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A B S T R A C T

Computer vision models such as that of Farhadi et al. [15] allow us
to reach property-based concept representations using unsupervised
visual feature-selection methods. The set back is that visual proper-
ties are too often not generalizable, and do not properly reflect the
way conceptual knowledge is acquired and represented in the mind.
In contrast, a more semantically sound approach has been developed
using computational linguistic methods, namely those employed by
the Strudel [6] model. We suggest using property-based concept des-
criptions automatically extracted from a corpus of naturally-occurring
text to train an image-based concept classification and annotation mo-
del to arrive at meaning representations endowed with stronger cog-
nitive qualities. The discussion consists in a qualitative data analysis
which encourages the idea that these corpus-harvested properties are
in fact plausible candidates to achieve conceptual knowledge groun-
ded in visual perception.
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1 I N T R O D U C T I O N

�.� ����������

Theories about how concepts are represented in the mind have of-
ten adopted a ‘distributed, feature-based model of conceptual know-
ledge’ [27]. These grew as an extension of the previous frequency
co-occurrence approaches [30, 31, 11] based on the distributional hy-
pothesis that words that appear in similar contexts will share a similar
meaning [23]. An attribute-centric approach to concept descriptions
has found support in both the computational linguistic community,
using both human-generated norms [33] and text-extracted features
[25, 1, 6], and more recently in the computer vision field [15, 9, 40].

Computer vision models such as that of Farhadi et al. [15] extend
the goal of object recognition to object description, using an unsuper-
vised feature selection method for learning predicted properties from
labeled images. The system is successful in that it not only aptly
categorizes the target objects, but proves that selecting features and
learning classifiers from textual annotations can lead to describing
unknown objects and report unusual properties. The properties are
interesting because they are not just discriminative, but semantic as
well, and define relations such as parts, material and shapes.

Although the focus of their model is to learn object descriptions
that generalize well across categories, the classifiers are trained on
a set of human-generated, task-oriented annotations. This is a dis-
advantage in that often, these properties are not representative of the
full range of features that a concept represents mainly because the
participants only provide a list of features that are generated for the
purpose of the task, and omit those that are the most helpful in ob-
ject discrimination [33]. In spite of the fact that they are reliable and a
good reference for feature-based concept representation experiments,
the properties are not generated in an automatic fashion, while the
rest of the model boasts an unsupervised feature selection method.
There are, however, ways in which properties can be generated in an
unsupervised manner and still retain their semantic characteristics.
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2 ������������

An attribute-centric approach to concept descriptions has been adop-
ted by computational linguistic technologies as well, namely by Stru-
del [6], a corpus-based distributional semantic model that yields struc-
tured and comprehensive sets of concept descriptions. The Strudel
model automatically extracts concept-property pairs from a corpus
of naturally-occurring text from relation pattern templates using pos-
sible part-of-speech sequences. Strudel differs from other models
in that the collected properties provide strong semantic qualities be-
cause they tend to focus on activities and interactions rather than
parts and physical attributes.

�.� ��������

Although borrowing from both language and vision is not a novel
venture [10, 2, 40], the multimodal model presented here takes a dif-
ferent, more cognitive approach to visual concept representation. The
goal is to construct a perceptually grounded, linguistically enhanced,
distributional model that does not learn exclusively from vision or
language, but from both. In order to extract a unified representation
of both modalities, semantically-derived text-extracted concept des-
criptions are used to train an image-based concept classification and
annotation model to arrive at representations endowed with stronger
semantic qualities.

Since visual models learn classifiers based on the information it is
fed, the goal is to shift their focus to learn from a set of automatically
extracted text-based properties, instead of ad-hoc human-generated
norms. The visual model is inspired by that of Farhadi et al. [15], to
reach the goal of property-based concept representation, but instead
of learning from the list of task-driven features, swap in the automat-
ically retrieved text ones from the Strudel experiment. Again, the mo-
tivation of using text-extracted information is supported by the idea
that they are conceptually close to human-generated norms, as seen
in the Baroni et al. [6] experiments, but differ from them in that they
are acquired in an unsupervised manner and cover a more complete
set of features.
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�.� ������� �� �����

In the next chapter, I will give a review of the literature pertaining
to the scientific fields that have adopted the distributive hypothesis,
and demonstrate how they have implemented it backed by findings
from past studies. I will then draw support from the related work
to present the proposed experiment in chapter 3. In chapter 4, I will
give a qualitative analysis of the results, followed by a discussion and
conclusion in chapter 5.





2 R E V I E W O F L I T E R AT U R E

�.� ��������

In this chapter, I will address the question of how humans deal with
the acquisition and representation of conceptual knowledge in terms
of the distributional hypothesis. I will introduce what it proposes,
and give an account of how it is applied in varied scientific fields.
In linguistics, the distributional hypothesis is often paraphrased as
Firth [17]’s famous quote, “you shall know a word by the company it
keeps", proposing that the meaning of a word can be characterized by
its most typical collocates [14] and by the various circumstances of its
common usage [3]. It is implemented in computational linguistics to
approximate word meaning in text, using multidimensional feature
vectors, whose values describe its context in terms of the distribution
of words and phrases it commonly occurs with. Computer vision
scientists have adopted it to reach conceptual knowledge visually, ex-
tending the distributional approach to models that use visual inform-
ation extracted from images as values for low-level feature vectors. I
will also touch on how the distributional hypothesis plays a role in
neuroscience, such that the meaning representation of a word can be
characterized by different spatial patterns of neural activation. The
foundation for the these findings is reported in the studies below.

Finally, I use the fact that fields concerned with the same goal of
reaching meaning representation are tied by the distributional hypo-
thesis, and support the proposed idea of a multiple modality model
that borrows from both language and vision.

�.� ��� �������������� ����������

The distributional hypothesis in linguistics proposes that words that
appear in similar contexts tend to share a similar meaning [23]. This
idea can be further extended to explain the behavior and usage of a
word based on its distributional context which also helps addresses
the issue of word sense disambiguation, where the sense of a poly-
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semous word could be revealed by the context in which it occurs [17].
Furthermore, it has been suggested that distributional semantics play
the lead role in the induction and representation of knowledge, as
proposed by Landauer and Dumais [30], who consider semantic simi-
larity a key component in explaining how we acquire knowledge.

This idea of semantic similarity is translated in computational lin-
guistics as vectors in a high-dimensional semantic space to approxim-
ate word meaning. Real language text corpora serve as the source for
all extractable information, and therefore allow for an investigation
of how the statistics of language influence semantic representation
[16], without being limited by the collection of human data. Given a
corpus, feature vectors are constructed for target words where their
values are quantified information from the context in which the word
occurs. Vector space models (VSMs) are used to compare words as
points in space, computing their similarity using standard distance
measures such as the cosine of the angle between two vectors [10, 44,
12, 44]. To use the example provided by Bruni et al. [10], since car
and automobile occur in similar contexts, meaning they are most often
surrounded by the same words, such as street, gas, and driver, they
will have comparably populated vectors, suggesting that these two
words have similar meanings. This method of using distributional
models to quantify word similarity by means of vectors is very useful
for applications such as document retrieval and classification, auto-
mated thesaurus or bilingual dictionary construction and sentiment
analysis, amongst many.

Under the assumption of the distributional hypothesis, words can
be represented by a vector denoting its ‘context signature’ [6]. These
signatures can be populated using various approaches. Bullinaria
[11] uses basic word co-occurrences, counting the number of times
each collocate appears in a window of a particular size around each
target word. Evert [14] contrasts this surface co-occurrence with syn-
tactic co-occurrence, an approach he describes as more restrictive in
that context words are counted only if they occur in a direct syntactic
relation with the target word, such as verb-object, or prenominal ad-
jectives. A different approach to representing word meaning has been
explored by topic models, that still use contextual information from
corpora, but word meaning is a probability distribution over a set of
topics, and each topic over words [16]. Further methods of exploring
the context will be discussed below.
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�.�.� Distributional Semantics with Corpus-based Semantic Models

A class of computational methods known as corpus-based semantic
models (CSMs) are increasingly employed as a tool to gain insight
into the semantic knowledge representation of humans [6]. CSMs
take corpora of prepared or naturally occurring linguistic data to de-
rive two types of information from which semantic representations
can be learned [3]. Distributional data describe the statistical distribu-
tion of words across texts in a corpus. Experiential data is knowledge
about concepts based on their interaction with the world.

CSMs are of interest to us because they are recognized for their
ability to aptly model important processes in human cognition and
language acquisition, as they have been shown to emphasize the role
of learning from simple statistical and distributional cues [28]. They
are a good resource in that, like humans, they are also faced with
noise and scarcity of explicit and coherent information when deal-
ing with data that consists of large and mixed collections of texts.
They have also been found to encounter the same problems as we
do in acquiring conceptual knowledge and conceptual categorization
[6]. Fortunately, they are in some ways unlike humans, for whom
collecting relevant information on very large scales is extremely time
and energy consuming when done manually [44, 13]. Their efficient
and robust approach to natural language processing and concept re-
presentation from a strong semantic perspective has allowed them to
play an important role in practical tasks such as information retrieval
and intelligent tutoring systems [28].

There is an infinite number of ways to analyze a corpus. The large
variety of CSMs reflect the wide range of information there is to ex-
tract, the methods to extract it, and the ways in which it can be inter-
preted. Here are a few that are worth mentioning.

Notable CSMs

���������� �������� �� �������� (���) HAL is Lund and Bur-
gess [31]’s model for simulating human semantic memory and rep-
resenting the meanings of words. They use lexical co-occurrence to
build high-dimensional semantic spaces and demonstrate how these
spaces can model human concept similarity. With a corpus of text,
they employ an n-window method to automatically extract contex-
tual information of a given word to build feature vectors. These vec-
tors are then analyzed in terms of similarity and multidimensional
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scaling to examine relationships between words. In their paper, they
boast the advantages of employing lexical co-occurrence and position
similarity to capture information about word meanings not only in
terms of similarity, but also association.

������ �������� �������� (���) Landauer and Dumais [30]’s
LSA is another unsupervised high-dimensional linear associative mo-
del that captures the similarity of words and documents. Their me-
thods differ from those of HAL in that they rely on an inductive
mechanism of dimension optimization. Their model is heavily de-
pendent on the distributional hypothesis as well, using distance in
the semantic space and relative frequency of co-occurrence to calcu-
late word similarity. They are aware of the noise and address other
flaws of the frequency of co-occurrence method by simultaneously
taking all the local estimates of distance into account. It is a great ex-
emplar of CSMs, namely for its implementation of the singular value
decomposition (SVD) method that relies on dimensionality reduction,
to simulate human word learning and disambiguation.

����� �������� �� ��� ��������� �������� �����������
(������) Another CSM worth mentioning is Jones, Kintsch and
Mewhort [26]’s BEAGLE. They study the structure of semantic me-
mory using a semantic priming task to learn associative information
between words. This approach is different from the previous local-
ist and distributional ones, which Jones, Kintsch and Mewhort [26]
claim ‘do not actually learn anything’. As a solution to the problems
of strict contextual dependence, BEAGLE works by convoluting the
semantic and associative properties of words in a holographic model
that learns word meaning and other stored environmental informa-
tion, such as word order.

The Semantic Problem

Although these CSMs are proficient in tasks such as synonym and
association tests, and conversation analysis, these methods consider
words in isolation. Words are found in combination as part of larger
structures, such as in sentences, paragraphs, documents, and simple
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word-level representation is not sufficient in reflecting the actual use
of language [28]. Another problem is that there are two types of ex-
tractable data from which semantic representations can be learned [3],
distributional and experiential data, and these models tend to focus
only on the former. Taking a closer look at LSA or HAL, we notice
that they address the semantic representation of words in terms of
their contextual properties, so the external properties of the concepts,
but do not explain their similarity in terms of their internal properties,
leaving the question of how or why they are similar unanswered [6,
26].

Frequency Not Sufficient

Human lexical semantic competence has many facets, such as word
association and relation, and taxonomic judgements, which makes it
difficult to gather the full content of mental representation of con-
ceptual knowledge. Really grasping the meaning of concept means
discovering deeper information about it. What is its function? What
is it made of? Where does it come from? These questions cannot be
answered by simply counting how often other words appear in its
context, for that would assume that a word’s meaning is entirely cha-
racterized by other words. Supplying a synonym as definition would
not be sufficient either, because a similarity relation cannot explain
what kind of links ties the two concepts [6]. Let us further exploit the
environment: what else can we get out of the context?

Frequency of co-occurrence is the tool used to uncover similarity
relations but minimizes representation because intuitively, using fre-
quencies alone do not add to the semantics of concepts as it does not
explain how the word interacts with its environment [1, 26, 18]. Baroni
et al. [6] provide a good example to illustrate how frequently occur-
ring collocates can be insufficient in meaning representation. year of
the tiger appears much more often than any other pattern that con-
nects tail and tiger, a pair that would be considered to have a stronger
semantic link since more is learnt about the meaning attributed to
tiger. Moreover, much of the syntactic information is lost as well [12].
Instead of basing meaning representation on similarity relations, we
want to discover conceptual knowledge by exploring other types of
relations, ones that would address the questions of function, compos-
ition, hierarchy or origin. For new goals, we need new tools.
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�������� �������� Let’s examine other possible semantic links
between concepts and elements in their context. In 1992, Hearst [25]
was amongst the first to propose the idea of lexico-syntactic patterns
to express high precision semantic relations such as hyponymy and
causality. He explored methods involving manual pattern induction,
extraction, and ranking [4]. The pattern-based relation extraction has
evolved since, and human labor has been equalled by automated tech-
niques, as seen in the Attribute-Value (AV) model by Almuhareb and
Poesio [1] and in that of Pantel and Pennacchiotti [36]. Both adopt
this idea of surface relations as cues to semantic relations, but instead
of finding them using predetermined patterns, discover them in a
completely unsupervised manner using concept pairs. Manually cre-
ated lexico-semantic patterns like those of Hearst showed that links
other than those suggested by similarity relations were, if not more,
important. However, the findings were tailored to fit the templates,
and resulted in relations that could be quantified, instead of quali-
fied. The automatic discovery of relation patterns led to the import-
ance of variety, suggesting there being aspects of interaction between
concepts [6].

������� �� �������� �������� Interaction between the concept
and the attribute beyond that of collocation is good evidence of the
presence of an inherent semantic link, as Baroni et al. [6] states, pro-
posing the importance of distinct patterns rather than their frequency.
Moreover, a variety in relation patterns suggests they can be categor-
ized into types. Typed relations are of interest because they can define
the kind of relation shared between concepts, as Hearst encouraged,
but when carried out in an unsupervised way, reveals much more
about the context in terms of semantics.

What’s more than defining the relation is being able to make des-
criptive comments about either of these connected concepts. Almuhareb
and Poesio [1] provides a good example to illustrate this, using the
highly probably presence of a link between the concept dog and the
adjective brown. It is helpful to know that dog can have the value of
being brown, but it is even more important to the understanding of
dog to say that it includes such attributes as color, or size, or texture.
This leads to the relevance of examining concepts in terms of their
most salient features as an extension of their semantic representation.
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Playing with Properties

After focusing on the relation extraction and relation typing, we must
look to what these relations can say about the concepts, and what
kind of knowledge we can extract from them. In cognitive science, it
is suggested that concept representation consists of some form of de-
composition into properties, and that these properties are organized
depending on how they relate to the concept [6, 32]. While Barbu [4]
refers to them as ‘pieces of common sense knowledge’, McRae et al.
[33] dub properties ‘semantic feature production norms’ and are of-
ten referenced for their collection of feature norms. Their collection
is the product of an experiment where the participants are presented
with a set of concepts names and asked to generate features about
these concepts that they deem the most important. McRae et al. as-
sert their importance in constructing empirically derived conceptual
representations in the scope of semantic representation and computa-
tion.

Feature-based methods are amongst the most prominent in cognit-
ive science studies. They have their place in concept categorization
[13] and hierarchy studies [38], as well as in linguistically-driven ex-
periments concerning noun representation [45], and verbal thematic
roles [32], to name a few. Their contribution in uncovering which
aspects of meaning are psychologically salient is further supported
by Kelly, Devereux and Korhonen [27], who extend these methods to
concept-relation-feature triples, and Silberer, Ferrari and Lapata [40],
applying them to a computer visual model.

The good news is, they are human-generated. From a cognitive
point of view, feature norms are ‘the most important properties of
basic level concepts’ [4] because they are used systematically by par-
ticipants when generating features [33]. The bad news is, they are
human-generated. McRae et al. say it best:

“[W]hen participants produce features in a norming task,
they directly exploit representations that have developed
through repeated multisensory exposure to, and interac-
tions with, exemplars of the target category. . . . [Barsalou]
stated that when participants generate features, they con-
struct a holistic simulation of the target category, then in-
terpret this simulation by using featural and relation sim-
ulators. [. . . ] a participant’s list of features represents a
temporary abstraction that is constructed online for the
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purpose of producing feature names. Therefore, the dy-
namic nature of feature listing results in substantial vari-
ability both across and within participants.”

Faced with these issues, computational linguists found alternatives
to borrowing from humans to generate feature-norm-like concept des-
criptions.

Strudel

Strudel, for Structured Dimension Extraction and Labeling, is a fully
unsupervised CSM that extracts sets of property-based concept des-
criptions from corpora of naturally occurring text. The dimensions
of the Strudel semantic space are interpretable as weighted proper-
ties comparable to human-generated norms. Strudel also provides
concept-property typed relation patterns, which further characterize
how the property relates to the concept, addressing the question of
how they are similar, not just how much they are.

The authors of Strudel define their model based on three funda-
mental intuitions:

1. The relation between the concepts and the properties is categor-
ized by the pattern that connects them.

2. The number of distinct patterns connecting concepts and pro-
perties play a very important part, as variety suggests a stronger
semantic link than one instantiated by simple collocational as-
sociation.

3. The distribution of patterns aids in word sense disambiguation.

Given a lemmatized and part-of-speech (POS) tagged corpus1, a
list of selected target nominal concepts2, and a set of relation pattern
templates, Strudel automatically extracts and annotates neighboring
content words (verbs, adjectives or nouns) identified by the templates.
The templates are created from possible POS sequences, which allows
for the automatic discovery of relation patterns, unlike like most rela-
tion extraction algorithms that start with a predefined set of relations.

For example, if Strudel is looking for and nominal property, the
template would be a plausible structure such that target concept C
and candidate property P are connected by a preposition (or a verb,

1 a version ukWaC [5]
2 a set of concrete concepts from a corpus of child-directed speech [39]
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a possessive ’s or a relative pronoun such as whose). Given the C
onion, Strudel would find patterns such as onion with layers or layers
of an onion, which would result in templates C_with_P, and P_of_a_C
(note normalized determiner an). These resulting templates are then
used to find other related pairs, like tigers with tails or tail of a tiger. It
is important to note if the relationship between C and P is expressed
in a number of different ways, pattern variety denoting a semantic
cue [6].

In the first half, the collected candidate properties are filtered then
scored based on two factors: the number of distinct patterns con-
necting them to the concept, and the strength of their statistical as-
sociation with the concept. The purpose of weighting the properties
is to indicate which properties describe the concepts best, but also
to demonstrate in what aspects concepts are similar to others. The
second half consists in generalizing and classifying the retrieved pat-
terns in order to assign them a type sketch to further indicate the way
in which the properties are related to the concept. The type sketches
include part-of, hypernymy, location, and function.

The Strudel model is inspired by the Rapp [37] SVD model, the
Almuhareb and Poesio [1] AV model, and Padó and Lapata [35] de-
pendency vectors (DV) model, the ‘three broad lines of CSM research’
[6]. It is similar to LSA in that the original matrix is reduced to a
word-by-weight-left-singular-vector matrix, which allows for the di-
mensions to more accurately capture patterns of correlations, but in-
stead of a word-by-document matrix, uses a word-by-word matrix,
like HAL.

In a direct evaluation against the gold standard, the McRae human-
generated norms, the property-based concept representations pro-
duced by Strudel proved to be reasonable both qualitatively and quant-
itatively [6]. At an average precision of 23.9%, it outperforms its three
competing CSMs in categorization of concepts into superordinates,
and has the advantage of being able to generalize over various fea-
ture types with no reliance on strict relation patterns [13], all good
grounds to validate the use of structured property representations as
dimensions of CSMs. Devereux et al. confirm its success by electing
Strudel as the best method for their feature-based concept representa-
tion experiments. They exploit the fact that Strudel properties tend to
focus on activities and interactions, while the McRae norms include
physical and parts properties, and suggest a combination of the two
types of properties to enrich existing models.
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�.�.� Distributional Semantics with Computer Vision Models

The way in which the distributive hypothesis takes form in computer
vision is analogous to that of the computational linguistics approach.
Although language and vision are two distinct modalities, they can
be investigated using similar methods. Feng and Lapata [16] demon-
strate how images, typically described by a continuous feature space,
can be treated as words, commonly dealt with as distinct units, by
converting visual features into units onto a discrete space.

A common practice in image processing is to segment images into
regions, and represent each region by a standard set of features. Local
regions in images are like words in text, and can be segmented using
different techniques, such as the normalized cut algorithm, fixed grid-
layout segmentation, and the Scale Invariant Feature Transform (SIFT)
point detector method. Unlike words in a lexicon, these units do not
have a ‘definition’ and must be assigned one to then build a vocab-
ulary of visual words. This is commonly referred to as the bag-of-
visual-words (BoVW) method [41], which serves to create discrete
representations for images. Each region is characterized by a vector
of base features, the information that is extractable from images, such
as color, texture, and edges. The feature vectors are then compared to
each other and grouped based on their similarity, where the groups
are the visual words in the vocabulary, and are assumed to originate
from similar objects. This allows for images to be expressed in terms
of their BoVW feature vectors.

Again, language and vision are two distinct sources of information,
but that does not mean they are competitors in the race to explain
how we humans arrive at concept meaning representation. Cognitive
analyses of mental representations of meaning propose that concep-
tualization and comprehension can also be found in non-linguistic
representations, such that cognitive structures ‘arise from bodily in-
teractions with the world’ [22]. Research investigating young chil-
dren’s object naming [29] report a strong relation between perception
and conceptual knowledge, showing that when given a new named
object, then another object with the same shape, children tend to gene-
ralize the name of the first object over the second one. A similar study
[46] finds that visual representations of object shape are activated in
the brain during sentence comprehension, ultimately suggesting that
language helps the receiver construct an experiential simulation of
the described event. Such experiments have led to extending views
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of meaning representation to associate visual perceptual information
with linguistic units.

Multimodality

The idea of combining language and vision is not a novel one, though.
Cues from the brain, namely functional magnetic resonance imaging
(fMRI) recordings of neural signals, indicate that there is a significant
correlation between image and brain-based semantic similarities as
seen in a study by Anderson et al. [2]. A comparison of a text-based
and an image-based distributional model in the experiments carried
out by Feng and Lapata [16] also promote unification. Both result
reports demonstrate that models based on images and on text are not
only complimentary, but possibly mutually beneficial, and that best
results can be achieved when combining both modalities.

���� �� ������ A good example of a study that encourages the
potential of perceptually grounded distributional models that do not
gain insight exclusively from text is one conducted by Bruni and Bar-
oni [8]. Their goal of reaching a more human-like notion of meaning
by combining techniques from natural language processing and com-
puter vision is presented as a multimodal distributional semantic mo-
del. First, they construct text-based and image-based co-occurrence
models separately, then combine them. Specifically, they concaten-
ate textual word vectors with their equivalent visual word vector (the
BoVW values for images that have been labeled with the same word).
They show that combining image-based vectors and text-based distri-
butional vectors leads to qualitatively different results when tested on
semantic relatedness tasks and concept clustering, and that the two
sources are complementary.

������ �� ���� Another example of a model that succeeds in such
tasks is presented in Bruni et al. [9]’s work, which also combines
both modalities, but instead exploits computer vision techniques to
improve text-based models. They show that distributional semantic
models based solely on text can be outperformed by models that use
visual information to represent words where vision is relevant, more
specifically when the focus is on colors. With two different types
of visual information, SIFT and LAB features, they demonstrate that
words for which their color is typical (e.g. parsley-green) are better
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represented when the distributional textual model is aided by visual
information.

Properties: You Again?

One study that also borrows from both text and images, but incor-
porates an extra ingredient, is that of Farhadi et al. [15]. They too
present a distributional visual model, but stress the integration of the
attribute-centric framework of meaning representation. While tradi-
tional computer vision algorithms describe each concept by assigning
it a categorical label (e.g. goat), Farhadi et al. incorporate visual attrib-
utes (e.g. has-horns) to object recognition tasks. Jumping from recog-
nition to describing, they develop a feature-selection method which
more closely models the human capacities of representation as it not
only names known and unknown objects, but can also comment on
the absence of typical attributes, or the presence of unusual ones. Be-
cause objects share features, they identify attribute learning as the
key problem in recognition, and make it the main component of their
framework.

They focus on learning semantic attributes (such as parts, shapes,
and material) and non-semantic attributes from localized objects in
images. Localizing the object allows for a better focus on the de-
scription, because like the text-based models, the context in which
an object is located can significantly contribute to the semantic repre-
sentation [40]. First, from a corpus of images annotated with attrib-
ute labels obtained through Amazon’s Mechanical Turk3, they extract
and filter base features based on how helpful they are in learning
attribute-classifiers. The system is then trained to learn attribute-
classifiers from the selected base features, and object categories from
the predicted attributes.

The system’s ability to generalize across object categories originates
from a feature selection method that uses an `1-regularized logistic
regression to decorrelate attribute predictions, in order to focus on
within category prediction. This allows for the attributes to be the
primary actor in object recognition, meaning that knowledge about
concepts can be learned from their visual, and textual properties.

The approach of using semantic attributes for concept discrimina-
tion was also adopted by Silberer, Ferrari and Lapata [40]. In their

3 Amazon’s Mechanical Turk, a crowdsourcing Internet marketplace, allows individu-
als to post tasks that cannot currently be carried out by computers, and require the
input of human intelligence (https://www.mturk.com/).
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paper, they focus on ‘physically grounding the meaning of words’ by
means of high-level visual attributes instead of low-level image fea-
tures. The model proposed by Silberer, Ferrari and Lapata is unlike
that of Farhadi et al. in that instead of using human-generated norms
to learn the attribute-classifiers, they learn classifiers from a set of
automatically retrieved topically-related attributes from text. They
show that the attribute-based bimodal models perform better than
the those rooted in a single modality, and outperform those whose
word representations are based on human-generated norms.

�.�.� Evidence from the Brain

Multimodal models for addressing the question of how conceptual
knowledge is represented in the human brain have also been im-
plemented in neuroscience. Similar to how the meaning of words
is represented in terms of patterns of word co-occurrence, concepts
are represented in terms of patterns of neural activation [2, 24]. As
previously mentioned, brain imaging studies have shown there to
be an association between distinct spatial patterns of neural activity
and visual-textual concept representation. Mitchell et al. [34] touch
on this in their “Predicting human brain activity associated with the
meanings of nouns.” paper, which presents a computational model
able to make predictions of the fMRI signals associated with thinking
about concrete nouns. Going along with the distributional hypothesis
in linguistics, they build their model under the assumption that the
neural basis of the semantic representation of concrete nouns is re-
lated to the distributional properties of those words.

First, each stimulus word is encoded a meaning as a feature vector
whose values are extracted from a corpus of text, using a frequency
of co-occurrence method similar to the ones previously mentioned.
Participants are then shown picture-word pairs of objects organized
by category, asked to actively think of properties related to these ob-
jects, and a representative fMRI image is created for each word. The
next phase predicts the fMRI images as a weighted linear sum of the
observed fMRI activation related to each intermediate semantic pro-
perty. The results reveal a direct correlation between the statistics of
word co-occurrence in text and the neural activation from internal
word meaning interpretation, which argues that neural representa-
tions of concrete nouns do find roots in sensory-motor features.
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�.� �������

Although the distributional hypothesis finds its origins in linguist-
ics, it has been adopted by many other scientific fields to attempt
answering the question of how humans acquire and organize repre-
sentation of meaning via conceptual knowledge. From a cognitive
and technical point of view, it is evident from the literature that our
interaction with the physical world plays an important role in how we
process this information. More specifically, language and vision can
combine forces to reach visual concept knowledge through induction
using semantic property-based concept descriptions from text.

The following chapter will introduce the proposed experiment, in-
spired and supported by the findings from past and current studies
which suggest the cognitively and technically plausible combination
of language and vision.



3 E X P E R I M E N T

�.� ��������

From the literature, we’ve seen that concepts can be represented using
property-based descriptions both from text and images, independ-
ently and dependently. The following experiment is designed to test
whether semantically enhanced conceptual knowledge from images
can be achieved using linguistic information. Visual models learn
classifiers based on the observations it extracts from the training set.
The goal here is to shift their focus to learn from a set of semantically
derived textual features, instead of ad-hoc human-generated features.
The visual model to be used in this experiment is inspired by that
of Farhadi et al. [15] but is different in that instead of using the task-
driven features to learn classifiers, feed it the text-extracted properties
from the Strudel experiment. A visual pipeline of the experiment is
depicted in figure 1. Again, using text-extracted information is motiv-
ated by the fact that they are conceptually close to human-generated
norms, but differ from them in that they are acquired in an unsuper-
vised manner and cover a more complete set of features. Ultimately,
the success of the model will be measured in terms of how much
knowledge can be gained from images when the predetermined list
of visual properties is swapped with an automatically text-derived
one.

The following experiment is intended as a preliminary study con-
ducted to evaluate the feasibility the proposed model. The first half
of the experiment consists in collecting, formatting and filtering the
linguistic data. The results from this portion will indicate if the in-
formation extracted from text is relevant for the visual classification
and annotation half.

First, concept-property pairs are collected from the Strudel output,
and filtered to create a subset that contains only the most salient pro-
perties which will be used to train the visual model. The filtering pro-
cess is achieved by way of clustering and regression, processes that
will reveal which properties have the greatest effect in the concept
classification task, and thus are the most discriminative.

19
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Figure 1: Visual Pipeline of Experiment

The next step involves constructing the feature vectors for the visual
model training portion. Since this is a pilot experiment, we chose 10
properties from the newly created subset to first make a qualitative
analysis. For each of the selected properties, we retrieved the con-
cepts with which they were originally paired, and collected images
tagged with that concept from ImageNet1. Then, a 10-dimension
vector was constructed for each image, where the features are the
10 properties, and the values the log-likelihood associated with the
concept-property pair.

The second part of the experiment would consist in training and
testing the system with the new properties, where it is evaluated
based on the quantity and quality of conceptual knowledge extrac-
ted from the visual data.

�.� ���� ����������

We use the Strudel model output to collect the data because it is relev-
ant and well-structured for the goal at hand. All words having been
previously lemmatized, Strudel outputs concepts paired with their

1 ImageNet (http://image-net.org), an ontology of images based on the WordNet
(http://wordnet.princeton.edu/) hierarchy.
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Concept Property LL Patterns
grass graze-v 187.4173 _+right+v, on+right+v, _+left+v
grass blade-n 139.1197 of+right+n
razor blade-n 220.4947 with+left+n, have+left+n, of+right+n
glow gold-n 23.7200 above+left+n, with+left+n, like+left+n

Table 1: Example of Strudel output including log-likelihood measures and
pattern types

automatically discovered property, and the typed relation patterns
with which they occur. Each pair is presented with its log-likelihood,
a value based on the probability of the two occurring together. The
properties are distinguished from the concepts in that they are labeled
with an appended POS tag (-n for nouns, -v for verbs, or -j for adject-
ives). This convention will be used throughout the current and up-
coming chapters. The complete output counts 1216 concepts, 35 262
properties and 147 679 pairs. A small excerpt of the Strudel output is
shown in table 1.

From the relation pattern templates, Strudel discovers pairs of words
such that the first member is a nominal concept, and the second is
either a noun, verb, or adjective that is a feature of the concept. Con-
cepts can have more than one property, and properties can be features
of more than one concept. Let’s look at the target concept razor. It oc-
curs with the property blade-n with a log-likelihood value of 220.4947,
and the pair appears in 3 different surface settings:

1. with+left+n: ‘razor(s) with blade(s)’

2. have+left+n: ‘razors(s) have/has a blade(s)’

3. of+right+n: ‘blade(s) of a/the razor(s)’

The first step in the filtering process is to eliminate those that are
intuitively the least informative. Although frequency is not a decid-
ing factor in the properties filtering process, we still want the proper-
ties to appear in at least two different pairs, because that would mean
that they are valuable enough to describe at least two concepts. Every
property that appears in only one pair was discarded. The number
of concepts dropped to 1207, the properties to 15 936, and the pairs
to 128 353. Some concepts were lost in the process because they had
only one property, and that property occurred only once, eliminating
the pair altogether. The new counts are found in table 2.

There were many suggestions as to what other factors should be
considered in the next step of the filtering process. Since the Strudel
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Reduction Concepts Properties Pairs
Raw data 1216 35 262 147 679
Frequency > 1 1207 15 963 128 353
Table 2: Concept, property and pair counts after first

round of filtering

output also provided the concept-property relation patterns, one pro-
position was to only keep the pairs whose patterns would suggest
a part-of (such as C_have_P, ex: bulls have horns) or location (such
as C_in_P, ex: cows in a field) relationship in attempt to target more
visually graspable properties. Reconsidered and subsequently rejec-
ted, filtering by patterns would not allow for properties that would
suggest shapes, colors or textures, important when the second part
of the project involves vision. Moreover, with such a strict filtering,
we could lose some properties that, although do not seem obviously
imageable at first, may play an important role in the visual discrim-
ination in a more covert fashion. The patterns were thus dropped
from the data. With the remaining data, we were able to construct a
concept-by-property matrix, with the log-likelihoods as values. The
resulting matrix is very sparse (0.007%).

Knowing our ultimate goal of selecting the most informative, and
thus discriminative properties, some backwards thinking was required
to arrive at the next step. In statistics, a regression analysis allows the
investigator to make predictions about certain variables in an unsu-
pervised manner, based on the effect of certain factors by analyzing
their relationship. In the process, much information is learnt about
the independent variables, such as if they are related to the dependent
variable, and if so, what is the weight of their effect. If the independ-
ent variables are assigned weights, then they can be ranked corres-
ponding to their level of influence: this is where we catch them. Now,
since the regression task requires a set of training data that includes
both the predictors and the predicted, we needed to get ourselves
some dependent variables.

�.� �������� ������ �� ��� �����

Clustering is a machine learning technique that involves grouping
items into clusters based on a set of item descriptions. Clustering
systems are unsupervised in that the items do not need to be pre-
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classified, since the system is able to discover classes by ‘learning by
observation’, instead of from examples [18]. Clusters are formed by
grouping items with similar descriptions, or observations. The simila-
rity between the items can be calculated using different metrics, such
as the Jaccard index, or the cosine of two angles. With our data, we
want to group the concepts into clusters based on their defining pro-
perties. The resulting clusters will be assigned a class that will be
used to train the regression model. Our data is large, but it is mostly
sparse, so for best results, we chose to adopt the affinity propagation
clustering technique.

�.�.� Affinity Propagation Clustering

The affinity propagation (AP) clustering is an algorithm introduced
by Frey and Dueck [19], implemented in R as the apcluster package
[7], that groups data points into clusters using a real-valued message
exchange method. This particular clustering method was chosen for
two main reasons:

1. it is optimized for sparse data

2. it is completely unsupervised

The goal of the algorithm is to identify the exemplars around which
all the other data points have grouped around to form the clusters.
An exemplar is a member of the cluster considered to be its repres-
entative. The AP technique differs from other clustering methods
in that each and every data point is simultaneously considered as
a potential exemplar, but still, the aim remains for the squared er-
rors between the center of the cluster and its other members to be as
small as possible. The algorithm employs a message passing method
where real-valued messages are exchanged through the network of
data points until the exemplars are identified and the clusters are
formed. This gives it an advantage over other methods of clustering
in that there is no particular configuration of the set of exemplars.

There are two kinds of messages: the ‘responsibility’ message r(i,k),
from i to k, where the suitability of point k to serve as an exemplar to
point i is quantified, and the ‘availability’ message a(i,k) from i to k,
which refers to how appropriate it is for point i to choose candidate k
as its exemplar. The name ‘affinity propagation’ arises from the idea
of measuring the connection of each message passed from one data
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point to its currently chosen exemplar, or the affinity one point has
for the other as a candidate exemplar [19].

a (k,k) 
X

i 0s.t.i 0 6=k

max

�
0, r(i 0,k)

 
(1)

Equation 1 defines the algorithm, where the ‘self-ability’ a (k,k)
of k as an exemplar is based on the positive responsibilities sent to
candidate exemplar k from other points.

As previously mentioned, the AP algorithm runs completely un-
supervised. Unlike for the k-centers clustering technique, which is
dependent on a manually chosen number of exemplars, the number
of clusters in AP is a parameter discovered and defined over a num-
ber of iterations by the algorithm itself. Although there is an option to
manually prespecify this parameter, we choose to continue the theme
of unsupervised methods.

The algorithm determines the clusters based on the similarity of the
concepts, and thus requires a concept-by-concept similarity matrix
as input. The strength of the similarity between pairs of concepts
is given by calculating the cosine of their vectors (the rows of the
above mentioned concept-by-property sparse matrix). Therefore, the
concepts are compared to each other not only according to which
properties describe them, but relative to the strength of their relation
as well, as indicated by the log-likelihood measures.

�.�.� Clustering Results

The algorithm concludes when it has reached the point where the ex-
emplars have not changed for 100 iterations, the default. The results
include the details of the task, the exemplars and the clusters, and
various plots for data visualization.

Table 3 presents the most important results from the AP clustering
task. After 270 iterations, the algorithm has refined the number of
exemplars to 183, assigning all 1207 samples a group according to
their similarity value. Since we did not set a value for the number
of clusters, the input and sum of preference is 0. The net similarity
is the sum of all similarities between non-exemplar data points and
their exemplars plus the preferences. This value indicates how well
the similarities have been maximized. These performance measures
are illustrated in figure 2.
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APC results
Number of samples 1207
Number of iterations 270
Input preference 0
Sum of similarities 400.0062
Sum of preferences 0
Net similarity 400.0062
Number of clusters 183

Table 3: APC output: specifics

Figure 2: Algorithm Performance
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Exemplar Cluster members
cluster 5 armchair armchair bench chair couch cushion desk

seat settee sofa stool table waterbed
cluster 16 bottle barrel cellar corkscrew wineglass jar jug

pub
cluster 20 burger artichoke food grill kebab pizza sand-

wich sausage stuffing turkey
cluster 152 snowball dice die grenade paddy wrench
cluster 161 tack detour tablet

Table 4: APC output excerpt: clusters

As reported, the net similarity is equal to the sum of similarities
to exemplars since the sum of exemplar preferences is 0. It can also
be noted that the algorithm has not made any changes in the last 200
iterations. This is greater than the default because the size of the data
requires more iterations for the algorithm to converge.

Although 183 appears to be a large value for the number of clusters,
we must take into consideration that from a sample size of 1207, an
average of 7 concepts per cluster seems reasonable, since the number
of categories for classifying concepts in this particular setting could
be 1207.

The results also include a list of the chosen exemplars and their
corresponding cluster, which vary in size and range from 2 to 53
concepts per cluster, with an average of 21. A quick overview of the
clusters and their members reveals the task to be successful, where
most concepts form sound clusters that can be labeled with tags such
as furniture, food and animals. An excerpt of the output is presented in
table 4. Where most clusters form an intuitively sound group, such
as clusters 5, 16 and 20, some are not as obvious, as seen in cluster
152 or 161. But, if we think in terms of properties, some categories
can be inferred, such as ‘things you throw’ for cluster 152.

Seeing that sound clusters can be derived from the concepts and
their properties, we are assured that the role the properties played
in the classification task is also sound, but to what extent? What we
are looking for now are the properties which had the strongest effect
and played the greatest role in categorizing the concepts. For this
next portion of the experiment, we looked to a multinomial logistic
regression model to perform the classification and feature selection
task.
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Regression analysis is often employed for statistical prediction tasks,
as is it a tool for investigating the causal relationships between vari-
ables. The analysis is carried out by collecting information about the
causal variables of interest and employing regression to estimate and
quantify their effect on the dependent variables [42].

Since we want to model the relationship of multiple correlated con-
cepts with multiple correlated properties, we chose to apply our data
to a multinomial logistic regression model that uses an `1 penalty re-
gularizer parameter, the lasso, as it is efficient for automatic feature
selection on sparse data [20].

�.�.� Lasso Regression

Lasso, for ‘Least Absolute Shrinkage and Selection Operator’, is a
regression method that involves penalizing the absolute size of the
regression coefficients. This method is ideal to solve our problem,
as it will allow us to determine the strength of the predictors based
on their weighted coefficient: the smaller the coefficient of x, the less
they contribute to a good prediction of y [43].

The main idea behind the lasso is to preserve a minimal residual
sum of squares while constraining the sum of the absolute value of
the coefficients under a certain threshold. To achieve this balance, a
regularizer parameter � is introduced to control the shrinking of the
coefficients towards 0, and ultimately define the number of predictors
in the regression model. The larger the value of �, the more relaxed
the penalty, meaning the greater the number of predictors retained.
For a predictor to be retained, its coefficient must be greater than 0,
which means that it has not been forced to shrink to 0. Conversely, as
the penalty becomes more constrained, the shrinkage is allowed to in-
crease and force the weaker coefficients to 0. These are consequently
eliminated, giving a more interpretable model for which the subset
of predictors includes the most discriminative ones.
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The lasso estimate
�
↵̂, �̂

�
is defined by equation 2 above, where

xij are the standardized predictor variables, and yi are the responses.
Here t > 0 is the regularizer that controls the amount of shrinkage
that is applied to the coefficients.

We chose this method because, unlike the ridge regression where
they continuously shrink, the coefficients in the lasso regression ac-
tually fall to 0, improving the accuracy by reducing variance of the
predicted values. Moreover, the lasso provides support for sparse
data, and improved interpretation when the goal is to determine a
smaller subset of predictors that exhibit the strongest effects [43].

�.�.� Regression Results

Regression is employed to discover the best model to predict the cat-
egory y of a given dependent variable based on the predictor vari-
ables x. Here, the y variables are the cluster labels for a given concept,
and the x variables are the retrieved properties. To run the regression
task, we used the glmnet package [21] in R. The first step of the task
consists in fitting the model, a process for which all the relevant de-
tails are available and can be visually presented, as in figure 3.

Each curve in 3 corresponds to a single predictor. As the penalty
becomes more relaxed, represented by the increasing `1 Norm va-
lues, the number of non-zero coefficients (measured using the top-
most axis) and their value (x-axis, which also indicates the number
of predictors: 183) increase as well. The package also allows one to
retrieve a list of the path of each predictor at each step of the fit, as
well as at a specific �.

To get the best model with the optimal regularizer value, we run
a cross-validation and are returned two selected values: lambda.min,
the value of � that gives minimum mean cross-validated error, and
lambda.1se, which gives the most regularized model such that the er-
ror is within one standard error of the minimum. The cross-validation
curve is plotted in figure 4, represented by the red dotted line, between
the upper and lower standard deviation curves. The two vertical lines
indicate the two selected values for �.

The prediction algorithm and its learned ability to predict cluster
labels is not what is of interest to us, though. What we want to
look at is a particular side product of the building process that led to
this final model. From this model, we are able to locate and extract
the properties that are active in the prediction task, meaning the pre-
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Figure 3: Model fit plot

Figure 4: Cross-validation fit plot
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Property of cluster 152 Coefficient
husking-v 0.00005
wafer-n 0.01733
bias-v 0.01388
incendiary-j 0.00470
throw-v 0.00427
rolling-n 0.00281
roll-v 0.00148
lob-v 0.00134
mutineer-n 0.00094
cast-v 0.00027

Table 5: Cluster 152 properties and their coefficients

Reduction Concepts Properties Pairs
Raw data 1216 35 262 147 679
Frequency > 1 1207 15 963 128 353
Feature selection 1185 3659 X

Table 6: Concept, property and pair counts
after second round of reduction

dictor variables whose coefficient was not forced to shrink to 0 by the
regularizer. Let’s look at cluster 152 (snowball: dice die grenade paddy
wrench) from table 4, for which the regression results are presented in
table 5. It is interesting to see which properties were preserved, and
in fact, the presumed category ‘things you throw’ fits!

The final subset of properties now includes 3659 properties from
the last 15 936. The number of concepts dropped as well, from 1207
to 1185. Some concepts were lost because while the properties were
filtered for having a shared factor of greater than 1, the concepts were
not. For example, take the concept chipmunk. In the retrieved pairs
from the Strudel data, chipmunk only appears once, with property
scurry-v. scurry-v was not removed in the first round (when remov-
ing properties with shared factor =1) because it occurs with 11 other
concepts. However, after the regression, scurry-v was not amongst
the active properties and so was taken out of the 15 936, along with
chipmunk. This happened with 22 other concepts.
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This is where the real experiment begins: if the resulting subset of
selected properties are the most discriminative for the prediction of
concepts in text, can they also reveal themselves to be the most dis-
criminative in predicting and describing concepts in images? To eva-
luate this, we put them to the test by setting them as the predictors in
a visual distributional model. The visual distributional model takes
images and their corresponding feature vector to train the system to
recognize the properties that we have selected. Since this is a pilot ex-
periment, we chose 10 properties (see table 7 in chapter. 4) from the
newly created subset to first make a qualitative analysis. For each of
the selected properties, we retrieved the concepts with which it was
originally paired, and collected images tagged with that concept from
ImageNet. Then, a 10-dimension vector was constructed for each
image, where the features are the 10 properties, and the values the
log-likelihood associated with the concept-property pair. While most
vectors are usually populated with binary values because the proper-
ties are coded manually, we have decided to use the log-likelihood
values which gives the advantage of a more precise training process
based on weights.

�.� �������

So far, we’ve taken a set of concept-property pairs, reduced them to
a subset of the most salient properties, and before subjecting them
to the visual model training task, I will assess their potential in a
qualitative analysis. In the following chapter, I present 10 of the 3659
preserved properties, accompanied by a detailed explanation of inten-
tions and expected results.
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In the following qualitative analysis, ten properties have been selected
in an attempt to demonstrate the findings, represent the intentions
and achievements, and express the failures of the proposed experi-
ment.

The selected properties were hand chosen to explore all aspects of
the expected results. They include four nouns, two adjectives and
three verbs. It must be noted that although gold-n is tagged as a
noun, it seems to play the same role as the color, and therefore can
be considered an adjective. Similarly, evil-n, although tagged as a
noun, resembles more an adjective. In table 7, the properties are
listed followed by the all the concepts with which they were originally
paired. In other words, each of these sets of concepts share the same
property. Pictures are supplied to aid the illustration.

�.� ��������

Concrete-Abstractness

Amongst the selected ten are properties that fall on either side of the
concrete-abstract scale, such as horn-n and evil-n, respectively. Learn-
ing a classifier for horn-n seems easy enough, since the images sup-
plied for training depict all the concepts for which this property is
physically present. On the other hand, it appears more difficult to
visually capture aspects of the more abstract evil-n. It is our intuition
however, that not-so-obvious features can be returned, perhaps even
beyond our scope of perception. We could expect the classifier to
catch features that inspire evil, such as darker, colder hues, maybe
the presence red, sharp contrasts, or even objects or shapes tied to
the theme.

33
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Property Concepts they are properties of
blade-n axe dagger grass helicopter knife oar razor scissors

bushy-j beard mane mustache plant

sharp-j arrow axe knife needle pencil razor scissors sword

evil-n demon monster witch

gold-n chest coin crown glow lion plate ring

sparkle-v chandelier ring water

graze-v bison deer goat grass hill horse meadow rabbit sheep

horn-n antelope bison buffalo bull deer goat rhino sheep

preach-v church synagogue vicar

pair-n earring jean mitten scissors shoe sock

Table 7: 10 examples of preserved properties and the concepts they describe
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Imageability

Properties were also selected to explore the imageability scale, where,
for example gold-n would be considered much easier to build a classi-
fier for than say, preach-v. Again, the idea here is to try and reach for
the features that capture the meaning of the concept in the manner
humans do, even if covertly. In the training, the images of vicar could
place the need for a person to be included in the classifier, while
those of church and synagogue could provide the setting. A successful
classifier for preach-v would be able to connect these two, and learn a
meaning of action. Ideally, when presented with the concept of church
or synagogue, the model would understand that such scenes are plaus-
ible settings for a vicar to carry out his preaching. Conversely, a vicar
would be recognized as having his place in a religious setting.

Actions

Similarly, if we look at the property graze-v, defined as ‘to eat grass in
a field’, it entails there being an entity performing the action of eating,
and the thing being eaten to be grass. Therefore, not only does the
property suggest these two sets be present in the context, but requires
them to be. Provided with images representing the concepts, so hill,
grass and meadow on one side, and bison, rabbit and sheep, on the other,
a classifier for graze-v could be successfully achieved if the model
were able to capture the relation between the two. Therefore, it is
expected that when faced with such concepts, the model will have
learned that these animals are often found surrounded by grass.

Colors and Textures

To remain on the topic of imageability, if gold-n can be visually repres-
ented by a color, then it can be assumed that bushy-j can be visually
represented by a texture. ‘bushy’ can be used to characterize concepts
of various categories, and therefore is a texture that does not have a
definitive color or setting. The model would be considered success-
ful if it were able to focus on the arrangement of visual features that
would qualify a concept as being bushy and detect a visual pattern
that is in fact, a sensory texture.

Cross-category Properties

Additionally, we wanted to include properties that describe some
same concept. The concept scissors is an example of this, where they
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have the properties of being sharp-j, having a blade-n and occurring
in a pair-n. We chose to include these because it would allow for the
discovery of possible relationships between the properties as well. If
more than one concept has the property of being sharp and having
a blade, could there be a connection between the two? If so, is it
detectable by the model?

Counting

Finally, the property pair-n would be a good example to test for the
ability of the model to not just count, but understand the meaning
of a number. For humans, mittens are understood to occur in pairs,
and when alone, are known to be only one half of the whole it repres-
ents. If presented with an image depicting a pair of mittens, or a pair
of socks, the model could easily detect there being two of the same
object. If, however, we want the model to achieve a semantic repre-
sentation closer to that of humans, then we want it to perform beyond
its ability to just count. When ascribed the property pair-n, the model
must recognize the necessity of there being two of the same object for
its function to be realized, or better, when presented with only one,
understand that it is incomplete.

�.� �������

The above analysis is to give an account of the intentions and expec-
ted results of the proposed visual model. From the small sample of
properties, we can easily define what we would like to see be realized
in the next steps of the experiment, and give a qualitatively support-
ive rendering of what the model is set out achieve. From the visual
classification task, we expect the proposed model to develop feature-
selection methods that more closely model the human capacities of
recognition by learning classifiers for properties beyond just low-level
base features. From the annotation task, we hope the concept annota-
tions reveal meaningful observations tied to function, or origin, over
just physical descriptions, especially when presented with unknown
concepts.



5 C O N C L U S I O N

Past studies have shown us that it is possible to achieve conceptual
knowledge and meaning representation close to that of humans using
computational models rooted in language and vision, with neuros-
cientific support. More importantly, we’ve seen that best results are
obtained when both modalities are combined. Knowing that humans
employ both visual and linguistic cues when acquiring and organ-
izing knowledge about concepts has provided us with the motivation
to reach the middle ground between visual features and linguistic
words. With this in mind, we set out to build a visual model enhanced
with semantically-induced concept descriptions from text capable of
object recognition and annotation.

The reported experiment is a preliminary study conducted to eva-
luate the feasibility of the proposed model. It consists in filtering
the language data to assess if the value of the extracted information
is relevant for the visual classification and annotation portion of the
experiment. The evaluation presented in the qualitative analysis en-
courages the idea that the proposed multimodal distributional model
is indeed plausible, both from a cognitive and technical perspective.
Such a model would have many advantages for all fields concerned
with this topic, as it would present a different approach to achieve the
human capacity of conceptual knowledge grounded in visual percep-
tion in a cognitively plausible and completely unsupervised manner.

�.� ������ ����

The experiment presented above lays out a strong ground for the real-
ization of the proposed model. The next steps include training and
testing a visual system inspired that Farhadi et al. [15]’s model with
our 10 attributes, and carry out a small-scale quantitative analysis. Its
success will determine the potential of a full-scale experiment, includ-
ing all 3659 properties.
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