisfies the saturation constraints. A saturated branch is a branch of a saturated
tableau. A branch of tableau is called closed if it contains clashing formulas (of
the form o o, for some prefix o). Otherwise the branch is open. If all branches
of a tableau are closed then the tableau is called closed, otherwise, if at least one
branch is open, the tableau is called open.

2.2.2 A procedural view of the Prefixed Tableau Algorithm

In this section we provide a procedural view of the tableau algorithm in this calculus.
This approach will be useful later to understand where to include the caching
optimization inside this tableau algorithm.

So, suppose that we want to apply tableaux to a formula ¢, containing the set
of nominals NOM,. At the beginning of the tableaux, we create the root branch
000, Which contains:

— A prefixed formula og:p, called root formula, where oy € PREF is a new
prefix.
— A prefixed formula oy,:n, for each nominal n € NOM,,, with o,, a new prefix.

Then the tableau algorithm (Algorithm 1) is called with the root branch as input
parameter. The algorithm starts by looking for a clash in the current branch (lines
2 to 4). If it finds a clash, it stops and returns the value CLOSED. Otherwise, it
goes on.
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The next step is to find a rule to apply. This is done by the function choose-
rule-to-apply (in line 5). As we said before, the possible rules to apply in the
tableau algorithm are shown in figure 2.1, and the rule application should respect
the saturation and loop checking constraints.

Once a rule is chosen, it is applied. This is done by the function apply-rule in
the algorithm (in line 7). The application of a rule results in a list of new branches,
which can be of size one in the case of non-branching rules.

Finally, the tableau algorithm is applied to every branch obtained when applying
rules. It stops when we reach an open branch or when all the branches are closed,
in which cases it returns as result OPEN or CLOSED, respectively.

Algorithm 1 Tableau Algorithm

1: function TABLEAU(O .yrrent)

2 if o:p, 0:7p € Oryrrent then

3 return CLOSED

4 else

5: rule := choose-rule-to-apply

6 if rule # null then

7 list-branches := apply-rule (rule)

8 index :=0

9: max-index := length(list-branches)
10: repeat

11: Ocurrent := list-branches[index]
12: res := tableau(Ocyrrent)

13: index := index + 1

14: until res = OPEN or index = max-index
15: return res

16: else

17: return OPEN

18: end if

19: end if

20: end function

2.3 HTab: A terminating tableau System for Hy-
brid Logic

As we mentioned previously, the aim of this thesis is to find out whether or not the
caching optimization could be useful for a tableau procedure in Hybrid Logics. In
order to do this, we implemented the optimization in HTab ([Hoffmann and Areces,
2003]), a tableau based theorem prover for Hybrid Logics. We now introduce the
basic details of HTab, and then we present the optimizations already implemented
in HTab.

HTab is a theorem prover for Hybrid Logic. It implements an adaptation of
the tableau algorithm introduced in [Bolander and Blackburn., 2007]. Currently,
HTab handles Hybrid Logics up to H(@,A,D,|). That is, the basic modal logic
K, nominals, the satisfaction operator @, the universal modality A, the difference
modality D, and the down-arrow binder |. It guarantees termination only for all
inputs of the Hybrid logic H(@, A, D). Its aim is to provide a range of inference tasks
beyond satisfiability checking. For instance, currently it provides model building
(i.e. generates a model from a saturated open branch in the tableau).
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However, as we mentioned previously, for the scope of this thesis we will cover
only the Hybrid logic H(@, A).

2.3.1 About HTab’s implementation

HTab is implemented in the functional programming language Haskell, and the
executable is generated using the Glasgow Haskell Compiler (GHC). The code is
released under the GNU GPL and can be downloaded from:
http://code.google.com/p/intohylo/.

It is executed from the command line. The simplest way to execute it is:

htab -f file

Where the -f flag specifies the file htab takes as input, and is also mandatory. We
can also ask HTab to generate a model, in which case we should add the argument
-m filename, and it will generate (in case the evaluated formula is satisfiable), a
model and write it into the file filename.

Some other options can also be established via command line. For example,
we can set a timeout for its execution, configure the rules application strategy, or
enable/disable the optimizations.

The main data structure in HTab’s implementation is a Branch. It is defined
as a record containing;:

— The clashable formulas: these are the atomic formulas true at the branch,
and the idea of keeping them apart is to make it easier to detect a clash.

— Pending formulas: sets of prefixed formulas still not applied.

— Accessibility relations: to keep the accessible prefixes from a given prefix and
for a given relation.

— O-constraints: for each prefix and relation

— Universal constraints: the set of formulas that are true at all prefixes of the
branch.

— Some charts to handle the saturation of rules requiring book keeping (i.e.
the ©, E and Q@ rules)

— Sets of formulas true a a given prefix

— The Equivalent classes of prefixes and the representative of each class.

— The rules, which can be classified as:

— Immediate rules that are applied as soon as a formula of the corre-

sponding type is added to the branch: (O), (A) and (v1d)
— Delayed rules which application order can be specified: (A), (V), (<),

(@) and (E)

This way, we can classify the information contained in a branch in HTab as
into two groups: the history and the todo lists. The history is everything that is
a result of rules applications: clashable formulas, O and A-constraints, saturation
information of rules ¢, E and @, etc. The todo lists are lists of formulas yet to be
processed by the tableau rules. The way the formulas are picked is the result of the
strategy chosen for rules applications.

2.3.2 Optimizations

Currently, HTab makes use of the following optimizations:
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Semantic Branching Semantic Branching ([Horrocks and Patel-Schneider, 1999])
addresses an inherent inefficiency of the tableau algorithms, namely that they use

a search technique based on syntactic branching. When applying a disjunction

1V 2 V...V p,, syntactic branching works by choosing unexpanded disjuncts

one at a time, and expanding them by searching different models. This creates

different branches in the tableau tree that might “overlap” as they are not disjoint.

As a result, there might be wasted expansions which could be costly. For instance,

consider the formula ([Horrocks and Patel-Schneider, 1999]):

(V@) AN(pVa)

where ¢ is unsatisfiable. The tableau expansion for this formula requires that the
unsatisfiability of ¢ is demonstrated twice.

Semantic branching allows tableau to avoid such a situation, by trying to avoid
repeating “failed” choices when expanding disjunctions. For that, we add to the
second explored branch the negation of the formula added to the first branch (which
should be closed). Then, the disjunction rule is replaced by:

o:(p V1)
o | o AN

(semantic branching)

Unit Propagation Also known as “simplification” ([Horrocks and Patel-Schneider,
1999]) or “boolean constant propagation” ([Freeman, 1995]). Unit Propagation is
a technique used to reduce the number of (V)-rule applications and lowering the
average branching depth. The basic idea is to identify disjunctions ¢1 V@2V ...V,
in the branch, such that the negation of one (or more) of the disjuncts is already a
formula in the branch. Those disjunctions are reduced and the disjuncts which have
a negated counterpart in the branch are not considered as an alternative because
adding them would anyway lead to a clash. That is, we apply the following rule:

o, 0 VY
o)

Note that as we are working with a prefixed tableau one extra constraint is
added to the application of this rule: that the negation of the disjuncts in the
branch occurs at the same world (prefix) as the disjunction.

Note that if Unit propagation is used in combination with backjumping (dis-
cussed below), eliminated disjuncts have to be handled as if they had actually
caused a clash. That is, we should add the union of the dependency sets to each of
the eliminated disjuncts (those that would have caused the clash).

(unit propagation)

Backjumping Backjumping ([Horrocks and Patel-Schneider, 1999]), is an opti-
misation that aims to reduce the search space by using dependency directed back-
tracking instead of the usual one-level backtracking. It tries to avoid “trashing”,
i.e. the exploration of branches differing only in inessential features from branches
that have been previously explored.

In order to prune the search space, backjumping uses the information about
the cause of the clash. That is, while naive backtracking always go back one level,
backjumping ignores those branching points where a different choice can not result
in an open branch.

To be able to determine exactly up to which branching point we can backtrack,
backjumping needs further information to be attached to the prefixed formulas,
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namely the branching points of each formula (i.e., the applications of the V rule),

which are called “dependency points”. Thus, we can label each formula with a “de-

pendency set” and then, when a clash is detected, use the “dependency set” of the

clashing formulas for determining the most recent branching point that introduced

one of the clashing formulas and backtracking directly to this branching point.
For instance, consider the following example from [Tsarkov et al., 2007]:

(A1 VB1)A(AaV Ba) Ao A(A V B) ANO(ANB) AO-A

Figure 2.2 shows the search tree obtained with the application of tableau to
this formula. In the example, the branches in red represent the trashing that can
be avoided with backjumping. We can see that without backjumping we need to
explore every disjunction, although the cause of the clash is in the last two conjuncts
(O(A N B) AO-A), and does not depend on the rest of the formula. As a result,
we have a useless exploration of branches, as we have to explore and close every
possible branch. Although the cause of each branch becoming closed is always the
same, the last two conjuncts of the formula, and is independent from the choices
made by the disjunctions, naive backtracking does not recognize it.

On the other hand, with backjumping we avoid exploring the branches in red as
it recognizes that the cause for the branch becoming closed is independent of any
disjunction. For that, each formula is labeled with the corresponding dependency
set (the information between curly brackets). When the first clash (clash between
A and —A) is detected, the union of the dependency sets of the clashing formulas is
used to determine the branching point where we should backtrack. In this particular
example, this union of dependency sets is empty, i.e. there exists no alternative
branch that might lead to an open branch. Therefore, the result unsatisfiable can
be immediately returned.
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Figure 2.2: Example of Trashing and how it can be avoided with backjumping.
Trashing is marked in red and the information between curly brackets corresponds
to the “dependency sets”. With backjumping we can avoid exploring the red
branches, as we can use the union of the dependency sets of the clashing formulas
to backtrack directly to the root branch.
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Chapter 3

Caching

When applying the tableau algorithm to a formula, there may be many branches
created. Suppose that a subbranch has been fully expanded until reaching a clash.
Now suppose that in the same formula we find another subbranch which subterms
contain the subterms of the closed branch. This will result in the same subproblem
being solved again. As the satisfiability check cares only whether a branch is satis-
fiable or not, this recomputation is time wasted. To avoid this, the usual technique
is to store in a cache the intermediate results, and query the cache before applying
any rules to a branch, so we can re-use the results of already solved sub-problems.
This is caching.

Caching has been widely investigated in Description Logics. However, it is
not yet known whether it will help in the case of Hybrid Logic; nominals and
the universal modality may cause problems. In this chapter we explain caching
optimizations in general terms and briefly introduce the approaches already existing
for the case of Description Logics. Finally, we mention some implementations of
caching in the field of Description Logics, and the recently one in Hybrid Logic.
In the next three chapters we will investigate whether these approaches can be
adapted to Hybrid Logic.

3.1 What to “cache”

We already know that storing intermediate results in order to avoid recomputing
sub-problems could help reducing considerable time. But now the question is which
information should be stored. As we said, the satisfiability check cares only whether
a branch is satisfiable or unsatisfiable. So, the intermediate results we are interested
in are those sets of formulas/concepts that are already known to be satisfiable or
unsatisfiable. Below, we discuss separately each case.

3.1.1 Caching Unsatisfiable Concepts:

A set of concepts can be stored as unsatisfiable when it contains a clash or when it
produces a clash (i.e. when we reach a clash after expanding it). Then, when we
find the same set of concepts (or a superset), we can claim it is unsatisfiable. The
stored unsatisfiable sets of concepts can be used through all the tableau process,
and it has been shown that it ensures soundness ([Massacci and Donini, 1999]).

27
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3.1.2 Caching Satisfiable Concepts:

A set of concepts can be claimed to be satisfiable when it has been fully expanded.
However, when doing satisfiability check by means of tableau, a branch which has
been fully expanded is an open branch. And the tableau algorithm stops when it
reaches an open branch, making it worthless to cache these formulas.

Still, we could try to store sets of formulas which can’t be further expanded as
satisfiable, and reuse these intermediate results later during the tableau. But this
“satisfiable concepts caching” must be done only at the level of the branch. That
is, the stored sets of satisfiable concepts should be discarded when passing from
one branch to another. In [Massacci and Donini, 1999] and [Nguyen and Goré,
2007] the authors remark that caching “permanently” (i.e. “globally”), potentially
satisfiable sets of concepts might lead to an unsound calculus.

Besides, caching satisfiable concepts would only be possible in a logic where the
top-down strategy is applied naively (that is, where constraints can’t be applied
upwards), which is not the case of the logics covered in this thesis. In the presence of
nominals, new concepts can be propagated to already cached information, making
the hole set unsatisfiable.

Even in the absence of nominals, when the tableau algorithm uses blocking to
ensure termination, we have to be careful when determining the satisfiability of
a concept (which may depend on the satisfiability of an ancestor) [Haarslev and
Méller, 2000].

The example provided in Figure 3.1 illustrates two problems associated with
caching of satisfiable formulas.

So, we have to take into account two things here: first, we can not claim that
the formulas at a blocked prefix are satisfiable; and second, we can not use the
satisfiable values added to the cache at a given branch in other different branch.

3.2 Existing approaches to Caching

In this section we explain briefly the various caching methods already implemented
for Description Logics [Nguyen and Goré, 2007].

1. UNSAT Caching using Depth First Search (DFS) expansion strategy: In this
caching approach, there is an explicit separate data structure that stores only
the unsatisfiable sets of concepts found. So, before any expansion, the proce-
dure searches in the cache, if it finds a coincidence, then the expansion does
not occur and the current set of concepts is set to unsatisfiable; otherwise, the
algorithm continues with the DFS procedure. Something important to note
in this approach, is the fact that the algorithm requires a blocking condition
to be evaluated in order to avoid infinite loops.

2. MIXED Caching using DFS: In this approach, the explicit UNSAT cache
is maintained in the same way as the previous approach, but here we also
maintain a local sat cache, which scope will be only the current branch. That
is, we maintain the local cache as long as the DFS procedure moves in the
same branch, and, when it moves to another branch the cache is emptied.
This method also requires the evaluation of a blocking condition to guarantee
termination.

3. GLOBAL Caching DF'S: This approach uses a DFS strategy also, but it main-
tains a different kind of structure. It keeps a graph whose nodes’ status can be
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Figure 3.1: Problems with caching satisfiable sets of formulas in Hybrid Logics.
Note 1: Prefix 2 is blocked by prefix 1, so, following the sat caching strategy used
in the DL approach, we would cache the set of formulas true at prefix 2 as satisfiable.
Note 2: If we use the satisfiable cache globally, we find a cache hit at this point.

However, this formula is unsatisfiable.
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either unexpanded, expanded, UNSAT or sat; and it propagates the sat/UN-
SAT status of the nodes through the graph when it knows it. In this approach
there is no need of extra blocking condition evaluation, as it guarantees ter-
mination.

4. Unrestricted GLOBAL Caching (i.e. GLOBAL Caching, but non-DFS): This
approach does not use a DFS strategy. In the DFS strategy, when the ap-
plied rule gives k denominators y, ..., yr, we just create (or look) the first
successor, and put it in the queue for expansion. Then we continue with this
denominator. In the non-DFS approach instead, for the same example, we
create and put in the queue each denominator y; immediately after we have
applied the rule. Moreover, whenever we find a cache hit to an unexpanded
node z, where z is a node already in the queue, z is brought to the front of
the queue, indicating that z should be processed sooner (as we know that at
least two nodes rely on its result).

3.3 Some implementations of Caching

As we said, Caching has been widely investigated in the field of Description Logics.
And even when the main interests of the field seemed to be to have a really bounded
ExXPTIME algorithm, several reasoners implemented it. In this section we briefly
mention some of them and how they implemented the optimization.

— Description Logic Prover (DLP) [Patel-Schneider, 1998], is an experimental
Description Logic knowledge representation system. Although it is an ex-
perimental system, it provides a fast satisfiability checker. DLP performs
caching by storing in a concept store just sets of concepts (in the form of a
concept expression obtained with the conjunction of the concepts in the set),
and their satisfiability status (satisfiable, unsatisfiable, unknown). New con-
cept expressions are added to the store when they are not there. Otherwise,
their satisfiability status is used/updated as appropriate. We can say that
there is much in common between this approach and GLOBAL caching.

— FaCT++ [Tsarkov, 2003], implements MIXED caching, but for logics not
involving nominals or inverse roles.

— Pellet [Sirin et al., 2007] also caches the satisfiability status of internal nodes
when no inverse properties or nominals are used in the input ontology.

— CWB [Goré and Postniece, 2008], is a prototype developed in C++ in order
to evaluate the different approaches to Caching. It implements all four ap-
proaches, i.e. UNSAT Caching, MIXED Caching, GLOBAL Caching and the
variation of GLOBAL Caching that does not necessarily uses a DFS strategy.

For the case of Hybrid Logics, currently the only implementation of Caching
available is in Spartacus [Gotzmann et al., 2009], an Hybrid Logic theorem prover
recently developed in the University of Saarland, Saarbriicken, Germany. It features
a number of optimizations, among which is a “restricted” way of UNSAT Caching
that only allows to cache nominal-free unsatisfiable sets of formulas.

In the next chapters we explain how each of approaches to Caching could (or
could not) be applied to the case of Hybrid Logics. In particular chapter 4 develops
the UNSAT Caching approach, chapter 5 explains some issues about its implemen-
tation, and chapter 6 covers the case of the MIXED and GLOBAL Caching.
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UNSAT Caching

4.1 What to cache for H(@,A)

As we have seen, UNSAT caching has already been explored for Description Logics.
The case of Description Logic ALC is well-known, and properties of the tableau
calculus are used to guarantee that the right information is immediately available
to check for cache hits during the calculus. For instance, as noted in [Horrocks and
Patel-Schneider, 1999]:

“If successors are created only when other possibilities at a node are exhausted,
then the entire set of concept expressions that come into a node label can be
generated at one time.”

This quote can be transposed into the basic modal logic as: if we have a tableaux
calculus in which the rule (O) has the highest priority and is instantly applied after
applications of rule (), then we know that the set of formulas of a prefix is constant.
Therefore, a sound caching technique is to cache the set of formulas true at a prefix.

Now, if we move to Hybrid Logics: because of nominals and the satisfaction
operator, new formulas can be added to a world after it is first created, even if the
rule (O) is immediate. For instance, consider the formula

p
A (n\/D—\Tl)
A O(pV O-p)
A O(=pAD(nV (-pAn)))

(4.1)

That is why in the case of Hybrid Logic, we need also to add the true formulas
corresponding to every nominal of the input formula.

Moreover, with existential and universal modalities, the same problem occurs.
In modal (and therefore hybrid) logic, universal formulas can be nested deep into
regular formulas. As a consequence, formulas of the shape (A¢ V Ay) create a
situation where not the same universal modalities are "active” in every tableau
branch. This is why we also need to cache this information. As an example consider
the following formula:

(OOp A A=p) V (OOp A O=p) (4.2)

This does not happen in Description Logic ALC, where the TBOX can be con-
sidered as a A—subformula. Indeed, checking satisfiability of an ABOX in the
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context of a TBOX is equivalent to checking the satisfiability of the Hybrid Logic
formula:

h(ABOX) A A h(TBOX)

where h is the satisfiability-preserving function converting an ALC formula to a
Hybrid Logic one. In that case, h(ABOX) does not contain any universal modality.

The formulas 4.1 and 4.2 shown above are developed later, in the examples of
section 4.4. First we introduce the UNSAT caching approach developed for Hybrid
Logics, in order to understand how does it work.

4.2 Definitions and algorithms

We now introduce the data structures and algorithms used to implement UNSAT
caching. First, let us introduce a few definitions related to tableaux branches.

Definition 13 We write pref(8) for the set of prefizes occurring on 0, that is:
prefl8) ={ o | o6 € 6}

Definition 14 We define the set of universally constrained formulas of a branch
0 asUU? ={ ¢ | Ir €pref(0) . T:Ap € 0}

We introduce the “son-of” relation on branches:

Definition 15 If 0, is produced by the application of a rule to some formula in 0,
we write g — 01, and write —* for its reflexive and transitive closure.

We are in the context of a tableau algorithm using a depth-first search strategy.
In this situation, we want to maximize the usefulness of caching, that is, when a
clash occurs, we want to cache the earliest known sets of formulas that provokes
a clash. Therefore, we should identify the earliest closed branch which produced
the clash. For that, let us introduce the functions hclosed and lopen, that are
illustrated on Figure 4.1.

Definition 16 The function hclosed is defined by:

0" if there exists 0', the earliest closed branch such that 6/ —* 6

0 otherwise

hclosed(0) = {

We overload this function by defining it for a couple prefix-branch:

0" if there exists €', the earliest closed branch such that ' —* 6 and o € pref(0’)

helosed(o, 0) = { 0 otherwise

Definition 17 The function lopen is defined by:

l () = 0" if there exists 0', the latest open branch such that 6/ —* 0
opemit) = 0 otherwise

Notice that when hclosed(f) and lopen(f) are both defined for a branch 6, we
have lopen(8) — hclosed(6). We now turn to the definition of the UNSAT cache.

Definition 18 We remind that FORMS is the set of well-formed formulas of Hy-
brid Logic. Let n be the number of nominals present in the input formula. We write
Cy for the UNSAT cache. It is such that:
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lopen(©)

hclosed(®©)

O open branch
. closed branch

Clash

Clash

o-0-0-0-0-0

Clash

Figure 4.1: When 6 is claimed closed, hclosed(6) is the oldest ancestor of 6 we can
claim closed

n times

Cu CP(FORMS x FORMS x FORMS... x FORMYS)

This structure reflects the fact that we are caching three main sets of formulas:
formulas of a given prefix, universally constrained formulas, and formulas true at
nominals.

Now, let us specify what formulas are to be added to the UNSAT cache during
the tableau procedure.

Definition 19 Given a branch 6 and a prefiz o occurring on it, we define: Fo(a) =
T0(0) \ U?

That is F(o) is the set of formulas true at o on 6 minus the universally con-
strained formulas on 6.

Definition 20 Let o a prefic occurring on 0, and Ny..N; nominals of the input
formula. We define the caching information of the prefix o on 0 by:

c(0,0) = (F(a), U?, FO(Ny), ..., FO(N;))

We now describe how to use the UNSAT cache during the course of the calculus:
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Initialization At the beginning of the tableaux algorithm, the cache is empty:
Cy = 0.

UNSAT Cache Update When a clash occurs at o on 6 (i.e. o:p,0:7p € 0 for
o a prefix on the branch 6 and ¢ a formula), then for all 7 such that:

1. 7 <} o, that is 7 is a predecessor of o

2. hclosed(T,8) # 0, this condition is to avoid caching the formulas in the clash-
ing prefix when it includes the clash, i.e. when the branch under consideration
is 6. It allows adding to the cache formulas in the clashing prefix when we
backtrack after all branches of a disjunction are closed

3. 7 € pref(0) \ pref(lopen(0)), that is 7 does not appear in the lowest open
ancestor of 0

4. For all branch ¢’ such that hclosed(r,0) —* ' and a clash occurred on 0’ at
prefix o’: 7 <} ¢’. That is, 7 has to be ancestor of every clashing prefix in
the closed branch

update the cache:
Cu = CyUc(r, hclosed(r,0))

Let us analyze each condition a little deeper. The first three conditions just
state that for o (in case that hclosed(o, ) # 6), and every predecessor T of o which
does not appear in the lowest open ancestor of #, we cache its cachable information
in the context of the first closed branch where it appears. Why the first? Because
later, its set of formulas only grows, so we are not interested into caching a superset
of a set of formulas that we know as unsatisfiable.

Note here that we require that the prefix to be “cached” does not appear in
the lowest open ancestor of §. To understand why, consider the example shown in
Figure 4.3. The formula shown in this example is satisfiable. However, when the
clash occurs at the first closed branch, if we add to the cache the information valid
at prefix 0, we are incorporating in the UNSAT cache sets of formulas which are
satisfiable. As a result, the second branch (which is in fact open), is closed because
of a cache hit.

Finally, let us analyze the last condition: “For each branch 6’ such that hclosed
(1,0) =T 0" and a clash occurred on ¢ at prefix o, 7 <} o”.

This condition is adding an extra restriction to the case of updating the cache
after all branches of a disjunction are closed. In this case, we only update the cache
with the formulas true at the prefix containing the disjunction formula, if this prefix
is ancestor of all the clashing prefixes. In other words, we only update the cache
with the information of the prefix containing the disjunction, if it is “responsible”
for all the clashes.

Figure 4.2 illustrates an example showing why this condition is necessary.

UNSAT Cache Querying If for some prefix ¢ in the branch : !
0(07 9) ) L= (Cl7 027 037 X Ci+2) € CZ/{

That is: there is a tuple in Cy; such that every element is a subset of respectively
each element of the caching information of o.
Then, we can claim the branch is CLOSED.

INote that after a rule application, we know precisely which prefixes have received formulas,
so we can restrict the previous test to these “augmented” prefixes.



4.2. DEFINITIONS AND ALGORITHMS

0:0TVoL
1: 0LVl
(©)]
1 : 02
2:1vl

0 : OT
[©)
0: <3
3 : T
(c)
V) V)
2 1L 2 1
& ®
Clash (a) Clash (b)
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Figure 4.2: Part of a tableau search tree showing what happens if we don’t add the
fourth condition in the UNSAT Cache Update. After clash (a) and clash (b), the
algorithm backtracks and adds to the cache the formulas in prefix 2 (c). This is OK,
given that prefix 2 actually contains an unsatisfiable set of formulas that produced
the clashes. However, after clash (d), when backtrack until point (e) we can not
add to the UNSAT cache the formulas of the prefix that produced the disjunction

(prefix 0), because in fact the formulas in prefix 0 at this point are satisfiable.
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0:n A (O(((Qup) A (O(g A —q))) V Qnp))
1 : n
o]
0 : n
0: O(((@rp) A (©(gA—q))) V @rp)
(©)]
0 : 02
2: ((@Qnp) A (C(g A —q))) V Qup
(W ~)
2 2 (@np) A (O(g A —q)) 2 : @up
() ‘ (@)
2 ((@np) .
2 (g A —q) 0
Q
@ ‘ CACHE HIT
0:p for prefix 0.
WRONG!
(©)
2 : 03
3: (¢A—q)
o]
3 1 ¢q
3 : —q
®
Clash with g A —q
Description Index
@np/\ <>(q AN _‘q) 0
((@np) A (<>(q A ﬁq))) vV Qpp 1
@np 2
v z
Nominal n: p 5
MITh) — [4,5,6,7,8,9,10, 11 1 N inal me n A (O((@np) A (O(g A =a))) V @np)) | 6
M) = [0.1,2,3,4,5,6,7) Nominal n: (((@np) A (3(a A ~a)V Gup) | 7
n 8
p 9
n A (O(((@Qnp) A (O(g A —q))) V @np)) 10
Q(((Qnp) A (C(g A 29))) V Qnp) 11

Figure 4.3: Wrong Tableau applying UNSAT Caching and adding to the cache all
the prefixes valid in the branch
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Optimisation After the step of cache updating, we can add the following step
to avoid redundant information in the cache:

Cu Z:CM\{L|L€C@{,E|L’€C{,{,L2L/}

If a set of formulas is unsatisfiable, then any superset of this set will be unsat-
isfiable. For this reason, when we query for a cache hit, we check whether the set
of formulas in the current prefix is a superset of some set of formulas in the cache.
Based on this idea, we try to avoid redundant information in the cache by keeping
only the smallest unsatisfiable sets of formulas. For that if the cache contains two
sets of formulas L and L’, and one is subset of the other, the subset remains in the
cache while the superset is removed.

4.3 Integrating UNSAT Caching in the Tableaux
Algorithm

Algorithm 2 integrates UNSAT caching (update and search operations), into the
tableau algorithm presented in Section 3.

Algorithm 2 Tableau Algorithm, with UNSAT Caching

1: function TABLEAU(O.yrrent)

2 if o:p,0:—p € Oryrrent then
3 update-unsat-cache

4 return CLOSED

5: else
6
7
8
9

if search-unsat-cache-hit then
return CLOSED

else

: rule := choose-rule-to-apply
10: if rule # null then
11: list-branches := apply-rule (rule)
12: index :=0
13: max-index := list-branches.length
14: repeat
15: Ocurrent := list-branches[index]
16: res := tableau(O .y rent)
17: index := index + 1
18: until res = OPEN or index = max-index
19: if res = OPEN then
20: return OPEN
21: else
22: update-unsat-cache
23: return CLOSED
24: end if
25: else
26: return OPEN
27: end if
28: end if
29: end if

30: end function
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4.4 Some examples

Here we develop the formulas shown in Section 4.1. The first example illustrates
the importance of adding information regarding the universal constraints true at
the cached branch; while the second one covers a case where the lack of information
regarding the nominals present in the cached formulas produce incorrect results.

Why adding universally constraints formulas? Figure 4.4 shows that the
following example:

(OOp A A-p) V (OOp AD—p)

leads to an incorrect result in the case of a tableau algorithm with UNSAT caching
without caching the universally constrained formulas.

0: (<><>p A A(—|p)) Y,
M \(\/\) rule
0: OOp AA(—p) 0: OOp A O(—p)
(A) rule ‘ (A) rule
0: OOp : <><>p
0 : A(-p)
(A) rulel <>§ rule
0 : —-p
() rule ‘(D) rule
0 : <1
1: $p 30w
(A) rule ‘
1L CACHE HIT for
I prefix 3 WRONG!
(©) rule ‘ () rule
1 : 02 3 4
2 :p 4 :p
(A) rule‘ ‘ (A) rule
2 : —p
4 =
® P

UNSAT Cache: Description | Index
MI[Ty] — [0,1] <Sp 1

Figure 4.4: Wrong Tableau applying UNSAT Caching without adding to the cache
formulas universally constraint
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Why adding extra information about nominals? Now suppose that we
apply the tableau algorithm, again with UNSAT caching, but this time without
caching the information true at nominals. In this case, it is also possible to intro-
duce wrong answers, as can be seen on Figure 4.5 and Figure 4.6.

0: (pIA(n1vO-n1)A(O(plVO(—pl)))A(C(=plADO(R1V (—plAnl))))

1 : nl
|
0 : pl

0 : nlvVv O-mnl
0 : O(pl VvV O(—pl))
0 : O(=pl A O(nl V (-pl A nl)))
@]
0o : 02
2 : —pl A O(nl V (—pl A nl))

@]
2 : pl VvV O(—pl)
)

2 . —pl
(n1V (=pl Anl))

/\

: O-nl
/ \ .
¢ O(-pl)
(©) / \
® .
Clash with 2 . O(=pl)
pl A —pl PP
(D) (<>)
® L
3:nlV (=pl Anl) Clash with 32 ; 031
pl A —pl PP
/ \ :
: —pl A nl 3:nlV (-pl Anl)
CACHE HIT for
(v1d) ) prefix 3. However
3 . —pl nl is not in the
0 : —pl 3 " 'rf)l same equivalence
: class than prefix
(vId) 0 in this branch.
® WRONG!
Clash with 0 : —pl
pl A —pl
®
Clash with
pl A —pl

Figure 4.5: Wrong Tableau applying UNSAT caching without adding to the cache
information regarding nominals

Next chapter explains some implementation issues about the UNSAT Caching
approach.
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Description Index
-pl 0
nlV (=pl Anl) 1
UNSAT Cache: nl 2
pl 3
M|T3] — [2,3,4,5,6,7] (p1 A (n1 Vv O-nl) A (@Q(pl V O(—pl)))A
M[Ty] — [0,1] (O(=p1 AO(n1V (—pl Anl)))) 4
nlV O-nl 5
O(pl v ©(—pl)) 6
O(=pl AO(nlV (—pl Anl))) 7

Figure 4.6: UNSAT cache representation for example in Figure 4.5
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Implementing the UNSAT
Cache

It is important for efficient querying of the UNSAT cache to use a data structure
enabling efficient subset checking. That is, the data structure should provide effi-
cient operations for determining when a given set is superset or subset of any set
stored in the cache.

In this report, we describe three approaches for implementing the UNSAT cache.
First, we develop an approach based on bit matrices as proposed in [Giunchiglia
and Tacchella, 2001]. Then, an approach based on a lists vector, which can be
thought just as a derivation of bit matrices. And finally, we explain an approach
based on tree based data structure as proposed in [Hoffmann and Koehler, 1999].
However, we just implemented the two former approaches.

Following, we explain in more detail each of this approaches, but first let’s
introduce the mapping structure used by the three approaches to map subterms to
indexes.

5.1 About the subterms representation

In the three approaches for representing the UNSAT cache discussed below, we need
to represent subterms of the input formula as indexes. For this reason, we need
to keep an extra structure mapping each index with the corresponding subterm.
There are two ways of initializing/updating this structure:

— The straight way: that is, to associate each possible subterm of the input
formula to an index in the begging of the algorithm, when the UNSAT cache
is initialized.

— The lazy way: that is, to add subterms to the structure as they are needed,
i.e. each time we update the cache.

We adopted the second approach, i.e. we only increase the mapping when we
try to add a new subterm to the UNSAT cache, in case it is not still present. So,
for all three approaches to implement the UNSAT cache developed bellow, initially
the mapping structure is empty.

41
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5.2 Bit matrices approach

This approach was proposed in [Giunchiglia and Tacchella, 2001]. It uses Bit matri-
ces to store the unsatisfiable sets of concepts. Bit matrices have three distinguishing
advantages:

1. they can be queried for subsets and supersets;
2. they can be bounded in size;
3. when they are bounded in sized, they keep the latest obtained results.

We implemented the UNSAT cache as a bit matrix, where the columns represent
subterms of the input formula, and each row represent a subset of unsatisfiable
concepts. The mapping between each column index and the subterm it represents
is maintained by the mapping structure.

Matrices have fixed number of columns and rows. Then the number of columns
is set as the maximum number of subterms in the input formula, multiplied by two
plus the number of nominals. That is, we have to be able to store in the cache
not only the formulas true at a given prefix, but also those formulas universally
constraint and also those formulas true at the nominals of the input formula. The
number of rows is equal to the number of columns in a first approach. However,
we know that it should be related to the size and other characteristics of the input
formula.

When the matrix is created every bit is initialized to 0.

Insertion In order to insert a new set of unsatisfiable subterms in the UNSAT

cache, we must first get its corresponding list of indexes from the mapping structure.

As we said, if a subterm is not present in the mapping structure, it is inserted.
Then we proceed with the insertion, taking into account that:

— if the new set is a superset of an already existing set in the cache, we don’t
update the cache

— if the new set is a subset of any cache row, we replace the corresponding row
in the cache

— as the size of the matrix is bounded, when the maximum number of rows is
reached, we restart the row index to 0, and begin to reuse the rows starting
from the first one

The first two items are to avoid keeping redundant information in the bit matrix,
while the last one ensures that we maintain the latest results, as the first results
discarded are the oldest ones.

Query During the tableau algorithm, before any expansion, we search for a cache
hit in the UNSAT cache. We use subset checking (i.e. we search in the cache for a
subset of the current set), because if a set of subterms is unsatisfiable, any superset
of the current set is also unsatisfiable.

When searching in each row, we stop exploring each row as soon as we know
the set stored in this row is not a subset (or superset, depending on the search), of
the input subterms set.
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0 1 2 3 4 34 0 1 2 3 4 34
Mm[Ty] | O 0 0 0 0 0 M[T1] 1 1 0 0 0 0
M[Ty] | O 0 0 0 0 0 N M[Ty] | 1 0 1 0 0 0
Mg | O 0 0 0 0 0 M[T3] 0 1 0 1 0 0
M1y | O 0 0 0 0 0 M1y | 1 0 0 0 1 0
Description Description | p | q | Op | pAq | <Oq
Index Index 0| 1] 2 3 4

Figure 5.1: Bit Matrix with n rows and 34 columns, representing an UNSAT cache
with actually 5 subterms and 5 sets of unsatisfiable subterms inserted.

An example Let’s consider the bit matrix showed in Figure 5.1. Initially, every
cell of the bit matrix is set to 0 and the mapping structure (Description Index) is
empty. Now, suppose that we found out that the set 77 = {p, ¢}is unsatisfiable.
We first search in the mapping structure the indexes corresponding to p and to q.
As it is empty, we add the pairs (p,0) and (g,1), and then use its indexes to update
the cache. Something similar happens when inserting the second row in the cache.

Now, suppose that we want to insert T; = {p, ¢, Op} after we inserted the second
row. Clearly, T; is a superset of the set represented by the matrix row M|[T1], thus
we just don’t insert it.

Finally, suppose that we try to insert T;= {p A q} (once the rows shown in the
figure are already inserted). In this case, T; is a subset of the set represented by the
matrix row M |[T3], and so we rewrite this row by setting all columns to 0, excepting
the one corresponding to p A q.

5.2.1 Lists vector approach

The number of formulas in an set of the UNSAT cache is often small compared to
the total number of formulas that can appear in the tableau. As a consequence,
the bit matrix previously seen is scarce, that is, it is mostly filled with zeros. There
can be more optimised ways of storing the UNSAT cache, and a list vector is a
solution.*

The list vector is a list of lists. Fach “sublist”, or row, is a list of integers
representing the indexes of the unsatisfiable subterms stored in this row. Thus,
the length of each row is determined by the number of cached subterms, instead of
being a constant determined by the total number of possible subterms to store.

Initially, the list is empty.

A possible implementation for this approach is a List of Sets of Indexes.

data ListVector = [IntSet]
data FormToInt = Map Formula Int

The advantage of this implementation is that the subset/superset checking for each
row naively managed by the data Structure.

Insertion The insertion is easy, with, as previously, two precautions:

— if the new set is a superset of an already existing set in the cache, we don’t
update the cache

1 Moreover, matrix handling in a functional programming language like Haskell is not easy nor
optimal.
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M([T5] — [1,3]

M[TQ] - [0a2]

M[Ty] — [0,1]
Description | p | ¢ | Op | pAgq
Index 0112 3

Figure 5.2: List approach for the UNSAT Cache, with 3 rows inserted.

— if the new set is a subset of any cache row, we replace the corresponding row
in the cache.

However, there is a subtle implementation difference in this approach. Each
time we update an existing row, what we do in fact is to remove the old row from
the list and insert the new one in the top of the list. The insertion of a new row is
also always in the top of the list. In this way, the first rows to be queried correspond
to the more recently inserted ones.

Query Query is carried out almost in the same way as for the previous approach.
During the tableau algorithm, before any expansion, we search in the UNSAT cache
with the current set of subterms. Here, we also use subset checking to find a cache
hit.

An advantage of this approach is that, as the first rows in the list correspond to
the last updates, we search first the information more recently added to the cache.

An example Now, consider the list based approach of an UNSAT cache shown
in Figure 5.2. Initially, the list and the mapping structure are empty. When we
found out that the set T7=p,q is unsatisfiable, as well as we do for the bit matrices
approach, we first search in the mapping structure the indexes corresponding to p
and to ¢. As the mapping structure is empty, we add it the pairs (p,0) and (g,1),
and then we use their indexes to update the cache.

Again, if we wanted to insert T;= {p, ¢, Op} at any moment after having inserted
M]|T5], we don’t do it because its index list is a superset of the row M[T7].

Finally, if we try to insert T; = {p A ¢} (once the rows shown in the figure are
already inserted), its indexes list is a subset of the row M[T3]. So, in this approach,
we delete the row, and insert a new row (at the top of the list) with new index list.

5.2.2 Tree based approach

Still another data structure allowing fast set query answering is the tree based
approach developed in [Hoffmann and Koehler, 1999]. Although in this project
this method was not implemented, we explain the main idea underling this data
structure and how it could be applied to implement the UNSAT cache.

The UNSAT cache would consist in a forest of Unlimited Branching Trees (UB-
Trees). Each node of an UBTree consists of three components:

— the element it represents,
— the children of the current node (a set of nodes), and
— an end-of-path marker to indicate the end of one possible path.

The element of a node in this approach would be its index in the mapping
structure.
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The idea is to represent each set of unsatisfiable subterms as a path in a tree,
where the nodes are ordered according to their index number. This way, if two sets
sharing the first elements are to be stored, we create only one UBTree with the first
common elements and two branches, one for each set, resulting in a more compact
representation.

The insertion operation To insert a set S into the UNSAT Cache implemented
with this approach, first we get the indices of the elements of the set in the mapping
structure, and then we try to insert them. The insertion creates a new path for
these elements in the forest. For that, it tries to look up the elements of S (which
are ordered) one after the other following already existing paths. If there is no node
for some element in S, we create it.

Query The algorithm presented in [Hoffmann and Koehler, 1999] provides three
search operations: “search-first”, “search-subs” and “search-sups”. Given a set S,
and a set of trees T, the “search-first” operation consists in verifying if S is subset
of T, “search-subs” retrieves all the subsets of S in T, and “search-sups” retrieves
all the supersets of S in T. The former and second searching operations make use
of a “money” method, which consists in finding all nodes in T corresponding to
an element e; € S, if any, or going on with the following element of S otherwise.
The “search-sups” operation, instead, searches all trees starting with an element
preceding the first element of S, and reducing the query as we find the elements in
the query, until S is empty.

For searching a cache hit in the UNSAT cache we need only the “search-first”
operation. So, for a given set of inconsistent subterms we must find in the cache a
tree representing a subset of S.

] 0 0 1
Insert Insert M Ifsert S,
[0,1] [0.2] N L3l N

1 * 1 * 3 " 1 0 3 k. 3 L

Figure 5.3: Tree approach for the UNSAT Cache, with 3 inconsistent sets inserted.

An example Following the last example, Figure 5.3 shows the insertion of the
the sets p,q, p,Op and q,p A ¢ in this order. Now suppose that after inserting the
first set p,q we want to insert p. This could be easily done by adding an end of
path mark to the node corresponding to p.

5.3 Enabling Backjumping with UNSAT Caching

Backjumping, introduced in Chapter 2, is a variant of dependency-directed back-
tracking that makes use of information about the cause of the clash in order to
prune the search space and avoid “trashing”.

Although backjumping is an efficient optimisation, using it together with UN-
SAT caching is not trivial. The reason lies in the extra information required by
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backjumping. In the case that we find out that a given set of formulas is un-
satisfiable because of a cache hit, there is no information about the cause of the
unsatisfiability to be used to derive the “dependency set” required for backjumping.
Still, Backjumping and UNSAT caching can be carried out together, by com-
bining the dependency points of all the formulas in the matching set of formulas,
as described in [Tsarkov et al., 2007].
Then, when we find a cache hit with:

- .70(0') ;) 01,
u? O Cy and

— N9Ny) D Cs, ..., N°(N;) D Ciyo for Ni...N; nominals appearing in the
formulas of F9 (o) UU?.

for some cache element (C7,Cy,...,C;) € Cy

We can use the “dependency set” associated to the formulas in C; UCyU...UC;
for backjumping.

We implemented this approach although it may result in a set of dependency
points containing irrelevant branching points, and could limit the effectiveness of
backjumping.

5.4 Source Code

In chapter 4 we presented the theory associated with the implementation of the
UNSAT Caching optimization for a hybrid prefixed tableaux. We also presented
pseudocode in order to illustrate which parts of the tableau algorithm should be
modified in order to include caching. Then we showed some particularities with
respect to the implementation of the UNSAT cache. As we said, we implemented
the optimization for the Hybrid Logic theorem prover HTab. It was done in the
functional programming language Haskell, and the implemented structures were
adapted to HTab. For a more detailed description of the implementation, the main
algorithms of the source code are included in the final appendix.
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Other Approaches to
Caching

In this chapter we develop the two remaining approaches to caching, and show how
they could (or could not) be adapted for the case of the Hybrid Logic covered in
this thesis. However, either because of time constraints (in the case of GLOBAL
caching), or because it is in fact not possible (in the case of MIXED Caching), these
approaches were not implemented.

6.1 MIXED Caching

In this approach, the UNSAT cache is maintained in the same way as in the previous
approach, but here we also maintain a local sat cache, which scope will be only the
current branch. That is, we maintain the local cache as long as the Depth Search
First procedure (this approach assumes a Depth Search First strategy) moves in
the same branch. When it moves to another branch the local cache is reinitialized.

The MIXED Caching approach is already implemented for Description Logics.
It is first introduced in [Massacci and Donini, 1999], and then referred as MIXED
caching in [Nguyen and Goré, 2007].

In both articles the UNSAT cache acts globally while the sat cache acts locally.
Besides in the former article the sat and the UNSAT caches are handled by specific
sets of rules. They also introduce the idea of a “witness” to refer a set of concepts
previously processed and which is a subset of the set of concepts in the current
node.

In the case of Hybrid Logics, we can say that the notion of local satisfiability
caching developed for Description Logics is already subsumed by the notion of
blocking condition presented for the hybrid tableaux. More precisely, the idea of a
witness in [Massacci and Donini, 1999], is the same idea of a loop check introduced
for the hybrid tableaux, where before expanding a branch containing a diamond
rule, we check whether a witness already exists for the corresponding pattern.

However, the blocking condition does not cover all cases that the local satisfi-
ability caching in [Massacci and Donini, 1999] and [Nguyen and Goré, 2007] does.
In the MIXED caching approach implemented for Description Logics, when it hap-
pens that a set of concepts can’t be further expanded (for example, the set {p, ¢},
where p and ¢ are propositional symbols), these intermediate results can be cached
as satisfiable. This does not happen for the blocking condition, given that it only
“blocks” with respect to the (<) rule.

47



48 CHAPTER 6. OTHER APPROACHES TO CACHING

Nonetheless, in the presence of nominals, it would not be possible to cache
these intermediate results ({p, q}), even if it was done in the same branch, as new
formulas could be propagated to information already cached, making the hole set
unsatisfiable. The example shown in Figure 6.1 illustrates one such instance. In
the example, at the point marked as Note I, prefix 2 can’t be further expanded.
According to the traditional MIXED Caching approach for Description Logics, the
formulas true at prefix 2 at that moment could be cached as satisfiable. However,
if we did so, we would have later a “sat-cache hit” for the formulas true at prefix
1 at the moment pointed by Note 2, making this set of formulas satisfiable. But it
would not be right to say that the the set of formulas true at prefix 1 are satisfiable
because it is at this prefix that the clash occurs. The reason is that because of the
nominal n, new formulas are propagated later to this prefix, making it unsatisfiable.

6.1.1 So, what else could be done?

As we said in the previous section, we can say that, for satisfiability checking, the
local SAT caching part of the approach is already implemented in the blocking
condition (or at least the part that can be implemented for the covered Hybrid
Logic). However, for inference tasks which involve retrieving all possible models,
we could go a step further. We could try to use the results obtained for satisfiable
set of concepts (only those obtained when we reach a saturated open branch) later
in the procedure (even across branches), to avoid recomputing these set of nodes.
That is, maintain a global cache for the satisfiable set of concepts (in the same way
as we did for UNSAT caching).

Unluckily, this is not the case of HTab, which main goal is to test satisfiability of
a formula, and which stops when it finds a possible model (i.e. when it encounters
the first saturated open branch).

6.2 GLOBAL Caching

This approach was first introduced in [Goré and Nguyen, 2007a] and implemented
in [Nguyen, 2008] and [Goré and Postniece, 2008]. It consists in a tableau based
algorithm that uses “GLOBAL caching” and propagation of both satisfiability and
unsatisfiability to achieve an EXPTIME procedure for the ALC Description logic.
The algorithm builds an “and-or graph”, where no two nodes of the graph contain
the same formula set. That is, each node in the graph is “labelled” with an unique
set of formulas, where a “label” is not a name for a possible word (i.e. is not the
same as “prefix” in “prefixed tableau”), but a unique set of formulas contained in
a node.

“GLOBAL caching” means that each possible set of concepts/formulas is ex-
panded at most once.

This notion of “GLOBAL caching” can replace the notion of “blocking” which
most tableau methods require for termination (“loopcheck” in the algorithm devel-
oped in chapter 2), and caching simultaneously, as it does not rely on knowing the
satisfiability or unsatisfiability status of the stored nodes.

6.2.1 How does it work for Description Logics?

Suppose that we want to prove the satisfiability of a formula ¢ with respect to a
TBox I'. The method searches fro a model which satisfies ¢ w.r.t. I" by building a
graph. During the graph construction, each node of the graph has three attributes:
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3 : p

Clash at prefix 1
with p A —p
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Figure 6.1: Local SAT caching failure in the presence of nominals Note 1: At this
point we can’t go on working with prefix 2, we could cache it as intermediate results,
to be used later in the branch. Note 2: At this point we could use the intermediate
results. However, it would produce a wrong answer.
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— content: the set of formulas carried by the node

—  status: unexpanded, expanded, sat or UNSAT (were the status sat/UNSAT
represents the satisfiability /unsatisfiability of the input formula w.r.t. the
TBox).

— kind: and-node, or-node, leaf-node

The graph construction for a basic tableau algorithm using “GLOBAL caching”
proceeds as follows:

Initially, the graph consists only on a “root” node, which contains the input
formula ¢ plus the TBox I', and which is assigned the unexpanded status.

The next step in the algorithm is to choose a node to expand (i.e. to apply
a rule). When a rule is applied during a traditional tableau algorithm, the new
formulas created result in a new node. However, with GLOBAL caching we first
check whether a node already existing contains the new set of formulas, and if so,
we do not create a new node, but just insert an edge from the current node to the
one containing the set of formulas. Otherwise, we create a new node with status
unexpanded, unless it contains an inconsistency, in which case it is assign UNSAT
status, or it can not be further expanded (no rule can be applied), in which case it
is assign sat status. Besides, each node in a graph is assign a types: if an or-rule
was applied to it then the node is an “or-node”, otherwise it is an “and-node”.
After the application of a rule to a node, if its status is not sat neither unsat, it is
set to expanded.

The status of a sat or UNSAT node is “propagated” backwards (in most of the
cases) to the other nodes in the graph. This propagation consists in checking if
there is enough information to determine whether the satus of a parent node is sat
or unsat, taking into account the kind of node (or-node or and-node) and the status
of its children.

The algorithm continues the node expansion as long as there are unexpanded
nodes to chose and as long as the status of the “root” node is not sat neither unsat.
Let’s assume a depth first expansion strategy (for comparison purposes, because
HTab uses this one), but the algorithm supports other strategies. In the case of
finishing because all nodes of the graph have been expanded, all nodes which status
is different from UNSAT are assigned sat status (this way giving the open status
to the tableau branches which loop).

Figure 6.2 taken form [Nguyen and Goré, 2007] illustrates how the GLOBAL
Caching algorithm works when applied to the example given in [Haarslev and
Moller, 2000].

The main difference with other tableau methods is that with GLOBAL caching
we create a child in the graph only if it does not already exists, and we search for
existing nodes in any previous branch of the tableau.

There are variants and improvements to this algorithm, which cover different
Description Logics (for example in [Goré and Nguyen, 2007b]).

It is already shown that caching satisfiable sets of concepts can help reducing the
complexity of the tableau algorithms for expressive nominal free Description Logics
to EXPTIME ([Goré and Nguyen, 2007b] ). However it is still an open problem to
find a corresponding technique working with nominals and universal modality.

6.2.2 How would it work for Hybrid Logics?

In this section we present the problems that could arise if we try to use the approach
for the case of the Hybrid Logics H(@, A). More specifically, how to represent the
information and deal with it in the same way as it is done for Description Logics,
in order to obtain the same advantages.
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Figure 6.2: Example taken from [Nguyen and Goré, 2007] illustrating the GLOBAL
Caching algorithm. And-or graph created by the application of the algorithm to
the concept F and the TBox I' = {C C (IR.D) N (IS X)NVS.(-X NA);D C
JR.C; E C (3R.C)U (3R.D)}. The main concepts are marked with superscript *.
The nodes are numbered when created but explored using DFS: 1:(2,3), 2:(4,5),
4:(6,7), 6:8, 8, 7:9, 9:(10,11), 10:(12,13), 12:8, 13:8, 11, 5:8, 3. Dashed arrows are
cache hits. The result is unsatisfiable.
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The first question that arises when trying to adapt the approach for the case of
a prefixed tableau algorithm for Hybrid Logics is what to consider as the content of
a node. As we mentioned at the beginning of this chapter, the content of a node in
the GLOBAL caching approach introduced by [Goré and Nguyen, 2007a] does not
correspond to a possible world in modal logics. Instead, it is determined by the rule
application, and corresponds to the denominator of the rule. In the prefixed tableau
for Hybrid Logics, on the other hand, the main structure is a branch, instead of
a node. So, in order to implement the GLOBAL caching optimization in Hybrid
Logics, we can consider as node content the set of formulas determined by each rule
application (this way following the ideas used in Description Logics). But, for the
case of the prefixed tableaux for Hybrid Logics, we still have to decide whether to
keep in each node formulas of a single world or of all the possible worlds.

If we take the first approach, i.e. if we consider that a node can only include for-
mulas of a single world, then we face another problem: how to deal with nominals,
as they introduce equality of worlds and upwards propagation. Consider the exam-
ple in figure 6.3. It is not clear how to represent the node (or nodes) that would
correspond to prefix 1, given that new formulas are propagated to this prefix after
the expansion of prefixes 3 and 4. In the example we adopted an approach similar
to the one used in Description Logics: each time the information of a world is aug-
mented, we create a new node containing the old information about the node plus
the change/new information. We can see that for this example the approach does
not work because of the nominals: After the first branch is closed, the unsatisfiable
status of node (11) is propagated to all nodes in the branch. In particular, node
(10) will have the status unsatisfiable. Thus, once we expand the second branch,
we find out that the formulas in node (12) are the same as those in node (10) and
instead of going on with the expansion we create an edge between the two nodes.
As a result, the unsatisfiable status of node (10) is propagated to node (12) and
the tableau returns unsatisfiable, which obviously is not the correct answer.

Disregarding the way of representing nodes taken, in the case of the Hybrid
Logic H(@,A) we face another problem: the Universal modality. Consider the
formula 0 : (COpAA(—p))V (OOpADO(—p)), developed in the example of figure 6.4.
In this example, the Universal modality is valid only in one branch (the branch
corresponding (OOp A A(—p))), causing the branch to be closed. The other branch
of the example ((GCpAO(—p))), is in fact an open branch. As a result, the tableau
should be open. However, if we apply GLOBAL caching directly, without taking
care of the Universal Modality, the application of the (<) and (O) rules to formulas
in node (7), produce the same set of formulas of node (5). This way, instead of
creating a new node, we just add an edge from node (7) to node (5). Finally, given
that node (5) has already the status unsatisfiable, after the propagation phase, the
status of node (7) (and so node (3) and the root) is set to unsatisfiable, resulting
in a closed tableaux.

6.2.3 Conclusion and direction for further work

The discussion of the above issues shows that implementing the GLOBAL caching
optimization for the case of the Hybrid Logic H(@, A) is not an easy task. Spe-
cial care should be taken for nominals and the Universal modality. Besides, the
implementation of this approach for the hybrid theorem prover HTab, would be
too hard to be done completly and satisfactorily within the scope of this work,
because it requires a different core algorithm and main data structure. However,
GLOBAL caching has shown to be a new very effective approach and it would be
an interesting future work to implement this approach for Hybrid Logic.
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Figure 6.3: Wrong Tableau applying GLOBAL caching without taking care of the

nominals
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Figure 6.4: Wrong Tableau applying GLOBAL caching without taking care of the
universal modality



Chapter 7

Evaluation

In the previous sections we explained the different approaches to caching existing
for Description Logics. We also showed how some of them could be implemented
for the Hybrid Logic covered in Thesis. In particular we developed an implemen-
tation of UNSAT Caching. In this section we provide an evaluation of the UNSAT
caching implementation applied to HTab. The evaluation consists in two parts:
First a comparison between different versions of the HTab theorem prover, where
the versions differ in the optimizations incorporated:

— a first version incorporating all the default optimizations in HTab (i.e. se-
mantic branching, unit propagation and backjumping),

— a second version using all the default optimizations plus UNSAT caching,

— a third one which does not incorporate any optimization at all,

— and finally, a fourth version without any other optimization than UNSAT
caching.

The second part consists mainly in evaluating the cache system implemented
for HTab, which is compared against the cache system used in Spartacus (the only
hybrid theorem prover which implements this optimization).

7.1 The chosen testing framework: GridTest

To make the evaluations we use GridTest, a framework for testing automated theo-
rem provers using randomly generated formulas. GridTest can be used to run tests
locally, in a single computer, or in a computer grid. It automatically generates a
report as a PostScript file. It can compile statistics provided by the provers (e.g.,
running time, number of applications of a particular rule, open/closed branches,
etc.), and produce graphs generated using GnuPlot.

The framework currently uses hGen ([Areces and Heguiabehere, 2003]) to gen-
erate random formulas in a conjunctive normal form: each formula is a conjunction
of disjunctive clauses. Since each disjunctive clause can be seen as an additional
constraint on satisfying models, random formulas with a small number of clauses
tend to be satisfiable while a large enough number of random clauses will be un-
satisfiable. GridTest allows us to generate formulas with an increasing number of
disjunctive clauses. This way generating tests that start with formulas with a high
chance of being satisfiable, and progressively obtain formulas with a high chance of
unsatisfiability, going through the point where the probabilities of the formulas be-
ing satisfiable and unsatisfiable are roughly the same. Formulas at this point tend
to be difficult for most provers. Of course, the precise number of clauses needed to
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reach this point varies depending on other parameters, such as the number of propo-
sition symbols, the number and kind of modalities, the maximum modal depth, etc.
hGen allows setting those parameters also.

Then a test run using GridTest would be as follows:

1. set the parameters, and generate the random formulas

2. run the provers under test on each of the random formulas generated, using
a fixed time limit per formula

3. collect data of interest about each run (execution time, answer, number of
rules fired if available, etc.) and plot it for comparison

Of course, this experiment is not statistically relevant by itself (because the
input formula used in each data point has been generated randomly). However, by
repeating it a sufficiently large number of times (or, equivalently, using batches of
formulas sufficiently large for each data point) and using a statistical estimator on
the sampled data (e.g., average, median, etc.) statistically relevant results can be
obtained.

7.2 Evaluations

7.2.1 First Part: General Evaluation

Test Description For the first part of the evaluation phase, we compared the
performance of HTab 1.4.98.1 in four cases, on hybrid formulas that contain 3
propositional symbols, 2 nominals, 1 relational symbol, 1 global modality symbol,
and modal depth of 2. We go from formulas of size 30 to formulas of size 65. The
compared cases are:

— HTab with the default optimizations (i.e. semantic branching, unit propa-
gation and backjumping),

— HTab with the default optimizations plus UNSAT caching,

— HTab without any optimization,

— HTab without the default optimizations, but using UNSAT caching.

Architecure: 1686

Platform: Operating system: Linux 2.6.22-14-generic

Test id: testHTabCaching
Propositional symbols (#,freq): (3, 2)
Nominals (#,freq): (2, 1)

State variables (#,freq): (0, 0)
Relations: 1

Max. (global) depth: 2

Diamonds (depth, freq): (2, 2)
Parameters: | At (depth, freq): (0, 0)

Downarrow (depth, freq): (0, 0)
Inverse modality (depth, freq): (0, 0)
Universal modality (depth, freq): (1, 1)
Batch size: 40

Range of clauses: [30...65]

Step: 5

Timeout: 60 seconds
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HTab Version 1.4.98:
HTabC Version 1.4.98:
Provers: caching
HTabO Version 1.4.98:
HTabOC Version 1.4.98:
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Figure 7.1: Satisfiability fraction for the various instances of hTab: with no op-
timizations, with no optimizations but with caching, with optimizations and with
optimizations plus caching

Satisfiability fraction : The percentage of satisfiability of the input formulas
can be seen on Figures 7.1. In all cases we see that we go from mostly satisfiable
formulas to mostly unsatisfiable ones, and we can see that for the cases not including
the default optimization there is a very high percentage of timeouts. As it in the
general case, the hardest formulas are in the area of maximum uncertainly, where
the percentage of satisfiable and unsatisfiable formulas is roughly the same.

Timings The cpu time (in seconds) for each version of the prover are shown in

Figure 7.2.

Maximum number of Cache Hits: Figure 7.3 shows the maximum number
of cache hits found in each version of the prover. Obviously, the only two versions
which can be evaluated in this graphic are the ones including the caching optimiza-
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tion. However, because most of the answers for the case of HTab with Caching and
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Analysis of the provers responses : During the tests, no inconsistent answers
were detected. That is, given a formula, the answer of the provers was either SAT
or UNSAT in both cases, or SAT/UNSAT for one of them and TIMEOUT for the
other.

With respect to the performance evaluation, we can see that there is no positive
effect with the use of the UNSAT caching optimization. First of all, we should
keep in mind that tests done are based on random formulas, and may be in a real
world setting, some patterns are repeated more frequently, causing this kind of
optimizations to be more significant.

Second, the storage and maintenance of the UNSAT cache are very expensive. If
the proportion of cache hits found is not big enough, this can result in a significant
overhead.

Finally, apart from the overhead problem, this lack of improvement may be be-
cause of a bad interaction between caching and backjumping: since the dependency
set calculated when using caching can contain irrelevant branching points, caching
can possible limit the effectiveness of backjumping.

7.2.2 Second Part: Cache System Evaluation
Test Description

For the second part of the testing phase, we focus the evaluation on the cache system
performance of HTab. For that, we compared the number of cache hits found by
HTab against the number of cache hits found by Spartacus. As we mention in
chapter 3, Spartacus is the only hybrid theorem prover that currently does caching.
It features a number of optimizations, among which is a restricted way of UNSAT
Caching that only allows to cache nominal-free unsatisfiable sets of formulas.

For this tests the comparison was done on hybrid formulas that contain 2 propo-
sitional symbols, 3 nominals, 1 relational symbol and modal depth of 2. We go from
formulas of size 10 to formulas of size 60. And the platform used is the same as for
the previous tests.

Test id: testHTabCaching_Spartacus
Propositional symbols (#,freq): (2, 1)
Nominals (#,freq): (3, 1)

State variables (#,freq): (0, 0)
Relations: 1

Max. (global) depth: 2

Diamonds (depth, freq): (2, 1)
Parameters: | At (depth, freq): (0, 0)

Downarrow (depth, freq): (0, 0)
Inverse modality (depth, freq): (0, 0)
Universal modality (depth, freq): (0, 0)
Batch size: 99

Range of clauses: [10...60]

Step: 1

Timeout: 5 seconds

HTab Version 1.4.98: without optimizations

HTabC Version 1.4.98: without optimizations, plus
UNSAT caching

Spartacus  Version: 1.1 with UNSAT caching

Provers:
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Cache System Evaluation Figure 7.4 shows the maximum number of cache
hits found in HTab (including all the optimizations plus UNSAT caching), and
Spartacus.

TestwithV=2,N=3,R=1,D=2,L=[10...60]
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Figure 7.4: Maximum number of Cache hits found in HTab and Spartacus

Analysis of the provers responses Again, no inconsistent answers were de-
tected during the tests.

As we said previously, the intention of this part of the tests is not to evaluate the
provers’ performance, but just to evaluate the performance of their cache systems
(i.e. whether the provers actually find cache hits). For that, we compared the
number of cache hits found by HTab against those found by Spartacus. Figure 7.4
shows this comparison.

We can see from this comparison that HTab’s cache system behaves better than
Spartacus’ one: for complex formulas, with HTab we found an important maximum
number of cache hits, while with Spartacus this number is almost zero.

However, this cache hit plot is not necessarily a performance measure: a lot of
cache hits mean that the cache system works, but what we want is a faster prover.
That Spartacus has less cache hits says nothing about the prover’s performance. In
fact, if we have a look at Figure 7.5, comparing the execution times for Spartacus
and HTab (with and without caching!), we can notice that Spartacus’ performance
is best. The question is: does Spartacus actually need the optimization or does it
take care of everything beforehand?

7.2.3 An example

We conclude this chapter by showing a very simple example where the optimization
works for the case of HTab and not for the case of Spartacus. The example can be

n this case both versions of HTab include all the default optimizations
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Chapter 8

Conclusion

The goal of this thesis was to investigate the caching optimization in the context of
Hybrid Logics. We restricted our attention to basic Hybrid Logic enriched with the
universal modality, as Hybrid Logics containing the down-arrow binder are known
to be undecidable. In particular, we wanted to see if the optimization could be
useful for the hybrid theorem prover HTab.

For that, we first investigated the different approaches to caching already de-
veloped for the case of Description Logics, evaluating in each case whether or not
they could be implemented for the case of Hybrid Logics.

We focused mainly in UNSAT caching, and we designed an approach able to
work with formulas including nominals and the global modality. We also showed
some examples which supported most of the decisions taken in the development of
the approach.

Then we implemented the UNSAT caching approach for the hybrid theorem
prover HTab. The implementation was done taking into account the developed
theory and the already existing structures in the prover’s implementation. This
means that in order to implement the optimization, first we had to understand the
main algorithms and structures of HTab, and then do the implementation taking
into account these structures.

For the other approaches to caching, we provided examples showing why MIXED
caching could not be implemented in the calculus covered in this thesis, and we
introduced an idea of the problems that could arise in the case of GLOBAL caching.

Finally, once the implementation of the UNSAT caching approach for HTab
was concluded, we evaluated not only its impact in the theorem prover, but also
the effectiveness of the implemented cache system. For that we carried out two
evaluations:

— For the first tests, we compared HTab’s performance with and without the
optimization;

— For the second tests, we compared the number of cache hits found by HTab
against the number of cache hits found by Spartacus, another hybrid theorem
prover implementing the optimization.

Although the first evaluation was not satisfactory and we only noticed negative
effects on the performance of the prover with the use of this optimization; the
second one showed that the implemented caching system actually works. In fact is
the first implementation of the optimization for Hybrid Logics that caches nominal
formulas.

63



64 CHAPTER 8. CONCLUSION

8.1 What we have learned so far:

Summing up, this work involved:

— Understanding the prefixed tableaux algorithm for Hybrid Logics;

—  Getting to know about the state of the art of the caching optimization in the
fields of Description Logics and Hybrid Logics;

— Developing an approach for the optimization which works for the basic Hy-
brid Logic enriched with the global modality;

— Understanding the hole implementation of the hybrid theorem prover HTab;

— Learning how to program in the functional programing language Haskell (in
which HTab is implemented);

— Implementing the UNSAT caching optimization for HTab;

—  Getting to know how to run and use the Hybrid Logic test suite GridTest;

8.2 What is left for future work:

As we showed in chapter 7, the UNSAT caching approach introduced no positive
effect on the performance of the hybrid theorem prover HTab. In fact, probably
because of the high overhead required in order to handle the cache, the effect of
this optimization tends to be negative. A first short term future work should
investigate the exact reasons for this to happen. We could, for example, start by
trying to reduce the negative interaction between backjumping and UNSAT caching,
by calculating a better approximation for the dependency sets. A second one, could
be to understand the reasons for the differences in number of cache hits between
Spartacus and Htab. Obviously, this last work would involve understanding also
exactly how does the cache system for Spartacus works.

There are also things to be done in the long term. To start with, we still did
not implemented an approach to GLOBAL caching for the case of Hybrid Logic.
With this respect, we just presented some of the problems that arise when dealing
with nominals or the universal modality. But the presented work leaves room for
further investigation along this topics, specially when it is a new topic that seems
to work particularly well in the case of Description Logics, and that is becoming
very important in the field.

Finally, future work could also investigate further optimizations that could be
applied to HTab. Considering the evaluations done in chapter 7, we could try
to investigate those optimizations implemented in Spartacus and in HTab, like
pattern-based blocking, or lazy branching.



Appendix A

Source Code Summary

We implemented the UNSAT caching optimization for the hybrid theorem prover
HTab. The implementation was done in functional programming language Haskell.

In this appendix we provide the source code for the main algorithms of our
implementation. The code for the complete implementation can be accessed by
downloading the development version of HTab, available at HTab’s web page (http:
//code.google.com/p/intohylo/).

Following we will present HTab’s relevant structures required for our implemen-
tation. Explaining all HTab modules is out of the scope of this thesis.

A.1 Branch.hs module

As explained in chapter 2, the main Structure used in HTab is a Branch, and
can be find in the Branch.hs module. In order to implement the optimization we
augmented this structure with two new fields:

data Branch = Branch

branchTrueForms :: BranchTrueForms, —to keep track of all formulas
—true in the branch
prevPref :: PrevPrefixes, —To keep track of the prefizes

——true at b—bl, where b is the
——current branch, and b1l is prev(b)
—as ezxzplained in chapter 4

Another important structure in this module is a State Monad used to keep track
of the computations done on the branch. All the information involving computa-
tions that depend on and modify some internal state, is kept in the data structure
BranchData. This is the UNSAT cache.

type BranchMonad a = StateT BranchData (StateT Statistics IO) a

data BranchData = BranchData { branch_info :: BranchInfo,
branch_clp :: CmdLineParams,
branch_path :: [Int],
timeout_signal :: TimeoutSignal,
77777 UNSAT cache info
unsat_cache :: UCache,

disjunctPrefixes :: DisjunctPrefixes}

The field disjunctPrefizes is required to implement the fourth conditon in the
UNSAT cache operation (as explained in chapter 4).

Bellow we present the structure used to represent the UNSAT cache. As we
implemented two approaches for the cache (bit matrices and list based approach),
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both approaches are included in the structure. However, when running the reasoner,
if we want to use the caching optimization, we have to choose only one them (the
other will be deactivated).

data UCache = UCache { matrix :: UCMatrix, ——the bit matrix
listsList :: UCList, —list approach
descrip-matrix :: UCMap, —the mapping structure
current_index :: Int,
—fields wused for the bit matriz approach—
current_row :: Int,
max_row :: Int}

deriving (Show)

The other fields in the structure are:

— The mapping structure used by both approaches to map each subterm into
an index

— The current index, also used by both approaches to update the mapping
structure.

— Fields required by the bit matrix approach in order to optimize the imple-
mentation.

A.2 UnsatCache.hs module

This module contains the main functions implemented for the optimization. In
order to provide the reader with a clearer idea of the implementation, we won’t
include the hole module, but only the main functions implemented.

A.2.1 Update Functions

update_cache is the function in charge of updating the cache. Given the chosen
approach (bit matrix or list based), an input prefix and the point in the tableau
algorithm where this function was called from !, it updates the cache accordingly.
This last parameter received by the function, called Cachinglnstance, is used to
implement the second condition of the update UNSAT cache operation (see chap-
ter 4). The update works as follows: first it verifies if the prefix is a valid prefix
to be cached, i.e. if it doesn’t appear in the lowest open ancestor of the clashing
branch (third condition of the update UNSAT cache operation), and if it is ancestor
of each clashing prefix (fourth condition of the update UNSAT cache operation). If
it verifies both conditions then the formulas of this prefix are added to the cache.
Then the function calls recursively with the ancestor of the input prefix, until we
find an invalid prefix or it has no ancestor.

update_cache :: Caching —> Prefix —> Branch —> Cachinglnstance
—> BranchMonad BranchData

—When called from a clash, don’t add into the cache the info
—from the clashing prefiz

update_cache approach prl br Cclash =
do bd <— get
let invalid_prefixes = nub $ prevPref br
let new_disPr =
del_pref_disjunctPrefixes br prl (disjunctPrefixes bd)
case Map.lookup prl (prefParent br) of
Nothing —> do put bd{disjunctPrefixes
return bd{disjunctPrefixes
Just p —> if not $ elem p invalid_prefixes
then do let new_uc =

new_disPr}
new_disPr}

Iwhich can be either after a clash or after backtracking from a disjunction, when all disjuncts
are closed branches
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update_cache_prefixes approach

P

br

unsat_cache bd
invalid_prefixes

put bd{unsat_cache = new_.uc,
disjunctPrefixes = new_disPr}

return bd{unsat_cache = new_uc,
disjunctPrefixes = new_disPr}
else do put bd{disjunctPrefixes = new_disPr}

return bd{disjunctPrefixes new_disPr}

—When called after backtracking from the application of a disjunct
—rule, add the info from the first prefiz

update_cache approach prl br Cdisjunct =
do bd <— get
let pr = getUrfather br $§ DS.Prefix prl
let add-cache = search_disjunctPrefixes prl (disjunctPrefixes bd)
let invalid_prefixes = nub (prevPref br)
if add_cache && (not $ elem prl invalid_prefixes )
then
do let n_uc = update_cache. approach pr br (unsat_cache bd)
case Map.lookup prl (prefParent br) of
Nothing —> return bd{unsat_cache = n_uc}
Just p —> if not $ elem p invalid_prefixes
then do let new_new_uc =
update_cache_prefixes approach

1%

br

n_uc
invalid_prefixes

put bd{unsat_cache = new_new_uc}

return bd{unsat_cache = new_new_uc}
else do put bd{unsat_cache = n_uc}

return bd{unsat_cache = n_uc}

else return bd

In order to obtain the UNSAT cache modifications, the update_cache function
makes use of the following functions:

The function update_cache_prefizes goes through all the input prefix ancestors,
calling in each step the function update_cache_, which, given an input prefix, up-
dates the UNSAT cache accordingly. It returns the UNSAT cache with all the
modifications.

— Calls the function to update the cache with the input prefiz and
—calls recursively to all the ancestors of the input prefiz.
——Returns the UNSAT cache with all the modifications

update_cache_prefixes:: Caching —> Prefix —> Branch —> UCache—> [Prefix]

—> UCache
update_cache_prefixes approach pr br uc notvps=
let u_pr = getUrfather br $ DS.Prefix pr

new_uc = update_cache_ approach u_pr br uc

in case Map.lookup pr (prefParent br) of
Nothing —> new_uc
Just p —> if not $ elem p notvps
then update_cache_prefixes approach

1%
br

new_uc notvps
else new_uc

——This function that actually computes the modifications that will
——be done to the UNSAT cache for a given prefiz.

update_cache_. :: Caching —> Prefix —> Branch —> UCache—> UCache
update_cache_. approach pr br uc =
let — See what formulas we cache

trueForms = DMap. lookupInter pr $ branchTrueForms br
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univFormsl fst $ get_univ_forms (univCons br)

univForms = map UniversalC univFormsl1l
nonUnivForms =

map NonUniversalC (remove_univ trueForms univFormsl)
noms getNoms (trueForms 4+ univFormsl)

nominalForms = fst $ get_-nominal_forms noms br
— formulas to be cached
cacheForms = nonUnivForms ++ univForms 4+ nominalForms

—— Update the Formula <—> Int BiMap
(maxIdx, indexes ,newMapDesc) =
update_ucmap ( descrip-matrix uc )
cacheForms
(current_-index uc)

—— common part for the following
sorted_-indexes = sort $ nub indexes
in
case approach of
MatrixCaching —>
let (n_cr,new_matrix) =
UCMatrix . update maxlIdx
(current_row uc)
(max_row uc)
sorted_indexes $ matrix uc

in uc{ descrip-matrix = newMapDesc,
current_-index = maxldx,
current_row = M_GF

matrix new_matrix}
ListCaching —>
uc{ descrip-matrix = newMapDesc,
current_-index = maxIdx,
listsList = UCList.update sorted_indexes $ listsList uc}

A.2.2 Search Functions

As mentioned in chapter 4, instead of searching for cache hits all over the tableau
tree, we can restrict our search to the sets of formulas derived from each rule
application. For that, there is a field in the Branch structure which stores all the
new prefixes:

incrPrs :: AugmentedPrefixes

The function search_cache does the search for cache hits and works as follows:
First we create, for each prefix in the “AugmentedPrefixes” list, a list of indexes
consisting in the non universal formulas true at the prefix, plus the universal for-
mulas true in the branch, plus the formulas true at the nominals present in the
previous formulas. Then we compare this list of indexes with the elements of the
cache. If the indexes list is superset of some row in the UNSAT cache, we have a
cache hit, and the status of the branch is set to unsatisfiable.

The superset-matching depends on the approach chosen for the UNSAT cache:
bit matrix or list based approach. Each approach is implemented in a separate
module. Thus, we implemented two further modules, UCList.hs and UCMatrix.hs,
which include the particular implementations of the superset-matching and subset-
matching functions. Those modules are not shown in this appendix because the
most important aspects of each case are already explained in chapter 5.

— Calls the recursive function search_cache_
——returns an element BranchInfo, with the Clash in case it finds a
——cache hit

search_cache :: Caching —> Branch —> BranchData —> BranchlInfo
search_cache caching br bd =
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let not_repeted_incrPrs = nub (incrPrs br)
in search_cache_ caching not_repeted_incrPrs br bd

search_cache_ :: Caching —> AugmentedPrefixes —> Branch —> BranchData
—> Branchlnfo

search_cache_. caching (pr:tail_pr) br bd =

case search_cache_pr caching pr br bd of

b@(BranchClash - _ _ _) —> b
BranchOK _ —> search_cache_ caching tail_pr br bd
search_cache- _ [] - bd = branch_info bd

— This function actually does the search for a cache hit for a
——given prefix

search_cache_pr :: Caching —> Prefix —> Branch —> BranchData
—> BranchlInfo

search_cache_pr approach pr br bd =

let trueForms = DMap. lookupInter pr $ branchTrueForms br

univFormsl = fst $ get_univ_forms (univCons br)
univForms = map UniversalC univFormsl
nonUnivForms =

map NonUniversalC (remove_univ trueForms univFormsl)

noms

= getNoms (trueForms ++ univFormsl)
nominalForms = f

st $ get_-nominal_forms noms br

—— formulas to be cached

cacheForms = nonUnivForms ++ univForms ++ nominalForms
uc = unsat_cache bd
c-i = current_-index uc
m._r = maX-row uc
mat = matrix uc
li = listsList uc
de = descrip-matrix uc
in
case ( do indexes <— sort . nub <$> lookup_ucmap de cacheForms
case approach of
MatrixCaching —>
UCMatrix. superset-matching 0 m_-r c-i indexes mat
ListCaching =
UCList.superset_-matching 0 indexes 1i ) of
Nothing —> branch_info bd
Just newldx —>
let new_form_list = get_-new_formula_list de newldx
dps = get_dps new_form_list br pr
in

BranchClash br pr dps (neg taut)

— Recetves the list of indexes of formulas in the cache,
— and the bidirectional map, and
— returns the list of formulas corresponding to this list of indexes

get_new_formula_list :: UCMap —> [Int] —> [UCFormula]
get_new_formula_list inv_desc =
map (\i —> fromJust $ Bimap.lookupR i inv_desc)

—Gets the dependency set corresponding to a list of UCFormulas

get_dps :: [ UCFormula] —> Branch —> Prefix —> DependencySet
get_-dps (UniversalC form: restForms) br pr=

let dps = get_-dps-fU (univCons br) form

in dsUnion dps (get_-dps restForms br pr)

get_-dps (NominalC n form: restForms) br pr
= let ds-n = (DS.Nominal (showNom n))
uf_n getUrfather br ds_n
dps1 DMap.lookup uf_-n form (branchTrueForms br)
dps = case dpsl of
Nothing —> dsEmpty
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Just d —> d
in dsUnion dps (get_-dps restForms br pr)

get_dps (NonUniversalC form: restForms) br pr
= let dpsl = DMap.lookup pr form (branchTrueForms br)
dps = case dpsl of
Nothing —> dsEmpty
Just d —> d
in dsUnion dps (get-dps restForms br pr)

get_-dps [] - - = dsEmpty

get_dps_fU :: Univ_constraints —> Formula —> DependencySet
get_-dps_fU ucs fo
= case lookup fo $ map switch ucs of
Nothing —> dsEmpty
Just dps —> dps
where switch (x,y) = (y,x)

A.2.3 Helper functions used for both the UNSAT cache up-
date and search

—Gets the set of formulas true at the nominals appearing in the
—formulas to be cached

getNoms :: [Formula]—> [NomSymbol]
getNoms fs = Set.toList $ Set.unions $ map (fst . extractNominals ) fs

——Gets the formulas true at each of the nominals in the input list

get_nominal_forms:: [NomSymbol] —> Branch —> ([UCFormula],DependencySet)
get_nominal_forms noms br =
foldr merge ([],dsEmpty) $ map get_-nominal_forms_one noms

where merge (fsl ,dsl) (fs2,ds2) = (fsl 4+ fs2, dsUnion dsl ds2)

get_nominal_forms_one n =
let ur = getUrfather br $ DS.Nominal (showNom n)
btf = Map.lookup ur $ DMap.toMap $ branchTrueForms br
(btf_list ,dps) = case btf of
Nothing —> ([], dsEmpty)
Just btfSet —> (Map.keys btfSet,
dsUnions $ Map.elems btfSet)
in (map (NominalC n) btf_list , dps)

—Gets the universally constrained formulas

get_univ_forms :: Univ_constraints —> ([Formula], DependencySet)
get-univ_forms ucs = ( map snd ucs, dsUnions $ map fst ucs )

type TrueForms = [Formula]
type UnivForms = [Formula]

——Removes the wuniversally constraints formulas from the non universal
—formulas true at the prefix being cached

remove_univ :: TrueForms —> UnivForms —> [Formula]
remove_univ trueForms univ_forms
= filter (\f —> not $ is_universal f univ_forms) trueForms

is_universal :: Formula —> UnivForms —> Bool
is_universal (A _) - = True
is_universal form ufs = any (== form) ufs
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A.2.4 Functions related to the maintenance of the Mapping
Structure

The following functions are used in order to access/update the structure used to
map subterms into indexes.

——This function is called only during the update of the UNSAT cache
— It updates the mapping structure when necessary.

—— It returns the tuple (current_index, indexes, newMapDesc),
—where current-index and newMapDesc are the updated current_-index
—and descrip-matriz fields from the UNSAT cache, and indexes is
——the list of indexes correspondig to the input list [UCFormula]

update_ucmap :: UCMap —> [UCFormula] —> Int —> (Int,[Int],UCMap)
update_ucmap descMat fs maxldx =
foldr (\f (currentMaxIdx ,currentldxs ,currentMap)
—> let (newMaxIdx,idx ,newMap) =
get_index currentMap f currentMaxIdx
in (newMaxIdx, (idx:currentIdxs), newMap)

(maxIdx, [], descMat) fs

— This function is wused by wupdate_ucmap in order to get the index
—of an input UCFormula. In case the formula ts mot in mapping
——structure , it is added.

get_index :: UCMap —> UCFormula —> Int —> (Int,6Int ,UCMap)
get_index mapDes f maxIdx =
case Bimap.lookup f mapDes of

Just i —> (maxIdx, i, mapDes)
Nothing —> let (n_.i,new_mapDes) = updateBiMap mapDes f maxIdx
in (n_-i, n_-i, new_mapDes)

— Updates the mapping structure in case it is necessary

updateBiMap :: UCMap —> UCFormula —> Int —> (Int ,UCMap)
updateBiMap mapDes f maxIdx =
let newMaxIdx = maxIdx + 1
new_mapDes = Bimap.insert f newMaxIdx mapDes

in ( newMaxIdx, new_mapDes )

——This function is called only during the search operation of the
—UNSAT cache. Is used just to lookup indezxes in the mapping
—structure given a list of formulas. In the case that one of the
—formulas of the list is not in the mapping structure, the function
—returns Nothing

lookup_ucmap :: UCMap —> [UCFormula] —> Maybe [Int ]
lookup_-ucmap descMat fs =
foldr (\f mList
—> case mList of
Nothing —> Nothing
Just is —> case Bimap.lookup f descMat of
Just i —> Just (i:is)
Nothing —> Nothing

)
(Just []) fs
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