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Abstract

Semantic annotation is a helpful technique to understand the under laying semantics

of the document. It provides additional information in the form of metadata which

then makes documents to be processed in an intelligent way. The problem with

semantic annotation is that these annotations are not universal e.g. semantic an-

notation for a document in particular domain might have different meaning in other

domain. Therefore, domain specific knowledge is used for semantic annotation and

this domain specific information is provided by ontologies.

The main problem with Semantic Annotation is availability of ontology for the

domain. Ontology comprises of concept and relationships. In an ontology, a concept

may be atomic or defined by a set of properties. This set of properties classifies

the concept with other concept in ontology. In this thesis, we present an approach

that deals with semantic annotation using properties of concept in an ontology rather

than simple instance matching technique currently available. In this approach, the

document is analyzed for the purpose of identifying these properties using ontology.

If the properties found in document match with properties of any concept in ontology,

the document is annotated with that concept. In this way, documents are indexed

according to these properties.

The main target of this thesis is to present approaches of how these properties

can be extracted from documents; both for the purpose of semantic annotation and

ontology building. To achieve this target, we present two different approaches to

information extraction for Semantic Annotation; ”Rule Based Approach” and ”De-

pendency Based Approach. We present the comparative analysis of effectiveness of

these two approaches on a small corpus.

This kind of semantic annotation is useful for the efficient answering of search

queries, clustering, text summarization etc. We apply this semantic annotation ap-

proach on the corpus of recipe documents. In our domain, these annotations are

used for recipe adaptation purpose. In adaptation, the purpose is to intelligently

replace some ingredient with other ones to make an adapted recipe. Apart from our

main target of Information Extraction, we also propose an Ontology for our domain

of recipe document as well as a process of semantic annotation.

vii





Chapter 1

Introduction

1.1 Background

The growth of World Wide Web and corpus of huge documents has increased the ne-

cessity to bring up solutions that can intelligently manipulate documents. Documents

constitute the valuable knowledge for particular domain. But due the unstructured

nature of the documents, this knowledge cannot be efficiently exploited by machines

for automation purpose. Thus the creation of semantic metadata related to docu-

ment content seems to be a way to exploit this knowledge and extract implicit and

explicit expertise.

Semantic Annotation (SA) is the approach proposed within the framework of

semantic web for creating such metadata. SA refers to the process of indexing and

retrieving useful knowledge from documents thus creating annotation or metadata

on top of documents contents. These annotations or metadata are well defined for a

particular domain using appropriate syntax and semantics. Therefore, the overall goal

of SA is to create metadata that can be exploited by both humans and machines.

SA of documents hence is our pursued goals in this thesis. As proposed by

(Berners-Lee T., Hendler J., and Lassila) [31], the semantic web can help us to reach

this goal as it proposes the use of domain ontologies as semantic guide to annotate

document content. Thus, semantic annotation is the process of mapping textual

element found in the text with ontological concept. This mapping is performed

on the basis of some criteria defined by concepts in ontology. The result of this

mapping is well defined metadata that become the integral part of the document for

its understanding and efficient processing.

In semantic web, domain ontology is a main resource for SA. Ontology is defined

as formal and explicit specification of shared conceptualization (Gruber, 1993) [15].

It represents knowledge in structured form suitable for inference and reasoning over

knowledge. However, the development of domain ontology is not a trivial task and

1



2 CHAPTER 1. INTRODUCTION

consumes important resources in term of time and money. Thus, (semi) automatic

generation of domain ontologies are used to reduce the cost of such an operation.

Unfortunately, we also lack ontology for our domain. Therefore we also discuss how to

automatically generate our domain ontology from recipe text. From this perspective

the overall approach is depicted as follow

Figure 1.1: Text-to-Ontology and Anotation Cycle

1.2 Objective

This thesis is mainly concerned with SA as a guide to understand the document

and how these annotations can be used for further processing. Similar to semantic

web, we employ ontology as main resource to understand the textual information

contained within the documents. Therefore the objective of this thesis is to define

our new approach of SA, describe our domain ontology and define metadata structure

created as a result of our SA approach. The big problem here is that our domain

ontology is not available. We describe a method to create it from raw text. The Fig.

1.2 shows the overall architecture of the process.

Figure 1.2: Semantic Annotation Process

There are different levels of granularity of SA i.e. annotation of complete docu-

ment, paragraph, sentence, concept, term or word. But currently available systems

like GATE [16], KIM [3], Melita [10], MnM [25], Magpie [11] etc. are only capable
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of annotating words or term. None of them provide annotation on granularity above

word or term. These systems’ technique is simply based on string matching between

objects found in text and instances in ontology concept.

We define a different approach for SA of textual document in this thesis. In this

approach our goal is to annotate documents according to concept it contains rather

than just word or term. A concept can be atomic or define by the set of properties

in an ontology. These properties of concept distinguish the concept from rest of the

concepts in ontology. This makes the SA task more complex because this kind of

annotation is not a simple annotation of word, term or relationship in document.

Rather documents will have to be completely analyzed to find out properties.

We apply our SA approach on textual documents of cooking recipes. Our ob-

jective is to annotate the recipe according to the way ingredients are used. The

different ways of preparation of ingredient are defined in an ontology. The concepts

of ontology define different ways of preparation of an ingredient (or culinary action

performed on ingredient) in recipe. We call these ontology concepts as ingredient

preparation prototype. The task of our SA process is to extract out these actions for

each ingredient from recipe text and annotate the recipe with appropriate prototype

in ontology on the basis of these actions. For this purpose, we employ two different

techniques for information extraction namely ”Rule Based Approach” and ”Depen-

dency Based Approach”. We also perform some experiment on corpus of manually

annotated recipes using these techniques. We present the results that reflect the

effectiveness of these approaches.

We use these annotations for recipe adaptation purpose. In recipe adaptation,

we want to replace an ingredient in given recipe with another one. Our hypothesis

is that simple ingredient replacement is not sufficient. Ingredient must be replaced

in accordance with actions performed on it in the recipe. Let us consider following

example. In this example, potato has the prototype ”Potato (Peel, Cut, Boil, Drain,

Mash, Beat)” because potato is being peeled, cut, boiled, mashed and beaten in this

recipe.

”Peel potatoes and cut into large pieces. Boil in salted water for

15 to 20 minutes, or until tender. Drain potatoes. Mash potatoes in

large bowl. Add milk in small amounts, beating after each addition,

until desired consistency is reached. Add butter, 1/4 teaspoon salt, and

pepper. Beating until mashed potatoes are light and fluffy.”

The problem here is the annotation of recipe according to above prototype. Cur-

rently available tool can only annotate all potato objects in the recipe as potato

concept using some ontology. But none of them can associate actions to it like the

prototype defined above. Moreover, none of current tool is able to find out if there

is potato object in 2nd part of 1st sentence or in second sentence. These tools can-

not provide us with ingredient prototype as ”Potato (Peel, Cut, Boil, Drain, Mash,

Beat)”. In our approach it is possible to obtain such representation and we can use
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this prototype representation for adaption purpose. Let us suppose that we want to

replace potato with ”cabbage (Cut, Boil, mash)” prototype. Using our annotations,

it is possible. Because these annotations guide us about the possible place in the

recipe where to make changes. So, application of our approach results in following

adapted recipe

” Cut cabbages. Boil in salted water for 15 to 20 minutes, or until

tender. Mash cabbages in large bowl. Add milk in small amounts, beating

after each addition, until desired consistency is reached. Add butter, 1/4

teaspoon salt, and pepper.”

According to the adaptation problem and corresponding example presented above,

there are following four important tasks to semantic annotation process.

1. Robust Text analysis technique to extract out ingredient, actions and their

mapping.

2. Creation of formal specification of conceptualizations i.e. ontology. In our case

ontology describing different type of prototype of ingredient preparation.

3. Based on a defined ontology, an automatic process that tries to find the concept

instances inside the target recipe documents and annotate it accordingly.

4. Formal representation of annotated documents.

In this thesis, we mainly concern with the information extraction component and

show two different approaches to extracting information from recipe text. Apart

from our main target of Information Extraction for semantic annotation, we also

propose an ontology for our semantic annotation process. We call this ontology

ingredient ontology that represents different ways of preparation of an ingredient

or different actions performed on an ingredient in a recipe. We also propose our

semantic annotation process and present examples to in support it.

1.3 Thesis Outline

This thesis has been organized as follows. Chapter 2 details the SA with formal

definition. It also describes the state of the art techniques currently available. The

chapter presents the SA model in which ontology is an integral resource. This chap-

ter presents the detail description about ontology, its structure and representation.

Chapter 3 describes methods of extracting actions, ingredients and their relationship

from recipe text and issues faced during this process. This chapter is the core of

this thesis in which we present our two approaches to information extraction namely

”Rule Based” and ”Dependency Based” approaches. Chapter 4 explains the au-

tomatic ontology construction from text. The current state of the art techniques
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available for this purpose are highlighted and the technique of Formal Concept Anal-

ysis (FCA) used for the development for ingredient ontology is explained. Chapter 5

then explains the annotation process and chapter 6 presents the conclusion.





Chapter 2

Semantic Annotation

Annotation is the process of adding additional information to any other information

such as information in a book, document, online record, video etc. In linguistics,

annotation is the process of adding additional linguistics information such as mor-

phological, syntactic, semantic etc. to available linguistics forms to make these forms

more descriptive.

SA is similarly defined as a process of adding semantic information to linguistic

forms. But in the context of semantic web, Euzenat [12] formalized SA as mapping

functions. From two set of objects, document and formal representation; two function

can be defined. A function that maps documents to formal representation, called

annotation and a function from formal representation to documents called indexing.

The formal representation is generally modeled in the form of comprehensive

repositories like Ontologies. Ontology is defined as formal and explicit specification

of shared conceptualization (Gruber, 1993) [15]. Ontology contains the description

of type of objects and concepts, and their properties and relationship.

Therefore, SA of textual document is to identify the concept with the help of

domain ontologies ( domain because semantic or concept analysis is mostly domain

specific i.e. one thing defined for one domain may have difference sense or concept in

another). For this purpose, a robust text analysis technique is required which will be

composed of identification of object in a text, identification of relationship between

these objects and analysis on how these objects and their relationships combine to

form a concept. Hence the objective of SA is to tag ontology class instances found

in the text using text analysis process and map it into ontology classes as depicted

in [22] by Fig 2.1.

From this perspective, the semantic annotation model is composed of following

elements.

7



8 CHAPTER 2. SEMANTIC ANNOTATION

Figure 2.1: Semantic Annotation

1. An ontology describing the domain.

2. An annotation process or technique (mapping function as defined by Euzenat

[12]) that links entities, objects or concepts in text with classes in ontology.

3. Representation or encoding of semantically annotated documents i.e. meta-

data.

We define in following section current state of the art tools that are based on

above model and then give a comprehensive discussion of the elements of this model

in the following sections.

2.1 Tools for Semantic Annotation

There has been lot of work done in the field of semantic annotation using ontology as

main guide but still there is no complete automatic semantic annotation tool available

that has a good accuracy due to inherent ambiguity in Natural Languages. There

are many tools available for semantic annotation of textual document like GATE

[16], KIM [3], Melita [10], MnM [25], Magpie [11] etc. but none of the tools

are totally automatic. Furthermore, these systems perform annotation on words and

terminologies to indentify real world objects and their relationship in the text. None

of them provide annotation above word level. Therefore these systems cannot be

used in recipe annotation problem described in this thesis. In sequel, we present a

brief overview of all of these tools.

GATE

GATE [11] (General Architecture for Text Engineering) is an infrastructure for de-

velopment software components based on Human Languages. The GATE system

provide many functionalities among them, it provides the functionality to annotate
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textual documents both manually and automatically. GATE uses JAPE [17] pattern

matching engine for rule based Named Entity Recognition. JAPE is ontologically

aware which can map the Named Entity to ontology classes during recognition. In

GATE, the task of textual annotation is just defined more domain specific rules in

addition to already available basic rules.

KIM

KIM [3] is another ontology base semantic annotation system that uses a special

knowledge base(KIMO) which has been pre-populated with 200,000 entities. KIM

uses GATE, SESAME and Lucene for many information extraction tasks. KIM also

uses version of ANNIE for Named Entity Recognition. KIM has a feature of automati-

cally adding new instances found in text to Ontology. It also performs disambiguation

step because many instances can be added to different places in ontology.

Melita

Melita [10] provides the interface to semantically annotate the textual document

using Adaptive Information Extraction technique. This technique reduces the burden

of text annotation on user. It starts with manual annotation of text by user and

as user keeps on annotating text the system learns the annotation process. Melita

uses Amilcare [9] which runs in background learning how to reproduce the inserted

annotation.

MnM

MnM [25] is another system based on supervise learning technique to annotate the

text. it provides an environment to manually annotate a training corpus, and then

feed the corpus into a wrapper induction system based on the Lazy-NLP (natural

language processing) algorithm. The resulting output is a library of induced rules

that can be used to extract information from corpus texts.

Magpie

Magpie [11] is browser enable ontology based semantic markup system that annotates

the web document on fly. It uses ontology to annotate the document either using

predefined lexicon in the ontology or using Named Entity recognition technique.

Some other system that are also used for semantic annotation are Onto-Mat [18]

(work like MnM and Melita), AeroDML [23] (uses pattern based approach) etc.

2.2 Semantic Annotation Techniques

Currently available techniques for SA involve identification of objects and their rela-

tionships using ontology. Following is a brief review of these techniques.
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2.2.1 Annotation of Object

The words or terms can be annotated using ontology in two different ways.

Lexicon based Annotation - In this approach, the each ontological class has set

of lexicon associated with it. Annotation is simply a search through a lexicon list. If

word or term is found, its appropriate class is assigned to extracted word or term in

document.

Named-Entity Recognition - In Lexicon based approach, the problem is that it is

difficult to build a lexicon for all the available vocabulary or terminologies. This is

the case with open word classes of natural languages like noun, adjective, verbs etc.

Nouns have big problem with Proper Nouns which are impossible to model through

lexicon. Therefore, Named Entity recognition technique is applied to recognize the

class of proper nouns such as, Name of Person, Name of Institute, and Name of

Street etc. and then these classes are mapped to appropriate class of ontology.

2.2.2 Annotation of Relationship

Relationship can also be annotated using ontology. For example, Country and City

are defined as having relationship of ”partOf” in Ontology. Therefore, there is an

appropriate need to annotate this relationship described by ontology. For example, in

a text document, there is a fragment of text ”Paris is capital of France”. Using the

Object annotation process, Paris and France can be annotated as City and Country

and relationship annotation will define that Paris and France are related through

”isCapitalOf” relation. This sort of annotation has been used in the Artequakt [2].

The relationship annotation can be performed using the shallow or deep syntactic

analysis of sentences. The syntactic analysis provides us with structured representa-

tion of sentence where relationship between groups of words can be identified.

2.3 Representation Format for Semantic Annotation

To represent the metadata information created as result of SA process, there are

various options available. The simplest of all is to directly modify document contents

and add metadata in the same document. Another approach is to represent the

metadata in separate document from the original one. In this way, document become

independent of annotations. RDF (Resource Description Format) ∗ is a standard

format for this purpose. It has been specified by the World Wide Web Consortium

(W3C) for representation of SA in the context of semantic web. RDF is XML based

format. It encodes knowledge in sets of triples (also called statements), each triple

representing the subject, predicate and object of an elementary sentence. For example

to express the sentence ”A knows B” in RDF, a triple with a subject denoting ”A”, a

∗www.w3.org/RDF/
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predicate denoting ”knows” and an object denoting ”B” can be formed. Apart from

RDF, custom XML format can also be used.

2.4 Ontology

An ontology is a formal specification of a shared conceptualization (Gruber, 1993) [15].

A conceptualization can be understood as an abstract representation of the world or

domain we want to model for a certain purpose.

A very formal definition of ontology is given by (Bozsak, 2002) [6]. According to

him.

Definition 1. (Ontology) An ontology is a structure O := (C,≤C , R,≤R) con-

sisting of (i) two disjoin set C and R called concept identifiers and relation identifiers

respectively,(ii) a partial order ≤C on C called concept hierarchy or taxonomy, (iii) a

function σ : R =⇒ C × C called signature and (iv) a partial order ≤Ron R called

relation hierarchy.

The Fig 2.2 dipicts an example ontology of foods.

Figure 2.2: An Example Ontology of Foods

Ontology can be used for many different purposes, as described by [13]; to provide

a controlled vocabulary, to customize and personalize search possibilities, to provide

a structure that can be used for extracting document content, to perform word sense

disambiguation or, as in our case, semantic annotation of textual documents.

To be exploited by any system, the ontology must be formally defined in term

of its information structure and format of its representation. Let us briefly describe

these two areas.

2.4.1 Structure and Component of Ontology

Ontologies describe individuals, classes, attributes, and relations. Individuals are the

basic, ”ground level” components of an ontology. The individuals in an ontology may

include concrete objects such as people, animals, tables, automobiles, molecules, and
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planets, as well as abstract individuals such as numbers and words. Classes are

the sets or collections of objects describe by the set of attributes. An object holds

the membership of class if it possesses the same set of attributes as class. Classes

may classify individuals with help of these attributes. Some examples of classes are

Person, Vehicle, Car, Thing etc. Attributes are the aspects, properties, features,

characteristics, or parameters that objects (and classes) can have. For example,

a person class or object has the properties name, age, height etc which collectively

differentiate it from other classes and objects. Relationships (also known as relations)

between objects in an ontology specify how objects are related to other objects.

Typically a relation is of a particular type (or class) that specifies in what sense the

object is related to the other object in the ontology. For example in the ontology

that contains the concept ”Team” and the concept ”Player” might be related by a

relation of type ”IsMemberof”.

2.4.2 Ontology Representation

Since ontologies contains the knowledge according to the structure described above

and in figure 2.2 , therefore this knowledge needed to represented in a format for

efficient processing. Generally, the terminology used for ontology representation is

ontology language. There are various type of ontology languages that can be used for

representing ontology. (Maurizio Lenzerini, Diego Milano, and Antonella Poggi) [24]

gives a comprehensive detail of the ontology languages like logic based, graph based,

frame based etc.

The logic based representation uses language based on logic as formal represen-

tation for ontology. These kinds of languages have well defined semantics which can

be efficiently used for inference on the ontology knowledge base. The well-known

languages in this regard are prepositional logic, description logic and first order logic.

Description Logic (DL) [4] is one of the well-known knowledge representation

frameworks. It offers means to structure knowledge in terms of concepts, roles and

individuals [4]. DL languages allow expressions, or descriptions, to be composed out

of other descriptions up to an arbitrary depth. A DL language is built on top of a

collection of primitive concept and role names which denote the meaningful concepts

and relations from a domain (e.g., Human, Male, Engineer, child, Mother, etc.),

individual names (e.g., John) and constants (> and ⊥).

Concepts in DL are interpreted as sets of individuals (their instances) and roles as

sets of individual pairs. Further concepts and roles are defined by combining concept

and role names, either primitive or already defined, via a set of constructors, e.g.,

conjunction (u), disjunction (t), negation (¬). By definition, a role has a domain and

a range concept and is inherited by the sub-concepts of the domain concept. It may

be further restricted for every concept it applies to, for instance, by applying universal

or existential quantifiers to the set of links. Thus, given a role r and a concept C,

the following concept expressions can be composed: (i) ∀r.C (value restriction), (ii)
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∃r.C (full existential quantification), and (iii) ∃r.> (limited existential quantification).

These are basically the filter on the individuals: (i) collects those whose links of type

r, if any, point exclusively to instances of the concept denoted by the expression C,

(ii) those with at least one r link to such an instance, and (iii) those with at least one

r link, regardless of the underlying concept. As an illustration, consider the expression

of the concept of ”Person all of whose children are either Doctors or have a child

who is a Doctor” in DL:

Person u ∀hasChild.(Doctor t∃hasChild.Doctor)

The way DL represent information is widely suitable for the ontology representation.

There are various standards defined that utilizes description logic as the underlying

formalism. Web Ontology Language (OWL) ∗ is well known standard defined by W3C

consortium that is also based on DL. OWL has been widely accepted standard for rep-

resenting and sharing knowledge in the Semantic Web context. OWL comes in three

versions supporting different compromises between expressiveness and computational

tractability: OWL-Lite only supports classification hierarchies and simple constraints,

OWL-DL is more expressive but still computationally tractable, and OWL-Full is even

more expressive but offers no computational guarantee. Particularly, OWL-Lite and

OWL-DL belong to the description logics family, which are decidable fragments of

first order logics.

DL has a precisely and formally defined semantics refering to the set theory. Some

generic reasoning tools have been developed that leverage this semantics(Sattler, [30]).

A DL reasoner performs various inferencing services, such as computing the inferred

superclasses of a class, determining whether or not a class is consistent (a class is

inconsistent if it cannot possibly have any instances), deciding whether or not one

class is subsumed by another, etc. All this advantages of DL has made it widely

accepted for ontology representation.

2.5 Conclusion

This chapter formally defined SA and major component of SA. It also presented an SA

model which is composed of an ontology, an annotation process and representation

format for the annotation. The chapter also highlighted current state of the art tools

like GATE [16], KIM [3], Melita [10], MnM [25], Magpie [11] etc. that follow

defined SA model. This chapter also addressed different techniques that are used

by above tools for SA like annotation of objects and relationships. Different sort of

representation format for represention of annotation were also described. At the end,

ontology in general, its component & structure and DL based ontology language for

representation of ontology was discussed.

∗http://www.w3.org/2004/OWL/





Chapter 3

Information Extraction for

Semantic Annotation

We apply our SA approach to cooking recipe documents corpus. One of the main

components of SA is information extraction for analysis of text documents. The Fig.

3.1 present the overall schema of our semantic annotation process.

Figure 3.1: Semantic Annotation Process

As depicted in figure, there are three main components of our annotation process;

15
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”Information Extraction”,” Semantic Annotator” and ”Domain Ontology”. Since

Domain Ontology is automatically created in our approach of SA, therefore, there

is also an ”Ontology Builder” process in this diagram. This process generates the

ontology that is required by ”Semantic Annotator” process. Note that all of our

three processes i.e. ”Information Extraction”,” Semantic Annotator” and ”Ontology

Builder”, are fully automatic.

In this chapter, we present Information Extraction component while Ontology

Builder and Semantic Annotator components are presented in chapter 4 and chapter

5 respectively. we will present two different approaches to information extraction

from cooking recipe documents namely ”Rule Based” and ”Dependency Based”. The

information extraction process is necessary not only for semantic annotation but also

for ontology construction. The objective of our information extraction approaches

is to extracting out ingredients, actions and their relationship information (i.e what

actions are being performed on particular ingredient) from recipe. We also present

at the end of the chapter some experimental results to highlight the effectiveness of

the approaches and compare two approaches on the basis of results obtained.

3.1 Rule-Based Information Extraction

In rule based information extraction approach, we apply grammatical rule or pattern

recognition technique to extract out ingredients, culinary actions and their relation-

ships. For this purpose, on the basis of analysis of recipe text, few grammatical

rules have been designed which capture the ingredient, action and their relation from

the text. The Fig. 3.2 shows the schematic digram of the Rule Based Information

Extraction process.

Figure 3.2: Rule Based Information Extraction
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As depicted in figure, there are six major components of ”Rule Based Information

Extraction”. There are four processes (POS tagger, Morph. Analyzer, Semantic

Tagger and Shallow Parser) which are fully automatic while the two dictionaries are

manually created from corpus. In sequel, we discuss following main steps that are

applied in Rule Based information extraction from recipe text.

1. Domain Specific POS Tagging

2. Morphological Analysis

3. Identification of Ingredients and Actions

4. Identification of Ingredient-Action Relationships

3.1.1 Domain Specific POS-Tagging

In case of recipe text, culinary actions are mostly defined by the ”verb” and sometime

by ”adjectives”. The ingredients are identified as ”nouns”. Therefore, if these tags

are primarily known then annotation process can be made quite robust because for

searching for actions, only ”verbs” and ”adjectives” would have to be analyzed and

similarly, for ingredients, ”nouns” will be the focus of consideration. Furthermore, for

extracting Ingreident-Action relationship, patterns of tags are used to search for the

ingredients in the complement of action verb. These tasks make tagging essential for

our work.

Natural language statements used in recipes are mostly imperative and instructive

i.e. sentences start with ”verbs”. But most of the available POS tagger systems do

not cater this problem. If used, these systems will tag ”verbs” at the beginning of

sentence as ”nouns” which really degrade the information extraction process.

Therefore, corpus of recipes which contains around 82 different recipes has been

tagged manually to custom train the Brill’s tagger∗. We use this tagger for POS

tagging of recipe of documents.

3.1.2 Morphological Analysis

It is the process of analyzing internal structure of the word. As a result of morpho-

logical analysis, the word is broken into base form and affixes. Morphological analysis

is necessary for our Information Extraction process because in this process we have

maintained dictionaries for ingredients and actions. In these dictionaries, we only

maintain base form of the words. Therefore, to search for any ingredient or action,

first the corresponding word is analyzed for its base form and affixes, and then the

base form is searched in dictionary. This process helps in reducing size of dictionaries

because it prevents us to maintain all the different forms of the word.

∗The Brown Corpus tag-set has been used here for tagging.
http://en.wikipedia.org//wiki//Brown Corpus.
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3.1.3 Identification of Ingredients and Actions

For identification of ingredients and culinary actions, two types of dictionaries have

been maintained. The ingredient dictionary contains ingredients and culinary action

dictionary contains culinary actions. No other ingredients and culinary actions are

considered apart from those present in dictionaries. These dictionaries have been

manually created using the corpus that we have developed for the evaluation purpose

for our approach. The corpus and dictionaries can be found in accompanied CD with

this thesis.

Identification of Ingredient is trivial in the recipe. After POS tagging, all the nouns

in the recipe text are searched in the list of ingredients in dictionary. Ingredients are

appropriately marked if there is a match with dictionary.

Similar to identification of ingredients in the recipe, culinary actions are indentified

using a list of culinary actions in dictionary. We consider only ”verb” and ”adjectives”

for indentification of actions. After match is found, actions are appropriately marked.

Table 3.1 list the semantic tags used for marking ingredient and actions in the recipe

text.

Class TAG
Ingredient <ING>
Actions <ACT> or <JJACT>

Table 3.1: Semantic TAGs

In these Tags, <ING> and <ACT> tags simply refer to ingredient and action

while <JJACT> tag is a special tag. This tag is also used to indentify actions apart

from <ACT> tag but it is only used for actions which are adjectives. If we find any

adjective in a text with <JJ> pos tag and this adjective is listed in our dictionary,

we mark it with <JJACT> tag.

3.1.4 Identification of Ingredient-Action Relationships

To extract the ingredient-action relationship information from recipe text, we have

designed few grammatical rules that are given below. These grammatical rules inden-

tify particular patterns in given piece of recipe text. If these patterns are successfully

recognized in the text, the ingredients and actions in the recognized pattern are

indentified to be related.

1 VP − > ACT NP (, NP)* (CC NP)?

2 VP − > ACT NP PP

3 VP − > ACT PP

4 VP − > JJACT ING | ING JJACT

5 VP − > ACT
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6 NP − > DT? JJ* ING

7 PP − > IN NP (, NP)* (CC NP)?

The above rules are presented in Context Free Grammar (CFG) rules format. The

following is brief description of the notations and symbols used in these rules.

Notation Description
VP,NP,PP Non-terminal symbols
ACT,JJACT, ING,CC,JJ,DT,IN,’,’ Terminal Symbols
() Operator applies to every element in parentheses
* Repeat one or more times
? zero or one time
| Logical ”OR” Operator

Table 3.2: Rules Notation Description

Symbol Description
ACT,JJACT,ING Semantic Tags
CC Coordinating conjunction
JJ Adjectives
DT Determiners
IN Preposition

Table 3.3: Description of Non-Terminal Symbols

The rule 1 is used to extract relationship information when there is an action

followed by one or list of ingredients e.g. ”peel potatoes, onion and carrots.” here

”peel” is related with ”potato”,”onion” and ”carrot”. As a result, we extract three

relationships i.e. ”Potato(peel)”,”Onion(peel)” and ”Carrot(peel)”.

The rule 2 is used to extract relationship information when there is an action

that is being applied to two ingredients which are separated by preposition. This is

the case with text like ”Marinate chicken with yogurt”. Currently, we have not been

able to devise a way to say that either ”Marinate” is being applied to chicken only

or both chicken and yogurt. In this case, we extract two relationships from this text

i.e. Chicken(marinate) and yogurt(marinate).

The rule 3 is applicable when there is an action that is being followed by a

preposition and then a noun phrase which contain ingredient. ”Beat in egg and egg

white” is the piece of recipe text where this rule is applicable.

The rule 4 is a special kind of rule. In recipes, the text contains two type of

information. One type of information is about ingredients and their quantities and

other is the set of sequential steps. Sometimes when listing ingredient and their

quantities the author of the recipe specifies the actions that must have been performed

before applying further steps. Like ” 1 kg of chopped potatoes”, here protatoes must
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have been chopped before using in this recipe. Therefore, we extract ”Potato(chop)”

as relation from this text.

The rule 5 is also another kind of special rule. This rule is associated with

discourse analysis. When none of the above rule is applicable and the piece of recipe

text does not contains an ingredient then rule comes into play. The example of

this rule is ”Bake 350 F,30 mins.”. In this text, there is no ingredient that has to be

baked. Therefore its necessary to analyze this sentence with help of previous sentence

to indentify which ingredient is related with bake. See discourse analysis section for

further details.

The rule 6 & 7 are the sub-rules that are used in rule 1 to 5.

The Fig. 3.3 shows an example of how these patterns are matched in recipe text.

The blue text shows that pattern 1 is matched with text, green color shows pattern

3 matches and brown color shows pattern 5 while text in black is not matched.

Figure 3.3: Shallow Parsing of Recipe

The sample output of this example would be as ”sugar(cream)” , ”softening(cream)”,

”egg(beat)”, ”buttermilk(add)”, ”banana(add)”, ”flour(combine)”, ”soda(combine)”,

”salt(combine)” and at the end everything formed so far is baked i.e. ”bake(allingredients)”.

The last information is extracted using discourse analysis as discussed in section 3.2.

3.1.5 Implementation

We have developed our suggested information extraction approach for extracting

ingredients, actions and their relationships using a shallow parser. We have developed

this parser in java language. All the program source code and relevant data for this

parser is available in accompanied CD with this thesis.

The parser takes the sentences one by one. It first indentifies if there is any

ingredient and action in the sentence. For this purpose, the sentence is first tokenized

and tag with POS tag using our custom built POS tagger. For tokenization, we
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simply take into consideration white spaces and punctuations. The tokens in the

tagged sentence are then searched for ingredients and actions using dictionaries. The

identified ingredients and actions are appropriately marked with <ING>, <ACT>

and <JJACT> semantic tags.

After tagging, the parser then applies the shallow parsing rules 1 to 5(presented

in previous section) in priority order. If any of the rule is applicable to the chunk

(a technical term used to refer piece of text to which shallow parsing rule is applied

successfully) , the ingredient-action relationships are created for the ingredients and

actions presented in the chunk. Our parser does not create the overlapping chunks

means if one rule is applied on one chunk then the second chunk will start after the

first one ends but not in between the first one.

3.2 Dependency Based Information Extraction

In this approach of information extraction, we are going to use well know syntax

analysis technique called Dependency based parsing. In this technique the syntactic

analysis of text is based on dependencies between words within a sentence. The

syntactic structure of sentence is determined by the relation between a word (a

head) and its dependents.

Dependency relations among the words of a sentence can be represented as a

graph. More specifically, the dependency structure for a sentence w = w1...wn is the

directed graph on the set of positions of w that contains an edge i− > j if and only

if the word wj depends on the word wi. In this way, just like strings and parse trees,

dependency structures can capture information about certain aspects of the linguistic

structure of a sentence. As an example, consider Fig. 3.4. In this graph, the edge

between the word ”likes” and the word ”John” encodes the syntactic information

that ”John” is the subject of ”likes”. When visualizing dependency structures, we

represent (occurrences of) words by node, and dependencies among them by arrows:

the source of an arrow marks the governor of the corresponding dependency, the

target marks the dependent.

Figure 3.4: Dependency Tree
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3.2.1 Dependency Based Parsing

There are various tools available for dependency base syntax analysis. For our ex-

periment in this thesis, we use Stanford Lexicalized Dependency Parser[29]. The

Stanford parser can output typed dependency between pair of words. Here typed

dependency means each dependency is accordingly marked either as subject, object,

modifier etc.

The Stanford typed dependencies representation provides a simple description

of the grammatical relationships in a sentence that can easily be understood and

effectively used by people without linguistic expertise who want to extract textual

relations. It represents all sentence relationships uniformly as typed dependency re-

lations between pairs of words, such as ”the subject of distributes is Bell.” This sort

of representation is quite accessible to non-linguists thinking about tasks involving

information extraction from text and is quite effective in relation extraction applica-

tions. Following is an example English sentence and it dependency relationship. This

example has been taken from Stanford typed dependency manual[29] provided with

the Stanford Parser.

”Bell, based in Los Angeles, makes and distributes electronic, com-

puter and building products.”

The Stanford Dependencies (SD) representation is:

nsubj(makes-8, Bell-1)
nsubj(distributes-10, Bell-1)
partmod(Bell-1, based-3)
nn(Angeles-6, Los-5)
prep in(based-3, Angeles-6)
conj and(makes-8, distributes-10)
amod(products-16, electronic-11)

conj and(electronic-11, computer-13)
amod(products-16, computer-13)
conj and(electronic-11, building-15)
amod(products-16, building-15)
dobj(makes-8, products-16)
dobj(distributes-10, products-16)

This maps straightforwardly onto a directed graph representation, in which words

in the sentence are nodes in the graph and grammatical relations are edge labels.

Fig. 3.5 gives the graphical representation for the example sentence above.

The details for all the typed dependencies can be found in ”Stanford Typed

Dependency Manual”[29].

The Stanford parser provides different styles of dependency representation. Cur-

rently, there are four variant of type dependency representation. The representation

format is same for all i.e abbreviated relation name(governor, dependent). The dif-

ference are that they range from a more surface oriented representation, where each

token appear as the dependent in a tree, to a more semantically interpreted repre-

sentation.
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Figure 3.5: Dependency Tree

Basic

In the basic type dependency representation, each word ( except for the head word) is

related to( or dependent on ) other word and. This typed dependency representation

form a tree structure. For example for the sentence, ”Bell, a company which is based

in LA, makes and distributes computer products”, the typed dependencies will be

follow whereas the corresponding tree structure is shown in Fig. 3.6.

nsubj(makes-11, Bell-1)
det(company-4, a-3)
appos(Bell-1, company-4)
rel(based-7, which-5)
auxpass(based-7, is-6)
rcmod(company-4, based-7)

prep(based-7, in-8)
pobj(in-8, LA-9)
cc(makes-11, and-12)
conj(makes-11, distributes-13)
nn(products-15, computer-14)
dobj(makes-11, products-15)

Collapsed Dependencies

In the collapsed representation, additional dependencies are considered, even ones

that break the tree structure (turning the dependency structure into a directed graph).

So in the above example, the following relations will be added:

ref(company-4, which-5)
nsubjpass(based-7, which-5)

These relations do not appear in the basic representation since they create a cycle

with the rcmod and rel relations. Relations that break the tree structure are the ones

taking into account elements from relative clauses and their antecedents (as shown

in this example), as well as the controlling (xsubj ) relations.
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Figure 3.6: Dependency Tree for Basic Representation

Furthermore, dependencies involving prepositions, conjunct and information about

the referent of the relative clauses are collapsed to get the direct dependencies be-

tween content words. This is very useful in relation extraction application. In the

above example, the preposition ”in” will collapse following two relations into one

relation.

prep(based-7, in-8)
pobj(in-8, LA-9)

=⇒ prep in(based-7, LA-9)

Similary for conjunction

cc(makes-11, and-12)
conj(makes-11, distributes-13)

=⇒ conj and(makes-11, distributes-13)

At the end, the following typed dependencies are obtain from the standford parser

for our example sentence. The corresponding tree structure is shown in Fig. 3.7.

nsubj(makes-11, Bell-1)
det(company-4, a-3)
appos(Bell-1, company-4)
nsubjpass(based-7, company-4)
rel(based-7, which-5)
auxpass(based-7, is-6)

rcmod(company-4, based-7)
prep in(based-7, LA-9)
conj and(makes-11, distributes-13)
nn(products-15, computer-14)
dobj(makes-11, products-15)
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Figure 3.7: Dependency Tree for Collapsed Dependency Representation

Collapsed Dependencies with Propagation of Conjunct Dependencies

When there is a conjunction, we can also get propagation of the dependencies in-

volving the conjuncts. In the sentence here, this propagation will add two depen-

dencies to the collapsed representation; due to the conjunction between the verbs

”makes” and ”distributes”, the subject and object relations that exist on the first

conjunct (”makes”) will be propagated to the second conjunct (”distributes”). The

tree structure shown in Fig. 3.8 highlights this change.

nsubj(distributes-13, Bell-1)
dobj(distributes-13, products-15)

Since this representation is an extension of the collapsed dependencies, it does

not guarantee a tree structure.
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Figure 3.8: Dependency Tree for Conjunct Propagation Representation

Collapsed Dependencies Preserving a Tree Structure

In this representation, dependencies which do not preserve the tree structure are

omitted. As explained above, this concerns relations between elements of a relative

clause and its antecedent, as well as the controlling subject relation (xsubj ). This

also does not allow propagation of conjunct dependencies. In our example, the

dependencies in this representation will be following and corresponding tree structure

is shown in Fig. 3.9.

nsubj(makes-11, Bell-1)
det(company-4, a-3)
appos(Bell-1, company-4)
rel(based-7, which-5)
auxpass(based-7, is-6)

rcmod(company-4, based-7)
prep in(based-7, LA-9)
conj and(makes-11, distributes-13)
nn(products-15, computer-14)
dobj(makes-11, products-15)
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Figure 3.9: Collapsed Dependency Preserving a Tree Structure Representation

3.2.2 Ingredient, Action and their Relationship Extraction

We experiment Stanford typed dependency parser for extracting ingredient, action

and their relationship. The following Fig. 3.10 depicts the overall schematic approach

of Dependency Based Information Extraction process.

Figure 3.10: Dependency Based Information Extraction

As depicted in figure, there are four major components of ”Dependency Based

Information Extraction” process. There are two processes (Stanford Parser and Typed

Dependency Analyzer) which are fully automatic while the two dictionaries (Ingredient

and Action) are manually created from a corpus. As in the case of our Rule Based

information extraction approach, the ingredients and actions are indentified using

dictionaries. But one of the main advantages of using dependency parsing approach
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is that relationship extracting become trivial. There is no need to form grammatical

rule to extract relation rather relationship information is provided as a part of output

from parser. Similarly as in the case of Rule Base extraction, morphological analysis

is necessary for searching of word in the dictionaries.

In our experiment, we work with ”Collapsed dependencies with propagation of

conjunct dependencies” representation format. This format is very useful in extraction

of relationship information between actions and ingredients even if they are separated

by many words. Collapsed dependencies representation format is also handy in dealing

with preposition as we don’t have to traverse through preposition dependency to look

for dependent ingredient of action. For example, in the sentence ”Beat in egg”. The

basic dependency format provide following representation.

prep(Beat-1, in-2)
pobj(in-2,egg-3)

In this output, if it is to find what ingredient is related to ”beat” action then two

relations ”prep” and ”pobj” would have to be analyzed. While collapsed dependency

provides

prep in(Beat-1, egg-3)

which is very easy to capture relationship information.

After parsing the sentence, we look for the relation in which governor is action

and dependent is ingredient or governor is ingredient and dependent is action. When

such relationships are indentified we call them Ingredient-Action relationship in our

domain. For example consider following sentence.

”Scrub potatoes and pat dry.”

After parsing the sentence with Stanford parser, we get following dependencies.

nn(potatoes-2, Scrub-1)
dep(dry-5, potatoes-2)
conj and(potatoes-2, pat-4)
dep(dry-5, pat-4)

Suppose ”potato” is present in our ingredient dictionary and ”scrub” and ”dry”

are present in action dictionary then following Ingredient-Action relationship are ex-

tracted.

potato(scrub,dry)

”scrub” and ”potato” are related because there is a dependency relation between

these two as shown in example above. In this relation ”potato” is governor and

”scrub” is dependent. Similarly, ”dry” and ”potato” are also related because there is
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a dependency relation between them. We don’t take into consideration dependency

type through which words are related. Furthermore, we don’t also take into consid-

eration the validity of relation i.e. normally in dependency parsing verbs are governor

but here in our example above ”scrub” is a verb but it’s a dependent of potato which

is noun.

3.3 Discourse Analysis for Information Extraction

Discourse referents are the linguistic terms that stand in place of other linguistics

terms in the text. One of the famous examples of discourse referent is ”Anaphora”.

Anaphora is the ”pronouns” that stand in place of some other ”nouns” mostly proper

nouns. In the recipe text, we come across with anaphora various times. So there is

a need to resolve anaphora before processing.

Another sort of discourse referent present in recipe text is the ”Ellipsis”. ”Ellipsis”

refers to the omission from a clause of one or more words that would otherwise be

required by the remaining elements. The omitted information can be derived from

the context.

There are various theories and techniques to handle discourse referent in text such

as Discourse Representation Theory (DRT) [21]. But we will apply simple approach

to discourse handling in this thesis. Let us consider the following two sentences that

are the excerpt from the recipe.

”sprinkle over potato mixture. Bake.”

In second sentence, it has not been specified explicitly what is to be baked but from

the discourse or information available from the first sentence, it can be derived that it

is the potato mixture that needs to be baked. To cater this problem, the semantics of

each step has to be analyzed. Since it can be observed from recipe text that there are

some inputs and outputs of each step, the input can be any ingredient defined in the

recipe or mixture that has been formed till now and output is the action performed

on them. Input can be missing or present; if it is present then it is referred by its

name but if missing then it is assumed that last step output has been referred here.

For this purpose, a list is maintained for the output of each step and this list is

presented to text analyzer for the next step analysis. Here in above example, the

”Bake” action does not define any direct object to be baked; therefore it is assumed

that the output of last step is bake and that is potato mixture. Similarly, anaphoras

are resolved with output of last step.

3.4 Evaluation

We apply our Rule Based and Dependency Based information extraction approaches

on recipe corpus of 43 recipes which were randomly selected from internet. We have
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developed this corpus for the purpose of evaluating our approaches. The corpus only

contains evaluation data. This data is totally independent form the data that was

used for the purpose of analysis of rules for our Rule Based approach. Whereas, the

dependency parser that we have used for Dependency Analysis is already trained.

So, our evaluation corpus is completely unseen for both approaches. This corpus

contains 50 ingredients and 43 actions. Each recipe in the corpus has corresponding

annotations that describe what information should be extracted from that recipe. The

recipes have been manually annotated for the purpose of automatically evaluating

our information extraction approaches. To evaluate our both information extraction

approaches, we are interested in calculating the accuracy using the standard measures

of ”Precision” and ”Recall”.

We have implemented both of our Information Extraction approaches in JAVA

language. A parser has been developed for our rule based approach that utilizes the

rules presented in rule base information extraction section. The detailed information

about this parser has been presented in section 3.1.5. The parser is accompanied

by custom trained brill’s part of speech tagger. This tagger works in python using

NLTK tool kit and has been custom trained on manually annotated(at Part-of-Speech

level) corpus of recipes. Note that this corpus is different from our evaluation corpus

described above. The tagger and corpus were created by students of Orpailleur Group

at Loria, University of Nancy 2, France. Furthermore, for morphological analysis,

Stanford morphological analysis engine has been used that is provided as a part of

Stanford POS tagger [32]. For dependency base parsing, we have used Stanford

Dependency Parser [29]. All the program source code and relevant data is provided

in accompanying CD with this thesis.

3.4.1 Precision & Recall

In Information Extraction domain, Precision describes the quantity of relevant infor-

mation extracted in total amount of information extracted. It is represented in term

of mathematical formula as

Precision = Relevant Information / Total Information.

On the other hand, Recall is the measure of how much relevant information

extracted in overall relevant information. i.e.

Recall = Relevant Information extracted / Total Relevant Information

Let us consider an example of how precision and recall are measured in our

experiment. We consider the following recipe from our experiment. The Table. 3.4

shows the contents of the recipe and the information that should be extracted from

this recipe.
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Recipe Manually Extracted Information
6 To 8 potatoes Onion(chop,fry)
2 tb To 4 butter of lard Potato(peel,slice,fry,brown)
Salt & pepper
1 Onion chopped
Peel and slice potatoes.
Heat fat in a large skillet until hot, add potatoes.
Fry well, turning occasionally, until nice and brown.
Add onion and fry a few minutes more.
Season with salt and pepper.

Table 3.4: Recipe and Relevant Extracted Information

In manually extracted information, there are 6 ingredient-action relations. We

consider onion(chop) as single relation. There are two ingredients onion and potato

that are of interest. Onion has two actions related to it and potato has four actions

related to it.

When we applied our Rule Based and Dependency Based Information Extraction

approaches the results shown in Table. 3.5 were obtained.

Rule Based Information Extraction Rule Based Information Extraction
Onion(chop) Onion(chop,fry)
Potato(peel,slice) Potato(peel,slice)

Table 3.5: Rule Based and Dependency Based Extracted Information

We now calculate the precision & recall measure for the two approaches.

Rule Based Approach

The following are the statistic obtained from the results.

Total relation(s) from Manually Extracted Information = 6

Total relation(s) from Rule Based Information Extraction = 3

Correct relations from Rule Based Information Extraction = 3

Precision = (No. of Correct rel. *100/ Total rel.) %

= 3*100/3 = 100%

Recall = (Total correct rel. *100 / Total rel. in text) %

= 3*100/6 = 50%

The precision for Rule based approach is 100% because of the fact that whatever

relations have been extracted are correct whereas recall is 50% because this approach
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could not extract 50% of the relations that should have been extracted.

Dependency Based Approach

The following are the statistic obtained from the results.

Total relation(s) from Manually Extracted Information = 6

Total relation(s) from Dependency Based Information Extraction = 4

Correct relations from Dependency Based Information Extraction = 4

Precision = (No. of Correct rel. *100/ Total rel.) %

= 4*100/4 = 100%

Recall = (Total correct rel. *100 / Total rel. in text) %

= 4*100/6 = 66.66%

The precision for Dependency based approach is 100% because of the fact that

whatever relations have been extracted are correct whereas recall is 66.66% because

this approach could only extract 66.66% of the relations from the text.

3.4.2 Rule Based Approach

We applied our rule base information extraction approach on the data using all the

settings explained previously. The following table presents the ”Precision” and ”Re-

call” measure of our rule base approach on manually annotated recipe corpus.

Method Precision Recall
Rule Based 97.39414% 51.54639%

Table 3.6: Rule Based Information Extraction Results

The results show that precision measure for the rule base approach is very sat-

isfactory but the recall measure is quite disappointing. This shows that our Rule

Based approach is able to extract information which is mostly relevant i.e. it is not

extracting noise from the corpus. But Rule Based approach is not able to collect all

the information from recipe corpus. That’s why recall measure is low.

Error in Precision

The precision measure for the Rule Based approach is around 97%. But our intension

was to develop rules that give us 100% accuracy. To find out the reason for error

in precision, we looked more closely into our data. It was found out that the main

reason of error in precision for Rule Based approach is due to the discourse analysis.
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Since we are not performing complete analysis of sentence, sometimes our parser

does not analyze the ingredient-action relations effectively.

For example, consider the following two consecutive sentences in a recipe.

”Wash and dice chicken. Boil broth in a big pan.”

The information extracted by our Rule Based approach is ”Chicken(wash,dice,boil)”.

The ”Boil” action should not have been extracted as it is not associated with chicken.

Keep in mind that we don’t take into consideration ”broth” as ingredient and it is

also not present in our ingredient dictionary.

When we deeply analyzed our parser, it turned out that during the analysis of

second sentence by the parser, none of our top 4 rules presented in section 3.1.4 could

be successful. The rule 5 is then only choice and it is applied to the second sentence

successfully and identifies ”Boil” as an action. Since none of our rules could detect

that there is an object associated to ”Boil” action, therefore our parser analyzes it

as action alone. In this situation, discourse analysis comes into play and associates

output of last sentence as possible input to the second sentence. Therefore, our

parser detects as ”Boil” is being applied to ”Chicken”. This situation can be avoided

if we are able to analyze sentence completely.

Error in Recall

The reason for low recall measure is limited set of rules and very simple handling

of discourse. As a human being, we are intelligent enough to capture discourse of

running text very efficiently which is reflected by our annotated corpus. But our

discourse analysis technique described in previous section is not efficient enough to

handle discourse like human beings. In recipe, discourse is span over complete text

of recipe while our discourse analysis is only span over two sentences.

Role of Discourse Analysis

For the purpose of analyzing the behavior of our discourse analysis technique in recipe

text, we perform another experiment in which we don’t make use of our discourse

analysis technique. The results of experiment are as follow.

Method Precision Recall
Rule Based 98.75776% 32.37113%

Table 3.7: Rule Based IE Results without Discourse Analysis

As shown by the results, our precision measure is getting little bit higher while

recall measure notably decreased. It shows that even though we are applying simple

technique for discourse analysis, it gives 19% improvement in recall.
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Comments

Hence we conclude that rules developed for information extraction from recipe text

are good enough to give better results provided that all the possible rules are available.

Furthermore, these rules should be accompanied by good discourse analysis technique.

3.4.3 Dependency Based Approach

We applied our Dependency Based approach on the same data using same setting

as in the case of Rule Base approach. The following results were obtained which

highlight the ”Precision” and ”Recall” measure.

Method Precision Recall
Dependency Based 95.39877% 64.12371%

Table 3.8: Dependency Based Information Extraction Results

Similar to rule based approach, the precision measure is reflecting satisfactory

accuracy while the recall measure is better than Rule Based Approach but still not

appreciating. It shows that dependency base approach is also able to extract correct

information but is not capable of extracting all the correct information present in the

corpus.

Error in Precision

There are two main reasons of error in precision for Dependency Based approach. One

is Discourse Analysis technique and other is over-parsing by Stanford Dependency

parser. The discourse problem is same as discussed in ”Rule Based approach” while

over-parsing problem is discussed in section 3.4.4.

Error in Recall

The reason for this low recall measure is the handling of discourse in a simple manner.

Role of Discourse Analysis

To analyze the effect of discourse in Dependency Base approach, we perform another

experiment in which we eliminate our discourse analysis technique. As a result,

following precision and recall measure is obtained.

Method Precision Recall
Dependency Based 95.71428% 41.44330%

Table 3.9: Dependency Based Information Extraction Results without Discourse
Analysis
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As shown by the results, this time precision measure is more or less the same

while recall measure notably decreased. The recall has droped from 64% to 41%.

This shows that our discourse analysis technique is somehow reasonable.

Comments

Hence we conclude that Dependency Based approach is also good enough to give

better results if error related to over-parsing could be eliminated. If it is accompanied

by good discourse analysis technique, the recall can also be further improved.

3.4.4 Comparison of Results

The following table presents the comparative analysis of the Rule based and Depen-

dency Based approaches.

Method Precision Recall
Rule Based 97.39414% 51.54639%

Dependency Based 95.39877% 64.12371%

Table 3.10: Comparison of Dependency Based and Rule Based Information Ex-
traction Results

Comparision of Precision

It is interesting to note that precision measure for Rule Based approach is higher than

Dependency Base approach. It shows that rules developed for Rule Based approach

are only extracting information for which these are meant for. While Dependency

Based approach is extracting little erroneous information.

After the close analysis of our recipe corpus, it is found that the main error in

precision in Dependency Based approach is the presence of sentence like

”Combine beaten eggs with vinegar, sugar, and pepper; mix to blend

well.”

Which gives following dependency representation.

nsubj(beaten-2, Combine-1)
dobj(beaten-2, eggs-3)
nn(pepper-10, vinegar-5)
prep with(beaten-2, sugar-7)
conj and(pepper-10, sugar-7)

prep with(beaten-2, pepper-10)
dep(pepper-10, mix-12)
aux(blend-14, to-13)
infmod(mix-12, blend-14)
advmod(blend-14, well-15)

Here the dependencies in red color should not be extracted. But due to preposition

propagation applied during parsing, the result is in some incorrect dependencies.
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Comparision of Recall

In case of recall, Dependency Based approach out-performs Rule Based approach.

Note that the discourse analysis (the major technique that is responsible for increase

in recall) is same for both approaches. But this accuracy in recall is due to the

fact that Dependency Based parsing is capable of handling natural dependencies

effectively especially long distance dependencies which Rule Based approach is not

able to cater.

After analyzing the recipe text present in our corpus on which the experiments

were performed, it is found that Dependency Based parser is capable of extracting

ingredient-action information in the following type of sentences as show in table 3.11

while there is no rule to handle such sentences in Rule Based approach. Moreover,

inherent error in POS tagging is also contributing in low recall in Rule Based approach.

Sentence Dependency Parse Ingredient-Action
Add onions and fry dobj(Add-1, onions-2) Onion(Fry)
until golden. dobj(Add-1, fry-4)

conj and(onions-2, fry-4)
prep until(Add-1, golden-6)

Peel potatoes and cut dobj(Peel-1, potatoes-2) Potato(Peel,Cut)
into large pieces. dobj(cut-4, potatoes-2)

conj and(Peel-1, cut-4)
amod(pieces-7, large-6)
prep into(cut-4, pieces-7)

Table 3.11: Sentences where Dependency Bassed approach works while Rule
Based approach does not.

Comments

According to experiments performed, we would suggest that ”Dependency Based

Parsing” approach for information extraction could be better for scenarios discuss in

this text. It is giving good recall due to the better analysis of dependency structure

in the text. Furthermore, recall can be further increased if more effective discourse

analysis technique could be used.

3.5 Conclusion

This chapter addressed the textual domain of work of this thesis i.e. textual document

of cooking recipes. The chapter discussed one of the main tasks of our annotation

process i.e. Information Extraction (IE) from recipe document. Two main tech-
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niques have been discussed namely ”Rule Based Approach” and ”Dependency Based

Approach”.

In Rule Based Approach, many issues pertaining to IE from recipe document

were highlighted such as POS-Tagging, Morphological Analysis, how ingredients,

actions and their relationship information is extracted. The chapter then presented

the techniques to handle all of these issues. POS- tagging problem was solved by

custom training a tagger on manually annotated recipe corpus. Dictionaries were used

to indentify ingredient and actions in the text. Grammatical rule were developed to

extract ingredient-action relationships.

In Dependency Based Approach, Stanford Dependency Parser was used for de-

pendency parsing of recipe text. The dependency parsing indentifies the potential

relationship between words in the text. These relationships are further analyzed for

ingredient-action relationship. At the end of chapter, experiments and results were

presented to describe the effectiveness of two techniques.





Chapter 4

Automatic Ontology

Construction from Text

The semantic annotation model that we are following in this thesis requires ontology

as main resource. But the big problem for the accomplishment of our SA objective is

the unavailability of ontology that represent prototype for ingredient. In this chapter,

we will propose an ingredient ontology for our SA process and method to built it

automatically from recipe corpus.

4.1 Tools and Techniques for Ontology construction

The automatic ontology construction is not a trivial task and still require lots of hu-

man intervention between some stages of ontology construction. There are various

approaches and tools available for automatic construction of ontology from natural

language text. In [7], the authors present an interesting overview of the ontology

generation layers. According to them, it consists of six extraction layers of growing

complexity: terms, synonyms, concepts, taxonomy, relations and rules. A number of

systems have been proposed for ontology learning from text. These systems combine

one or more of the six layers mentioned above. Examples of systems are InfoS-

leuth [20], Text-To-Onto [26], Ontolearn [27], OntoLT [8] and GlossOnt [28].

Most of these systems exploit linguistic analysis and machine learning algorithms to

find interesting concepts and relationships.

Apart from these system, Formal Concept Analysis (FCA) [5] approach has also

been used for ontology generation. FCA based approach is based on application of

Natural Language Processing (NLP) and Formal Concept Analysis (FCA) [14]. In

this approach the NLP techniques are applied for extraction of factual information

from textual documents and represented in structured form. Then FCA is applied

that results in graphical representation of concepts in the form of concept lattice. In

39
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this thesis, the FCA approach is applied to build ingredient ontology automatically.

This approach is useful for automatic detection of conceptual information and their

relations. Following is the detail description of what is the ingredient ontology and

its requirement, and how the FCA can be used for construction of such ontology.

4.2 Building Ingredient Ontology

In this thesis, for the purpose of semantic annotation of textual documents of cooking

recipes, an ontology is required that describes the recipe according to preparation

prototypes of ingredients. Here, preparation prototype means what set of culinary

actions can be performed on an ingredient in a recipe. In our hypothesis, this kind of

information about ingredient could be useful for replacing an ingredient in a recipe

with any other ingredient. In support of our hypothesis, we present the complete

annotation process using this kind of ingredient ontology in chapter 5.

Unfortunately, this ontology is not available, therefore we build ingredient ontol-

ogy using formal concept analysis approach. We apply formal concept analysis on

relation schema. The objects of schema are the recipes containing the ingredient and

attributes are the culinary actions performed on these ingredient. The FCA then pro-

duces the conceptual grouping of recipes of ingredients according to culinary actions.

This sort of conceptual grouping is useful in searching the data as it indexes the

recipes which speed up searching process. Otherwise searching in relational schema

will be quite expensive. Furthermore, relational schema does not support queries to

find out subsumption relationships between set of objects. All these scenarios im-

pelled us to use FCA for creating ontology and Description Logic for reasoning over

the ontology knowledge base.

In this section, first we present what FCA is. Then, we describe the process

of creating ingredient ontology using FCA. We also discuss Description Logic(DL)

for the representation of conceptual information contained in Concept Lattice for

reasoning over ontology knowledge base.

4.2.1 Formal Concept Analysis

Formal Concept Analysis (FCA) is an approach to identify structure present in do-

mains. Introduced by Wille (see [14] for an overview), FCA is based on a complete

lattice of all formal concepts in a domain. A concept in this formalism is an ordered

pair of sets, one a set of attributes or descriptors of the concept, the other a set of

object indices denoting all instances of the concept in the domain. The set of de-

scriptors of a concept is the maximal set common to all the instances of the concept.

These concepts form a partial order from which a concept lattice is constructed. A

detailed coverage of Formal Concept Analysis (FCA) is in [14]. The following is the

brief description of FCA.
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Definition 1. (Formal context) A formal context is a triple ≺ G,M, I Â. G
is a set of objects, M is a set of descriptors, and I is a binary relation such that

I ⊆ G ×M
The notation ≺ y, x Â ∈ I or alternatively yIx is used to express the fact that

an object y ∈ G has an attribute or descriptor x ∈M.

Definition 2. (Formal concept) A formal concept is a pair of sets ≺ X, Y Â.

where Y ⊆ G and X ⊆ M. Each pair must be complete with respect to I, which

means that Y ′ = XandX ′ = Y , where Y ′ = {x ∈M|∀y ∈ Y, yIx} and X ′ = {y ∈
G|∀x ∈ X, yIx}

The set of descriptors of a formal concept is called its intent, while the set

of objects of a formal concept is called its extent. The formal conept is normally

represented in the form ≺ X, Y Â. For a set of descriptors X ⊆ M , X is the intent

of a formal concept if and only if X ′′ = X. A dual condition holds for the extent of

a formal concept. This means that any formal concept can be uniquely identified by

either its intent or its extent alone. Intuitively, the intent corresponds to a kind of

maximally specific description of all the objects in the extent.

The correspondence between intent and extent of complete concepts is a Galois

connection between the power set P(M) of the set of descriptors and the power set

P(G) of the set of objects. The Galois lattice L for the binary relation is the set of

all complete pairs of intents and extents, with the following partial order.

Definition 3. (Concept Order) Given two concepts N1 =≺ X1, Y1 Â and

N2 =≺ X2, Y2 Â,N1 ≤ N2 ⇐⇒ X1 ⊃ X2The dual nature of the Galois connection

means we have the equivalent relationship N1 ≤ N2 ⇐⇒ Y1 ⊂ Y2

For a concept N, I(N) denotes its intent and E(N) denotes its extent.

4.2.2 FCA for building Ingredient Ontology

Formal Concept Analysis(FCA) is a principled way of automatically deriving an ontol-

ogy from a collection of objects and their properties. It is basically a theory of data

analysis which identifies conceptual structures among data sets. A strong feature of

FCA is its capability of producing graphical visualizations of the inherent structures

among data. This graphical representation then can be converted to other formalism

for reasoning over conceptual information derived from FCA.

In this thesis, ontology is also constructed using FCA approach where formal

context are converted to concept lattice. Let us suppose that we have following

formal context as shown in table 4.1. This information has been extracted from

recipe text using the information extraction technique defined in chapter 3. In this

example, the objects represent the recipes involving potatoes and properties represent

action taken on potatoes in the recipe.

After the FCA process the concept lattice shown in Fig. 4.1 is obtained. Each

node in the concept lattice corresponds to single concept and in each concept ’I’

stands for intension (properties of concept) and ’E’ stands for extension (objects in
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Recipe/Potatoes Peel Bake Mash Boil
1 X X X X
2 X X
3 X X X
4 X X
5 X X

Table 4.1: Formal Context of recipes

concept). The concept ”0” and concept ”9” are most general and most specific

concept respectively. This classification hierarchy generated using FCA is referred to

as an ontology. For our case, it is called ”Ingredient Ontology”.

Figure 4.1: Concept Lattice

4.2.3 Ingredient Ontology Representation

Concept lattice is a graphical visualization of the structure in the data. This lat-

tice cannot be used for further reasoning over conceptual knowledge base. For this

purpose, the lattice needed to be translated into a formalism suitable for efficient

reasoning. Description Logic (DL) is one of the well defined formalism for this pur-

pose. An approach has been outlined in [19] for conversion from concept lattice to

DL.

The concept lattice depicted in Fig. 4.1 can be converted to DL representation

by using the technique defined in [19]. This paper also discuss Relational Concept

Analysis RCA in addition to FCA. Since relational information is not considered in

our topic, it won’t be discussed.

To convert the lattice, each property or intension (in our lattice property corre-

sponds to cooking or culinary actions) are defined as primitive concept in DL. Then
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each Concept (Node) in concept lattice is then defined as conjunction (u) of these

primitive concepts. This forms the TBox constructs in DL. Each instance in extension

of the concept in concept lattice is placed in ABox in corresponding concept of DL.

The final DL representation of concept lattice is shown in table 4.2

Concept TBox Abox
C1 Boil 1,2,3
C2 Mash 1,2,4,5
C3 Bake 1,3,4
C4 Peel 1,3,5
C5 C1uC2 1,2
C6 C1uC3uC4 1,3
C7 C2uC3 1,4
C8 C2uC4 1,5
C9 C1uC2uC3uC4 1

Table 4.2: DL Knowledge base for Lattice in figure 4.1

4.2.4 Structure of Ingredient Ontology

There are two ways in which we can construct our ingredient ontology. First is one

in which we consider the entire ingredient and construct a single ontology. The other

is one in which we consider one type of ingredient only e.g. potato, and construct

ontology for that type of ingredient. In the second case, there will be a separate

ontology for each ingredient.

For the purpose of analyzing the usefulness of the ontologies, we performed ex-

periment on following set of data.

Total Recipe 765 Total Ingredients 358 Total actions 63

For experiment, we collected ingredient-action relationship from above recipe

data using the approaches defined in chapter 3. We then apply FCA to construct

the ontologies. The script for creating lattice from extracted information is available

in accompanied CD with this thesis. The script creates the file that can be loaded

in Galicia [1] tool for the purpose of generating ontologies using FCA approach.

The following are the statistics of the two ontologies obtained as result of above

experiments.

Ontology Type Recipes Ingredients Actions Concepts
Combined Ingredient Ontology 765 2654 63 162
Single Ingredient Ontology 366 366 21 47

Table 4.3: Ingredient Ontology
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The two ontologies are not directly comparable as there are different numbers of

recipes used. But the close analysis of our data and resultant concept lattice struc-

ture encouraged us to conclude that combined ingredient ontology is not reasonable

because it might lose ingredient prototype information for some ingredient. For ex-

ample, suppose there are two ingredients, potato in recipe 1 & 2 and carrot in recipe

3, as shown in table 4.4.

Ingredient Peel Boil Bake
P1 X X
P2 X X
C3 X X

Ingredient Peel Boil Bake
P1 X X
P2 X X

Table 4.4: Combined Potato & Carrot Ontology on left side and Individual Potato
Ontology on right side

If we don’t consider C3, then potato has preparation prototype according to

ontology on right side of table 4.4. There are only two prototypes defined by concept

1 and 2. In both concepts, ”Peel ”action is necessary. While with C3, potato

prototypes increases to 5 as shown in left side of table 4.4. In this ontology, the

information that ”Peel” action is mandatory for potato is also lost. Hence we can say

that combined ontology causes increase in prototypes and cannot present prototype

information efficiently. We recommend here single/individual ingredient ontology for

our annotation process.
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4.3 Conclusion

This chapter discussed automatic ontology construction from text. Automatic ontol-

ogy construction is not a trivial task. This chapter highlighted different method or

techniques in this regard e.g. InfoSleuth [20], Text-To-Onto [26], Ontolearn [27],

OntoLT [8] and GlossOnt [28]. The chapter also gave a brief review of the Formal

Concept Analysis(FCA) based ontology construction process which is the technique

that is followed in building ingredient ontology in this thesis. The chapter showed

that how ingredient ontology can be built. For this purpose, two different ontology

experiments (one in which all the ingredients were included in ontology and other

one in which ontology representing single ingredient) were conducted to figure out

the best option. It was found that single ingredient ontology will be reasonable for

SA in our work and ultimately for recipe adaptation.





Chapter 5

Annotation Process

There are three step involved in our annotation process. This annotation process

uses the ingredient ontology described previously. The process involves extraction

of actions, ingredients, their mapping from the recipe text and representing this

information in a format suitable for ontology lookup, second step is ontology lookup

i.e. searching the appropriate concept in the ontology corresponding to ingredient-

action information extracted, and third is representing these annotations. Note that

we do not provide any evaluation for our annotation process. The reason for not

providing evaluation is the unavailability of standard techniques for evaluation and

subsequent difficulty in development of corpus for evaluation.

In the following sections, these steps are described in more detail.

5.1 Ingredients-Actions Extraction

Let us formally describe what kind of information is required for annotation pro-

cess. Let us suppose that there is a recipe ”R” with ingredients I1, I2, I3...In. In

recipe ”R”, there are some set of culinary actions that are performed on ingredients.

We want to extract information about ingredient ”I” in this recipe with correspond-

ing culinary actions and represent this information in a format suitable for ontology

lookup. Let us suppose that ingredient ”I” has action A1, A2, A3...An performed on

it in the recipe ”R”. This information is extracted according to process defined in

section 3.3 in chapter 3. This information is then represented in DL format as follow

IR = A1 uA2 uA3 u ... uAn

Suppose that we have the following recipe of potato. We follow here the step by

step algorithm defined in chapter 3 for extracting information from this example.

47
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”...Boil potatoes................................ Bake potatoes 220C in oven................”

POS Tagging

After POS-tagging the recipe looks as follow.

”...Boil/VB potatoes/NNS................................ Bake/VB pota-

toes/NNS 220C/NN in/IN oven/NN................”

Tagging Ingredients and Actions

Using dictionary, the ingredient (Nouns) and actions (Verbs) are searched and are

tagged with ”ING”and ”ACT” respectively.

”...Boil/ACT potatoes/ING................................ Bake/ACT pota-

toes/ING 220C/NN in/IN oven/NN................”

Ingredient-Actions Mapping

Using our grammar rules defined in chapter 3, two patterns are matched. ACT ING

(Boil potatoes, Bake Potatoes). At the end, the new ingredient prototype that is

extracted from the recipe is represented in DL as

Potato = Boil uBake

5.2 Ontology Lookup

Now the task here is to look up the extracted prototype in ontology. There are two

types of ontology lookup

1. Look for equivalent concept in ontology i.e. IR ≡ Ci where IR is the ingredient

”I” in recipe ”R” and Ci is a concept in ontology.

2. If equivalence relation does not hold, look for subsumption relation i.e. IR @ Ci.

This can be done using well defined inference algorithm for Description Logic like

Structural Subsumption and Tableaux. We will only discuss how structural subsump-

tion can be used for this task.

In structural subsumption technique, the syntactic structures of normalized con-

cepts are compared to check the consistency of the knowledge. In this reasoning

technique, the DL has following form which belongs to FL0 family of DL
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C,D =⇒ A |(atomic concept)
C u D |(intersection)
∀ R.C |(value restriction)

A concept is said to be in normalized form, if it has a following form

A1 u ... uAm u ∀R1.C1 u ... u ∀Rn.Cn

Let us suppose that we have following two concepts ’C’ and ’D’ in normal form

Normal form of C: A1 u ... uAm u ∀R1.C1 u ... u ∀Rn.Cn

Normal form of D: B1 u ... uBk u ∀S1.D1 u ... u ∀Sl.Dl

Then C @ D iff:

• for all i, 1 ≤ i ≤ k, there exists j, 1 ≤ j ≤ m such that Bi = Aj

• for all i, 1 ≤ i ≤ l, there exists j, 1 ≤ j ≤ n such that Si = Rj and Cj @ Di

Equivalence relation between concept ”C” and ”D” is defined in term of sub-

sumption relationship as

R ≡ C ⇐⇒ (R @ C u C @ R)

The structural subsumption algorithm is simply the comparison of all the primitive

concepts, sub concept and relations one by one. Since in our case, we don’t have any

relational information, therefore our DL syntax is quite simple. This syntax is more

or less similar to propositional logic. Therefore, the structural subsumption algorithm

will compare only primitive and sub concepts.

We classify extracted potato prototype(Potato = Boil u Bake) in our DL

knowledge base presented in table 4.2 to see which ontological prototype this new

prototype refers to. First it is check for equivalence relationship. Since there is no

prototype in equivalence relationship with potato prototype therefore ”Potato” in

given recipe cannot be annotated with any prototype using equivalence relationship.

This prototype is then searched for subsumption relationship and it is worked out

that

Potato @ C1 and Potato @ C3

Since, our new ingredient prototype could not be completely matched i.e. is not

equal to any prototype in ontology that’s why we will keep both annotation C1 and

C3 in our annotation representation for this recipe.

5.3 Representation of Annotation

The Fig. 5.1 presents the representation format used for representing our annotation.
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Figure 5.1: Representation format used for annotation

5.4 Use of Annotation

This kind of annotation can be used for many purposes such as efficient answering

of search queries, clustering, text summarization etc. Since our domain of work is

recipe document, we use this sort of annotation for adaption purpose.
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5.4.1 Adaptation

In recipe, adaption is the process of intelligently replacing ingredient(s) from recipe

with other ingredient(s) to make recipe adapted for replacing ingredient(s). In fol-

lowing examples, we show how recipe can be adapted using our annotation. Followig

are the rules for recipe adaptation.

1 - If both ingredients have same prototype, then simply replace instances of first

ingredient in text with second one. The information about traces of first ingredi-

ent in text is obtained from < INGREDIENTS > section in our annotation

format.

2 - If prototypes are not same then we have following two cases.

2.1 - Add Action - if the replacing prototype contains action that are not in

the current prototype then these action have to be accommodated. The

sentence is created in the format ”action followed by ingredient” e.g.

”Boil carrot” and put in the appropriate place in text.

2.2 - Delete Action - actions are deleted which are not possible for replacing

ingredient. Sentence containing action is deleted if there is no other

action in sentence or no other ingredient in sentence on which this action

is being performed. Otherwise if there is another action then sentence

is reformulated using the < ACTIONS > section in our annotation

representation without action which has to be deleted. If there are other

ingredients in the sentence on which this action is being performed then

delete the ingredient from this sentence and reformulate the sentence

using < ACTIONS > section.

5.4.2 A trivial Potato to Carrot Adaption

This example follows adaptation rule 1. For this example, the two ontology for potato

and carrot shown in Fig. 5.2 are considered.

Let us consider the following recipe. In this recipe, the red color text is culinary

actions and blue color text is ingredient(This scheme will be followed for all the

examples). Here we follow step by step approach to show the annotation and adaption

process

”Boil potatoes until done. Saute butter and garlic in large skillet.

Add potatoes and toss to coat. Put potatoes in baking dish; layer all

ingredients except for the sour cream. Bake potatoes until cheese is

melted.”

Step 1: Information Extraction

The above recipe is analyzed for extracting potato and culinary action performed on

potato. When our information extraction technique defined in section 5.1 is applied
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Figure 5.2: Potato and Carrot Ontology

on above recipe the following DL representation is obtained.

Potato = Boil uBake

Step 2: Ontology Lookup

The potato ontology in Fig. 5.2 is looked up using structural subsumption algorithm

to see any potato prototype matches with one defined by given recipe. It is found

out that there exists such prototype defined by prototype 6 as shown by red circle in

Fig. 5.2. Therefore, the recipe is annotated with prototype 6 in potato ontology.

Step 3: Representation

The Fig. 5.3 shows the final representation of our annotation. In ingredient sections,

we have only shown potato for simplicity. Its annotation in ontology is prototype 6

i.e. ”C6”.

Step 4: Adaptation

Is it possible to adapt given potato recipe for carrot?. Let see if it is possible. Potato

here is described by ”Potato (Boil, Bake)” prototype. As we have already developed

ingredient ontology for each ingredient, we search for our carrot ontology for best

prototype that can replace potato here. It is found that the prototype ”Carrot (Boil,

Bake)” exists in carrot ontology as shown by red circle on right side of Fig. 5.2.
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Figure 5.3: Representation of annotation for example recipe

Therefore, adaptation is trivial string replacement between potato instances found in

the text with carrot. The <INGREDIENTS> section in our annotation format tells

us that Potato should be replaced at 2nd, 15th, 22th and 36th position in text. Since

no action is being changed so sentence reformulation is not required. The adapted

recipe is

”Boil carrots until done. Saute butter and garlic in large skillet. Add

carrots and toss to coat. Put carrots in baking dish; layer all ingredients

except for the sour cream. Bake carrots until cheese is melted.”

5.4.3 Adaption using Deletion of Actions

Now consider following example. For this example, the ontology shown in Fig. 5.4 is

used. The ontology on left side is for potato and on right side is for cabbage.
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”Peel potatoes and cut into large pieces. Boil in salted water for

15 to 20 minutes, or until tender. Drain potatoes. Mash potatoes in

large bowl. Add milk in small amounts, beating after each addition,

until desired consistency is reached. Add butter, 1/4 teaspoon salt, and

pepper. Beating until mashed potatoes are light and fluffy.”

Figure 5.4: Patato and Cabbage Ontology

Step 1: Information Extraction

Our information extraction technique produces following DL represention for the

potato in this recipe.

Potato = Peel u Cut uBoil uDrain uMash uBeat

Step 2: Ontology Lookup

The ontology look up process annotates the recipe with prototype 9 in the potato

ontology as shown in Fig. 5.4 using red circle.

Step 3: Representation

The Fig. 5.5 shows the final representation of our annotation. In ingredient sections,

we have only shown potato for simplicity. Its annotation in ontology is prototype 9

i.e. ”C9”.

Step 4: Adaptation

Now, we want to cook mashed potato but unfortunately we don’t have potato avail-

able. Instead, we have cabbages. Can we turn this recipe into mashed cabbages

recipe? After searching our ontology of cabbages, we found that there is no proto-

type that matches with mash potato recipe. Then, we search for any subsumption
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Figure 5.5: Representation of annotation for example recipe

relation and it is found that we have cabbages recipe that has prototype ”cabbage

(Cut, Boil, mash)” as shown in cabbage ontology in Fig. 5.4 using red circle. There

are three culinary actions (Peel, Drain and Beat) that are not possible for the case

of cabbages in our ontology. First of all the instances of potatoes are replaced with

cabbages. Then actions are deleted which are not necessary for cabbages. Here,

adaptation rule 2.2 is applied. ”Peel” action cannot be directly deleted because our

< ACTIONS > section says that there is another action in sentence one. There-

fore sentence one is regenerated from < ACTIONS > sections. The sentences

containing ”Drain” and ”Beat” can be directly deleted as there are no other actions

or ingredient in these sentences. At the end, adapted recipe looks like

” Cut cabbages. Boil in salted water for 15 to 20 minutes, or until

tender. Mash cabbages in large bowl. Add milk in small amounts, beating

after each addition, until desired consistency is reached. Add butter, 1/4

teaspoon salt, and pepper.”
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5.4.4 Adaption using Addition and Deletion of Actions

Let us consider following fried chicken example now. This time we only show here

adaptation process. Complete representation of annotation of this recipe is presented

in appendix A.

”Clean the chicken and dry it with kitchen towel. Marinate chicken

with salt, pepper, lemon juice & corn flour (preferably over night).Heat

oil in a big pan and fry chicken on high flame keep on changing direction

of chicken so it should cook equally from all sides.”

Can we replace chicken with potato? Here chicken is defined by ”Chicken (Clean,

Dry, Marinate, Fry)”. After searching for appropriate potato prototype we get

”Potato (Peel, Slice, Fry)”. This time we not only delete the actions but also have

to add new actions to make recipe adapted for potato. The sentence one is ana-

lyzed first. It contains actions that need to be deleted. According to adaptation

rule 2.2 we can delete this sentence completely as it contains only actions that need

to be deleted. Furthermore, it does not contain any other ingredients. ”Marinate”

also need to be deleted but there are other ingredients which are associated with

”Marinate” here. We cannot delete this sentence or ”Marinate” action completely

instead we delete ”chicken” from here. This makes sentence unnatural. For addition

of ”Peel” and ”Slice” actions, the adaptation rule 2.1 is followed i.e. we simply add

sentence at the start as ”Peel and slice potatoes”. The adapted recipe is as follow.

”Peel and slice potatoes. Marinate with salt, pepper, lemon juice &

corn flour (preferably over night). Heat oil in a big pan and fry potatoes

on high flame keep on changing direction of potatoes so it should cook

equally from all sides.”

5.5 Conclusion

This chapter has presented the brief description of our annotation process. Three

crucial task i.e. Information Extraction (IE) and representation of information from

recipe text, Ontology Lookup, and representation of metadata or annotation that

were created as result of our annotation process. IE process is the same as de-

scribed in chapter 3. But after extraction the information is presented in Description

Logic(DL) format. This information is then looked up in ontology for conceptual

class it belongs to. Since both extracted information and ontology are in DL format,

therefore, standard DL reasoning and inference technique can be applied for ontol-

ogy lookup. The chapter detailed structural subsumption algorithm for this purpose.

Once metadata is available, it has to be represented in a format suitable for further

processing. The chapter has presented an XML based representation for annotation.

At the end, few examples were explained to show that our approach for SA is really

useful for recipe adaptation purpose.
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Conclusions

In this thesis, we have shown a new approach for semantic annotation. In this kind

of annotation, the document is annotated according to the conceptual information

it contains. This conceptual information is described by ontologies. In ontology, the

concepts that formally describe information are equipped with set of properties. Any

document that contains these properties is annotated with corresponding concept in

ontology.

To mine these properties, we have developed two robust text analysis techniques.

One is based on shallow parsing approach and other is based on dependency parsing

approach. In shallow parsing approach which we call Rule based information extrac-

tion, grammatical rules or patterns have been designed to extract the information

from the text. Rule based information extraction requires the POS tagger, morpho-

logical analyzer and set of dictionaries to work. The other approach to information

extraction is dependency based information extraction. In this approach, the depen-

dency analysis of the text is performed to extract out information. This approach is

quite handy as it does not require the use of POS tagger. But morphological analyzer

and dictionaries are still necessary to extract information. We have also performed

the evaluation of two approaches on the corpus of recipe documents. The results of

the evaluation have been presented in chapter 3. According to results obtained from

the experiments, it was concluded that ”Dependency Based” Information Extraction

can be helpful for the scenarios discuss in this thesis.

The information extraction techniques are used for both construction of ontology

and semantic annotation. We have also described a method of ontology construction

using Formal Concept Analysis (FCA) approach. Once ontology is constructed, it is

represented in the system using Description Logic formalism. Then annotation has

been defined as mining appropriate properties in the document, converting these prop-

erties to DL based representation and looking up ontology for corresponding concept

for annotation. These annotations are formally represented using xml based format
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defined in chapter 5. We apply our approach on cooking recipe corpus for recipe

adaption purpose. Examples are given at the end of chapter 5 to show adaptation

process using our annotation approach.

There are still some open issues that need to be addressed for efficient adaption.

Information extraction techniques devised for this approach require further improve-

ment as lots of information is not extracted by our current process. Especially,

discourse analysis process should be improved. Furthermore, for recipe adaptation,

interaction of ingredient should also be taken into consideration as in our point of

view it could be helpful. The other important issue is the consideration of adverbial

clauses like how much to cook, time, pot etc. Currently, adverbs are not annotated

that makes regeneration of sentences little bit unnatural. We will try to solve these

issues in our future work.
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Appendix A

Annotation Representation

A.1 Complete Representation of Recipe

Figure A.1: Representation of Recipe
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A.2 Receipe Regeneration from Annotations

From above representation, the recipe can be generated from < ACTIONS >

section. This is useful for recipe regeneration when actions are deleted from the

recipe. From this representation, we find out using in < ACTIONS > section that

first action is ”Clean” that has id=1 which is being applied to ”chicken” that has

id=3. From this, we can generate the recipe statement as

”Clean chicken.”

As soon as, we apply the same approach to second action, it comes out that the action

is ”dry” and its being applied to the same token as action with id=3. Therefore we

can combine the two statements to make it look more natural i.e.

”Clean and dry chicken.”

The third action is ”Marinate” having id=10. This is the divalent verb. Therefore,

you will also see in its token list, the index for the auxiliary verb that is used to

separate two arguments. Here in this case it is ”with” having id=12. Since there

are multiple ingredient in the statement, a list will have to be formed. The resultant

statement will be as follow.

”Marinate chicken with salt, paper, lemon, juice, corn and flour.”

The problem here is that we have not handled compound nouns here. Therefore

lemon juice is generated as lemon and juice separately. Similar is the case with corn

flour. Similarly, the last two statement produce following statements.

”Heat oil” and ”fry chicken”

The overall generated recipe is

”Clean and dry chicken. Marinate chicken with salt, paper, lemon,

juice, corn and flour. Heat oil. Fry chicken.”

This is very summarized version of the original recipe which is shown below

”Clean the chicken and dry it with kitchen towel. Marinate chicken

with salt, pepper, lemon juice and corn flour (preferably over night).Heat

oil in a big pan and fry chicken on high flame keep on changing direction

of chicken so it should cook equally from all sides.”



Appendix B

Description of Program & Data

All the programs and data that have developed as part of master thesis on ”Do-

main Specific information extraction for semantic annotation” have been provided in

accompanied CD with this thesis.

There are two folder in the CD. ”InformationExtraction” folder contains the source

code, data and all the relevant files for the information extraction techniques. The

”LatticeGeneration” folder contains the source code, data and all the relevant files

for ontology generation from extracted information.

There are two well known text analysis techniques have been implemented in

this work. One is ”Rule Based approach” and other is ”Dependency Based Syntax

Analysis”. The ”InformationExtraction” folder contains the source code and data for

both approaches. There are following files in this ”InformationExtraction”.

MainAnnotator.java Contains Main Method to execute

this java program.

Eval.java Implements code to measure

Precision and Recall.

Annotator/Parser/StanfordParser.java Implements Dependency based

information extraction code.

Annotator/Parser/RuleBaseExtracter.java Implements Rule based

information extraction code.

Annotator/Parser/DataReaderWriter.java Implements methods for

input/output from files.

Annotator/Parser/Util.java Utility methods.

To run the program, you need to take care of following things.
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1. StandfordParser.Java requires stanford parser. You can download parser from

http://nlp.stanford.edu/software/lex-parser.shtml. Stanford-Parser.jar should

be in the java ClassPath to run the application.

2. This program also utalizes the morphological engine provided as a part of stan-

ford POS tagger. It can be downloaded from http://nlp.stanford.edu/software/tagger.shtml.

The stanford-postagger.jar should be in class path to run the application.

3. RuleBaseExtracter.java uses the customed trained pos tagger. We have used

brill’s tagger provided as part of python Natural Language Tool Kit(NLTK) to

train and tag the recipe text. The customed trained Brill’s tagger has been

provided as part of this program. It is in the ”tagger” directory. To run

the program,in the following piece of code, change the path of the python

application.

Processproc = Runtime.getRuntime().exec(”C : /Python25/pythontagger/tagger.py”);

Apart from the files mentioned above, the following Directory structure and files

should be preserved apart from the files mentioned above to run the application.

edu folder that contains unjarred version

of stanford applications.

Data/englishPCFG.ser.gz Stanford Parser model.

Data/IngDic.txt Ingredients Dictionary.

Data/ActDic.txt Actions Dictionary.

Data/PrepDic.txt Preposition Dictionary to fix pos

tagging error on preposition.

Data/DetDic.txt Determiner Dictionary to fix pos

tagging error on determiner.

Data/ConjDic.txt Conjunctions Dictionary to fix pos

tagging error on conjunction.

Data/Recipies/Original Contains original recipe text.

Data/Recipies/DepExtractedMapping Contains information extracted

using dependency apporach on original recipes.

Data/Recipies/RuleExtractedMapping Contains information extracted

using rule base approach on original recipes.

Data/Recipies/ManuallyExtractedMapping Contains manually extracted information

for measuring performance.

tagger/RecipesBrillTagger.pkl Customed Train Brill’s Tagger Python

Object saved in file.

tagger/tagger.py Tagger file used for tagging recipe text.

This program is called from java program.

tagger/token.txt tokens to tag.

tagger/tag.txt tag output program.
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To run the program on any platform LINUX or WINDOWS.

1) Compile : Javac MainAnnotator.java

2) Run : Java MainAnnotator

The ”LatticeGeneration” folder contains following files and folder

GenerateLattice.py Paython script ot generate Galicia Lattice file.

Data This folder contains extracted data.

Run the GenerateLattice.py file as normal python program.


