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WSD Approaches

I supervised (hand labelled data)
I knowledge-based (dictionaries, thesauruses)
I unsupervised

I induce senses (fully unsupervised) similarity of input vector to
previous clusters (LSA)

I or associate distributional information with entries in given
sense inventory NB association uses knowledge
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Knowledge-Based WSD

Using information from manually created lexical resources
I dictionary de�nitions [Lesk, 1986]
I semantic relations [Navigli and Velardi, 2005] conceptual

density [Agirre and Rigau, 1996] graphical
methods [Sinha and Mihalcea, 2007],

I wikipedia (with WordNet) [Ponzetto and Navigli, 2010]
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Lesk

de�nitions e.g.

pine 1. evergreen tree with needle-shaped leaves

cone 1. solid body which narrows to point
2. fruit of certain evergreen trees (�r, pine)

The pinebore conesthat seemed to bend. . . w1 = pine w2 = cone

1. for each sensei of w1

2. for each sensej of w2

3. argmax(overlap(i ; j )) where overlap is number of words in
de�nitions of both i and j
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Dante experiments

Initial experiments using:
I collocates : match with context e.gYou can get a wireless

mouse if you . . .
I scf match with context: particularly promising for verbsthe

gun �red
I de�nitions : overlap with de�nitions of words in context
I domain: overlap with domain of words in context
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Collocates e.g.mouse

mouse: (PoS: n)
meaning:a small long-tailed rodent
domain: zoo
example: Themouse was dead in his cage the following day
. . .
SCF:N PREMOD
COLLOC:droppings nest hole cage
example: Look for signs ofmouse droppings etc.
example:Mouse cages are available in various stages, sizes and designs.
. . .
SCF:N MOD
COLLOC:laboratory house wood �eld harvest pet
example: A set of 50 laboratorymice were examined at monthly
intervals for 2 years from birth
. . .
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Collocates e.g.mouse

mouse: (PoS: n)
meaning:a computer input device controlled with one hand which moves
the cursor on the computer screen
domain: IT
example: If your mouse runs o� the mat edge, lift themouse up, move
it back to the mat middle, and put it down
. . .
COLLOC:optical, wireless cordless
. . .
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SCF e.g.�re to discharge a weapon

Frame1
------

'_0' (intransitive)
Frame2
------

'NP'
collocations: 'shot', 'round', 'gun', 'weapon', 'rifle',

'rocket', 'missile', 'shell', 'arrow'
Frame3
------

'PP_X'
Frame4
------

'NP PP_X'



Sample senses containing domain information

SenseID Domain
------- ------
mouse#1 ['zool']
mouse#3 ['IT']
soap#1 ['cosm']
soap#2 ['TV-rad']
soar#1 ['mus']
soar#2 ['bird']



De�nitions e.g. investigation

sense Sense Definition
----- ---------------------
investigation#1 'a formal enquiry'
investigation#2 'research or detailed study

Sense List of salient words in definition
---- -----------------------------------
investigation#1 ['formal', 'enquiry']
investigation#2 ['research', 'detailed', 'study']
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Supervisedwsd

I most proli�c approach due to higher precision
I requires hand-labelled data, and lots of it
I typically lexical sample otherwise data is insu�cient

( [Ng, 1997] uses 100 minimum)
I typically determining optimum features best done on a word

by word basis [V�eronique et al., 2002]
I hard to be sure of any approach being globally best because

of interaction of parameters
I binary vs n-ary models
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Representation of example by features

I local features (with position) capture collocations and limited
syntactic information:

I PoS tags
I lemmas
I word forms

I topical features, wider windows or lexical info in extended
context, capture semantic domain

I dependencies at a sentence level, better argument head
relations
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Algorithms

I decision list [Yarowsky, 1994]
I f feature, value, classg
I training data used to determine importance of rules (e.g. log

likelihood)

log(
p(senseajcollocationi )
p(senseb jcollocationi )

)

I rules ordered
I �rst matching is applied

�sh 7.2 food
silicon 5.2 computer
sausage 4.3 food
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Algorithms

chip

chip/food

N

NY

Y

chip/computer

fish

sausage

silicon

I decision trees e.g. C4.5
I recursive partitioning
I features have too many values
I computationally expensive, not reliable
I terminals with few examples
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Algorithms contd. . .

I probabilistic
I Naive Bayes
I maximum entropy

I similarity
I vector space mode; prototypes
I kNN (memory, instance, exemplar based, case-based)
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Algorithms contd. . .

I rule combination, (ensemble methods) e.g. majority voting,
Adaboost combines weaker classi�ers

I linear (binary) classi�er:
I hyperplane in n-dimensional space, weight vector
I learn non-linear transformation to higher dimensional space via

kernel function (boundaries may be easier to spot in high
dimensional space)

I SVM good example (and very good results), better with less
training data compared to adaboost, which is better with more
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SVMs
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\Unsupervised"

I NB that many systems described as unsupervised are indeed
knowledge based

I some ([McCarthy et al., 2004]) use info from the inventory for
mapping the corpus data to the gold standard

I others use some level of explicit knowledge [Yarowsky, 1995]
I many many systems calling themselves unsupervised use hand

tagged data (SemCor)
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Unsupervised [Sch•utze, 1992, Sch•utze, 1998]

context frequency
coach bus trainer

take 50 60 10
teach 30 2 25
ticket 8 5 0
match 15 2 6
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Vector Based Approaches

50

30

bus

train
carriage

teacher

teach

take

trainer

coach
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Vector Based Approaches
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Similarity between two words: cosine

sim(a; b) =
a:b

jajjbj
=

P n
i =1 ai biq P n

i =1 b2
i

q P n
i =1 b2

i
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Context Group
Discrimination [Sch•utze, 1998, Sch•utze, 1992]

I SVD to reduce dimensionality
I Agglomorative clustering as seeds for EM (Buckshot)
I clusters 2 vs 10 (predetermined)
I evaluation of separating senses
I evaluation of disambiguation: pseudo-disambiguation,

Information retrieval
I information retrieval (�ltering matches) 7.4% percent better

than word-based (combined 14.4%)
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Bootstrapping

I self-training [Yarowsky, 1995]
I seed data
I iterate

I co-training
I iterate between two classi�ers
I di�erent views on the data
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Unsupervised word sense disambiguation rivaling
supervised methods
[Yarowsky, 1995]

I start with seeds e.g.plant (animal vs machinery)
I tag the data using these seeds (1% each) (rest is residual)
I train supervised classi�er (decision list)
I apply, with threshold on probability and add new examples to

seed sets
I optionally apply one sense per discourse hypothesis (extend

seeds, or change classi�cation, or remove to residual)
I stop when residual is stable
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Yarowsky Algorithm
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Yarowsky Algorithm
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Yarowsky Algorithm

I seeds from experts or
I can escape from initial misclassi�cations, but to help:

I increase context window after intermediate convergence
I randomly change threshold
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Yarowsky 1995 Results

Word senses SSize %FSH Sup Y2w Ydic colls
plant living/factory 7538 53.1 97.7 97.1 97.3 97.6
space volume/outer 5745 50.7 93.9 89.1 92.3 93.5
tank vehicle/container 11420 58.2 97.1 94.2 94.6 95.8
motion legal/physical 11968 57.5 98.0 93.5 97.4 97.4
bass �sh/music 1859 56.1 97.8 96.6 97.2 97.7
palm tree/hand 1572 74.9 96.5 93.9 94.7 95.8
poach steal/boil 585 84.6 97.1 96.6 97.2 97.7
axes grid/tools 1344 71.8 95.5 94.0 94.3 94.7
duty tax/obligation 1280 50.0 93.7 90.4 92.1 93.2
drug medicine/narcotic 1380 50.0 93.0 90.4 91.4 92.6
sake bene�t/drink 407 82.8 96.3 59.6 95.8 96.1
crane bird/machine 2145 78.0 96.6 92.3 93.6 94.2
AVG 3936 63.9 96.1 90.6 94.8 95.5
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Semi-automatic Dictionary Drafting:
SADD [Kilgarri� and Rychl�y, 2010]

I Yarowsky like algorithm
I senses as clusters of instances
I one sense per collocate
I clusters of collocates
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Demo (or pictures)
Sketch Engine: Clusters of Collocates



Demo (or pictures)
Sketch Engine: Clusters of Collocates



SADD initialisation



SADD annotating



SADD annotating word sketch



SADD annotating at the concordance
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Cross Lingual Word Sense Disambiguation

[Resnik and Yarowsky, 2000, Lefever and Hoste, 2010,
Diab and Resnik, 2002, Chan and Ng, 2005]

1. bank $ dijk or oever (Dutch)
giving �sh to people living on the bankof the river

2. bank $ bank or kredietinstelling(Dutch)
The bankof Scotland . . .
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Cross Lingual Word Sense Disambiguation

Language Sense label
The bankof Scotland

Dutch oever/dijk
French rives/rivage/bord/bords
German Ufer
Italian riva
Spanish orilla

The bankof Scotland
Dutch bank/kredietinstelling
French banque/�etablissement de cr�edit
German Bank/Kreditinstitut
Italian banca
Spanish banco
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Cross Lingual Word Sense Disambiguation

I unsupervised BUT corpus based, relies on aligned corpora
I uses word alignment tools (GIZA++) to provide inventory

and training data
I best way to go if you have cross lingual application and know

your source and target
I if the goal is translation into several languages eventually

every distinction that can be made will be
made [Palmer et al., 2007]
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Evaluation

I in vitro (stand alone) in vivo (within an application)
I prior to senseval

I small samples of words [Leacock et al., 1993, Yarowsky, 1995]
[Yarowsky, 1995]

I or di�erent subsets [Wilks and Stevenson, 1998]
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but what about:

I the inventory?
I all words vs lexical selection?
I lexical selection?
I data selection?
I amount of context?
I training data vs testing data?
I scoring?
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Baselines

I Random: fairest baseline for unsupervised system

X

i 2 instances

1
senses(i )

I First sense
I Most frequent sense
I Upper bound (pairwise inter-tagger agreement)
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Pseudo-Words

I merge two words to create an arti�cial test setbanana-shell
I which word is correct for the context
I similar to word1 word2 confounder test sets for structural /

collocational disambiguation e.g. PP attachment
I issues (see for example [Stokoe, 2005])

I frequency of words
I frequency bounds (between 500 and 1000 [Sch•utze, 1998])
I ambiguity of words (word pairs [Sch•utze, 1998])
I closeness in meaning of words and therefore ease of

disambiguation

McCarthy
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Senseval

I �rst senseval organised in 1998 at Hertmonceaux, UK
I arising from discussions preceding year: SIGLEX Workshop on

Tagging Text with Lexical Semantics: Why, What and How?
I level playing �eld, same time constraints
I same words, same test instances, same measures
I sampling and inventory?
I English, Italian and French lexical samples (25 systems)
I English Inventory: Hector (OUP and DEC project) with

WordNet mapping
I scoring allowed a degree of con�dence
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Senseval-2

I 2001 Toulouse France
I all words as well as lexical sample
I 12 di�erent languages (93 systems)
I Basque, Chinese, Czech, Danish, Dutch, English, Estonian,

Italian, Japanese, Korean, Spanish, Swedish.
I Japanese translation task as well as lexical sample
I coarse grained mapping for English Lexical Sample Senseval-2
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Senseval-3

I 2004 Barcelona
I 14 tasks (160 systems)
I eight languageswsd (all words and lexical sample - ceiling at

73%)
I SRL
I wsd for SCF acquisition
I gloss disambiguation
I logic forms (transform english sentences to �rst order logic

notation) some students like to study in the mornings.
! student : n(x1) like : v(e4;x1;e5)to(e4; e5)study :
v(e5;x1;x2) in(e5; x2)morning : n(x2) .
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SemEval

see http://nlp.cs.swarthmore.edu/semeval/tasks/index.shtml

I Workshop at ACL 2007 Prague, Czech Republic
I 18 tasks including:

I wsd tasks
I web people search
I a�ective text
I time event

I semantic relations
between nominals

I word sense induction
I metonymy resolution
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SemEval-2

see http://semeval2.fbk.eu/semeval2.php

I Workshop at ACL 2010, Uppsala Sweden
I 18 tasks including:

I Cross-lingualwsd
I Co-reference resolution
I VP ellipsis - detection and

resolution
I Automatic Keyphrase

Extraction from Scienti�c
Articles

I Argument selection and
coercion

I Event Detection in
Chinese News Sentences

I Parser Training and
Evaluation using Textual
Entailment

I Tempeval-2
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Plans afoot for SemEval-3: Why engage?

I what you can gain from participating?
I don't worry about being bottom
I not necessarily good to focus on coming top
I don't forget the science!!!
I what you can gain from co-organising?
I wonderful opportunity to explore new ideas
I use for learning and experience
I be careful of fools gold
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wsd performance (recall)

task best system MFS ITA
SemEval 2007

English all words �ne 59.1 51.4 72/86
English all words coarse 82.5 78.9 93.8
English lexical sample 88.7 78.0 > 90
Chinese English LS via parallel 81.9 68.9 84/94.7

SemEval 2010 domain speci�c all words
English 55.5 50.5 -
Chinese 55.9 56.2 96
Dutch 52.6 48.0 90
Italian 52.9 46.2 72
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The First Sense Heuristic

Simple but powerful. For example WordNet (v3.0) nounplant:

1. (63) plant, works, industrial plant { (buildings for carrying on
industrial labor; "they built a large plant to manufacture
automobiles")

2. (37) plant, 
ora, plant life { ((botany) a living organism
lacking the power of locomotion)

3. plant { (an actor situated in the audience whose acting is
rehearsed but seems spontaneous to the audience)

4. plant { (something planted secretly for discovery by another;
"the police used a plant to trick the thieves"; "he claimed
that the evidence against him was a plant")

McCarthy



WSD Methodology
Approaches
Evaluation

Issues

Performance and the First Sense Heuristic
The Sense Inventory

The First Sense Heuristic

I obtained from manually labelled data or lexicographer intuition
I many wsd systems use (even those that profess to be

unsupervised)
I systems use it when there is no evidence from the context

(more often than you would expect)
I BUT there is a shortage of hand-tagged text
I AND the �rst sense of a word changes with domain
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WSD Lessons

best systems performing just better than �rst sense heuristic over
all words e.g. English all wordssenseval -3
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First Sense Heuristic from SemCor is not always reliable
e.g. pipe (noun)

1. (6) pipe, tobacco pipe { (a tube with a small bowl at one end;
used for smoking tobacco)

2. (4) pipe, pipage, piping { (a long tube made of metal or
plastic that is used to carry water or oil or gas etc.)

3. pipe, tube { (a hollow cylindrical shape)

4. pipe { (a tubular wind instrument)

5. organ pipe, pipe, pipework { (the 
ues and stops on a pipe
organ)

McCarthy
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First Sense Heuristic from SemCor is not always reliable
e.g. pipe (noun)

1. (6) pipe, tobacco pipe { (a tube with a small bowl at one end;
used for smoking tobacco)

2. (4) pipe, pipage, piping { (a long tube made of metal or
plastic that is used to carry water or oil or gas etc.)

3. pipe, tube { (a hollow cylindrical shape)

4. pipe { (a tubular wind instrument)

5. organ pipe, pipe, pipework { (the 
ues and stops on a pipe
organ)

Distributional neighbours ofpipe from the British National Corpus
(BNC) : tube (0.139) cable (0.137) wire (0.131) tank (0.131) hole
(0.120) cylinder (0.116) . . .

McCarthy



WSD Methodology
Approaches
Evaluation

Issues

Performance and the First Sense Heuristic
The Sense Inventory

Method [McCarthy et al., 2004]

Distributional neighbours ofpipe from BNC:
tube (0.139) cable (0.137) wire (0.131) tank (0.131) hole (0.120)
cylinder (0.116) . . .
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Method [McCarthy et al., 2004]

Distributional neighbours ofpipe from BNC:
tube (0.139) cable (0.137) wire (0.131) tank (0.131) hole (0.120)
cylinder (0.116) . . .

I Use number and score (ds) of distributional neighbours
pertaining to each sense

I Tie distributional neighbours to senses (ss). We use WordNet
Similarity, 2 useful measures:

I lesk [Lesk, 1986]: de�nition overlap,
I jcn [Jiang and Conrath, 1997]: uses frequency counts from

corpus and hypernym hierarchy
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Our Sense Ranking Score

Prevalence Score(w; si ) =
X

nj 2 Nw

ds(w; nj )�
ss(si ; nj )P

si 02 senses(w) ss(si 0; nj )

plant: Neighbours
senses tree 0.17 
ower 0.16 factory 0.14 . . .


ora 0:17� ss(
ora ;tree)P
ss(� ;tree) 0:16� ss(
ora ;
ower )P

ss(� ;
ower ) 0:14� ss(
ora ;factory )P
ss(� ;factory )

works 0:17� ss(works;tree)P
ss(� ;tree) 0:16� ss(works;
ower )P

ss(� ;
ower ) 0:14� ss(factory ;works)P
ss(� ;factory )
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Experimental Set Up

Distributional thesaurus:
I bnc [Leech, 1992]
I rasp parser [Briscoe and Carroll, 2002]

PoS Grammatical contexts
noun verb in object or subject relation, adj or noun modi�er
verb noun as object or subject
adjective modi�ed noun, modifying adverb
adverb modi�ed adj or verb

I Lin's newswire thesaurus: proximity and dependency
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senseval -2 wsd Precision with SemCor Frequency
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Automatic Detection of Entropy
with Peng Jin
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ranknj

p̂(wsi ) =
prevalence score(wsi )P

wsj 2 w prevalence score(wsj )

H(senses(w)) = �
X
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Automatic Entropy Detection and the First Sense Heuristic
with Peng Jin
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Distributional Neighbours oftie (noun)

I BNC:
links (0.165) shirt (0.162) scarf (0.152) jacket (0.142) bond (0.130)
match (0.128) trousers (0.126) link (0.125) collar (0.125) dress
(0.121)

I Reuters Finance:
relation (0.329) links (0.247) relationship (0.232) cooperation
(0.228) contact (0.142) partnership (0.141) trade (0.137) role
(0.133) integration (0.133) �nances (0.132)

I Reuters Sport:
quali�er (0.191) match (0.174) clash (0.150) round (0.135)
semi�nal (0.132) series (0.129) �xture (0.125) matchup (0.120)
encounter (0.120) win (0.116)
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Reuters Domain Speci�c Corpora

40 words (100 sentences each) [Koeling et al., 2005]

I �nance and sport codes[Magnini and Cavagli�a, 2000]:club,
manager, record, right, bill, check, competition, conversion, crew,
delivery, division, �shing, reserve, return, score, receiver, running

I �nance salience:package, chip, bond, market, strike, bank, share,
target

I sports salience:fan, star, transfer, striker, goal, title, tie, coach

I equal salience:will, phase, half, top, performance, level, country
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Accuracy for Domain Speci�c Words

Train { Test rbl all F&S cds F sal S sal eq sal
bnc { bnc 19.8 40.7 33.3 51.5 39.7 48.0
SemCor{bnc 19.8 32.0 28.3 44.0 24.6 36.2
finance { finance 19.6 49.9 37.0 70.2 38.5 70.1
SemCor{finance 19.6 33.9 30.3 51.1 22.9 33.5
sports { sports 19.4 43.7 42.6 18.1 65.7 46.9
SemCor{sports 19.4 16.3 9.4 38.1 13.2 12.2
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SemCor{finance 19.6 33.9 30.3 51.1 22.9 33.5
sports { sports 19.4 43.7 42.6 18.1 65.7 46.9
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Application to Japanese
Ryu Iida [Iida et al., 2008]

I Japanese Inventories with Gold-Standard data:
1. EDR
2. Iwanami Kokugo Jiten (senseval -2)

I Semantic Relations not present in all resources
I Increase coverage of LESK using distributional similarity

I pigeon: a fat grey and white bird with short legs.
I bird: a creature that is covered with feathers and has wings

and two legs.
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Adapting Lesk with Distributional Similarity

use Distributional Similarity to �nd the maximum similarity
between each pair of words in the de�nitions and take the average.

DSlesk(s1; s2) =
1

ja 2 g1j

X

a2 g1

max
b2 g2

ds(a; b)
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Further and Ongoing Work

I automatic text categorisation [Koeling et al., 2007]
I detecting the skew (entropy) to increase performance
I combining �rst sense heuristic with local evidence

I unsupervised: using collocates of
neighbours [Koeling and McCarthy, 2008]

I graphical methods [Reddy et al., 2010]
I weighing local evidence against entropy

I representation of sense
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The Sense Inventory

I raging debate since the very inception of Senseval
I how to make it fair to systems?

I avoid bias
I availability to all

I how to make appropriate distinctions?
I for applications?
I as humans do?
I what are word senses anyway?
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Granularity

I much wsd done with WordNet because:
I it has an abundance of useful lexical information
I it is freely available
I it comes equipped with a large tagged gold standard corpus

(SemCor)
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Granularity

I much wsd done with WordNet because:
I it has an abundance of useful lexical information
I it is freely available
I it comes equipped with a large tagged gold standard corpus

(SemCor)

I but . . .
I many believe too �ne grained for

wsd [Ide and Wilks, 2006] [Navigli, 2006]
I we cannot do it and
I why should we?

I should we settle for what annotators can agree on?
(OntoNotes [Hovy et al., 2006])

McCarthy



Merging Word Senses
The problem : evidence

n#1 54 evidence, grounds { (your basis for belief or
disbelief; knowledge on which to base belief; "the
evidence that smoking causes lung cancer is very
compelling")

n#2 (23) evidence { (an indication that makes something
evident; "his trembling was evidence of his fear")

n#3 (7) evidence { ((law) all the means by which any
alleged matter of fact whose truth is investigated at
judicial trial is established or disproved)



Merging Word Senses
The problem : evidence

v#1 (10) attest, certify, manifest, demonstrate, evidence
{ (provide evidence for; stand as proof of; show by
one's behavior, attitude, or external attributes; "His
high fever attested to his illness"; "The buildings in
Rome manifest a high level of architectural
sophistication"; "This decision demonstrates his
sense of fairness")

v#2 (3) testify, bear witness, prove, evidence, show {
(provide evidence for; "The blood test showed that
he was the father"; "Her behavior testi�ed to her
incompetence")

v#3 (1) tell, evidence { (give evidence; "he was telling on
all his former colleague")
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Clustering WordNet Senses

I clustering senses [Navigli, 2006] knowledge-based mappingto
ODE

I group verb senses using predicate argument
structure [Palmer et al., 2007]

I contexts of senses from manually tagged corpora, or
occurrences of monosemous
relatives [Agirre and Lopez de Lacalle, 2003]

I Relating WordNet Senses (RLISTS) [McCarthy, 2006]
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Relating WordNet Senses (RLISTS) [McCarthy, 2006]

I idea not to group senses but to see how close each is to
another

I motivation, one sense may between others

bar pub $ counter $ rigid block of wood
child young person $ o�spring $ descendant

rlist

1 young person: human o�spring, baby, clan member
2 human o�spring: clan member, young person, baby
3 baby: human o�spring, young person, clan member
4 clan member: human o�spring, young person, baby
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Relating Senses with Distributional Vectors (DIST)

Nearest Neighbours
stool boss president

�!
Vs1 jcn(seat,stool) jcn(seat,boss) . . .
�!
Vs2 jcn(professor,stool) jcn(professor,boss) . . .
�!
Vs3 jcn(chairperson,stool) jcn(chairperson,boss) . . .
�!
Vs4 jcn(electric ,stool) jcn(electric ,boss) . . .
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Relating Senses with Distributional Vectors (DIST)

Nearest Neighbours
girl son baby

�!
Vs1 jcn(youth ,girl) jcn(youth ,son) . . .
�!
Vs2 jcn(o�spring ,girl) jcn(o�spring ,son) . . .
�!
Vs3 jcn(immature ,girl) jcn(immature ,son) . . .
�!
Vs4 jcn(clan,girl) jcn(clan,son) . . .
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rlist s for child

sense jcn rlist
1 2 (0.11) 3 (0.096) 4 (0.095)
2 4 (0.24) 1 (0.11) 3 (0.099)
3 2 (0.099) 1 (0.096) 4 (0.089)
4 2 (0.24) 1 (0.095) 3 (0.089)

sense dist rlist
1 3 (0.88) 4 (0.50) 2 (0.48)
2 4 (0.99) 3 (0.60) 1 (0.48)
3 1 (0.88) 4 (0.60) 2 (0.60)
4 2 (0.99) 3 (0.60) 1 (0.50)
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Groupings forsensein senseval -2 LS

sense GSgr rlist
1 g1 5 (0.99) 4 (0.84) 3 (0.83) 2 (-0.22)

a general conscious awareness; \sense of security"
2 g2 4 (-0.20) 5 (-0.22) 1 (-0.23) 3 (-0.23)

the meaning of a word or expression
3 g1 4 (0.99) 5 (0.82) 1 (0.82) 2 (-0.23)

sensation
4 g3 3 ( 0.99) 5 (0.84) 1 (0.84) 2 (-0.21)

common sense
5 g4 1 (0.99) 4 (0.84) 3 (0.83) 2 (-0.22)

a natural appreciation or ability; \a musical sense"
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Accuracy of Coarse-grained �rst sense heuristic on
Senseval Lexical Sample

groupings thresh onrlist s
dist jcn

�ne-grained SE2gss GS 0.90 0.20 0.09 0.0585
seval -2 FS 55.6 65.7 87.8 68.0 85.1 68.2 84.7
SemCor FS 47.0 59.1 82.8 55.9 81.7 59.7 79.4

Auto FS 35.5 48.8 82.9 50.2 72.3 53.4 83.3
random BL 17.5 34.8 65.3 32.6 69.7 34.9 63.5
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Relating Senses with DIST and the First Sense Heuristic
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Relating senses with JCN and the First Sense Heuristic
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Word Sense Induction (WSI)

I induce senses
I may then be applied towsd
I all methods use corpus co-occurrence data, distributional and

graphical
I evaluation still a thorny issue
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Distributional Approaches

I Context group discrimination [Sch•utze, 1998]
I Clustering by committee [Pantel and Lin, 2002]

I cluster neighbours using average-link clustering
I residual words not in any committee (not close enough to

centroid of formed clusters) remain for next iteration
I intersecting features in a committee are removed from

representation of remaining words so as to allow for less
frequent senses
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co-occurrence graph [Dorrow and Widdows, 2003]

I vertices words
I edges co-occurrences in syntactic relation of proximity

(paragraph)
I create graph for wordw
I Markov Clustering , random walks within graph will tend to

stay in the same cluster rather than jump to more
I 2 steps with parameters

I in
ation (supports popular neighbours and at expense of less
frequent, in
ates and then rescales so entries sum to 1) and

I expansion (expands to new node neighbours)
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[Dorrow and Widdows, 2003] Algorithm

I remove links of 1, then w
I apply clustering
I remove best cluster and its features
I iterate
I merge similar clusters (using taxonomy?)
I label classes using hypernyms from WordNet
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Graphical clustering
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Other clustering algorithms

I PageRank [Brin and Page, 1998] used by [Agirre et al., 2006]
for wsd

I chinese whispers [Biemann, 2006] (e�cient, scales to large
graphs useful for WSD features)

I collocations as vertices [Klapaftis and Manandhar, 2008]
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Evaluation of WSI?

I against gold standard resource [Pantel and Lin, 2002]
I against gold standard annotations (clusters) e.g. OntoNotes:

purity, entropy, v-measure (homogeneity and completeness)
I mapped to inventory (supervised evaluation) and then

standard WSD
I separate training and test data [Manandhar et al., 2010]
I bias in evaluation depending on cluster granularity and

distribution of instances in cluster [Manandhar et al., 2010]
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Credits

Thank you for your attention!
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